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Chapter One

Sparse Recovery via ℓ1 Minimization

In this chapter, we overview basic results of Compressed Sensing, a relatively new
and rapidly developing area in Statistics and Signal Processing dealing with recov-
ering signals (vectors x from some Rn) from their noisy observations Ax+ η (A is
a given m× n sensing matrix, η is observation noise) in the case when the number
of observations m is much smaller than the signal’s dimension n, but is essentially
larger than the “true” dimension—the number of nonzero entries—in the signal.
This setup leads to a deep, elegant and highly innovative theory and possesses
quite significant application potential. It should be added that along with the plain
sparsity (small number of nonzero entries), Compressed Sensing deals with other
types of “low-dimensional structure” hidden in high-dimensional signals, most no-
tably, with the case of low rank matrix recovery—when the signal is a matrix, and
sparse signals are matrices with low ranks—and the case of block sparsity, where
the signal is a block vector, and sparsity means that only a small number of blocks
are nonzero. In our presentation, we do not consider these extensions, and restrict
ourselves to the simplest sparsity paradigm.

1.1 COMPRESSED SENSING: WHAT IS IT ABOUT?

1.1.1 Signal Recovery Problem

One of the basic problems in Signal Processing is the problem of recovering a signal
x ∈ Rn from noisy observations

y = Ax+ η (1.1)

of a linear image of the signal under a given sensing mapping x 7→ Ax : Rn → Rm;
in (1.1), η is the observation error. Matrix A in (1.1) is called sensing matrix.

Recovery problems of the outlined types arise in many applications, including,
but by far not reducing to,

• communications, where x is the signal sent by the transmitter, y is the signal
recorded by the receiver, and A represents the communication channel (reflecting,
e.g., dependencies of decays in the signals’ amplitude on the transmitter-receiver
distances); η here typically is modeled as the standard (zero mean, unit covari-
ance matrix) m-dimensional Gaussian noise;1

1While the “physical” noise indeed is often Gaussian with zero mean, its covariance matrix
is not necessarily the unit matrix. Note, however, that a zero mean Gaussian noise η always can
be represented as Qξ with standard Gaussian ξ. Assuming that Q is known and is nonsingular
(which indeed is so when the covariance matrix of η is positive definite), we can rewrite (1.1)
equivalently as

Q−1y = [Q−1A]x+ ξ

and treat Q−1y and Q−1A as our new observation and new sensing matrix; the new observation
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• image reconstruction, where the signal x is an image—a 2D array in the usual
photography, or a 3D array in tomography—and y is data acquired by the imag-
ing device. Here η in many cases (although not always) can again be modeled as
the standard Gaussian noise;

• linear regression, arising in a wide range of applications. In linear regression,
one is given m pairs “input ai ∈ Rn” to a “black box,” with output yi ∈ R.
Sometimes we have reason to believe that the output is a corrupted by noise
version of the “existing in nature,” but unobservable, “ideal output” y∗i = xTai

which is just a linear function of the input (this is called “linear regression model,”
with inputs ai called “regressors”). Our goal is to convert actual observations
(ai, yi), 1 ≤ i ≤ m, into estimates of the unknown “true” vector of parameters
x. Denoting by A the matrix with the rows [ai]T and assembling individual
observations yi into a single observation y = [y1; ...; ym] ∈ Rm, we arrive at the
problem of recovering vector x from noisy observations of Ax. Here again the
most popular model for η is the standard Gaussian noise.

1.1.2 Signal Recovery: Parametric and nonparametric cases

Recovering signal x from observation y would be easy if there were no observation
noise (η = 0) and the rank of matrix A were equal to the dimension n of the
signals. In this case, which arises only when m ≥ n (“more observations than
unknown parameters”), and is typical in this range of m and n, the desired x would
be the unique solution to the system of linear equations, and to find x would be
a simple problem of Linear Algebra. Aside from this trivial “enough observations,
no noise” case, people over the years have looked at the following two versions of
the recovery problem:

Parametric case: m≫ n, η is nontrivial noise with zero mean, say, standard
Gaussian. This is the classical statistical setup with the emphasis on how to use
numerous available observations in order to suppress in the recovery, to the extent
possible, the influence of observation noise.

Nonparametric case: m ≪ n.2 If addressed literally, this case seems to be
senseless: when the number of observations is less that the number of unknown
parameters, even in the noiseless case we arrive at the necessity to solve an un-
determined (fewer equations than unknowns) system of linear equations. Linear
Algebra says that if solvable, the system has infinitely many solutions. Moreover,
the solution set (an affine subspace of positive dimension) is unbounded, mean-
ing that the solutions are in no sense close to each other. A typical way to make
the case of m ≪ n meaningful is to add to the observations (1.1) some a priori
information about the signal. In traditional Nonparametric Statistics, this addi-
tional information is summarized in a bounded convex set X ⊂ Rn, given to us in
advance, known to contain the true signal x. This set usually is such that every
signal x ∈ X can be approximated by a linear combination of s = 1, 2, ..., n vectors

noise ξ is indeed standard. Thus, in the case of Gaussian zero mean observation noise, to assume
the noise standard Gaussian is the same as to assume that its covariance matrix is known.

2Of course, this is a blatant simplification—the nonparametric case covers also a variety of
important and by far nontrivial situations in which m is comparable to n or larger than n (or even
≫ n). However, this simplification is very convenient, and we will use it in this introduction.
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from a properly selected basis known to us in advance (“dictionary” in the slang of
signal processing) within accuracy δ(s), where δ(s) is a function, known in advance,
approaching 0 as s → ∞. In this situation, with appropriate A (e.g., just the unit
matrix, as in the denoising problem), we can select some s≪ m and try to recover
x as if it were a vector from the linear span Es of the first s vectors of the outlined
basis [54, 86, 124, 112, 208]. In the “ideal case,” x ∈ Es, recovering x in fact re-
duces to the case where the dimension of the signal is s ≪ m rather than n ≫ m,
and we arrive at the well-studied situation of recovering a signal of low (compared
to the number of observations) dimension. In the “realistic case” of x δ(s)-close
to Es, deviation of x from Es results in an additional component in the recovery
error (“bias”); a typical result of traditional Nonparametric Statistics quantifies the
resulting error and minimizes it in s [86, 124, 178, 222, 223, 230, 239]. Of course,
this outline of the traditional approach to “nonparametric” (with n ≫ m) recov-
ery problems is extremely sketchy, but it captures the most important fact in our
context: with the traditional approach to nonparametric signal recovery, one as-
sumes that after representing the signals by vectors of their coefficients in properly
selected base, the n-dimensional signal to be recovered can be well approximated
by an s-sparse (at most s nonzero entries) signal, with s ≪ n, and this sparse ap-
proximation can be obtained by zeroing out all but the first s entries in the signal
vector. The assumption just formulated indeed takes place for signals obtained by
discretization of smooth uni- and multivariate functions, and this class of signals
for several decades was the main, if not the only, focus of Nonparametric Statistics.

Compressed Sensing. The situation changed dramatically around the year
2000 as a consequence of important theoretical breakthroughs due to D. Donoho,
T. Tao, J. Romberg, E. Candes, and J.-J. Fuchs, among many other researchers
[49, 44, 45, 46, 48, 67, 68, 69, 70, 93, 94]; as a result of these breakthroughs, a novel
and rich area of research, called Compressed Sensing, emerged.

In the Compressed Sensing (CS) setup of the Signal Recovery problem, as in
the traditional Nonparametric Statistics approach to the m≪ n case, it is assumed
that after passing to an appropriate basis, the signal to be recovered is s-sparse
(has ≤ s nonzero entries, with s ≪ m), or is well approximated by an s-sparse
signal. The difference with the traditional approach is that now we assume nothing
about the location of the nonzero entries. Thus, the a priori information about
the signal x both in the traditional and in the CS settings is summarized in a
set X known to contain the signal x we want to recover. The difference is that
in the traditional setting, X is a bounded convex and “nice” (well approximated
by its low-dimensional cross-sections) set, while in CS this set is, computationally
speaking, a “monster”: already in the simplest case of recovering exactly s-sparse
signals, X is the union of all s-dimensional coordinate planes, which is a heavily
combinatorial entity.

Note that, in many applications we indeed can assume that the true vector
of parameters x is sparse. Consider, e.g., the following story about signal
detection. There are n locations where signal transmitters could be placed,
and m locations with the receivers. The contribution of a signal of unit
magnitude originating in location j to the signal measured by receiver i is a
known quantity Aij, and signals originating in different locations merely sum
up in the receivers. Thus, if x is the n-dimensional vector with entries xj
representing the magnitudes of signals transmitted in locations j = 1, 2, ..., n,
then the m-dimensional vector y of measurements of the m receivers is y =
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Ax+ η, where η is the observation noise. Given y, we intend to recover x.
Now, if the receivers are, say, hydrophones registering noises emitted

by submarines in a certain part of the Atlantic, tentative positions of “sub-
marines” being discretized with resolution 500 m, the dimension of the vector
x (the number of points in the discretization grid) may be in the range of
tens of thousands, if not tens of millions. At the same time, presumably,
there is only a handful of “submarines” (i.e., nonzero entries in x) in the
area.

To “see” sparsity in everyday life, look at the 256× 256 image at the top of Figure
1.1. The image can be thought of as a 2562 = 65, 536-dimensional vector comprised
of the pixels’ intensities in gray scale, and there is not much sparsity in this vector.
However, when representing the image in the wavelet basis, whatever it means, we
get a “nearly sparse” vector of wavelet coefficients (this is true for typical “non-
pathological” images). At the bottom of Figure 1.1 we see what happens when we
zero out all but a small percentage of the wavelet coefficients largest in magnitude
and replace the true image by its sparse—in the wavelet basis—approximations.

This simple visual illustration along with numerous similar examples shows
the “everyday presence” of sparsity and the possibility to utilize it when com-
pressing signals. The difficulty, however, is that simple compression—compute the
coefficients of the signal in an appropriate basis and then keep, say, 10% of the
largest in magnitude coefficients—requires us to start with digitalizing the signal—
representing it as an array of all its coefficients in some orthonormal basis. These
coefficients are inner products of the signal with vectors of the basis; for a “physi-
cal” signal, like speech or image, these inner products are computed by analogous
devices, with subsequent discretization of the results. After the measurements are
discretized, processing the signal (denoising, compression, storing, etc.) can be
fully computerized. The major (to some extent, already actualized) advantage of
Compressed Sensing is in the possibility to reduce the “analogous effort” in the
outlined process: instead of computing analogously n linear forms of n-dimensional
signal x (its coefficients in a basis), we use an analog device to compute m ≪ n
other linear forms of the signal and then use the signal’s sparsity in a basis known
to us in order to recover the signal reasonably well from these m observations.

In our “picture illustration” this technology would work (in fact, works—it is
called “single pixel camera” [83]; see Figure 1.2) as follows: in reality, the digital
256×256 image on the top of Figure 1.1 was obtained by an analog device—a digital
camera which gets on input an analog signal (light of varying intensity along the
field of view caught by camera’s lens) and discretizes the light’s intensity in every
pixel to get the digitalized image. We then can compute the wavelet coefficients
of the digitalized image, compress its representation by keeping, say, just 10% of
leading coefficients, etc., but “the damage is already done”—we have already spent
our analog resources to get the entire digitalized image. The technology utilizing
Compressed Sensing would work as follows: instead of measuring and discretizing
light intensity in each of the 65,536 pixels, we compute (using an analog device)
the integral, taken over the field of view, of the product of light intensity and
an analog-generated “mask.” We repeat it for, say, 20,000 different masks, thus
obtaining measurements of 20,000 linear forms of our 65,536-dimensional signal.
Next we utilize, via the Compressed Sensing machinery, the signal’s sparsity in
the wavelet basis in order to recover the signal from these 20,000 measurements.
With this approach, we reduce the “analog component” of signal processing effort,

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



SPARSE RECOVERY VIA ℓ1 MINIMIZATION

StatOpt˙proved˙nocolor December 23, 2019 7x10

5

1% of leading wavelet
coefficients (97.83 % of energy) kept

5% of leading wavelet
coefficients (99.51 % of energy) kept

10% of leading wavelet
coefficients (99.82% of energy) kept

25% of leading wavelet
coefficients (99.97% of energy) kept

Figure 1.1: Top: true 256×256 image; bottom: sparse in the wavelet basis approx-
imations of the image. Wavelet basis is orthonormal, and a natural way to quantify
near-sparsity of a signal is to look at the fraction of total energy (sum of squares of
wavelet coefficients) stored in the leading coefficients; these are the “energy data”
presented in the figure.
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Figure 1.2: Singe-pixel camera.

at the price of increasing the “computerized component” of the effort (instead of
ready-to-use digitalized image directly given by 65,536 analog measurements, we
need to recover the image by applying computationally nontrivial decoding algo-
rithms to our 20,000 “indirect” measurements). When taking pictures with your
camera or iPad, the game is not worth the candle—the analog component of taking
usual pictures is cheap enough, and decreasing it at the cost of nontrivial decoding
of the digitalized measurements would be counterproductive. There are, however,
important applications where the advantages stemming from reduced “analog ef-
fort” outweigh significantly the drawbacks caused by the necessity to use nontrivial
computerized decoding [96, 176].

1.1.3 Compressed Sensing via ℓ1 minimization: Motivation

1.1.3.1 Preliminaries

In principle there is nothing surprising in the fact that under reasonable assumption
on the m × n sensing matrix A we may hope to recover from noisy observations
of Ax an s-sparse signal x, with s ≪ m. Indeed, assume for the sake of simplicity
that there are no observation errors, and let Colj [A] be j-th column in A. If we
knew the locations j1 < j2 < ... < js of the nonzero entries in x, identifying x could
be reduced to solving the system of linear equations

∑s
ℓ=1 xiℓColjℓ [A] = y with

m equations and s ≪ m unknowns; assuming every s columns in A to be linearly
independent (a quite unrestrictive assumption on a matrix with m ≥ s rows), the
solution to the above system is unique, and is exactly the signal we are looking for.
Of course, the assumption that we know the locations of nonzeros in x makes the
recovery problem completely trivial. However, it suggests the following course of
action: given noiseless observation y = Ax of an s-sparse signal x, let us solve the
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combinatorial optimization problem

min
z

{‖z‖0 : Az = y} , (1.2)

where ‖z‖0 is the number of nonzero entries in z. Clearly, the problem has a solution
with the value of the objective at most s. Moreover, it is immediately seen that if
every 2s columns in A are linearly independent (which again is a very unrestrictive
assumption on the matrix A provided that m ≥ 2s), then the true signal x is the
unique optimal solution to (1.2).

What was said so far can be extended to the case of noisy observations and “nearly
s-sparse” signals x. For example, assuming that the observation error is “uncertain-
but-bounded,” specifically some known norm ‖ · ‖ of this error does not exceed a
given ǫ > 0, and that the true signal is s-sparse, we could solve the combinatorial
optimization problem

min
z

{‖z‖0 : ‖Az − y‖ ≤ ǫ} . (1.3)

Assuming that every m×2s submatrix Ā of A is not just with linearly independent
columns (i.e., with trivial kernel), but is reasonably well conditioned,

‖Āw‖ ≥ C−1‖w‖2

for all (2s)-dimensional vectors w, with some constant C, it is immediately seen

that the true signal x underlying the observation and the optimal solution x̂ of

(1.3) are close to each other within accuracy of order of ǫ: ‖x − x̂‖2 ≤ 2Cǫ. It is

easily seen that the resulting error bound is basically as good as it could be.

We see that the difficulties with recovering sparse signals stem not from the lack of
information; they are of purely computational nature: (1.2) is a difficult combina-
torial problem. As far as known theoretical complexity guarantees are concerned,
they are not better than “brute force” search through all guesses on where the
nonzeros in x are located—by inspecting first the only option that there are no
nonzeros in x at all, then by inspecting n options that there is only one nonzero,
for every one of n locations of this nonzero, then n(n− 1)/2 options that there are
exactly two nonzeros, etc., until the current option results in a solvable system of
linear equations Az = y in variables z with entries restricted to vanish outside the
locations prescribed by the current option. The running time of this “brute force”
search, beyond the range of small values of s and n (by far too small to be of any
applied interest), is by many orders of magnitude larger than what we can afford
in reality.3

A partial remedy is as follows. Well, if we do not know how to minimize the
“bad” objective ‖z‖0 under linear constraints, as in (1.2), let us “approximate”
this objective with one which we do know how to minimize. The true objective is
separable: ‖z‖ =

∑n
i=1 ξ(zj), where ξ(s) is the function on the axis equal to 0 at the

origin and equal to 1 otherwise. As a matter of fact, the separable functions which

3When s = 5 and n = 100, a sharp upper bound on the number of linear systems we should
process before termination in the “brute force” algorithm is ≈ 7.53e7—a lot, but perhaps doable.
When n = 200 and s = 20, the number of systems to be processed jumps to ≈ 1.61e27, which is
by many orders of magnitude beyond our “computational grasp”; we would be unable to carry out
that many computations even if the fate of the mankind were at stake. And from the perspective
of Compressed Sensing, n = 200 still is a completely toy size, 3–4 orders of magnitude less than
we would like to handle.
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we do know how to minimize under linear constraints are sums of convex functions
of z1, ..., zn. The most natural candidate to the role of convex approximation of ξ(s)
is |s|; with this approximation, (1.2) converts into the ℓ1 minimization problem

min
z

{
‖z‖1 :=

∑n

i=1
|zj | : Az = y

}
, (1.4)

and (1.3) becomes the convex optimization problem

min
z

{‖z‖1 : ‖Az − y‖ ≤ ǫ} . (1.5)

Both problems are efficiently solvable, which is nice; the question, however, is how
relevant these problems are in our context—whether it is true that they do recover
the “true” s-sparse signals in the noiseless case, or “nearly recover” these signals
when the observation error is small. Since we want to be able to handle any s-
sparse signal, the validity of ℓ1 recovery—its ability to recover well every s-sparse
signal—depends solely on the sensing matrix A. Our current goal is to understand
which sensing matrices are “good” in this respect.

1.2 VALIDITY OF SPARSE SIGNAL RECOVERY VIA ℓ1
MINIMIZATION

What follows is based on the standard basic results of Compressed Sensing theory
originating from [19, 49, 45, 44, 46, 47, 48, 67, 69, 70, 93, 94, 232] and augmented
by the results of [129, 130, 132, 133].4

1.2.1 Validity of ℓ1 minimization in the noiseless case

The minimal requirement on sensing matrix A which makes ℓ1 minimization valid
is to guarantee the correct recovery of exactly s-sparse signals in the noiseless case,
and we start with investigating this property.

1.2.1.1 Notational convention

From now on, for a vector x ∈ Rn

• Ix = {j : xj 6= 0} stands for the support of x; we also set

I+x = {j : xj > 0}, I−x = {j : xj < 0} [⇒ Ix = I+x ∪ I−x ];

• for a subset I of the index set {1, ..., n}, xI stands for the vector obtained from
x by zeroing out entries with indices not in I, and Io for the complement of I:

Io = {i ∈ {1, ..., n} : i 6∈ I};

• for s ≤ n, xs stands for the vector obtained from x by zeroing out all but the s

4In fact, in the latter source, an extension of the sparsity, the so-called block sparsity, is
considered; in what follows, we restrict the results of [130] to the case of plain sparsity.
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entries largest in magnitude.5 Note that xs is the best s-sparse approximation of
x in all ℓp norms, 1 ≤ p ≤ ∞;

• for s ≤ n and p ∈ [1,∞], we set

‖x‖s,p = ‖xs‖p;

note that ‖ · ‖s,p is a norm.

1.2.1.2 s-Goodness

Definition of s-goodness. Let us say that an m × n sensing matrix A is s-good
if whenever the true signal x underlying noiseless observations is s-sparse, this
signal will be recovered exactly by ℓ1 minimization. In other words, A is s-good if
whenever y in (1.4) is of the form y = Ax with s-sparse x, x is the unique optimal
solution to (1.4).
Nullspace property. There is a simply-looking necessary and sufficient condition
for a sensing matrix A to be s-good—the nullspace property originating from [70].
After this property is guessed, it is easy to see that it indeed is necessary and
sufficient for s-goodness; we, however, prefer to derive this condition from the “first
principles,” which can be easily done via Convex Optimization. Thus, in the case
in question, as in many other cases, there is no necessity to be smart to arrive at
the truth via a “lucky guess”; it suffices to be knowledgeable and use the standard
tools.

Let us start with necessary condition for A to be such that whenever x is s-
sparse, x is an optimal solution (perhaps not the unique one) of the optimization
problem

min
z

{‖z‖1 : Az = Ax} ; (P [x])

we refer to the latter property of A as weak s-goodness. Our first observation is as
follows:

Proposition 1.1. If A is weakly s-good, then the following condition holds true:
whenever I is a subset of {1, ..., n} of cardinality ≤ s, we have

∀w ∈ KerA ‖wI‖1 ≤ ‖wIo‖1. (1.6)

Proof is immediate. Assume A is weakly s-good, and let us verify (1.6). Let I
be an s-element subset of {1, ..., n}, and x be an s-sparse vector with support I.
Since A is weakly s-good, x is an optimal solution to (P [x]). Rewriting the latter
problem in the form of LP, that is, as

min
z,t

{
∑

j

tj : tj + zj ≥ 0, tj − zj ≥ 0, Az = Ax},

and invoking LP optimality conditions, the necessary and sufficient condition for

5Note that in general xs is not uniquely defined by x and s, since the s-th largest among the
magnitudes of entries in x can be achieved at several entries. In our context, it does not matter
how ties of this type are resolved; for the sake of definiteness, we can assume that when ordering
the entries in x according to their magnitudes, from the largest to the smallest, entries of equal
magnitude are ordered in the order of their indices.
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z = x to be the z-component of an optimal solution is the existence of λ+j , λ
−
j ,

µ ∈ Rm (Lagrange multipliers for the constraints tj − zj ≥ 0, tj + zj ≥ 0, and
Az = Ax, respectively) such that

(a) λ+j + λ−j = 1 ∀j,
(b) λ+ − λ− +ATµ = 0,
(c) λ+j (|xj | − xj) = 0∀j,
(d) λ−j (|xj |+ xj) = 0∀j,
(e) λ+j ≥ 0 ∀j,
(f) λ−j ≥ 0 ∀j.

(1.7)

From (c, d), we have λ+j = 1, λ−j = 0 for j ∈ I+x and λ+j = 0, λ−j = 1 for j ∈ I−x .

From (a) and nonnegativity of λ±j it follows that for j 6∈ Ix we should have −1 ≤
λ+j −λ−j ≤ 1. With this in mind, the above optimality conditions admit eliminating
λ’s and reduce to the following conclusion:

(!) x is an optimal solution to (P [x]) if and only if there exists vector µ ∈ Rm

such that the j-th entry of ATµ is −1 if xj > 0, +1 if xj < 0, and a real from
[−1, 1] if xj = 0.
Now let w ∈ KerA be a vector with the same signs of entries wi, i ∈ I, as these of
the entries in x. Then

0 = µTAw = [ATµ]Tw =
∑
j [A

Tµ]jwj
⇒∑

j∈Ix |wj | =
∑
j∈Ix [A

Tµ]jwj = −∑j 6∈Ix [A
Tµ]jwj ≤

∑
j 6∈Ix |wj |

(we have used the fact that [ATµ]j = signxj = signwj for j ∈ Ix and |[ATµ]j | ≤ 1
for all j). Since I can be an arbitrary s-element subset of {1, ..., n} and the pattern
of signs of an s-sparse vector x supported on I can be arbitrary, (1.6) holds true.
✷

1.2.1.3 Nullspace property

In fact, it can be shown that (1.6) is not only a necessary, but also sufficient
condition for weak s-goodness of A; we, however, skip this verification, since our
goal so far was to guess the condition for s-goodness, and this goal has already
been achieved—from what we already know it immediately follows that a necessary
condition for s-goodness is for the inequality in (1.6) to be strict whenever w ∈
KerA is nonzero. Indeed, we already know that if A is s-good, then for every I of
cardinality s and every nonzero w ∈ KerA it holds

‖wI‖1 ≤ ‖wIo‖1.

If the latter inequality for some I and w in question holds true as equality, then
A clearly is not s-good, since the s-sparse signal x = wI is not the unique optimal
solution to (P [x])—the vector −wIo is a different feasible solution to the same
problem and with the same value of the objective. We conclude that for A to be
s-good, a necessary condition is

∀(0 6= w ∈ KerA, I,Card(I) ≤ s) : ‖wI‖1 < ‖wIo‖1.
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By the standard compactness argument, this is the same as the existence of γ ∈
(0, 1) such that

∀(w ∈ KerA, I,Card(I) ≤ s) : ‖wI‖1 ≤ γ‖wIo‖1,

or—which is the same—existence of κ ∈ (0, 1/2) such that

∀(w ∈ KerA, I,Card(I) ≤ s) : ‖wI‖1 ≤ κ‖w‖1.

Finally, the supremum of ‖wI‖1 over I of cardinality s is the norm ‖w‖s,1 (the sum
of s largest magnitudes of entries) of w, so that the condition we are processing
finally can be formulated as

∃κ ∈ (0, 1/2) : ‖w‖s,1 ≤ κ‖w‖1 ∀w ∈ KerA. (1.8)

The resulting nullspace condition in fact is necessary and sufficient for A to be
s-good:

Proposition 1.2. Condition (1.8) is necessary and sufficient for A to be s-good.

Proof. We have already seen that the nullspace condition is necessary for s-
goodness. To verify sufficiency, let A satisfy the nullspace condition, and let us
prove that A is s-good. Indeed, let x be an s-sparse vector, and y be an optimal
solution to (P [x]); all we need is to prove that y = x. Let I be the support of x,
and w = y − x, so that w ∈ KerA. By the nullspace property we have

‖wI‖1 ≤ κ‖w‖1 = κ[‖wI‖1 + ‖wIo‖1] = κ[‖wI‖1 + ‖yIo‖1
⇒ ‖wI‖1 ≤ κ

1−κ‖yIo‖1
⇒ ‖x‖1 = ‖xI‖1 = ‖yI − wI‖1 ≤ ‖yI‖1 + κ

1−κ‖yIo‖1 ≤ ‖yI‖1 + ‖yIo‖1 = ‖y‖1

where the concluding ≤ is due to κ ∈ [0, 1/2). Since x is a feasible, and y is an
optimal solution to (P [x]), the resulting inequality ‖x‖1 ≤ ‖y‖1 must be equality,
which, again due to κ ∈ [0, 1/2), is possible only when yIo = 0. Thus, y has the
same support I as x, and w = x − y ∈ KerA is supported on s-element set I; by
nullspace property, we should have ‖wI‖1 ≤ κ‖w‖1 = κ‖wI‖1, which is possible
only when w = 0. ✷

1.2.2 Imperfect ℓ1 minimization

We have found a necessary and sufficient condition for ℓ1 minimization to recover
exactly s-sparse signals in the noiseless case. More often than not, both these as-
sumptions are violated: instead of s-sparse signals, we should speak about “nearly
s-sparse” ones, quantifying the deviation from sparsity by the distance from the sig-
nal x underlying the observations to its best s-sparse approximation xs. Similarly,
we should allow for nonzero observation noise. With noisy observations and/or
imperfect sparsity, we cannot hope to recover the signal exactly. All we may hope
for, is to recover it with some error depending on the level of observation noise and
“deviation from s-sparsity,” and tending to zero as the level and deviation tend to
0. We are about to quantify the nullspace property to allow for instructive “error
analysis.”
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1.2.2.1 Contrast matrices and quantifications of Nullspace property

By itself, the nullspace property says something about the signals from the kernel of
the sensing matrix. We can reformulate it equivalently to say something important
about all signals. Namely, observe that given sparsity s and κ ∈ (0, 1/2), the
nullspace property

‖w‖s,1 ≤ κ‖w‖1 ∀w ∈ KerA (1.9)

is satisfied if and only if for a properly selected constant C one has6

‖w‖s,1 ≤ C‖Aw‖2 + κ‖w‖1 ∀w. (1.10)

Indeed, (1.10) clearly implies (1.9); to get the inverse implication, note that for
every h orthogonal to KerA it holds

‖Ah‖2 ≥ σ‖h‖2,

where σ > 0 is the minimal positive singular value of A. Now, given w ∈ Rn, we
can decompose w into the sum of w̄ ∈ KerA and h ∈ (KerA)⊥, so that

‖w‖s,1 ≤ ‖w̄‖s,1 + ‖h‖s,1 ≤ κ‖w̄‖1 +
√
s‖h‖s,2 ≤ κ[‖w‖1 + ‖h‖1] +

√
s‖h‖2

≤ κ‖w‖1 + [κ
√
n+

√
s]‖h‖2 ≤ σ−1[κ

√
n+

√
s]︸ ︷︷ ︸

C

‖Ah‖2︸ ︷︷ ︸
=‖Aw‖2

+κ‖w‖1,

as required in (1.10).

Condition Q1(s, κ). For our purposes, it is convenient to present the condition
(1.10) in the following flexible form:

‖w‖s,1 ≤ s‖HTAw‖+ κ‖w‖1, (1.11)

where H is an m × N contrast matrix and ‖ · ‖ is some norm on RN . Whenever
a pair (H, ‖ · ‖), called contrast pair, satisfies (1.11), we say that (H, ‖ · ‖) satisfies
condition Q1(s, κ). From what we have seen, If A possesses nullspace property with
some sparsity level s and some κ ∈ (0, 1/2), then there are many ways to select pairs
(H, ‖ · ‖) satisfying Q1(s, κ), e.g., to take H = CIm with appropriately large C and
‖ · ‖ = ‖ · ‖2.
Conditions Qq(s, κ). As we will see in a while, it makes sense to embed the condi-
tion Q1(s, κ) into a parametric family of conditions Qq(s, κ), where the parameter
q runs through [1,∞]. Specifically,

Given an m×n sensing matrix A, sparsity level s ≤ n, and κ ∈ (0, 1/2), we
say that m×N matrix H and a norm ‖ · ‖ on RN satisfy condition Qq(s, κ)
if

‖w‖s,q ≤ s
1
q ‖HTAw‖+ κs

1
q−1‖w‖1 ∀w ∈ Rn. (1.12)

Let us make two immediate observations on relations between the conditions:

A. When a pair (H, ‖ · ‖) satisfies condition Qq(s, κ), the pair satisfies also all con-
ditions Qq′(s, κ) with 1 ≤ q′ ≤ q.

6Note that (1.9) is exactly the φ2(s, κ)-Compatibility condition of [231] with φ(s, κ) = C/
√
s;

see also [232] for the analysis of relationships of this condition with other assumptions (e.g., a
similar Restricted Eigenvalue assumption of [20]) used to analyse ℓ1-minimization procedures.
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Indeed in the situation in question for 1 ≤ q′ ≤ q it holds

‖w‖s,q′ ≤ s
1
q′

− 1
q ‖w‖q,s ≤ s

1
q′

− 1
q

[
s

1
q ‖HTAw‖+ κs

1
q
−1‖w‖1

]

= s
1
q′ ‖HTAw‖+ κs

1
q′

−1‖w‖1,

where the first inequality is the standard inequality between ℓp-norms of the

s-dimensional vector ws.

B. When a pair (H, ‖ · ‖) satisfies condition Qq(s, κ) and 1 ≤ s′ ≤ s, the pair

((s/s′)
1
qH, ‖ · ‖) satisfies the condition Qq(s

′, κ).

Indeed, in the situation in question we clearly have for 1 ≤ s′ ≤ s:

‖w‖s′,q ≤ ‖w‖s,q ≤ (s′)
1
q ‖
[
(s/s′)

1
qH
]
Aw‖+ κ s

1
q
−1

︸ ︷︷ ︸
≤(s′)

1
q
−1

‖w‖1.

1.2.3 Regular ℓ1 recovery

Given the observation scheme (1.1) with an m× n sensing matrix A, we define the
regular ℓ1 recovery of x via observation y as

x̂reg(y) ∈ Argmin
u

{
‖u‖1 : ‖HT (Au− y)‖ ≤ ρ

}
, (1.13)

where the contrast matrix H ∈ Rm×N , the norm ‖ · ‖ on RN and ρ > 0 are
parameters of the construction.

The role of Q-conditions we have introduced is clear from the following

Theorem 1.3. Let s be a positive integer, q ∈ [1,∞] and κ ∈ (0, 1/2). Assume
that a pair (H, ‖ · ‖) satisfies the condition Qq(s, κ) associated with A, and let

Ξρ = {η : ‖HT η‖ ≤ ρ}. (1.14)

Then for all x ∈ Rn and η ∈ Ξρ one has

‖x̂reg(Ax+ η)− x‖p ≤
4(2s)

1
p

1− 2κ

[
ρ+

‖x− xs‖1
2s

]
, 1 ≤ p ≤ q. (1.15)

The above result can be slightly strengthened by replacing the assumption that
(H, ‖ · ‖) satisfies Qq(s, κ) with some κ < 1/2, with a weaker—by observation A
from Section 1.2.2.1—assumption that (H, ‖·‖) satisfies Q1(s,κ) with κ < 1/2 and
satisfies Qq(s, κ) with some (perhaps large) κ:

Theorem 1.4. Given A, integer s > 0, and q ∈ [1,∞], assume that (H, ‖ · ‖)
satisfies the condition Q1(s,κ) with κ < 1/2 and the condition Qq(s, κ) with some
κ ≥ κ, and let Ξρ be given by (1.14). Then for all x ∈ Rn and η ∈ Ξρ it holds:

‖x̂reg(Ax+η)−x‖p ≤
4(2s)

1
p [1 + κ− κ]

q(p−1)
p(q−1)

1− 2κ

[
ρ+

‖x− xs‖1
2s

]
, 1 ≤ p ≤ q. (1.16)

For proofs of Theorems 1.3 and 1.4, see Section 1.5.1.
Before commenting on the above results, let us present their alternative versions.
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1.2.4 Penalized ℓ1 recovery

Penalized ℓ1 recovery of signal x from its observation (1.1) is

x̂pen(y) ∈ Argmin
u

{
‖u‖1 + λ‖HT (Au− y)‖

}
, (1.17)

where H ∈ Rm×N , a norm ‖ · ‖ on RN , and a positive real λ are parameters of the
construction.

Theorem 1.5. Given A, positive integer s, and q ∈ [1,∞], assume that (H, ‖ · ‖)
satisfies the conditions Qq(s, κ) and Q1(s,κ) with κ < 1/2 and κ ≥ κ. Then

(i) Let λ ≥ 2s. Then for all x ∈ Rn, y ∈ Rm it holds:

‖x̂pen(y)− x‖p ≤ 4λ
1
p

1−2κ

[
1 + κλ

2s
− κ

] q(p−1)
p(q−1)

[
‖HT (Ax− y)‖+ ‖x−xs‖1

2s

]
, 1 ≤ p ≤ q.

(1.18)

In particular, with λ = 2s we have:

‖x̂pen(y)− x‖p ≤ 4(2s)
1
p

1−2κ [1 + κ− κ]
q(p−1)
p(q−1)

[
‖HT (Ax− y)‖+ ‖x−xs‖1

2s

]
, 1 ≤ p ≤ q.

(1.19)
(ii) Let ρ ≥ 0, and let Ξρ be given by (1.14). Then for all x ∈ Rn and all η ∈ Ξρ

one has:

λ ≥ 2s ⇒
‖x̂pen(Ax+ η)− x‖p ≤ 4λ

1
p

1−2κ

[
1 + κλ

2s
− κ

] q(p−1)
p(q−1)

[
ρ+ ‖x−xs‖1

2s

]
, 1 ≤ p ≤ q;

λ = 2s ⇒
‖x̂pen(Ax+ η)− x‖p ≤ 4(2s)

1
p

1−2κ
[1 + κ− κ]

q(p−1)
p(q−1)

[
ρ+ ‖x−xs‖1

2s

]
, 1 ≤ p ≤ q.

(1.20)

For proof, see Section 1.5.2.

1.2.5 Discussion

Some remarks are in order.
A. Qualitatively speaking, Theorems 1.3, 1.4, and 1.5 say the same thing: when

Q-conditions are satisfied, the regular or penalized recoveries reproduce the true
signal exactly when there is no observation noise and the signal is s-sparse. In the
presence of observation error η and imperfect sparsity, the signal is recovered within
the error which can be upper-bounded by the sum of two terms, one proportional to
the magnitude of observation noise and one proportional to the deviation ‖x−xs‖1
of the signal from s-sparse ones. In the penalized recovery, the observation error is
measured in the scale given by the contrast matrix and the norm ‖ ·‖—as ‖HT η‖—
and in the regular recovery by an a priori upper bound ρ on ‖HT η‖; when ρ ≥
‖HT η‖, η belongs to Ξρ and thus the bounds (1.15) and (1.16) are applicable to the
actual observation error η. Clearly, in qualitative terms, an error bound of this type
is the best we may hope for. Now let us look at the quantitative aspect. Assume
that in the regular recovery we use ρ ≈ ‖HT η‖, and in the penalized one λ = 2s. In
this case, error bounds (1.15), (1.16), and (1.20), up to factors C depending solely
on κ and κ, are the same, specifically,

‖x̂− x‖p ≤ Cs1/p[‖HT η‖+ ‖x− xs‖1/s], 1 ≤ p ≤ q. (!)
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Is this error bound bad or good? The answer depends on many factors, including
on how well we select H and ‖ · ‖. To get a kind of orientation, consider the trivial
case of direct observations, where matrix A is square and, moreover, is proportional
to the unit matrix: A = αI. Let us assume in addition that x is exactly s-sparse.
In this case, the simplest way to ensure condition Qq(s, κ), even with κ = 0, is to
take ‖ · ‖ = ‖ · ‖s,q and H = s−1/qα−1I, so that (!) becomes

‖x̂− x‖p ≤ Cα−1s1/p−1/q‖η‖s,q, 1 ≤ p ≤ q. (!!)

As far as the dependence of the bound on the magnitude ‖η‖s,q of the observation
noise is concerned, this dependence is as good as it can be—even if we knew in
advance the positions of the s entries of x of largest magnitudes, we would be
unable to recover x in q-norm with error ≤ α−1‖η‖s,q. In addition, with the s
largest magnitudes of entries in η equal to each other, the ‖·‖p-norm of the recovery
error clearly cannot be guaranteed to be less than α−1‖η‖s,p = α−1s1/p−1/q‖η‖s,q.
Thus, at least for s-sparse signals x, our error bound is, basically, the best one can
get already in the “ideal” case of direct observations.

B. Given that (H, ‖ · ‖) obeys Q1(s,κ) with some κ < 1/2, the larger the q such
that the pair (H, ‖ · ‖) obeys the condition Qq(s, κ) with a given κ ≥ κ (recall
that κ can be ≥ 1/2) and s, the larger the range p ≤ q of values of p where the
error bounds (1.16) and (1.20) are applicable. This is in full accordance with the
fact that if a pair (H, ‖ · ‖) obeys condition Qq(s, κ), it obeys also all conditions
Qq′(s, κ) with 1 ≤ q′ ≤ q (item A in Section 1.2.2.1).

C. The flexibility offered by contrast matrix H and norm ‖ · ‖ allows us to adjust,
to some extent, the recovery to the “geometry of observation errors.” For example,
when η is “uncertain but bounded,” say, when all we know is that ‖η‖2 ≤ δ with
some given δ, all that matters (on the top of the requirement for (H, ‖ · ‖) to
obey Q-conditions) is how large ‖HT η‖ could be when ‖η‖2 ≤ δ. In particular,
when ‖ · ‖ = ‖ · ‖2, the error bound “is governed” by the spectral norm of H.
Consequently, if we have a technique allowing us to design H such that (H, ‖ · ‖2)
obeys Q-condition(s) with given parameters, it makes sense to look for a design
with as small a spectral norm of H as possible. In contrast to this, in the case of
Gaussian noise the most interesting for applications,

y = Ax+ η, η ∼ N (0, σ2Im), (1.21)

looking at the spectral norm of H, with ‖·‖2 in the role of ‖·‖, is counterproductive,
since a typical realization of η is of Euclidean norm of order of

√
mσ and thus is

quite large when m is large. In this case to quantify “the magnitude” of HT η by
the product of the spectral norm of H and the Euclidean norm of η is completely
misleading—in typical cases, this product will grow rapidly with the number of
observations m, completely ignoring the fact that η is random with zero mean.7

What is much better suited for the case of Gaussian noise, is the ‖ · ‖∞ norm in the
role of ‖·‖ and the norm of H which is “the maximum of ‖·‖2-norms of the columns

7The simplest way to see the difference is to look at a particular entry hT η inHT η. Operating
with spectral norms, we upper-bound this entry by ‖h‖2‖η‖2, and the second factor for η ∼
N (0, σ2Im) is typically as large as σ

√
m. This is in sharp contrast to the fact that typical values

of hT η are of order of σ‖h‖2, independently of what m is!
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in H,” denoted by ‖H‖1,2. Indeed, with η ∼ N (0, σ2Im), the entries in HT η are
Gaussian with zero mean and variance bounded by σ2‖H‖21,2, so that ‖HT η‖∞
is the maximum of magnitudes of N zero mean Gaussian random variables with
standard deviations bounded by σ‖H‖1,2. As a result,

Prob{‖HT η‖∞ ≥ ρ} ≤ 2NErfc

(
ρ

σ‖H‖1,2

)
≤ Ne

− ρ2

2σ2‖H‖21,2 , (1.22)

where

Erfc(s) = Probξ∼N (0,1){ξ ≥ s} =
1√
2π

∫ ∞

s

e−t
2/2dt

is the (slightly rescaled) complementary error function.
It follows that the typical values of ‖HT η‖∞, η ∼ N (0, σ2Im) are of order of

at most σ
√
ln(N)‖H‖1,2. In applications we consider in this chapter, we have

N = O(m), so that with σ and ‖H‖1,2 given, typical values ‖HT η‖∞ are nearly
independent of m. The bottom line is that ℓ1 minimization is capable of handling
large-scale Gaussian observation noise incomparably better than “uncertain-but-
bounded” observation noise of similar magnitude (measured in Euclidean norm).

D. As far as comparison of regular and penalized ℓ1 recoveries with the same pair
(H, ‖ · ‖) is concerned, the situation is as follows. Assume for the sake of simplicity
that (H, ‖ · ‖) satisfies Qq(s, κ) with some s and κ < 1/2, and let the observation
error be random. Given ǫ ∈ (0, 1), let

ρǫ[H, ‖ · ‖] = min
{
ρ : Prob

{
η : ‖HT η‖ ≤ ρ

}
≥ 1− ǫ

}
; (1.23)

this is nothing but the smallest ρ such that

Prob{η ∈ Ξρ} ≥ 1− ǫ (1.24)

(see (1.14)), and thus the smallest ρ for which the error bound (1.15) for the regular
ℓ1 recovery holds true with probability 1 − ǫ (or at least the smallest ρ for which
the latter claim is supported by Theorem 1.3). With ρ = ρǫ[H, ‖ · ‖], the regular ℓ1
recovery guarantees (and that is the best guarantee one can extract from Theorem
1.3) that

(#) For some set Ξ, Prob{η ∈ Ξ} ≥ 1 − ǫ, of “good” realizations of η ∼
N (0, σ2Im), one has

‖x̂(Ax+ η)− x‖p ≤
4(2s)

1
p

1− 2κ

[
ρǫ[H, ‖ · ‖] +

‖x− xs‖1
2s

]
, 1 ≤ p ≤ q, (1.25)

whenever x ∈ Rn and η ∈ Ξρ.

The error bound (1.19) (where we set κ = κ) says that (#) holds true for the penal-
ized ℓ1 recovery with λ = 2s. The latter observation suggests that the penalized ℓ1
recovery associated with (H, ‖ ·‖) and λ = 2s is better than its regular counterpart,
the reason being twofold. First, in order to ensure (#) with the regular recovery,
the “built in” parameter ρ of this recovery should be set to ρǫ[H, ‖ · ‖], and the
latter quantity is not always easy to identify. In contrast to this, the construc-
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tion of penalized ℓ1 recovery is completely independent of a priori assumptions on
the structure of observation errors, while automatically ensuring (#) for the error
model we use. Second, and more importantly, for the penalized recovery the bound
(1.25) is no more than the “worst, with confidence 1 − ǫ, case,” while the typical
values of the quantity ‖HT η‖ which indeed participates in the error bound (1.18)
may be essentially smaller than ρǫ[H, ‖·‖]. Numerical experience fully supports the
above claim: the difference in observed performance of the two routines in question,
although not dramatic, is definitely in favor of the penalized recovery. The only
potential disadvantage of the latter routine is that the penalty parameter λ should
be tuned to the level s of sparsity we aim at, while the regular recovery is free of
any guess of this type. Of course, the “tuning” is rather loose—all we need (and
experiments show that we indeed need this) is the relation λ ≥ 2s, so that a rough
upper bound on s will do. However, that bound (1.18) deteriorates as λ grows.

Finally, we remark that when H is m×N and η ∼ N (0, σ2Im), we have

ρǫ[H, ‖ · ‖∞] ≤ σErfcInv(
ǫ

2N
)‖H‖1,2 ≤ σ

√
2 ln(N/ǫ)‖H‖1,2

(see (1.22)); here ErfcInv(δ) is the inverse complementary error function:

Erfc(ErfcInv(δ)) = δ, 0 < δ < 1. (1.26)

How it works. Here we present a small numerical illustration. We observe in
Gaussian noise m = n/2 randomly selected terms in n-element “time series” z =
(z1, ..., zn) and want to recover this series under the assumption that the series is
“nearly s-sparse in frequency domain,” that is, that

z = Fx with ‖x− xs‖1 ≤ δ,

where F is the matrix of n × n the Inverse Discrete Cosine Transform, xs is the
vector obtained from x by zeroing out all but the s entries of largest magnitudes
and δ upper-bounds the distance from x to s-sparse signals. Denoting by A the
m × n submatrix of F corresponding to the time instants t where zt is observed,
our observation becomes

y = Ax+ σξ,

where ξ is the standard Gaussian noise. After the signal in frequency domain, that
is, x, is recovered by ℓ1 minimization, let the recovery be x̂, we recover the signal in
the time domain as ẑ = Fx̂. In Figure 1.3, we present four test signals, of different
(near-)sparsity, along with their regular and penalized ℓ1 recoveries. The data in
Figure 1.3 clearly show how the quality of ℓ1 recovery deteriorates as the number s
of “essential nonzeros” of the signal in the frequency domain grows. It is seen also
that the penalized recovery meaningfully outperforms the regular one in the range
of sparsities up to 64.
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s = 16 s = 32 s = 64 s = 128
‖z − ẑ‖2 0.2417 0.3871 0.8178 4.8256
‖z − ẑ‖∞ 0.0343 0.0514 0.1744 0.8272

s = 16 s = 32 s = 64 s = 128
‖z − ẑ‖2 0.1399 0.2385 0.4216 5.3431
‖z − ẑ‖∞ 0.0177 0.0362 0.1023 0.9141

recovery errors, regular ℓ1 recovery recovery errors, penalized ℓ1 recovery

Figure 1.3: Regular and penalized ℓ1 recovery of nearly s-sparse signals. o: true
signals, +: recoveries (to make the plots readable, one per eight consecutive vector’s
entries is shown). Problem sizes are m = 256 and n = 2m = 512, noise level
is σ = 0.01, deviation from s-sparsity is ‖x − xs‖1 = 1, contrast pair is (H =√
n/mA, ‖ · ‖∞). In penalized recovery, λ = 2s, parameter ρ of regular recovery is

set to σ · ErfcInv(0.005/n).
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1.3 VERIFIABILITY AND TRACTABILITY ISSUES

The good news about ℓ1 recovery stated in Theorems 1.3, 1.4, and 1.5 is “conditio-
nal”—we assume that we are smart enough to point out a pair (H, ‖ · ‖) satisfying
condition Q1(s,κ) with κ < 1/2 (and condition Qq(s, κ) with a “moderate” κ

8).
The related issues are twofold:

1. First, we do not know in which range of s, m, and n these conditions, or even the
weaker than Q1(s,κ), κ < 1/2, nullspace property can be satisfied; and without
the nullspace property, ℓ1 minimization becomes useless, at least when we want
to guarantee its validity whatever be the s-sparse signal we want to recover;

2. Second, it is unclear how to verify whether a given sensing matrix A satisfies the
nullspace property for a given s, or a given pair (H, ‖ · ‖) satisfies the condition
Qq(s, κ) with given parameters.

What is known about these crucial issues can be outlined as follows.

1. It is known that for given m,n with m ≪ n (say, m/n ≤ 1/2), there exist
m × n sensing matrices which are s-good for the values of s “nearly as large
as m,” specifically, for s ≤ O(1) m

ln(n/m) .
9 Moreover, there are natural families

of matrices where this level of goodness “is a rule.” E.g., when drawing an
m× n matrix at random from Gaussian or Rademacher distributions (i.e., when
filling the matrix with independent realizations of a random variable which is
either a standard (zero mean, unit variance) Gaussian one, or takes values ±1
with probabilities 0.5), the result will be s-good, for the outlined value of s,
with probability approaching 1 as m and n grow. All this remains true when
instead of speaking about matrices A satisfying “plain” nullspace properties, we
are speaking about matrices A for which it is easy to point out a pair (H, ‖ · ‖)
satisfying the condition Q2(s,κ) with, say, κ = 1/4.
The above results can be considered as a good news. A bad news is that we do
not know how to check efficiently, given an s and a sensing matrix A, that the
matrix is s-good, just as we do not know how to check that A admits good (i.e.,
satisfying Q1(s,κ) with κ < 1/2) pairs (H, ‖ · ‖). Even worse: we do not know
an efficient recipe allowing us to build, given m, an m × 2m matrix Am which
is provably s-good for s larger than O(1)

√
m, which is a much smaller “level of

goodness” than the one promised by theory for randomly generated matrices.10

The “common life” analogy of this situation would be as follows: you know that
90% of bricks in your wall are made of gold, and at the same time, you do not
know how to tell a golden brick from a usual one.

2. There exist verifiable sufficient conditions for s-goodness of a sensing matrix,
similarly to verifiable sufficient conditions for a pair (H, ‖ · ‖) to satisfy condition

8Qq(s, κ) is always satisfied with “large enough” κ, e.g., κ = s, but such values of κ are of no
interest: the associated bounds on p-norms of the recovery error are straightforward consequences
of the bounds on the ‖ · ‖1-norm of this error yielded by the condition Q1(s,κ).

9Recall that O(1)’s denote positive absolute constants—appropriately chosen numbers like
0.5, or 1, or perhaps 100,000. We could, in principle, replace all O(1)’s with specific numbers;
following the standard mathematical practice, we do not do it, partly out of laziness, partly
because particular values of these numbers in our context are irrelevant.

10Note that the naive algorithm “generate m× 2m matrices at random until an s-good, with
s promised by the theory, matrix is generated” is not an efficient recipe, since we still do not know
how to check s-goodness efficiently.
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Qq(s, κ). The bad news is that whenm≪ n, these verifiable sufficient conditions
can be satisfied only when s ≤ O(1)

√
m—once again, in a much more narrow

range of values of s than when typical randomly selected sensing matrices are
s-good. In fact, s = O(

√
m) is so far the best known sparsity level for which we

know individual s-good m× n sensing matrices with m ≤ n/2.

1.3.1 Restricted Isometry Property and s-goodness of random
matrices

There are several sufficient conditions for s-goodness, equally difficult to verify, but
provably satisfied for typical random sensing matrices. The best known of them is
the Restricted Isometry Property (RIP) defined as follows:

Definition 1.6. Let k be an integer and δ ∈ (0, 1). We say that an m × n sens-
ing matrix A possesses the Restricted Isometry Property with parameters δ and k,
RIP(δ, k), if for every k-sparse x ∈ Rn one has

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22. (1.27)

It turns out that for natural ensembles of random m × n matrices, a typical
matrix from the ensemble satisfies RIP(δ, k) with small δ and k “nearly as large as
m,” and that RIP( 16 , 2s) implies the nullspace condition, and more. The simplest
versions of the corresponding results are as follows.

Proposition 1.7. Given δ ∈ (0, 15 ], with properly selected positive c = c(δ), d =
d(δ), f = f(δ) for all m ≤ n and all positive integers k such that

k ≤ m

c ln(n/m) + d
(1.28)

the probability for a random m× n matrix A with independent N (0, 1
m ) entries to

satisfy RIP(δ, k) is at least 1− exp{−fm}.

For proof, see Section 1.5.3.

Proposition 1.8. Let A ∈ Rm×n satisfy RIP(δ, 2s) for some δ < 1/3 and positive
integer s. Then

(i) The pair
(
H = s−1/2

√
1−δ Im, ‖ · ‖2

)
satisfies the condition Q2

(
s, δ

1−δ

)
associated

with A;

(ii) The pair (H = 1
1−δA, ‖ · ‖∞) satisfies the condition Q2

(
s, δ

1−δ

)
associated

with A.

For proof, see Section 1.5.4.

1.3.2 Verifiable sufficient conditions for Qq(s, κ)

When speaking about verifiable sufficient conditions for a pair (H, ‖ · ‖) to satisfy
Qq(s, κ), it is convenient to restrict ourselves to the case where H, like A, is an
m× n matrix, and ‖ · ‖ = ‖ · ‖∞.

Proposition 1.9. Let A be an m×n sensing matrix, and s ≤ n be a sparsity level.
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Given an m× n matrix H and q ∈ [1,∞], let us set

νs,q[H] = max
j≤n

‖Colj [I −HTA]‖s,q, (1.29)

where Colj [C] is j-th column of matrix C. Then

‖w‖s,q ≤ s1/q‖HTAw‖∞ + νs,q[H]‖w‖1 ∀w ∈ Rn, (1.30)

implying that the pair (H, ‖ · ‖∞) satisfies the condition Qq(s, s
1− 1

q νs,q[H]).

Proof is immediate. Setting V = I −HTA, we have

‖w‖s,q = ‖[HTA+ V ]w‖s,q ≤ ‖HTAw‖s,q + ‖V w‖s,q
≤ s1/q‖HTAw‖∞ +

∑
j |wj |‖Colj [V ]‖s,q ≤ s1/q‖HTA‖∞ + νs,q[H]‖w‖1. ✷

Observe that the function νs,q[H] is an efficiently computable convex function of
H, so that the set

Hκ
s,q = {H ∈ Rm×n : νs,q[H] ≤ s

1
q−1κ} (1.31)

is a computationally tractable convex set. When this set is nonempty for some
κ < 1/2, every point H in this set is a contrast matrix such that (H, ‖ · ‖∞)
satisfies the condition Qq(s, κ), that is, we can find contrast matrices making ℓ1
minimization valid. Moreover, we can design contrast matrix, e.g., by minimizing
over Hκ

s,q the function ‖H‖1,2, thus optimizing the sensitivity of the corresponding
ℓ1 recoveries to Gaussian observation noise; see items C, D in Section 1.2.5.

Explanation. The sufficient condition for s-goodness of A stated in Proposition
1.9 looks as if coming out of thin air; in fact it is a particular case of a simple and
general construction as follows. Let f(x) be a real-valued convex function on Rn,
and X ⊂ Rn be a nonempty bounded polytope represented as

X = {x ∈ Conv{g1, ..., gN} : Ax = 0},

where Conv{g1, ..., gN} = {∑i λigi : λ ≥ 0,
∑
i λi = 1} is the convex hull of vec-

tors g1, ..., gN . Our goal is to upper-bound the maximum Opt = maxx∈X f(x);
this is a meaningful problem, since precisely maximizing a convex function over
a polyhedron typically is a computationally intractable task. Let us act as fol-
lows: clearly, for any matrix H of the same size as A we have maxx∈X f(x) =
maxx∈X f([I −HTA]x), since on X we have [I −HTA]x = x. As a result,

Opt := max
x∈X

f(x) = max
x∈X

f([I −HTA]x)

≤ max
x∈Conv{g1,...,gN}

f([I −HTA]x)

= max
j≤N

f([I −HTA]gj).

We get a parametric—the parameter being H—upper bound on Opt, namely, the
bound maxj≤N f([I −HTA]gj). This parametric bound is convex in H, and thus
is well suited for minimization over this parameter.

The result of Proposition 1.9 is inspired by this construction as applied to the
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nullspace property: given an m× n sensing matrix A and setting

X = {x ∈ Rn : ‖x‖1 ≤ 1, Ax = 0} = {x ∈ Conv{±e1, ...,±en} : Ax = 0}

(ei are the basic orths in Rn), A is s-good if and only if

Opts := max
x∈X

{f(x) := ‖x‖s,1} < 1/2.

A verifiable sufficient condition for this, as yielded by the above construction, is
the existence of an m× n matrix H such that

max
j≤n

max[f([In −HTA]ej), f(−[In −HTA]ej)] < 1/2,

or, which is the same,

max
j

‖Colj [In −HTA]‖s,1 < 1/2.

This observation brings to our attention the matrix I −HTA with varying H and
the idea of expressing sufficient conditions for s-goodness and related properties in
terms of this matrix.

1.3.3 Tractability of Q∞(s, κ)

As we have already mentioned, the conditions Qq(s, κ) are intractable, in the sense
that we do not know how to verify whether a given pair (H, ‖ · ‖) satisfies the
condition. Surprisingly, this is not the case with the strongest of these conditions,
the one with q = ∞. Namely,

Proposition 1.10. Let A be an m × n sensing matrix, s be a sparsity level, and
κ ≥ 0. Then whenever a pair (H̄, ‖ · ‖) satisfies the condition Q∞(s, κ), there exists
an m× n matrix H such that

‖Colj [In −HTA]‖s,∞ = ‖Colj [In −HTA]‖∞ ≤ s−1κ, 1 ≤ j ≤ n

(so that (H, ‖ · ‖∞) satisfies Q∞(s, κ) by Proposition 1.9), and also

‖HT η‖∞ ≤ ‖H̄T η‖ ∀η ∈ Rm. (1.32)

In addition, the m×n contrast matrix H such that the pair (H, ‖ · ‖∞) satisfies the
condition Q∞(s, κ) with as small κ as possible can be found as follows. Consider n
LP programs

Opti = min
ν,h

{
ν : ‖ATh− ei‖∞ ≤ ν

}
, (#i)

where ei is i-th basic orth of Rn. Let Opti, hi, i = 1, ..., n be optimal solutions to
these problems; we set H = [h1, ..., hn]; the corresponding value of κ is

κ∗ = smax
i

Opti.

Besides this, there exists a transparent alternative description of the quantities Opti
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(and thus of κ∗); specifically,

Opti = max
x

{xi : ‖x‖1 ≤ 1, Ax = 0} . (1.33)

For proof, see Section 1.5.5.
Taken along with (1.32) and error bounds of Theorems 1.3, 1.4, and 1.5, Propo-

sition 1.10 says that

As far as the condition Q∞(s, κ) is concerned, we lose nothing when re-
stricting ourselves with pairs (H ∈ Rm×n, ‖ · ‖∞) and contrast matrices H
satisfying the condition

|[In −HTA]ij | ≤ s−1κ, (1.34)

implying that (H, ‖ · ‖∞) satisfies Q∞(s, κ).

The good news is that (1.34) is an explicit convex constraint on H (in fact, even on
H and κ), so that we can solve the design problems, where we want to optimize a
convex function of H under the requirement that (H, ‖ · ‖∞) satisfies the condition
Q∞(s, κ) (and, perhaps, additional convex constraints on H and κ).

1.3.3.1 Mutual Incoherence

The simplest (and up to some point in time, the only) verifiable sufficient condition
for s-goodness of a sensing matrix A is expressed in terms of mutual incoherence of
A, defined as

µ(A) = max
i6=j

|ColTi [A]Colj [A]|
‖Coli[A]‖22

. (1.35)

This quantity is well defined whenever A has no zero columns (otherwise A is not
even 1-good). Note that when A is normalized to have all columns of equal ‖ · ‖2-
lengths,11 µ(A) is small when the columns of A are nearly mutually orthogonal.
The standard related result is that

Whenever A and a positive integer s are such that 2µ(A)
1+µ(A) <

1
s , A is s-good.

It is immediately seen that the latter condition is weaker than what we can get
with the aid of (1.34):

Proposition 1.11. Let A be an m×n matrix, and let the columns of m×n matrix
H be given by

Colj(H) =
1

(1 + µ(A))‖Colj(A)‖22
Colj(A), 1 ≤ j ≤ n.

Then

|[Im −HTA]ij | ≤
µ(A)

1 + µ(A)
∀i, j. (1.36)

11As far as ℓ1 minimization is concerned, this normalization is non-restrictive: we always can
enforce it by diagonal scaling of the signal underlying observations (1.1), and ℓ1 minimization in
scaled variables is the same as weighted ℓ1 minimization in original variables.
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In particular, when 2µ(A)
1+µ(A) <

1
s , A is s-good.

Proof. With H as above, the diagonal entries in I−HTA are equal to 1− 1
1+µ(A) =

µ(A)
1+µ(A) , while by definition of mutual incoherence the magnitudes of the off-diagonal

entries in I−HTA are ≤ µ(A)
1+µ(A) as well, implying (1.36). The “in particular” claim

is given by (1.36) combined with Proposition 1.9. ✷

1.3.3.2 From RIP to conditions Qq(·, κ)
It turns out that when A is RIP(δ, k) and q ≥ 2, it is easy to point out pairs (H, ‖·‖)
satisfying Qq(t, κ) with a desired κ > 0 and properly selected t:

Proposition 1.12. Let A be an m × n sensing matrix satisfying RIP(δ, 2s) with
some s and some δ ∈ (0, 1), and let q ∈ [2,∞] and κ > 0 be given. Then

(i) Whenever a positive integer t satisfies

t ≤ min

[[
κ(1− δ)

δ

] q
q−1

, s
q−2
q−1

]
s

q
2q−2 , (1.37)

the pair (H = t
− 1

q√
1−δ Im, ‖ · ‖2) satisfies Qq(t, κ);

(ii) Whenever a positive integer t satisfies (1.37), the pair (H = s
1
2 t

− 1
q

1−δ A, ‖ ·‖∞)
satisfies Qq(t, κ).

For proof, see Section 1.5.4.
The most important consequence of Proposition 1.12 deals with the case of q =
∞ and states that when s-goodness of a sensing matrix A can be ensured by the
difficult to verify condition RIP(δ, 2s) with, say, δ = 0.2, the somehow worse level of
sparsity, t = O(1)

√
s with properly selected absolute constant O(1), can be certified

via condition Q∞(t, 1
3
)—there exists a pair (H, ‖·‖∞) satisfying this condition. The

point is that by Proposition 1.10, if the condition Q∞(t, 13 ) can at all be satisfied,
a pair (H, ‖ · ‖∞) satisfying this condition can be found efficiently.

Unfortunately, the significant “dropdown” in the level of sparsity when passing
from unverifiable RIP to verifiable Q∞ is inevitable; this bad news is what is on
our agenda now.

1.3.3.3 Limits of performance of verifiable sufficient conditions for goodness

Proposition 1.13. Let A be an m × n sensing matrix which is “essentially non-
square,” specifically, such that 2m ≤ n, and let q ∈ [1,∞]. Whenever a positive
integer s and an m× n matrix H are linked by the relation

‖Colj [In −HTA]‖s,q < 1
2
s

1
q−1, 1 ≤ j ≤ n, (1.38)

one has
s ≤ √

m. (1.39)

As a result, the sufficient condition for the validity of Qq(s, κ) with κ < 1/2 from
Proposition 1.9 can never be satisfied when s >

√
m. Similarly, the verifiable

sufficient condition Q∞(s, κ), κ < 1/2, for s-goodness of A cannot be satisfied
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Figure 1.4: Erroneous ℓ1 recovery of a 25-sparse signal, no observation noise. Top:
frequency domain, o – true signal, + – recovery. Bottom: time domain.

when s >
√
m.

For proof, see Section 1.5.6.
We see that unless A is “nearly square,” our (same as all others known to us)

verifiable sufficient conditions for s-goodness are unable to justify this property for
“large” s. This unpleasant fact is in full accordance with the already mentioned
fact that no individual provably s-good “essentially nonsquare” m × n matrices
with s ≥ O(1)

√
m are known.

Matrices for which our verifiable sufficient conditions do establish s-goodness
with s ≤ O(1)

√
m do exist.

How it works: Numerical illustration. Let us apply our machinery to the
256×512 randomly selected submatrix A of the matrix of 512×512 Inverse Discrete
Cosine Transform which we used in experiments reported in Figure 1.3. These
experiments exhibit nice performance of ℓ1 minimization when recovering sparse
(even nearly sparse) signals with as many as 64 nonzeros. In fact, the level of
goodness of A is at most 24, as is witnessed in Figure 1.4.

In order to upper-bound the level of goodness of a matrix A, one can try to

maximize the convex function ‖w‖s,1 over the set W = {w : Aw = 0, ‖w‖1 ≤ 1}:
if, for a given s, the maximum of ‖·‖s,1 overW is ≥ 1/2, the matrix is not s-good—

it does not possess the nullspace property. Now, while global maximization of the

convex function ‖w‖s,1 over W is difficult, we can try to find suboptimal solutions

as follows. Let us start with a vector w1 ∈W of ‖·‖1-norm 1, and let u1 be obtained

from w1 by replacing the s entries in w1 of largest magnitudes by the signs of these

entries and zeroing out all other entries, so that wT1 u
1 = ‖w1‖s,1. After u1 is found,

let us solve the LO program maxw{[u1]Tw : w ∈ W}. w1 is a feasible solution to

this problem, so that for the optimal solution w2 we have [u1]Tw2 ≥ [u1]Tw1 =
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‖w1‖s,1; this inequality, by virtue of what u1 is, implies that ‖w2‖s,1 ≥ ‖w1‖s,1,
and, by construction, w2 ∈W . We now can iterate the construction, with w2 in the

role of w1, to get w3 ∈W with ‖w3‖s,1 ≥ ‖w2‖s,1, etc. Proceeding in this way, we

generate a sequence of points from W with monotonically increasing value of the

objective ‖ · ‖s,1 we want to maximize. We terminate this recurrence either when

the achieved value of the objective becomes ≥ 1/2 (then we know for sure that A is

not s-good, and can proceed to investigating s-goodness for a smaller value of s) or

when the recurrence gets stuck—the observed progress in the objective falls below

a given threshold, say, 10−6. When it happens, we can restart the process from a

new starting point randomly selected in W , after getting stuck, restart again, etc.,

until we exhaust our time budget. The output of the process is the best of the

points we have generated—that of the largest ‖ · ‖s,1. Applying this approach to

the matrix A in question, in a couple of minutes it turns out that the matrix is at

most 24-good.

One can ask how it may happen that previous experiments with recovering 64-
sparse signals went fine, when in fact some 25-sparse signals cannot be recovered
by ℓ1 minimization even in the ideal noiseless case. The answer is simple: in our
experiments, we dealt with randomly selected signals, and typical randomly selected
data are much nicer, whatever be the purpose of a numerical experiment, than the
worst-case data.

It is interesting to understand also which goodness we can certify using our
verifiable sufficient conditions. Computations show that the fully verifiable (and
strongest in our scale of sufficient conditions for s-goodness) condition Q∞(s,κ)
can be satisfied with κ < 1/2 when s is as large as 7 and κ = 0.4887, and cannot be
satisfied with κ < 1/2 when s = 8. As for Mutual Incoherence, it can only justify
3-goodness, no more. We can hardly be happy with the resulting bounds—goodness
at least 7 and at most 24; however, it could be worse.

1.4 EXERCISES FOR CHAPTER 1

Exercise 1.1.

The k-th Hadamard matrix, Hk (here k is a nonnegative integer), is the nk×nk
matrix, nk = 2k, given by the recurrence

H0 = [1];Hk+1 =

[
Hk Hk

Hk −Hk

]
.

In the sequel, we assume that k > 0. Now comes the exercise:

1. Check that Hk is a symmetric matrix with entries ±1, and columns of the matrix
are mutually orthogonal, so that Hk/

√
nk is an orthogonal matrix.

2. Check that when k > 0, Hk has just two distinct eigenvalues,
√
nk and −√

nk,
each of multiplicity mk := 2k−1 = nk/2.

3. Prove that whenever f is an eigenvector of Hk, one has

‖f‖∞ ≤ ‖f‖1/
√
nk.

Derive from this observation the conclusion as follows:
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Let a1, ..., amk
∈ Rnk be unit vectors orthogonal to each other which are

eigenvectors of Hk with eigenvalues
√
nk (by the above, the dimension of

the eigenspace of Hk associated with the eigenvalue
√
nk is mk, so that

the required a1, ..., amk
do exist), and let A be the mk × nk matrix with

the rows aT1 , ..., a
T
mk

. For every x ∈ KerA it holds

‖x‖∞ ≤ 1√
nk

‖x‖1,

whence A satisfies the nullspace property whenever the sparsity s satisfies
2s <

√
nk =

√
2mk. Moreover, there exists (and can be found efficiently)

an mk × nk contrast matrix H = Hk such that for every s < 1
2

√
nk, the

pair (Hk, ‖ · ‖∞) satisfies the condition Q∞(s, κs = s/
√
nk︸ ︷︷ ︸

<1/2

) associated

with A, and the ‖ · ‖2-norms of columns of Hk do not exceed
√
2
√
nk+1√
nk

.

Note that the above conclusion yields a sequence of individual (mk = 2k−1) ×
(nk = 2k) sensing matrices, k = 1, 2, ..., with “size ratio” nk/mk = 2, which
make an efficiently verifiable condition for s-goodness, say, Q∞(s, 13 ), satisfiable
in basically the entire range of values of s allowed by Proposition 1.13. It would
be interesting to get similar “fully constructive” results for other size ratios, like
m : n = 1 : 4, m : n = 1 : 8, etc.

Exercise 1.2.

[Follow-up to Exercise 1.1] Exercise 1.1 provides us with an explicitly given (m =
512) × (n = 1024) sensing matrix Ā such that the efficiently verifiable condition
Q∞(15, 1532 ) is satisfiable; in particular, Ā is 15-good. With all we know about
limits of performance of verifiable sufficient conditions for goodness, how should we
evaluate this specific sensing matrix? Could we point out a sensing matrix of the
same size which is provably s-good for a value of s larger (or “much larger”) than
15?

We do not know the answer, and you are requested to explore some possibilities,
including (but not reducing to—you are welcome to investigate more options!) the
following ones.

1. Generate at random a sample of m×n sensing matrices A, compute their mutual
incoherences, and look at how large are the goodness levels certified by these in-
coherences. What happens when the matrices are Gaussian (independent N (0, 1)
entries) and Rademacher (independent entries taking values ±1 with probabili-
ties 1/2)?

2. Generate at random a sample of m × n matrices with independent N (0, 1/m)
entries. Proposition 1.7 suggests that a sample matrix A has good chances to
satisfy RIP(δ, k) with some δ < 1/3 and some k, and thus to be s-good (and even
more than this, see Proposition 1.8) for every s ≤ k/2. Of course, given A we
cannot check whether the matrix indeed satisfies RIP(δ, k) with given δ, k; what
we can try to do is to certify that RIP(δ, k) does not take place. To this end, it
suffices to select at random, say, 200 m× k submatrices Ã of A and compute the
eigenvalues of ÃT Ã; if A possesses RIP(δ, k), all these eigenvalues should belong
to the segment [1− δ, 1 + δ], and if in reality this does not happen, A definitely
is not RIP(δ, k).
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Exercise 1.3.

Let us start with a preamble. Consider a finite Abelian group; the only thing
which matters for us is that such a group G is specified by a collection of k ≥ 1 of
positive integers ν1, ..., νk and is comprised of all collections ω = (ω1, ..., ωk) where
every ωi is an integer from the range {0, 1, ..., νk−1}; the group operation, denoted
by ⊕, is

(ω1, ..., ωk)⊕ (ω′
1, ..., ω

′
k) = ((ω1 + ω′

1)mod ν1, ..., (ωk + ω′
k)mod νk),

where amod b is the remainder, taking values in {0, 1, ..., b − 1}, in the division of
an integer a by a positive integer b, e.g., 5mod 3 = 2 and 6mod 3 = 0. Clearly,
the cardinality of the above group G is nk = ν1ν2...νk. A character of group G is
a homomorphism acting from G into the multiplicative group of complex numbers
of modulus 1, or, in simple words, a complex-valued function χ(ω) on G such that
|χ(ω)| = 1 for all ω ∈ G and χ(ω ⊕ ω′) = χ(ω)χ(ω′) for all ω, ω′ ∈ G. Note
that characters themselves form a group w.r.t. pointwise multiplication; clearly, all
characters of our G are functions of the form

χ((ω1, ..., ωk)) = µω1
1 ...µωk

k ,

where µi are restricted to be roots of degree νi from 1: µνii = 1. It is immediately
seen that the group G∗ of characters of G is of the same cardinality nk = ν1...νk
as G. We can associate with G the matrix F of size nk × nk; the columns in the
matrix are indexed by the elements ω of G, the rows by the characters χ ∈ G∗ of
G, and the element in cell (χ, ω) is χ(ω). The standard example here corresponds
to k = 1, in which case F clearly is the ν1 × ν1 matrix of the Discrete Fourier
Transform.

Now comes the exercise:

1. Verify that the above F is, up to factor
√
nk, a unitary matrix: denoting by

a the complex conjugate of a complex number a,
∑
ω∈G χ(ω)χ

′(ω) is nk or 0
depending on whether χ = χ′ or χ 6= χ′.

2. Let ω̄, ω̄′ be two elements of G. Prove that there exists a permutation Π of
elements of G which maps ω̄ into ω̄′ and is such that

ColΠ(ω)[F ] = DColω[F ] ∀ω ∈ G,

where D is diagonal matrix with diagonal entries χ(ω̄′)/χ(ω̄), χ ∈ G∗.
3. Consider the special case of the above construction where ν1 = ν2 = ... = νk = 2.

Verify that in this case F , up to permutation of rows and permutation of columns
(these permutations depend on how we assign the elements of G and G∗ their
serial numbers), is exactly the Hadamard matrix Hk.

4. Extract from the above the following fact: let m, k be positive integers such that
m ≤ nk := 2k, and let sensing matrix A be obtained from Hk by selecting m
distinct rows. Assume we want to find an m × nk contrast matrix H such that
the pair (H, ‖ ·‖∞) satisfies the condition Q∞(s, κ) with as small a κ as possible;
by Proposition 1.10, to this end we should solve n LP programs

Opti = min
h

‖ei −ATh‖∞,

where ei is i-th basic orth in Rn. Prove that with A coming from Hk, all

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



SPARSE RECOVERY VIA ℓ1 MINIMIZATION

StatOpt˙proved˙nocolor December 23, 2019 7x10

29

these problems have the same optimal value, and optimal solutions to all of the
problems are readily given by the optimal solution to just one of them.

Exercise 1.4.

Proposition 1.13 states that the verifiable condition Q∞(s, κ) can certify s-
goodness of an “essentially nonsquare” (with m ≤ n/2) m × n sensing matrix A
only when s is small as compared to m, namely, s ≤

√
2m. The exercise to follow

is aimed at investigating what happens when m × n “low” (with m < n) sensing
matrix A is “nearly square”, meaning that mo = n − m is small as compared to
n. Specifically, you should prove that for properly selected individual (n−mo)× n
matrices A the condition Q∞(s, κ) with κ < 1/2 is satisfiable when s is as large as
O(1)n/

√
mo.

1. Let n = 2kp with positive integer p and integer k ≥ 1, and let mo = 2k−1. Given
a 2mo-dimensional vector u, let u+ be an n-dimensional vector built as follows:
we split indexes from {1, ..., n = 2kp} into 2k consecutive groups I1, ..., I2k , p
elements per group, and all entries of u+ with indexes from Ii are equal to the

i-th entry, ui, of vector u. Now let U be the linear subspace in R2k comprised of
all eigenvectors, with eigenvalue

√
2k, of the Hadamard matrix Hk—see Exercise

1.1—so that the dimension of U is 2k−1 = mo, and let L be given by

L = {u+ : u ∈ U} ⊂ Rn.

Clearly, L is a linear subspace in Rn of dimension mo. Prove that

∀x ∈ L : ‖x‖∞ ≤
√
2mo

n
‖x‖1.

Conclude that if A is an (n−mo)× n sensing matrix with KerA = L, then the
verifiable sufficient condition Q∞(s, κ) does certify s-goodness of A whenever

1 ≤ s <
n

2
√
2mo

.

2. Let L be an mo-dimensional subspace in Rn. Prove that L contains a nonzero
vector x with

‖x‖∞ ≥
√
mo

n
‖x‖1,

so that the condition Q∞(s, κ) cannot certify s-goodness of an (n−mo)×n sens-
ing matrix A whenever s > O(1)n/

√
mo, for properly selected absolute constant

O(1).

Exercise 1.5.

Utilize the results of Exercise 1.3 in a numerical experiment as follows.

• select n as an integer power 2k of 2, say, n = 210 = 1024;
• select a “representative” sequenceM of values of m, 1 ≤ m < n, including values
of m close to n and “much smaller” than n, say,

M = {2, 5, 8, 16, 32, 64, 128, 256, 512, 7, 896, 960, 992, 1008, 1016, 1020, 1022, 1023};

• for every m ∈M ,
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– generate at random an m× n submatrix A of the n× n Hadamard matrix
Hk and utilize the result of item 4 of Exercise 1.3 in order to find the largest
s such that the s-goodness of A can be certified via the condition Q∞(·, ·);
call s(m) the resulting value of s;

– generate a moderate sample of Gaussian m × n sensing matrices Ai with
independent N (0, 1/m) entries and use the construction from Exercise 1.2
to upper-bound the largest s for which a matrix from the sample satisfies
RIP(1/3, 2s); call ŝ(m) the largest—over your Ai’s—of the resulting upper
bounds.

The goal of the exercise is to compare the computed values of s(m) and ŝ(m);
in other words, we again want to understand how “theoretically perfect” RIP
compares to “conservative restricted scope” condition Q∞.

1.5 PROOFS

1.5.1 Proofs of Theorem 1.3, 1.4

All we need is to prove Theorem 1.4, since Theorem 1.3 is the particular case
κ = κ < 1/2 of Theorem 1.4.

Let us fix x ∈ Rn and η ∈ Ξρ, and let us set x̂ = x̂reg(Ax + η). Let also
I ⊂ {1, ..., n} be the set of indexes of the s entries in x of largest magnitudes, Io

be the complement of I in {1, ..., n}, and, for w ∈ Rn, wI and wIo be the vectors
obtained from w by zeroing entries with indexes j 6∈ I and j 6∈ Io, respectively, and
keeping the remaining entries intact. Finally, let z = x̂− x.
1o. By the definition of Ξρ and due to η ∈ Ξρ, we have

‖HT ([Ax+ η]−Ax)‖ ≤ ρ, (1.40)

so that x is a feasible solution to the optimization problem specifying x̂, whence
‖x̂‖1 ≤ ‖x‖1. We therefore have

‖x̂Io‖1 = ‖x̂‖1 − ‖x̂I‖1 ≤ ‖x‖1 − ‖x̂I‖1 = ‖xI‖1 + ‖xIo‖1 − ‖x̂I‖1
≤ ‖zI‖1 + ‖xIo‖1, (1.41)

and therefore
‖zIo‖1 ≤ ‖x̂Io‖1 + ‖xIo‖1 ≤ ‖zI‖1 + 2‖xIo‖1.

It follows that
‖z‖1 = ‖zI‖1 + ‖zIo‖1 ≤ 2‖zI‖1 + 2‖xIo‖1. (1.42)

Further, by definition of x̂ we have ‖HT ([Ax+ η]−Ax̂)‖ ≤ ρ, which combines with
(1.40) to imply that

‖HTA(x̂− x)‖ ≤ 2ρ. (1.43)

2o. Since (H, ‖ · ‖) satisfies Q1(s,κ), we have

‖z‖s,1 ≤ s‖HTAz‖+ κ‖z‖1.

By (1.43), it follows that ‖z‖s,1 ≤ 2sρ + κ‖z‖1, which combines with the evident
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inequality ‖zI‖ ≤ ‖z‖s,1 (recall that Card(I) = s) and with (1.42) to imply that

‖zI‖1 ≤ 2sρ+ κ‖z‖1 ≤ 2sρ+ 2κ‖zI‖1 + 2κ‖xIo‖1,

whence

‖zI‖1 ≤ 2sρ+ 2κ‖xIo‖1
1− 2κ

.

Invoking (1.42), we conclude that

‖z‖1 ≤ 4s

1− 2κ

[
ρ+

‖xIo‖1
2s

]
. (1.44)

3o. Since (H, ‖ · ‖) satisfies Qq(s, κ), we have

‖z‖s,q ≤ s
1
q ‖HTAz‖+ κs

1
q−1‖z‖1,

which combines with (1.44) and (1.43) to imply that

‖z‖s,q ≤ s
1
q 2ρ+ κs

1
q
4ρ+2s−1‖xIo‖1

1−2κ ≤ 4s
1
q [1+κ−κ]
1−2κ

[
ρ+ ‖xo‖1

2s

]
(1.45)

(we have taken into account that κ < 1/2 and κ ≥ κ). Let θ be the (s + 1)-st
largest magnitude of entries in z, and let w = z − zs. Now (1.45) implies that

θ ≤ ‖z‖s,qs−
1
q ≤ 4[1 + κ− κ]

1− 2κ

[
ρ+

‖xIo‖1
2s

]
.

Hence invoking (1.44) we have

‖w‖q ≤ ‖w‖
q−1
q

∞ ‖w‖
1
q

1 ≤ θ
q−1
q ‖z‖

1
q

1

≤ θ
q−1
q

(4s)
1
q

[1−2κ]
1
q

[
ρ+ ‖xIo‖1

2s

] 1
q

≤ 4s
1
q [1+κ−κ]

q−1
q

1−2κ

[
ρ+ ‖xIo‖1

2s

]
.

Taking into account (1.45) and the fact that the supports of zs and w do not
intersect, we get

‖z‖q ≤ 2
1
q max[‖zs‖q, ‖w‖q] = 2

1
q max[‖z‖s,q, ‖w‖q]

≤ 4(2s)
1
q [1+κ−κ]
1−2κ

[
ρ+ ‖xIo‖1

2s

]
.

This bound combines with (1.44), the Moment inequality,12 and with the relation
‖xIo‖1 = ‖x− xs‖1 to imply (1.16). ✷

12The Moment inequality states that if (Ω, µ) is a space with measure and f is a µ-measurable

real-valued function on Ω, then φ(ρ) = ln
(∫

Ω |f(ω)|
1
ρ µ(dω)

)ρ
is a convex function of ρ on every

segment ∆ ⊂ [0, 1] such that φ(·) is well defined at the endpoints of ∆. As a corollary, when

x ∈ Rn and 1 ≤ p ≤ q ≤ ∞, one has ‖x‖p ≤ ‖x‖
q−p

p(q−1)

1 ‖x‖
q(p−1)
p(q−1)
q .
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1.5.2 Proof of Theorem 1.5

Let us prove (i). Let us fix x ∈ Rn and η, and let us set x̂ = x̂pen(Ax+η). Let also
I ⊂ {1, ...,K} be the set of indexes of the s entries in x of largest magnitudes, Io

be the complement of I in {1, ..., n}, and, for w ∈ Rn, wI and wIo be the vectors
obtained from w by zeroing out all entries with indexes not in I and not in Io,
respectively. Finally, let z = x̂− x and ν = ‖HT η‖.
1o. We have

‖x̂‖1 + λ‖HT (Ax̂−Ax− η)‖ ≤ ‖x‖1 + λ‖HT η‖
and

‖HT (Ax̂−Ax− η)‖ = ‖HT (Az − η)‖ ≥ ‖HTAz‖ − ‖HT η‖,
whence

‖x̂‖1 + λ‖HTAz‖ ≤ ‖x‖1 + 2λ‖HT η‖ = ‖x‖1 + 2λν. (1.46)

We have
‖x̂‖1 = ‖x+ z‖1 = ‖xI + zI‖1 + ‖xIo + zIo‖1

≥ ‖xI‖1 − ‖zI‖1 + ‖zIo‖1 − ‖xIo‖1,
which combines with (1.46) to imply that

‖xI‖1 − ‖zI‖1 + ‖zIo‖1 − ‖xIo‖1 + λ‖HTAz‖ ≤ ‖x‖1 + 2λν,

or, which is the same,

‖zIo‖1 − ‖zI‖1 + λ‖HTAz‖ ≤ 2‖xIo‖1 + 2λν. (1.47)

Since (H, ‖ · ‖) satisfies Q1(s,κ), we have

‖zI‖1 ≤ ‖z‖s,1 ≤ s‖HTAz‖+ κ‖z‖1,

so that
(1− κ)‖zI‖1 − κ‖zIo‖1 − s‖HTAz‖ ≤ 0. (1.48)

Taking a weighted sum of (1.47) and (1.48), the weights being 1 and 2, respectively,
we get

(1− 2κ) [‖zI‖1 + ‖zIo‖1] + (λ− 2s)‖HTAz‖ ≤ 2‖xIo‖1 + 2λν,

whence, due to λ ≥ 2s,

‖z‖1 ≤ 2λν + 2‖xIo‖1
1− 2κ

≤ 2λ

1− 2κ

[
ν +

‖xIo‖1
2s

]
. (1.49)

Further, by (1.46) we have

λ‖HTAz‖ ≤ ‖x‖1 − ‖x̂‖1 + 2λν ≤ ‖z‖1 + 2λν,

which combines with (1.49) to imply that

λ‖HAT z‖ ≤ 2λν + 2‖xIo‖1
1− 2κ

+ 2λν =
2λν(2− 2κ) + 2‖xIo‖1

1− 2κ
. (1.50)
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From Qq(s, κ) it follows that

‖z‖s,q ≤ s
1
q ‖HTAz‖+ κs

1
q−1‖z‖1,

which combines with (1.50) and (1.49) to imply that

‖z‖s,q ≤ s
1
q
−1 [

s‖HTAz‖+ κ‖z‖1
]
≤ s

1
q
−1
[
4sν(1−κ)+ 2s

λ
‖xIo‖1

1−2κ
+

κ[2λν+λ
s
‖xIo‖1]

1−2κ

]

= s
1
q [4(1−κ)+2s−1λκ]ν+[2λ−1+κs−2λ]‖xIo‖1

1−2κ
≤ 4 s

1
q

1−2κ

[
1 + κλ

2s
− κ

] [
ν + ‖xIo‖1

2s

]

(1.51)

(recall that λ ≥ 2s, κ ≥ κ, and κ < 1/2). It remains to repeat the reasoning
following (1.45) in item 3o of the proof of Theorem 1.4. Specifically, denoting by θ
the (s+ 1)-st largest magnitude of entries in z, (1.51) implies that

θ ≤ s−1/q‖z‖s,q ≤
4

1− 2κ
[1 + κ

λ

2s
− κ]

[
ν +

‖xIo‖1
2s

]
, (1.52)

so that for the vector w = z − zs one has

‖w‖q ≤ θ1−
1
q ‖w‖

1
q

1 ≤ 4(λ/2)
1
q

1−2κ

[
1 + κ λ

2s − κ

] q−1
q

[
ν + ‖xIo‖1

2s

]

(we have used (1.52) and (1.49)). Hence, taking into account that zs and w have
nonintersecting supports,

‖z‖q ≤ 2
1
q max[‖zs‖q, ‖w‖q] = 2

1
q max[‖z‖s,q, ‖w‖q]

≤ 4λ
1
q

1−2κ

[
1 + κ λ

2s − κ

] [
ν + ‖xIo‖1

2s

]

(we have used (1.51) along with λ ≥ 2s and κ ≥ κ). This combines with (1.49)
and the Moment inequality to imply (1.18). All remaining claims of Theorem 1.5
are immediate corollaries of (1.18). ✷

1.5.3 Proof of Proposition 1.7

1o. Assuming k ≤ m and selecting a set I of k indices from {1, ..., n} distinct
from each other, consider an m × k submatrix AI of A comprised of columns
with indexes from I, and let u be a unit vector in Rk. The entries in the vector
m1/2AIu are independent N (0, 1) random variables, so that for the random variable
ζu =

∑m
i=1(m

1/2AIu)
2
i and γ ∈ (−1/2, 1/2) it holds (in what follows, expectations

and probabilities are taken w.r.t. our ensemble of random A’s)

ln (E{exp{γζ}}) = m ln

(
1√
2π

∫
eγt

2− 1
2 t

2

ds

)
= −m

2
ln(1− 2γ).

Given α ∈ (0, 0.1] and selecting γ in such a way that 1 − 2γ = 1
1+α , we get

0 < γ < 1/2 and therefore

Prob{ζu > m(1 + α)} ≤ E{exp{γζu}} exp{−mγ(1 + α)}
= exp{−m

2 ln(1− 2γ)−mγ(1 + α)}
= exp{m2 [ln(1 + α)− α]} ≤ exp{−m

5 α
2},
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and similarly, selecting γ in such a way that 1 − 2γ = 1
1−α , we get −1/2 < γ < 0

and therefore

Prob{ζu < m(1− α)} ≤ E{exp{γζu}} exp{−mγ(1− α)}
= exp{−m

2 ln(1− 2γ)−mγ(1− α)}
= exp{m2 [ln(1− α) + α]} ≤ exp{−m

5 α
2},

and we end up with

u ∈ Rk, ‖u‖2 = 1 ⇒
{

Prob{A : ‖AIu‖22 > 1 + α} ≤ exp{−m
5 α

2}
Prob{A : ‖AIu‖22 < 1− α} ≤ exp{−m

5 α
2} . (1.53)

2o. As above, let α ∈ (0, 0.1], let

M = 1 + 2α, ǫ =
α

2(1 + 2α)
,

and let us build an ǫ-net on the unit sphere S in Rk as follows. We start with
a point u1 ∈ S; after {u1, ..., ut} ⊂ S is already built, we check whether there
is a point in S at the ‖ · ‖2-distance from all points of the set > ǫ. If it is the
case, we add such a point to the net built so far and proceed with building the
net; otherwise we terminate with the net {u1, ..., ut}. By compactness of S and
due to ǫ > 0, this process eventually terminates; upon termination, we have at our
disposal the collection {u1, ..., uN} of unit vectors such that every two of them are
at ‖ · ‖2-distance > ǫ from each other, and every point from S is at distance at
most ǫ from some point of the collection. We claim that the cardinality N of the
resulting set can be bounded as

N ≤
[
2 + ǫ

ǫ

]k
=

[
4 + 9α

α

]k
≤
(
5

α

)k
. (1.54)

Indeed, the interiors of the ‖ ·‖2-balls of radius ǫ/2 centered at the points u1, ..., uN
are mutually disjoint, and their union is contained in the ‖ ·‖2-ball of radius 1+ ǫ/2
centered at the origin; comparing the volume of the union and that of the ball, we
arrive at (1.54).

3o. Consider event E comprised of all realizations of A such that for all k-element
subsets I of {1, ..., n} and all t ≤ n it holds

1− α ≤ ‖AIut‖22 ≤ 1 + α. (1.55)

By (1.53) and the union bound,

Prob{A 6∈ E} ≤ 2N

(
n

k

)
exp{−m

5
α2}. (1.56)

We claim that

A ∈ E ⇒ (1− 2α) ≤ ‖AIu‖22 ≤ 1 + 2α ∀
(
I ⊂ {1, ..., n} : Card(I) = k
u ∈ Rk : ‖u‖2 = 1

)
.

(1.57)
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Indeed, let A ∈ E, let us fix I ∈ {1, ..., n}, Card(I) = k, and let M be the maximal
value of the quadratic form f(u) = uTATI AIu on the unit ‖ · ‖2-ball B, centered at
the origin, in Rk. In this ball, f is Lipschitz continuous with constant 2M w.r.t.
‖ · ‖2; denoting by ū a maximizer of the form on B, we lose nothing when assuming
that ū is a unit vector. Now let us be the point of our net which is at ‖ ·‖2-distance
at most ǫ from ū. We have

M = f(ū) ≤ f(us) + 2Mǫ ≤ 1 + α+ 2Mǫ,

whence

M ≤ 1 + α

1− 2ǫ
= 1 + 2α,

implying the right inequality in (1.57). Now let u be unit vector in Rk, and us be
a point in the net at ‖ · ‖-distance ≤ ǫ from u. We have

f(u) ≥ f(us)− 2Mǫ ≥ 1− α− 2
1 + α

1− 2ǫ
ǫ = 1− 2α,

justifying the first inequality in (1.57).
The bottom line is:

δ ∈ (0, 0.2], 1 ≤ k ≤ n

⇒ Prob{A : A does not satisfy RIP(δ, k)} ≤ 2

(
10

δ

)k

︸ ︷︷ ︸
≤( 20

δ )
k

(
n
k

)
exp{−mδ2

20 }. (1.58)

Indeed, setting α = δ/2, we have seen that whenever A 6∈ E, we have (1 − δ) ≤
‖Au‖22 ≤ (1 + δ) for all unit k-sparse u, which is nothing but RIP(δ, k); with this
in mind, (1.58) follows from (1.56) and (1.54).

4o. It remains to verify that with properly selected—depending solely on δ—
positive quantities c, d, f , for every k ≥ 1 satisfying (1.28) the right-hand side in
(1.58) is at most exp{−fm}. Passing to logarithms, our goal is to ensure the
relation

G := a(δ)m− b(δ)k − ln
(
n
k

)
≥ mf(δ) > 0[

a(δ) = δ2

20 , b(δ) = ln
(
20
δ

)] (1.59)

provided that k ≥ 1 satisfies (1.28).
Let k satisfy (1.28) with some c, d to be specified later, and let y = k/m.

Assuming d ≥ 3, we have 0 ≤ y ≤ 1/3. Now, it is well known that

C := ln

(
n

k

)
≤ n

[
k

n
ln(

n

k
) +

n− k

n
ln(

n

n− k
)

]
,

whence

C ≤ n
[
m
n y ln(

n
my ) +

n−k
n ln(1 +

k

n− k
)

︸ ︷︷ ︸
≤ k

n−k

]

≤ n
[
m
n y ln(

n
my ) +

k
n

]
= m

[
y ln( n

my ) + y
]
≤ 2my ln( n

my )
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(recall that n ≥ m and y ≤ 1/3). It follows that

G = a(δ)m− b(δ)k − C ≥ a(δ)m− b(δ)ym− 2my ln( n
my )

= m

[
a(δ)− b(δ)y − 2y ln(

n

m
)− 2y ln(

1

y
)

]

︸ ︷︷ ︸
H

,

and all we need is to select c, d in such a way that (1.28) would imply that H ≥ f
with some positive f = f(δ). This is immediate: we can find u(δ) > 0 such that
when 0 ≤ y ≤ u(δ), we have 2y ln(1/y) + b(δ)y ≤ 1

3a(δ); selecting d(δ) ≥ 3 large
enough, (1.28) would imply y ≤ u(δ), and thus would imply

H ≥ 2

3
a(δ)− 2y ln(

n

m
).

Now we can select c(δ) large enough for (1.28) to ensure that 2y ln( nm ) ≤ 1
3a(δ).

With the c, d just specified, (1.28) implies that H ≥ 1
3a(δ), and we can take the

latter quantity as f(δ). ✷

1.5.4 Proof of Propositions 1.8 and 1.12

Let x ∈ Rn, and let x1, ..., xq be obtained from x by the following construction:
x1 is obtained from x by zeroing all but the s entries of largest magnitudes; x2

is obtained by the same procedure applied to x − x1; x3—by the same procedure
applied to x−x1−x2; and so on; the process is terminated at the first step q when
it happens that x = x1+ ...+xq. Note that for j ≥ 2 we have ‖xj‖∞ ≤ s−1‖xj−1‖1
and ‖xj‖1 ≤ ‖xj−1‖1, whence also ‖xj‖2 ≤

√
‖xj‖∞‖xj‖1 ≤ s−1/2‖xj−1‖1. It is

easily seen that if A is RIP(δ, 2s), then for every two s-sparse vectors u, v with
nonoverlapping supports we have

|vTATAu| ≤ δ‖u‖2‖v‖2. (∗)

Indeed, for s-sparse u, v, let I be the index set of cardinality ≤ 2s containing

the supports of u and v, so that, denoting by AI the submatrix of A comprised

of columns with indexes from I, we have vTATAu = vTI [A
T
I AI ]uI . By RIP, the

eigenvalues λi = 1 + µi of the symmetric matrix Q = ATI AI are in-between 1 − δ

and 1 + δ; representing uI and vI by vectors w and z of their coordinates in

the orthonormal eigenbasis of Q, we get |vTATAu| = |∑i λiwizi| = |∑i wizi +∑
i µiwizi| ≤ |wT z| + δ‖w‖2‖z‖2. It remains to note that wT z = uTI vI = 0 and

‖w‖2 = ‖u‖2, ‖z‖2 = ‖v‖2.

We have

‖Ax1‖2‖Ax‖2 ≥ [x1]TATAx = ‖Ax1‖22 +
∑q
j=2[x

1]TATAxj

≥ ‖Ax1‖22 − δ
∑q
j=2 ‖x1‖2‖xj‖2 [by (∗)]

≥ ‖Ax1‖22 − δs−1/2‖x1‖2
∑q
j=2 ‖xj−1‖1 ≥ ‖Ax1‖22 − δs−1/2‖x1‖2‖x‖1

⇒ ‖Ax1‖22 ≤ ‖Ax1‖2‖Ax‖2 + δs−1/2‖x1‖2‖x‖1
⇒ ‖x1‖2 = ‖x1‖2

‖Ax1‖2
2
‖Ax1‖22 ≤ ‖x1‖2

‖Ax1‖2
‖Ax‖2 + δs−1/2

(
‖x1‖2

‖Ax1‖2

)2
‖x‖1

⇒ ‖x‖s,2 = ‖x1‖2 ≤ 1√
1−δ‖Ax‖2 +

δs−1/2

1−δ ‖x‖1 (!)

[by RIP(δ, 2s)]
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and we see that the pair
(
H = s−1/2

√
1−δ Im, ‖ · ‖2

)
satisfies Q2(s,

δ
1−δ ), as claimed in

Proposition 1.8.i. Moreover, when q ≥ 2, κ > 0, and integer t ≥ 1 satisfy t ≤ s and

κt1/q−1 ≥ δs−1/2

1−δ , by (!) we have

‖x‖t,q ≤ ‖x‖s,q ≤ ‖x‖s,2 ≤ 1√
1− δ

‖Ax‖2 + κt1/q−1‖x‖1,

or, equivalently,

1 ≤ t ≤ min

[[
κ(1−δ)

δ

] q
q−1

, s
q−2
2q−2

]
s

q
2q−2

⇒ (H = t
− 1

q√
1−δ Im, ‖ · ‖2) satisfies Qq(t, κ),

as required in Proposition 1.12.i.
Next, we have

‖x1‖1‖ATAx‖∞ ≥ [x1]TATAx = ‖Ax1‖22 +
∑q
j=2[x

1]TATAxj

≥ ‖Ax1‖22 − δs−1/2‖x1‖2‖x‖1 [exactly as above]
⇒ ‖Ax1‖22 ≤ ‖x1‖1‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1
⇒ (1− δ)‖x1‖22 ≤ ‖x1‖1‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1 [by RIP(δ, 2s)]

≤ s1/2‖x1‖2‖ATAx‖∞ + δs−1/2‖x1‖2‖x‖1
⇒ ‖x‖s,2 = ‖x1‖2 ≤ s1/2

1−δ ‖ATAx‖∞ + δ
1−δ s

−1/2‖x‖1 (!!)

and we see that the pair
(
H = 1

1−δA, ‖ · ‖∞
)
satisfies the condition Q2

(
s, δ

1−δ

)
,

as required in Proposition 1.8.ii. Moreover, when q ≥ 2, κ > 0, and integer t ≥ 1
satisfy t ≤ s and κt1/q−1 ≥ δ

1−δ s
−1/2, we have by (!!)

‖x‖t,q ≤ ‖x‖s,q ≤ ‖x‖s,2 ≤ 1

1− δ
s1/2‖ATAx‖∞ + κt1/q−1‖x‖1,

or, equivalently,

1 ≤ t ≤ min

[[
κ(1−δ)

δ

] q
q−1

, s
q−2
2q−2

]
s

q
2q−2

⇒ (H = s
1
2 t

− 1
q

1−δ A, ‖ · ‖∞) satisfies Qq(t, κ),

as required in Proposition 1.12.ii. ✷

1.5.5 Proof of Proposition 1.10

(i): Let H̄ ∈ Rm×N and ‖ · ‖ satisfy Q∞(s, κ). Then for every k ≤ n we have

|xk| ≤ ‖H̄TAx‖+ s−1κ‖x‖1,

or, which is the same by homogeneity,

min
x

{
‖H̄TAx‖ − xk : ‖x‖1 ≤ 1

}
≥ −s−1κ.
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In other words, the optimal value Optk of the conic optimization problem13

Optk = min
x,t

{
t− [ek]Tx : ‖H̄TAx‖ ≤ t, ‖x‖1 ≤ 1

}
,

where ek ∈ Rn is k-th basic orth, is ≥ −s−1κ. Since the problem clearly is strictly
feasible, this is the same as saying that the dual problem

max
µ∈R,g∈Rn,η∈RN

{
−µ : AT H̄η + g = ek, ‖g‖∞ ≤ µ, ‖η‖∗ ≤ 1

}
,

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖,

‖u‖∗ = max
‖h‖≤1

hTu,

has a feasible solution with the value of the objective ≥ −s−1κ. It follows that
there exist η = ηk and g = gk such that

(a) : ek = AThk + gk,
(b) : hk := H̄ηk, ‖ηk‖∗ ≤ 1,
(c) : ‖gk‖∞ ≤ s−1κ.

(1.60)

Denoting H = [h1, ..., hn], V = I −HTA, we get

Colk[V
T ] = ek −AThk = gk,

implying that ‖Colk[V T ]‖∞ ≤ s−1κ. Since the latter inequality is true for all k ≤ n,
we conclude that

‖Colk[V ]‖s,∞ = ‖Colk[V ]‖∞ ≤ s−1κ, 1 ≤ k ≤ n,

whence, by Proposition 1.9, (H, ‖ · ‖∞) satisfies Q∞(s, κ). Moreover, for every
η ∈ Rm and every k ≤ n we have, in view of (b) and (c),

|[hk]T η| = |[ηk]T H̄T η| ≤ ‖ηk‖∗‖H̄T η‖,

whence ‖HT η‖∞ ≤ ‖H̄T η‖.
Now let us prove the “In addition” part of the proposition. Let H = [h1, ..., hn]

be the contrast matrix specified in this part. We have

|[Im −HTA]ij | = |[[ei]T − hTi A]j | ≤ ‖[ei]T − hTi A‖∞ = ‖ei −AThi‖∞ ≤ Opti,

implying by Proposition 1.9 that (H, ‖ · ‖∞) does satisfy the condition Q∞(s, κ∗)
with κ∗ = smaxiOpti. Now assume that there exists a matrix H ′ which, taken
along with some norm ‖ · ‖, satisfies the condition Q∞(s, κ) with κ < κ∗, and
let us lead this assumption to a contradiction. By the already proved first part
of Proposition 1.10, our assumption implies that there exists an m × n matrix
H̄ = [h̄1, ..., h̄n] such that ‖Colj [In − H̄TA]‖∞ ≤ s−1κ for all j ≤ n, implying that
|[[ei]T − h̄Ti A]j | ≤ s−1κ for all i and j, or, which is the same, ‖ei−AT h̄i‖∞ ≤ s−1κ
for all i. Due to the origin of Opti, we have Opti ≤ ‖ei − AT h̄i‖∞ for all i,

13For a summary on conic programming, see Section 4.1.
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and we arrive at s−1κ∗ = maxiOpti ≤ s−1κ, that is, κ∗ ≤ κ, which is a desired
contradiction.

It remains to prove (1.33), which is just an exercise on LP duality: denoting by
e an n-dimensional all-ones vector, we have

Opti := minh ‖ei −ATh‖∞ = minh,t
{
t : ei −ATh ≤ te, ATh− ei ≤ te

}

= maxλ,µ {λi − µi : λ, µ ≥ 0, A[λ− µ] = 0,
∑
i λi +

∑
i µi = 1}

[LP duality]
= maxx:=λ−µ {xi : Ax = 0, ‖x‖1 ≤ 1}

where the concluding equality follows from the fact that vectors x representable as
λ−µ with λ, µ ≥ 0 satisfying ‖λ‖1+ ‖µ‖1 = 1 are exactly vectors x with ‖x‖1 ≤ 1.
✷

1.5.6 Proof of Proposition 1.13

Let H satisfy (1.38). Since ‖v‖s,1 ≤ s1−1/q‖v‖s,q, it follows that H satisfies for
some α < 1/2 the condition

‖Colj [In −HTA]‖s,1 ≤ α, 1 ≤ j ≤ n, (1.61)

whence, as we know from Proposition 1.9,

‖x‖s,1 ≤ s‖HTAx‖∞ + α‖x‖1 ∀x ∈ Rn.

It follows that s ≤ m, since otherwise there exists a nonzero s-sparse vector x with
Ax = 0; for this x, the inequality above cannot hold true.

Let us set n̄ = 2m, so that n̄ ≤ n, and let H̄ and Ā be the m × n̄ matrices
comprised of the first 2m columns of H and A, respectively. Relation (1.61) implies
that the matrix V = In̄ − H̄T Ā satisfies

‖Colj [V ]‖s,1 ≤ α < 1/2, 1 ≤ j ≤ n̄. (1.62)

Now, since the rank of H̄T Ā is ≤ m, at least n̄ −m singular values of V are ≥ 1,
and therefore the squared Frobenius norm ‖V ‖2F of V is at least n̄ − m. On the
other hand, we can upper-bound this squared norm as follows. Observe that for
every n̄-dimensional vector f one has

‖f‖22 ≤ max
[ n̄
s2
, 1
]
‖f‖2s,1. (1.63)

Indeed, by homogeneity it suffices to verify the inequality when ‖f‖s,1 =
1; besides, we can assume w.l.o.g. that the entries in f are nonnegative,
and that f1 ≥ f2 ≥ ... ≥ fn̄. We have fs ≤ ‖f‖s,1/s = 1

s ; in addition,∑n̄
j=s+1 f

2
j ≤ (n̄ − s)f2s . Now, due to ‖f‖s,1 = 1, for fixed fs ∈ [0, 1/s] we

have

s∑

j=1

f2j ≤ f2s +max
t




s−1∑

j=1

t2j : tj ≥ fs, j ≤ s− 1,
s−1∑

j=1

tj = 1− fs



 .

The maximum on the right-hand side is the maximum of a convex function
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over a bounded polytope; it is achieved at an extreme point, that is, at a
point where one of the tj is equal to 1− (s− 1)fs, and all remaining tj are
equal to fs. As a result,
∑

j

f2
j ≤

[
(1− (s− 1)fs)

2 + (s− 1)f2
s

]
+ (n̄− s)f2

s ≤ (1− (s− 1)fs)
2 + (n̄− 1)f2

s .

The right-hand side in the latter inequality is convex in fs and thus achieves
its maximum over the range [0, 1/s] of allowed values of fs at an endpoint,
yielding

∑
j f

2
j ≤ max[1, n̄/s2], as claimed.

Applying (1.63) to the columns of V and recalling that n̄ = 2m, we get

‖V ‖2F =
2m∑

j=1

‖Colj [V ]‖22 ≤ max

[
1,

2m

s2

] 2m∑

j=1

‖Colj [V ]‖2s,1 ≤ 2α2mmax

[
1,

2m

s2

]
.

The left hand side in this inequality, as we remember, is ≥ n̄ − m = m, and we
arrive at

m ≤ 2α2mmax[1, 2m/s2].

Since α < 1/2, this inequality implies 2m/s2 ≥ 2, whence s ≤ √
m.

It remains to prove that when m ≤ n/2, the condition Q∞(s, κ) with κ < 1/2
can be satisfied only when s ≤ √

m. This is immediate: by Proposition 1.10,
assuming Q∞(s, κ) satisfiable, there exists an m × n contrast matrix H such that
|[In −HTA]ij | ≤ κ/s for all i, j, which, by the already proved part of Proposition
1.13, is impossible when s >

√
m. ✷

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



StatOpt˙proved˙nocolor December 23, 2019 7x10

Index

O(1), xvi
Diag, xv
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Qq(s, κ)-condition, 12

links with RIP, 24
tractability when q = ∞, 22
verifiable sufficient conditions
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n
+, xvi

Sn, xv
Sn+, xvi
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ℓ [·], ..., 275
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ℓ1 minimization, see Compressed
Sensing
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Ω
f(ξ)Π(dξ), xvi

λ[·], 276
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ξ ∼ P ,ξ ∼ p(·), xvi
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‖ · ‖p, xvi
‖ · ‖2,2, xvi

Bisection estimate, 198
near-optimality of, 202

closeness relation, 59
Compressed Sensing, 3–6

via ℓ1 minimization, 6–17
imperfect, 11
validity of, 8
verifiable sufficient validity

conditions, 17–26

verifiable sufficient validity
conditions, limits of performance,
24
via penalized ℓ1 recovery, 14
via regular ℓ1 recovery, 13

conditional quantile, 198
cone

dual, 262
Lorentz, 262
regular, 262
semidefinite, 262

conic
problem, 263

dual of, 263
programming, 262, 265

Conic Duality Theorem, 264
conic hull, 263
contrast matrix, see nullspace prop-

erty quantification
Cramer-Rao risk bound, 347–350,

354–355, 570

detector, 65
affine, 123
in simple observation schemes,

83
quadratic, 139
risks of, 65

structural properties, 65

ellitope, 265–266
calculus of, 299–302, 429

estimation
of N -convex functions, 193–211
of linear form, 185, 211–222

from repeated observations,
215–217

of sub-Gaussianity parame-
ters, 217–222

of sub-Gaussianity parame-
ters, direct product case, 219
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of quadratic form, 222–232
Gaussian case, 222–228
Gaussian case, consistency,

227
Gaussian case, construction,

224
sub-Gaussian case, 228, 232
sub-Gaussian case, construc-

tion, 228

family of distributions
regular/simple, 124–132
calculus of, 126
examples of, 125

spherical, 53
cap of, 53

function
N -convex, 197
examples of, 197

Gaussian mixtures, 53
generalized linear model, 415
GLM, see generalized linear model

Hellinger affinity, 83
Hypothesis Testing

change detection
via quadratic lifting, 149–156

of multiple hypotheses, 58–64
in simple observation schemes,

87–105
up to closeness, 59, 91
via Euclidean separation, 62–

64
via repeated observations, 95

of unions, 87
problem’s setting, 41
sequential, 105–113
test, 42
detector-based, 65
detector-based, limits of per-

formance, 70
detector-based, via repeated

observations, 66
deterministic, 42
partial risks of, 45
randomized, 42
simple, 42
total risk of, 45
two-point lower risk bound, 46

via affine detectors, 132–139
via Euclidean separation, 49–58
and repeated observations, 55
majority test, 56
multiple hypotheses case, 62–

64
pairwise, 50

via quadratic lifting, 139
Gaussian case, 139–145
sub-Gaussian case, 145–149

via repeated observations, 42

inequality
Cramer-Rao, 349, 572

lemma
on Schur Complement, see Schur

Complement Lemma
LMI, xvi
logistic regression, 414–415

matrices
notation, xv
sensing, 1

MD, see Measurement Design
Measurement Design, 113–123

simple case
discrete o.s., 118
Gaussian o.s., 122
Poisson o.s., 121

Mutual Incoherence, 23

norm
conjugate, 279
Shatten, 305
Wasserstein, 340, 559

Nullspace property, 9, 10
quantification of, 11

o.s., see observation scheme
observation scheme

discrete, 77, 85
Gaussian, 74, 84
Poisson, 75, 84
simple, 72–87
K-th power of, 85
definition of, 73
direct product of, 77

PET, see Positron Emission Tomog-
raphy
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Poisson Imaging, 75
polyhedral estimate, 385–414
Positron Emission Tomography, 75

Rademacher random vector, 363
regular data, 124
repeated observations

quasi-stationary, 44
semi-stationary, 43
stationary, 42

Restricted Isometry Property, 20
RIP, see Restricted Isometry Prop-
erty

risk
Risk(T |H1, ..., HL), 45
RiskOptΠ,‖·‖[X ], 290
Risk[x̂(·)|X ], 260
Risk∗ǫ , 234
RiskC(T |H1, ..., HL), 60
RiskCℓ (T |H1, ..., HL), 60
Riskoptǫ (K), 220
Riskℓ(T |H1, ..., HL), 45
Riskǫ(ĝ(·)|G,X , υ,A,H,M,Φ),

212
Risk±[φ|P], Risk[φ|P1,P2], 65
Risktot(T |H1, ..., HL), 45
RiskH[x̂∗|X ], 298
Riskopt[X ], 260
RiskH,‖·‖[x̂|X ], 295
C-, 60
H-, 295
ǫ-, 212
RiskΠ,‖·‖[x̂|X ], 279
RiskΠ,H,‖·‖[x̂|X , 299
in Hypothesis Testing
partial, 45
total, 45
up to closeness, 59

minimax, 266
ǫ-, 220

of detector, 65
of simple test, 45

SA, see Stochastic Approximation
SAA, see Sample Average Approxi-

mation
saddle point

convex-concave saddle point
problem, 79

Sample Average Approximation,
419–421

Schur Complement Lemma, 265
semidefinite relaxation

on ellitope
tightness of, 274

on spectratope
tightness of, 277

signal estimation, see signal recovery
signal recovery

linear, 267
on ellitope, 267–271
on ellitope, near-optimality of,

271–274
on spectratope, 277–291
on spectratope under

uncertain-but-bounded noise, 291–
297

on spectratope under
uncertain-but-bounded noise, near-
optimality of, 297

on spectratope, near-
optimality of, 277, 290
problem setting, 1, 260

sparsity, s-sparsity, 3
spectratope, 275

calculus of, 299–302, 429
examples of, 276

Stochastic Approximation, 421–424

test, see Hypothesis Testing test
theorem

Sion-Kakutani, 81

vectors
notation, xv
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