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Five

The Pythagoreans associated the number five  
with marriage, because it is the sum of what  
were to them the first even, female number 2,  
and the first odd, male number 3.

—DAVID WELLS, THE PENGUIN DIC TIONARY OF 

CURIOUS AND INTEREST ING NUMBERS  ( 1986)

EVEN AMONG THE FIRST TEN INTEGERS, five stands out. The 
number one is, well, one, the generator of all integers. 
Two is one doubled; it is the natural cycle that governs our 
lives. We walk in steps of one-two, one-two, we breathe in 
an inhale-exhale cycle, our daily activities are regulated by 
the diurnal cycle of day and night, our body has a nearly 
perfect left-right symmetry, and our sense of direction is 
based on a left-right, forward-backward movement. The 
Chinese yin-yang is a symbol of all things that come in 
contrasting pairs—yes-no, on-off, good-evil, love-hate. Two 
is the numeration base on which all our computers are 
based, the binary system. We also note that two has some 
unique mathematical properties: 2 + 2 = 2 × 2 = 22. And it 
has the distinction of being the first prime number and the 
only even prime. The exponent two is probably the most 
common power in all of mathematics, appearing in the 
Pythagorean theorem a2  +  b2  =  c2, in the Mersenne numbers 
2n − 1 and Fermat numbers 22n + 1, and in numerous theo-
rems in almost every branch of mathematics. It is just as 
prevalent in physics as the exponent in all inverse-square 
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laws, and it stars in the most famous equation in all of sci-
ence, E = mc2.

Three is next in line, being the sum of one and two 
(although we often perceive it as a single unit in counting: 
1-2-3, 1-2-3, …). Dances based on a triple meter are very 
common, from Haydn and Mozart’s minuets to Beethoven’s 
scherzos to the waltzes of the Strauss family. It is the first 
odd prime, as well as the first Mersenne prime (3 = 22 − 1) 
and the first Fermat prime (3 = 22°+ 1). It is also known as 
the “biblical value of π  ” due to a verse in I Kings 7:23: “And 
he made a molten sea, ten cubits from one brim to the other; 
it was round all about … ​and a line of thirty cubits did com-
pass it round about.” The “he” refers to King Solomon, and 
the “sea” alludes to a pond he ordered to be constructed at 
the outer entrance to Solomon’s Temple in Jerusalem.

Next comes four, the smallest composite number and 
the only square integer of the form p + 1, where p is a 
prime (this is because n2 − 1 = (n + 1) ⋅ (n − 1), a composite 
number except when n = 2). In the decimal numeration 
system, a number is divisible by four if and only if its 
last two-digit number is divisible by four (for example, 
1536 is divisible by four because 36 is, but 1541 is not 
because 41 is not). The first of the regular or Platonic sol-
ids, the tetrahedron, has four vertices and four faces, each 
an equilateral triangle. Four colors are sufficient to color 
any planar map such that two regions sharing a common 
border will have different colors (this famous theorem was 
first conjectured in 1852 but was not proved until 1977). 
We view the world as comprising four dimensions, three 
of space (length, width, and height) and one of time, all 
merged into a single entity, spacetime. There are four car-
dinal directions, designated (in clockwise direction) as N, 
E, S, and W. Four is the number of letters in the ineffable 
YHWH (the so-called tetragrammaton), one of the names 
of God in the Judeo-Christian tradition.
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We now arrive at five. It feels somewhat awkward to 
walk in steps of five, let alone to keep a five-beat rhythm 
in music. A quintuple meter of five quarter-notes per bar 
(denoted by 5 / 4) in classical music is quite rare; a notable 
exception is the “limping waltz” from Tchaikovsky’s Sym-
phony no. 6, Pathétique (figure 1.1). Similarly, a person 
accustomed to Western classical music may find it unnatu-
ral to listen to a piece played in a pentatonic scale of five 
notes to the octave. There are several versions of this scale; 
in one version, the notes are C, D, E, G, A, C′ (where C′ is 
one octave above C), comprising the intervals 1, 1, 1½, 1, 1½ 
(where 1 and ½ denote a full tone and a half tone, respec-
tively); another version starts with C-sharp and follows the 
black keys of the piano, with the sequence of intervals 1, 
1½, 1, 1, 1½. Pentatonic melodies can be found in much of 
African and Asian music. Figure 1.2 shows an example of 
a Chinese (Mandarin) folk song in a pentatonic scale.

FIGURE 1.1. The “limping waltz” in Tchaikovsky’s Pathétique

FIGURE 1.2. Chinese folk song in pentatonic scale
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But while it may feel awkward to count by fives in music, 
it actually comes quite naturally in daily life. This is due to 
the fact that we are born with five fingers on each hand. We 
are therefore endowed with a natural calculating device—
literally, a “pocket calculator,” considering that many of 
us like to hold our hands in our pockets on a brisk, cold 
day. And it doesn’t need to be recharged, it never runs out 
of power, and it is always available and ready to be used. 
If this sounds a bit trite, consider that many cultures have 
developed a kind of “finger arithmetic,” and all of us, at one 
time or another, have used our ten fingers to count or do 
some mental calculation. Indeed, the word digit literally 
means “finger”; so every time you use the adjective digital, 
remember that it comes from our built-in natural calculator.

The Romans had a special symbol for five: V, perhaps 
resembling a fully opened hand, while one, two, and three 
were written as I, II, III, obviously a visual image of the 
raised fingers representing these numbers. For quick tally-
ing, the symbol  is often used even today, as can be seen on 
many prison walls where inmates counted the number of 
days already served. For multiples of five, the Romans used 
the letters X = 10, L = 50, C = 100, D = 500, and M = 1,000. 
Other numbers were written in combinations of these 
symbols, such as IV (= 4) and VI (= 6). The fact that smaller 
values sometimes precede larger values but follow them in 
other cases made the Roman numeration system awfully 
difficult to compute with, but it has nevertheless survived 
well into the Middle Ages and beyond. Even today you can 
often see the groundbreaking date of a public building chis-
eled in the cornerstone in Roman numerals. It was only in 
the Middle Ages that the Hindu-Arabic numeration system, 
with the numeral zero at its core, was gradually adopted 
in Europe and eventually became accepted internationally.

The Greek word for five is πεντε (spelled “pénte” in the 
Latin alphabet), from which numerous ancient and mod-
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ern words derive; we encounter some of them later in this 
book. The Roman word for five was quinque, again the 
source of many ancient and current words. For example, 
quincunx describes a collection of five objects arranged in 
a square pattern, with one object located at the center and 
each of the others at a corner, as in the five-dot face on a die. 
And on the opposite side of the ancient world, the Chinese 
symbol for five was and still is 五 (pronounced like “me” in 
Mandarin), representing everything between heaven and 
earth and referring to the five elements that make up the 
universe: water, fire, earth, wood, and metal.

In the Hebrew alphabet, each letter is assigned a 
numerical value: א (aleph) = 1, ב (beith) = 2, ג (gimmel) = 3, 
 chet or) ח ,7 = (zayin) ז ,6 = (vav) ו ,5 = (heih) ה ,4 = (dalet) ד
het) = 8, ט (teth) = 9, and י (yod) = 10. Beyond ten, the sys-
tem becomes additive (and read from right to left, as in all 
Semitic languages):

 ,13 = 3 + 10 = י״ג ,12 = 2 + 10 = י״ב ,11 = 1 + 10 = י״א
.14 = 4 + 10 = י״ד

But the next two numbers, 15 and 16, are written differently:

,16 = 7 + 9 = ט״ז ,15 = 6 + 9 = ט״ו

this in order to avoid adjoining the letters י and ה, the first 
two Hebrew letters of the ineffable name YHWH, in accor-
dance with the Third Commandment: “Thou shalt not take 
the Name of Hashem, your G’d, in vain.” The remaining 
twelve letters after yod have the values 20, 30, 40, … , 100, 
200, 300, 400.

The Hebrew word for five is חמש, pronounced “Ha’mesh.”1 
Several words derive from it: חומש (Hu’mash), standing for 
the Torah—the Five Books of Moses, known in the West-
ern world as the Pentateuch; חמישית (Hami’sheet, one-fifth); 
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 ,(Hamsah) חמסה and ,(Mehu’mash, a five-sided polygon) מחומש
an amulet resembling the open palm of a hand, symbolizing 
divine protection, fortune, and good luck; it usually comes in 
vibrant colors dominated by blue (plate 4), and is commonly 
found among Middle Eastern and North African cultures.

In the Talmud, the compilation of Jewish law written 
simultaneously in Jerusalem and in Babylon around the 
third century CE, it says “One should not donate more 
than a fifth of one’s assets” (Babylonian Talmud, Tractate 
Ketuvot, p. 50a). The intention, no doubt, was to forewarn 
overgenerous donors against the possibility that they them-
selves might one day become dependent on charity.

  

The ten fingers on our hands are the very reason why 
the decimal system has become the universal numera-
tion system of the human race. Perhaps it isn’t the best 
choice: had we been endowed with six fingers on each hand, 
a duodecimal (base 12) system would have been the natu
ral choice, and a much better one indeed. For one, twelve 
has five proper divisors, 1, 2, 3, 4, and 6, whereas ten has 
only three, 1, 2, and 5. As a result, division in base 12 would 
be much simpler, avoiding, for example, a repeating decimal 
like 0.333 … when dividing by 3. Second, many things in 
our lives already come in multiples of six—an egg carton 
contains twelve eggs, a pack of beer holds six cans, and our 
days and clocks are divided into twelve hours,2 an hour has 
sixty minutes, and a minute has sixty seconds.

Around the middle of the twentieth century, the Duodeci-
mal Society of America and a similarly named British society 
(both later renamed the Dozenal Societies) launched a 
vigorous campaign to change our numeration system from 
decimal to duodecimal. They issued decimal-to-duodecimal 
conversion tables, not just for integers but also for common 
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and decimal fractions, special numbers like 2, π, and e, 
and even base 12 logarithmic tables. These were all well-
intended goals, and logic stood on their side. In the end, 
however, five hundred years of familiarity with the decimal 
system have prevailed, and we are still holding on to the 
good old base 10 numerals.

Here is one small benefit of using base 10 as our numera-
tion base. Because 2 × 5 = 10, we have 10 / 5 = 2 and 10 / 2 = 5. 
These last relations can be put to use for a quick, mental 
multiplication and division of a number by five: for mul-
tiplication, divide the number by two and move the deci-
mal point one place to the right; for division, multiply the 
number by two and move the point one place to the left. 
For example, 38 × 5 = (38 / 2) × 10 = 19 × 10 = 190, and 47 / 5 = 
(47 × 2) / 10 = 94 / 10 = 9.4. Yes, I know, everyone nowadays has 
a calculator on their smartphones, but still it is fun—and 
sometimes quicker—to do it mentally.

The ancient Babylonians used a hybrid of the base 10 
numeration system for numbers from one to fifty-nine and 
a base 60 system—called the sexagesimal system—for num-
bers greater than or equal to sixty (presumably because sixty 
has ten proper divisors, 1, 2, 
3, 4, 5, 6, 10, 12, 15, and 30, 
making division easier by 
reducing the need to use frac-
tions). The Mayans preferred 
a smaller base: a hybrid sys-
tem based on five for inte-
gers up to nineteen—the 
quinary system—and pow-
ers of twenty (the combined 
number of fingers and toes) 
for numbers greater than or 
equal to twenty (figure 1.3). 
The few written documents 

FIGURE 1.3. The integers one through 
nineteen in Mayan representation
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that survived the Spanish conquest of their land include 
calendars and astronomical records using this vigesimal 
system.3

  

Before we turn to the number-theoretic properties of the 
number five relevant to the pentagon, here is a brief aside. 
The famous painting I Saw the Figure 5 in Gold by Ameri-
can artist Charles Demuth was first exhibited in New York 
in 1929 and is now in the permanent collection of the Met-
ropolitan Museum of Art (see plate 5). Demuth (1883–1935) 
painted it as a tribute to a poem, The Great Figure, writ-
ten by his friend William Carlos Williams describing a fire 
truck racing down the streets of New York on a rainy night. 
Demuth’s painting became an American icon and appears 
on a US postage stamp issued in 2013. It also features on 
the cover of a mathematical novel, Uncle Petros and Gold-
bach’s Conjecture by Greek author Apostolos Doxiadis, pub-
lished in 1992. The title refers to German mathematician 
Christian Goldbach (1690–1764), who in 1742 wrote a let-
ter to Leonhard Euler, then Europe’s most famous math-
ematician, in which he claimed that every even integer 
greater than two can be written as a sum of two primes 
(sometimes in more than one way). For example, 4 = 2 + 2, 
6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7 = 5 + 5, and so on. Euler, being 
occupied by more pressing problems, ignored Goldbach’s 
letter; it was only found after his death in 1783. Despite 
its seeming simplicity and the fact that it has been con-
firmed for all even integers up to 4 × 1018, the conjecture 
remains unproved. And while we are still on the artistic 
side of our story, Eugen Jost has depicted many of the 
daily occurrences of five in his painting All Is Five, which 
shows several whimsical allusions to various aspects of 
this number (plate 6).
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  

Five has some interesting mathematical features. It is the 
hypotenuse of the right triangle (3, 4, 5)—the smallest 
Pythagorean triangle and the only primitive one whose 
sides form an arithmetic progression (a primitive triple 
is one whose members have no common divisors other 
than one). Also, the sequence 5, 11, 17, 23, and 29 is the 
smallest sequence of five primes forming an arithmetic 
progression.

Five is the second Fermat prime (5 = 221 + 1), and, con-
sequently, a regular pentagon can be constructed with the 
Euclidean tools—a straightedge (an unmarked ruler) and 
compass. This is due to a discovery made by Carl Friedrich 
Gauss (1777–1855) when he was just nineteen years old: 
a regular polygon of n sides—a regular n-gon, for short—
can be constructed with Euclidean tools if n is a product 
of nonnegative powers of 2 and / or distinct primes of the 
form 22k + 1, where k is a nonnegative integer. Primes of 
this form are called Fermat primes, after the great French 
number theorist Pierre Fermat (1601–1665).

The only regular polygons the Greeks knew how to con-
struct with Euclidean tools were an equilateral triangle, 
a square, a pentagon, and a fifteen-sided gon, plus any 
polygons obtained from these by repeatedly doubling the 
number of sides (for example, the hexagon, octagon, and 
twelve-sided gon). Imagine the surprise when young Gauss 
added a new member to that list—a regular seventeen-sided 
polygon; that’s because seventeen is the third Fermat prime  
(17 = 222 + 1). As the story goes, Gauss was deeply impressed 
by this discovery and asked that a seventeen-sided gon be 
engraved on his tombstone after his death. But the stone 
cutter, fearing that a polygon with so many sides would 
be mistaken for a circle, chiseled a seventeen-pointed star 
instead. The original star is no longer visible, but Gauss’s 
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hometown of Brunswick, Germany, erected a statue in his 
honor, with a seventeen-sided star polygon engraved on 
its base. Plate 7, Homage to Gauss, is an artistic rendition 
of it by Eugen Jost.

Fermat conjectured that the expression 22k + 1 yields a 
prime for every nonnegative value of k. Indeed, for k = 0, 
1, 2, 3, 4 we get the primes 3, 5, 17, 257, and 65,537, and 
therefore regular polygons with these numbers of sides 
are constructable with the Euclidean tools. Well, at least in 
principle. Even the seventeen-sided gon is fairly compli-
cated to construct, and I wouldn’t recommend anyone try 
the 257-sided gon.

Fermat’s conjecture stood unchallenged until 1732, when 
Leonhard Euler showed that for k = 5 we get the Fermat 
number 225 + 1 = 4,294,967,297 = 641 × 6,700,417—a com-
posite number. As of this writing, it is not known if any 
other Fermat primes exist, leaving the possibility that there 
are other, as yet undiscovered regular polygons construc-
table with Euclidean tools. Needless to say, such polygons 
would have a huge number of sides, making any actual con-
struction totally out of the question.4

Gauss’s discovery provided a sufficient condition for con-
structing a regular n-gon with Euclidean tools. In 1837, 
Pierre Laurent Wantzel (1814–1848) proved that it is also 
a necessary condition, so the Fermat-prime polygons, and 
those obtained from them by repeatedly doubling the num-
ber of sides, are the only constructable n-gons. Thus, a 
fifteen-sided gon is constructable because 15 = 3 × 5, and 
both 3 and 5 are Fermat primes. But a seven-sided gon 
(a heptagon) is not, because 7 is not a Fermat prime. Nor 
is a fifty-sided gon, because 50 = 2 × 5 × 5, and the double 
presence of 5 makes it ineligible. But a fifty-one-sided gon, 
practicably indistinguishable from its fifty-sided neighbor, is 
constructable, because 51 = 3 × 17, each of the factors being 
a Fermat prime.
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Five is the fifth member of the Fibonacci series, a 
simple-looking sequence of numbers with many remark-
able properties. The sequence starts with 1 and 1, then 
continues by adding the two previous numbers to get the 
next number:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … ,

and in general

	 F1  =  F2 = 1, Fn + 2  =  Fn + Fn + 1, n = 1, 2, 3, … .	 (1)

The sequence grows very fast: the twentieth member is 
6,765, and the thirtieth member is 832,040. It is named 
after the Italian mathematician Leonardo of Pisa, born 
ca. 1170 to a Pisan merchant; he later became known by 
the name Fibonacci, meaning the son of Bonacci. In 1202 
he published a book by the title Liber Abaci (“The Book 
of Calculation”), in which he advocated use of the Hindu-
Arabic numeration system, known already for some time 
in the East but not yet widely accepted in Europe. The 
book became an instant hit and helped greatly in adopt-
ing the new system by merchants, then by scholars, and 
eventually by most of the learned world. The Fibonacci 
numbers appear in his book as a recreational problem: a 
pair of rabbits produce an offspring at the end of their first 
month and every month thereafter. The offsprings then 
repeat the same schedule. How many rabbits will there 
be at the end of the first year? It is easy to see that the 
number of rabbits follows the Fibonacci sequence, whose 
twelfth member is 144.5

It is somewhat ironic that Fibonacci’s name is remem-
bered today mainly for this little aside, rather than for his 
promotion of the Hindu-Arabic numeration system. His 
sequence enjoys numerous interesting properties, and a 
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scholarly publication, the Fibonacci Journal, is dedicated 
to their study. We will have much more to say about this 
sequence in chapter 3.

Five is the number of Platonic or regular polyhedra, 
symmetrical solids whose faces are all identical regular 
polygons that meet each other at the same angle (figure 
1.4): the tetrahedron (four faces, each an equilateral trian-
gle), the hexahedron, more commonly known as the cube 
(six faces, each a square), the octahedron (eight equilat-
eral triangles), the dodecahedron (twelve regular penta-
gons), and the icosahedron (twenty equilateral triangles). 
That there exist exactly five regular solids—unlike the 
infinitely many regular polygons in the plane—is surpris-
ing and has made these solids an object of endless fascina-
tion (for a proof, see appendix C). The Pythagoreans were 
familiar with all five solids and knew how to construct 
them, using only the Euclidean tools. Four of these solids 
involve either equilateral triangles or squares, which are 
easy to construct; but the dodecahedron has pentagonal 
faces, whose construction is not at all obvious. It was this 
problem that most likely led them to discover the golden 
ratio or divine proportion—the key to constructing the 
regular pentagon.

FIGURE 1.4. The five Platonic solids, Bagno Steinfurt, Germany
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NOTES AND SOURCES

	1.	 It is somewhat difficult to transliterate the guttural Hebrew consonant ח 
(het) into English; it is variously written as “ch” or just “h.”

	2.	 Or twenty-four hours, known in the United States as “military time” but 
in common usage throughout the rest of the world, where no one has any 
trouble reading 17:00 as 5:00 p.m.

	3.	 For more on the Mayan numeration system, see Georges Ifrah, The Universal 
History of Numbers (New York: John Wiley, 2000), pp. 44–46, 94–95, 308–12, 
339; and Frank Swetz, From Five Fingers to Infinity (Chicago: Open Court, 
1994), pp. 71–79.

	4.	 Around 1980, when the first programmable calculators appeared on the 
market, I bought Texas Instruments’ latest version, the SR 56 (the designa-
tion SR stood for “slide rule,” until then the trade tool of every scientist and 
engineer for the past 350 years). It had a ten-digit display, so I programmed 
it to factor a number into its prime factors, punched in 4,294,967,297 and hit 
the “start” key. For the next 28 minutes the machine did its calculations, and 
then the smaller of the two factors, 641, appeared in the display, to my great 
delight. Needless to say, a modern computer can do it in a tiny fraction of a 
second. (There are several factorization sites available online, such as Prime 
Factors Decomposition at https://www​.dcode​.fr​/prime​-factors​-decomposition​.)

	5.	 The sequence can be extended to negative indices as well, by rewriting 
equation (1) as Fn  =  Fn + 2 − Fn + 1: … , −8, 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, 8, … ​, and 
in general F0 = 0 and F−n = (−1)n + 1 Fn, where n is a positive integer. For more 
on the Fibonacci numbers, see chapter 2 and appendix B.
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five, 3; Chinese symbol for, 5; Greek 

word for, 4; Hebrew word for, 5–6; 
mathematical features of, 9–10; 
Roman symbol for, 4; Roman 
word for, 5

Five Disk Problem, 86, 155
fivefold symmetry in alloys, crystals, 

and minerals, 103, 108–9; in 
architecture, 119–31

formulas, summary of, 147–49
Fort McHenry (Baltimore, Mary

land), 126–27
four, 2
four color theorem, 2

Gallo-Roman dodecahedrons, 115–16, 
117

Gardner, Martin, 78, 91–92
Gauss, Carl Friedrich, 9
Geneva dodecahedron, 115, 116, 117
geometric progression (series), 65
Ghyka, Matila Costiescu, The Geometry 

of Art and Life, 30–31
Goethe, Johann Wolfgang von, Faust I,  

61
Goldbach, Christian, conjecture of, 8
golden ratio, xv, 12, 14, 17, 22, 26–33, 

36–37, 42–46, 63, 65–66, 100, 
135–37; approximate value of, 
15; construction of, 18–20; exact 
value of, 15, 16; expressed as 
continued square roots, 33–35; 
expressed as continued fractions, 
35–36; symbol for, 17, 20n1.  
See also phi (ϕ)

golden rectangle, 26–27
golden section. See golden ratio
golden triangle, 39–40, 42, 42, 

43–44, 45, 47–49, 63
Great Star Flag, 74
Greeks, the, 18, 29, 59, 116
Groves, Leslie Richard, 129

Hamsah, 6
Haüy, René-Just, 103–4, 108–10

Heath, Sir Thomas, 53; quoted, 58
Hecker, Zvi, 120
hexahedron. See cube
Hilbert, David, 90; eighteenth problem 

of, 90
Hippasus, 23
Holmium-magnesium-zinc alloy 

Ho9 Mg34 ZN57, 112–13
hyperbolic plane, 98

i −1( ), 23–24
icosahedron, 12, 110, 116, 143
irrational numbers, 21–23, 35, 66
Islamic shrines, 101
isoperimetric problem, 123

Jaca (Spain), 125; Citadel of, 125
Jacob, Simon, 37, 136
James, Richard, 91
Jerusalem, 59, 60
JPMorgan Chase Tower (Houston, 

Texas), 119–20
Judea (kingdom of), 59

kamon, xi, xii
Kepler, Johannes, 37, 136, 145; quoted, 

14
Kershner, Richard B., 91
Key, Francis Scott, “Defence of Fort 

M’Henry,” 126
Kroyanker, David, quoted, 120

Laue, Max Theodor Felix von, 104, 
106–8, 114n3

Lendvai, Ernö, Duality and Synthesis 
in the Music of Béla Bartok, 31

Leonardo of Pisa. See Fibonacci of Pisa
Levine, Dov, 110–11
“Limping Waltz” (Tchaikovsky’s 

Symphony Pathétique), 3
Lucas, François Édouard Anatole, 140n1
Luna 2 (Soviet spacecraft), ix

Maestlin, Michael, 20n1
Mann, Casey, Jennifer McLoud-Mann, 

and David Von Derau, 93
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Marocaster coronatus, 74
Mathematical Association of  

America, 92
McHenry, James, 126
Mercator, Nicolaus, 37n6
Mersenne numbers, 1; primes, 2
Mohammad al-Mansur, 130n6
mon. See kamon
Muslims, 59, 101

nonperiodic order of crystal lattices, 
110

numeration systems: Babylonian 
(sexagesimal), 7; decimal, 6–7; 
duodecimal (base 12), 6–7; 
Hebrew, 5–6; Hindu-Arabic, 4, 11; 
Mayan (quinary and vigesimal), 8

octahedron, 12, 116, 143
Ohm, Martin, 32

Pacioli, Luca, De divina proportione, 
32, 37n2

Pangaea, 73
Parthenon, the, 27, 29, 29
Pauling, Linus, 109, 114n5
Penrose, Sir Roger, 99, 102n7
Penrose tiling, 99–100, 110
pentagon, ix–xv; area of, 66–69; con-

struction of, 31, 37, 38–54; nonreg-
ular, xi, 88; regular: x–xi, xiv, 9, 
88; relation to regular hexagons, 
95; symmetry elements of, x, 110

Pentagon, the (Arlington, Virginia), 
xii, 127, 129–130

pentagonal fortresses, xi–xii, 121–130
pentagon-pentagram system, 61–62, 65
pentagonal mazes, 83–84
pentagonal numbers, 55–57; as 

square numbers, 56
pentagram, x, 48, 58–70; on the flag 

of Morocco, 60
pentastar, xi, 71–77; area of, 77; length 

of, 76; as logo of the Chrysler 
Corporation, 71–72; on national 
flags, 71

pentatonic scale, 3
periodic crystal lattices, 104
phi (ϕ), decimal value of, 15–16, 20n1; 

notation for, 17, 20n1; powers of, 
17–18, 20n2, 21–24, 49, 137–38

Phidias (Greek sculptor and architect), 
20n1

pi (π): “biblical value” of, 2; Egyptian 
value of, 22; three as an approxi-
mation to, 27

Pitane (Greek town), 58
plate tectonics, 73
Plato, xiv, 18, 66, 116
Platonic solids (polyhedra), 2, 12, 32
polygons, regular, 9–10, 88
Poussin, William Tell, 127
proportion, 14
Pythagoras, 58
Pythagoreans, x, 1, 12, 22–23, 58–59, 

116
Pythagorean theorem, 1, 14

quasiperiodic crystals (quasicrystals), 
xiv, 110–13

quincunx, 5

Raedschelders, Peter, 83–84
Ramot Polin (Jerusalem), 120
rational numbers, 21–23, 35
regular solids. See Platonic solids
Reid, Samuel Chester, 74–75
Reinhardt, Karl August, 88–89, 93, 

101n2
Rhind Papyrus, 22
rhombicosidodecahedron, 144
Rice, Marjorie, 92
Romans, the, 118

Schattschneider, Doris, 92
sectio aurea. See golden ratio
seventeen-sided regular polygon, 9–10
Shechtman, Dan, xiv, 108–12, 114n5
Spannocchi, Tiburcio, 125
square root of two 2( ), 21, 23; Bab

ylonian value of, 22
Stanley, Robert, 71–72, 76
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Steinhardt, Paul J., 110–12
stellated dodecahedron, 144–45
stellation, 62
Stephansmünster (Breisach,  

Germany), xiii–xiv
St. Pierre Cathedral (Geneva,  

Switzerland), 115
Suleiman the Magnificent, 59–60, 

121
symmetry, 103; reflection, 97;  

rotational, xi, 97; translational, 
97

Talmud, the, 6
tangram, 82–83
Taylor, Henry Martyn, 53
tessellations, 88–102
tetragrammaton (YHWH), 2
tetrahedron, 2, 5, 12, 116, 142
Theatetus of Athens, 66

three, 2
transcendental numbers, 21–22, 25n1
truncated icosahedron, 98
Tsai, An-Pang, 112, 114n6
two, 1

unit cells, geometry of, 104

Wantzel, Pierre Laurent, 10
Wegener, Alfred Lothar, 73
Weyl, Hermann, quoted, 130
Williams, William Carlos, The Great 

Figure, 8
Witmer, David Julius, 127

X-ray diffraction images, 106

YHWH. See tetragrammaton
yin-yang, 1

zome ball, 144




