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IT’S AN ALLOSTERIC WORLD 1
What’s in a name? That which we call a rose by any other word would
smell as sweet.

—William Shakespeare

1.1 The Second Secret of Life

The 1953 discovery of the structure of DNA ushered in the molecular era in
biology with a vengeance. As with many other great discoveries, the determi-
nation of the molecular basis of heredity spawned a host of new questions.
One of the dominant mysteries was the nature of regulation. How are the
many molecules of the cell (including DNA itself) regulated so that they carry
out their functions both when and where they are needed and not otherwise?
Such questions arise in all corners of biology. In the context of metabolism,
it was clear that bacterial cells rank-order their preferences for different car-
bon sources, raising the question of how the cell acts on these preferences. The
study of enzymes revealed that some enzymes are active in the absence of some
inhibitor and are shut down in its presence. Animal body plans are set up by par-
ticular spatiotemporal patterns of gene expression, making it clear that whole
batteries of genes are switching between different states. These examples and
many others reveal that regulation is one of the most widespread molecular
processes in all of biology.

Ten short years after the secrets of the great molecule of heredity were
uncovered, a second molecular discovery of central importance to biology was
announced. That discovery, the formulation of the allostery concept, is relevant
to thinking about the function of molecules across the entire domain of bio-
logical inquiry. Stated simply, the allostery concept harkens back to the Roman
deity Janus, shown in Figure 1.1(A), symbolized by his two faces and noted for
presiding over all kinds of transitions. In this book, we will take a broad view
of allostery as the phenomenon in which a molecule has more than one state
of activity, as shown in Figure 1.1(B), with the relative probabilities of those
different states controlled by some effector(s).

One of the discoverers of the allostery concept, Jacques Monod, referred to
this discovery as the “second secret of life.” But what exactly was this secret?
We will refine our answer to that question through the various case studies that
make up the chapters that follow, though here we give a brief qualitative sketch



4 Chapter 1 It’s An Allosteric World

Figure 1.1

Allostery defined. (A) The Roman god
Janus. (B) Molecules such as transcrip-
tional repressors have a Janus-like exis-
tence as they switch between active and
inactive conformations.

(A) (B)

ACTIVE INACTIVE

Figure 1.2

The molecular switch. Different classes
of molecules exemplify the allostery
phenomenon, highlighting the inactive
and active conformational states of these
molecules. Ion channels can be either
closed or open, with the binding of a
ligand favoring the open state. An enzyme
can be in an inactive state, in which it
is unable to cleave a substrate, or in an
active state, in which it is competent to
perform such a cleavage reaction. The
presence of an effector (red) favors the
active state. A membrane-bound receptor
can be in either an inactive state or an
active state when it is bound to a ligand, in
which it can perform a phosphorylation
reaction leading to a subsequent signaling
cascade. For all the examples shown here,
the ligands shown in red tip the balance
in favor of the active conformation over
the inactive conformation.
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of the key elements of the concept. Stated simply, many biological molecules
behave as molecular switches. In its most basic incarnation, the idea is that
many biologicalmolecules have twodistinct conformations, whichwewill often
think of as inactive and active, as shown in Figure 1.2. As a result of the exchange
of energy with the molecules of the surrounding solution (i.e., thermal energy),
these molecules are constantly flipping back and forth between these two con-
formational states. In equilibrium, the relative proportion of these two states is
fixed by the energy difference between them. However, the interesting regula-
tory behavior of these molecules is that the binding of a ligand can change the
relative probabilities of the inactive and active states. Specifically, the binding
affinity of the ligand for each state is different, resulting in a shift in the relative
probabilities of the inactive and the active conformations when the ligand con-
centration is changed. The outcome is that a ligand can serve to regulate when
molecules like those shown in Figure 1.2 are active. Our task is to explore differ-
ent biological phenomena that are controlled by suchmolecules and to examine
what physical models of these molecules have to say about their function.

1.2 The Broad Reach of the Allostery Concept

Biology is a science full of beautiful and fascinating exceptions. But the ease
with which we can find such exceptions is not a proof of the absence of broad
and overarching ideas. One such motif that has captured my imagination and
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which serves as the basis of this book is that there is a unifying mathemati-
cal description of the way that many of the macromolecules of life can exist in
several distinct states (see Figure 1.2, p. 4). For example, as we have already
remarked, ion channels can be open or closed. Proteins can be phosphorylated
or not. Receptors can be active or not. Often, which of these two different states
is more likely depends in turn upon whether or not a particular ligand is bound
to themolecule of interest. In such cases, by titrating the amount of ligand com-
peting for the attentions of our molecule of interest, we can shift the balance
between these two states. But only when viewed using equations rather than
words and cartoons is the full impact of the allostery idea made clear. To fore-
shadow the kinds of phenomena that fall within the purview of the allostery
concept, here we consider several illustrative examples.

Figure 1.3 shows how allosteric processes are central tomany signaling path-
ways. As seen in the figure, both the membrane-bound receptors that receive
signals and the soluble proteins that mediate the processes at the end of the
signaling cascade are often themselves allosteric. For example, in the context
of metabolism, as shown in the first panel of the figure, many enzymatic reac-
tions are catalyzed by proteins that are subject to feedback such that the reaction
occurs only when it is needed. This case illustrates a metabolic enzyme that is
activated only in the presence of some effectormolecule (shown in red).Wewill
explore these processes more deeply in the next section.

Further, the processes of the central dogma of molecular biology such as
transcription involve regulatory proteins. Transcription factors can be local-
ized to the nucleus and bind DNA depending upon the presence or absence
of some ligand, as shown in the middle panel of Figure 1.3. In the presence
of inducer for the regulatory architecture shown here, the repressor protein is
released from its binding site on the DNA, allowing for the expression of the
regulated gene.

As indicated schematically in the final panel of the figure, activation of
cytoskeletal growth and remodeling makes processes such as eukaryotic
chemotaxis possible. Indeed, one of the most inspiring microscopy time-lapse
sequences of all time shows a neutrophil engaged in the process of tracking
down a bacterium. Several snapshots from this process are shown in Figure 1.4.
In order for the cell to change direction, the leading edge has to be remodeled
with new actin filaments synthesized in the correct direction of motion. To that
end, thesemotile cells have an impressive signaling pathway that allows them to
detect extracellular ligands, resulting in a subsequent molecular cascade within
the cell that ends with the construction of actin filaments at the leading edge. A
schematic representation of this pathway is given in Figure 1.5 and is mediated
bymolecules that can exist in several conformational states (i.e., allosteric) with
different abilities to catalyze reactions.

1.2.1 Sculpting Biochemistry via Allostery

We can get a higher-resolution view of the ubiquitous nature of allosteric regu-
lation by turning to one of the best-understood biochemical pathways, namely,
that associated with carbon metabolism. Figure 1.6 gives a depiction of the key
enzymes that mediate glycolysis, as well as their various substrates. What is not
at all evident from this figure is that many of the enzymes in this pathway are



Figure 1.3

Signaling pathways and allostery.
Each panel shows a schematic
representation of inactive and
active signaling pathways. In each
case, an extracellular ligand binds
to a receptor resulting in a cascade
involving intracellular signaling
proteins. These proteins in turn
influence a variety of other proteins
that can carry out specific biologi-
cal processes, including activating
metabolic enzymes (top panel),
turning on the transcription of key
genes (middle panel), or turning
on cytoskeletal polymerization in
particular regions within the cell
(bottom panel).
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Eukaryotic chemotaxis. Snapshots from
a video taken by David Rogers of the
dynamics of a neutrophil hunting down
a bacterium. This classic video raises
myriad questions about the mechanisms
of signaling and motility in cell biology.
We use snapshots from this video as a
reminder of the ubiquitous nature of cell
signaling, exemplified here by the way the
neutrophil is “aware” of its environment.
From Phillips, R., J. Kondev, J. Theriot,
and H. Garcia (2013), Physical Biology of
the Cell, 2nd ed. Reproduced by permis-
sion of Taylor & Francis LLC, a division of
Informa plc. Adapted from from a video
by David Rogers.
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Figure 1.5

Cell signaling and the dendritic nucleationmodel. (A) The nucleation of new actin filaments such as those involved in the famous video
of a neutrophil chasing down a bacterium (see Figure 1.4) require the activation of proteins such as N-WASP and Arp2/3 (highlighted
in yellow). Protein activation can be viewed through the prism of the allosteric models this book discusses. (B) Leading edge of amotile
cell as viewed using an electron microscope. The positioning of the actin network shown here is controlled by the signaling cascade
shown in part (A). (A) Adapted from Pollard, T. D., and G. G. Borisy (2003) “Cellular motility driven by assembly and disassembly of
actin filaments,” Cell 112:456. with permission of Elsevier. (B) Adapted from Phillips, R., R. Milo (2016) Cell Biology by the Numbers
(Garland Science), Estimate 3–7. Adapted from Svitkina, T. M., A. B. Verkhovsky, K. M. McQuade, and G. G. Borisy (1997) J. Cell Biol
139:397–415.
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Figure 1.6

Enzymes in the glycolysis pathway. The molecules running down the center of the figure reveal the life history of a glucose molecule
once it enters the glycolysis pathway. The large protein structures mediate these molecular transformations as glucose is turned into
pyruvate. As shown in Figure 1.7, many of these proteins aremodulated by the binding of small molecules. Courtesy of David Goodsell.
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activated and inhibited by a suite of smallmolecules. Figure 1.7 gives an impres-
sion of this small-molecule regulatory landscape by presenting the complement
of known inhibitors and activators. For example, if we look at phosphofructo-
kinase, we see that it is inhibited by four distinct molecules and is activated by
three others, giving the cell a suite of regulatory knobs with which to regulate
this one step of this complex and important pathway.

As seen in Figure 1.7, there are a number of small molecules that play a
role in repeated signaling and regulation. That qualitative impression has been
mademore concrete by counting up the number of regulatory interactions these
small molecules participate in. A systematic analysis of the panoply of small
molecules that preside over the regulation of proteins is shown in Figure 1.8
which counts the number of times that a given small molecule is known to par-
ticipate in either inhibitory or activating interactions. It is clear that potassium
ions are one of the most critical players in regulating the activity of proteins.
Perhaps even more interesting is the role that ATP plays both as inhibitor and
activator, including in the glycolysis pathway.

Sometimes biochemical reactions are mediated by ligands that are tethered
to their receptor, giving rise to biochemistry on a leash. An example of this gen-
eralized allostery is offered in Figure 1.9. For example, as seen in Figure 1.9(A),
when the tethered ligand is bound to the tethered receptor, the protein is in
an inactive state. As the concentration of the free ligand is increased, at some
point that concentration exceeds the “effective concentration” (estimated as
ceff = 1/ 4

3πR3, where R is approximately the tether length), and hence the sol-
uble ligands bind the tethered receptor, thus opening up the protein to its active
conformation. The second example (N-WASP) shown in Figure 1.9(B) features
a multidomain protein with a tethered linker. The relative equilibrium of active
and inactive states is modulated by several binding partners (Cdc42 and PIP2).

The example in Figure 1.9(B) teaches us another lesson as well. In partic-
ular, this is our first encounter with the concept of combinatorial control, as
illustrated schematically in Figure 1.10. Here the idea is that a given cellular
action, whether the activation of transcription or the activity of an enzyme, is
dependent upon the status of several inputs simultaneously. For example, in
the genetic network shown in Figure 1.10(A), the gene at the bottom of the
diagram is regulated by two distinct activators. For this particular construct,
the genetic circuit behaves as an AND gate, with high expression occurring
only when both activators are present. As we will explore in detail in chap-
ter 9, (p. 303), allostericmolecules can themselves behave as logical elements, as
indicated schematically in Figure 1.10(B). Only in the presence of both inputs
will the allosteric molecule be active, as already shown in the case of Cdc42 and
PIP2 in the context of Figure 1.9(B).

1.2.2 One- and Two-Component Signal Transduction and
the Two-State Philosophy

So far, we have focused on specific molecular pathways that feature allosteric
molecules. These case studies naturally lead us to wonder about the broader
reach of the allostery concept. Despite the amazing advances of the high-
throughput era, it remains a daunting challenge to identify genome-wide which



Figure 1.7

Small-molecule interactions in E. coli
central carbon metabolism. The enzy-
mes that mediate various steps in the
pathway are denoted in black. Activa-
tors of those enzymes are denoted in
green, and inhibitors are denoted in
red. The structure of the enzyme phos-
phofructokinase (pfk) is shown, as well
as its substrate F6P and product FDP.
Adapted from Reznick et al. (2017).
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Small molecules with broad regulatory
reach. These plots show the number of
activating and inhibiting interactions
that different small molecules engage in.
Clearly, ATP is especially important both
as an activator and inhibitor. Adapted
from Reznick et al. (2017).
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Biochemistry on a leash. Allostery can be based upon tetheringmotifs. (A) Tethering a receptor to a protein allows the state of activity of
the protein to be controlled by the binding of soluble ligands which can outcompete the tethered ligand. The active state is characterized
by exposure of the output domain. (B) Tether motif in the context of activation of actin polymerization. In the presence of Cdc42 and
PIP2, N-WASP is activated, which in turn activates Arp2/3. Adapted from Dueber et al. (2003).

proteins are allosterically regulated. Even more tricky is identifying what small
molecules regulate them.

One context in which attempts have beenmade to survey the allosteric land-
scape is signaling in bacteria, specifically in the context of the two-component
signal transduction systems in bacteria. The idea broadly is that the cell mem-
brane is occupied by a wide variety of different receptors which flip between
inactive and active states, as indicated schematically in Figure 1.11. In par-
ticular, as a result of the presence or absence of some external ligand, these
receptors then switch between states in which they are either active or inactive
for phosphorylating their cytoplasmic response regulator. These soluble pro-
teins are now able to perform cellular functions such as changing the frequency
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(A) COMBINATORIAL CONTROL IN GENETIC NETWORKS (B) COMBINATORIAL CONTROL
OF MOLECULAR ACTIVITY

Figure 1.10

Introducing combinatorial control. (A) Combinatorial control in genetic networks. The gene in blue at the bottom of the schematic
has binding sites for two distinct transcription factors. The logical truth table shows that the gene is on only when both transcription
factors are bound. (B) Combinatorial control of allosteric molecules. The enzyme or signaling molecule (green) requires the presence
of both ligands to be activated.

Figure 1.11

Schematic showing reactions of the sensor
histidine kinase and response regulator in
a typical bacterial two-component system.
In the presence of ligand, the kinase has
a higher probability of being in the active
state where it is competent to carry out the
phosphorylation reaction.
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ATP
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of tumble motions during bacterial chemotaxis, as will be taken up in detail in
chapter 4 (p. 124).

To give a sense of the diversity of such two-component signaling systems in
E. coli, Figure 1.12 shows the sensor histidine kinases and their corresponding
response regulators. We see that there are a wide variety of inputs into these
signaling systems that then lead to changes in cellular physiology and behav-
ior. Figure 1.13 goes further by providing some insight into the distribution
of one- and two-component signaling systems in bacteria by examining the
databases of sequenced bacterial and archaeal genomes as of 2005 (it would
be great to see these studies modernized). Specifically, the deeply interesting
question that was examined in that work was the nature of the signaling sys-
tems in bacteria with special reference to whether those are one-component or
two-component signaling systems. In the one-component signaling systems,
the input and output domains are present on the same protein. Two classic
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Figure 1.12

The vast array of sensor histidine kinases and response regulators found in E. coli. Schematic showing all sensor histidine kinases
(green) and response regulators (blue) as identified by sequence in the E. coli genome. Both the sensor and the response regulator can
be allosteric. Courtesy of Mark Goulian and Michael Laub.

examples of one-component signaling systems in bacterial transcription will
be considered in chapter 8 (p. 272) when we discuss repression by the Lac
repressor and activation by CRP. By way of contrast (see Figure 1.11), two-
component signaling systems are characterized by having the input domain
on one protein (usually a membrane-bound receptor) and the output domain
(usually a cytoplasmic protein) on another protein. As we see in Figure 1.13,
one-component signaling systems far outnumber their two-component coun-
terparts, suggesting a rich proteomic reservoir of possible allosteric signaling
molecules for further investigation.

Though data like those described here are not a proof that those molecules
are allosteric, it is at least a tantalizing hint that the proteins that serve as one-
component signaling systems may well be allosteric. Several key observations
weremade on the basis of this bioinformatic analysis of sequenced genomes and
their putative signaling systems. First, that work found that roughly 85% of the
output domains on these one-component signalingmolecules areDNA-binding
helix-turn-helix domains, indicating that often these signaling pathways appear
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Figure 1.13

Number of one-component and two-
component signal transduction systems as
a function of genome size. Adapted from
Ulrich, Koonin, and Zhulin (2005).
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to be tied to transcriptional regulation, the example of which we will take up in
detail in chapter 8 (p. 272). Similarly, this work found systematic trends in the
input domains of these one-component systems, with more than 90% of them
involving small-molecule binding domains, again providing a tantalizing hint
of the possible allosteric control of these proteins.

1.3 Reasoning about Feedback: The Rise of Allostery

1.3.1 The Puzzle

Feedback is one of the greatest of ideas. A visit to a science museum such as
the Musée des Arts et Métiers in Paris reveals century-old machines with their
spinning “governors” that served to prevent them from running out of con-
trol, as shown in Figure 1.14. As hinted at in the figure, as the system rotates
ever more quickly, the two balls will lift higher and in so doing will let some of
the pressure bleed off, thus reducing the driving force that increases the rate of
rotation.

In a fascinating reminder of the way that science and technology have
always gone hand in hand, Figure 1.15 shows how the very same James Clerk
Maxwell of Maxwell’s equations fame worked on governors, noting that they
are machines “by means of which the velocity of the machine is kept nearly
uniform, notwithstanding variations in the driving power or the resistance.”
The modern world depends upon mechanical governors as well. In fact, we
need look no farther than our toilets to see feedback in action, as also shown in
Figure 1.14.

Like their macroscopic counterparts, the macromolecules of life are replete
with examples of molecular governors which inhibit or enhance key biochem-
ical reactions in response to either too much or too little of some substrate
of interest. The bottom panel of Figure 1.14 shows regulatory feedback in the
context of transcriptional autorepression, where the gene product of the gene
of interest “governs” its own production. This will be the subject of chapter 8
(p. 272), where we will consider transcriptional regulation and its connection
to allostery in detail.

But more generally, how do molecular governors work? One of the orig-
inal ideas in the context of enzymes was that there are inhibitory molecules
which compete for the attentions of the active site of some enzyme (as a con-
crete molecular example), thereby slowing down the reaction of interest. To be
specific, people envisioned that the inhibitor molecule could actually bind to
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Figure 1.14

Control by feedback. (Top) Mechanical
governors for feedback on a steam engine
and in a toilet tank. (Bottom) Negative
feedback in a gene regulatory circuit. The
gene produces a protein that represses
itself.

Figure 1.15

James Clerk Maxwell and the mechan-
ics of governors. (Lower left) Lowes
Cato Dickinson, portrait of James Clerk-
Maxwell (1891). Photo courtesy of Mas-
ter and Fellows of Trinity College, Cam-
bridge. (Lower right) Courtesy of Ray
Tomes of Auckland, New Zealand. Taken
at MOTAT (Museum of Transport and
Technology) in Auckland.
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Figure 1.16

Regulation of an enzyme by an inhibitor.
(A) The inhibitor fits in the active site
occluding the site from possible bind-
ing by the correct substrate. (B) Not all
inhibitors have the correct shape to fit into
the active site of the enzyme. In the early
1960s, this phenomenon led to the ques-
tion of how such inhibitors regulate their
target enzymes.

substrate

inhibitorinhibitor

(A) COMPETITIVE INHIBITION (B) THE PUZZLE

?

the enzyme in such as way as to literally block access of the real substrate to the
active site, as indicated schematically in Figure 1.16(A). However, for such a
mechanism to work, it would seem that the inhibitory molecule would need to
have the same shape and size as the substrate molecule whose enzymatic mod-
ification was being inhibited. The question of howmolecules would activate an
enzyme was even more puzzling to contemplate.

One of the early molecules that focused the attention of scientists on ques-
tions of enzymatic regulation was aspartate transcarbamoylase, one of the key
enzymes in pyrimidine biosynthesis. Recall that the DNA double helix is made
up of the repeated pairing of pyrimidine-purine pairs, with cytosine, thymine,
and uracil making up the pyrimidine derivatives. The E. coli version of aspar-
tate transcarbamoylase is made up of 12 subunits with half coming from two
trimers and the other half coming from three dimers, the two classes serv-
ing as the enzymatic and regulatory parts of the complex (see Figure 6.1 for
more details). This enzyme functions in pyrimidine biosynthesis by mediat-
ing the interaction of aspartate and carbamyl phosphate to form N-carbamyl-
L-aspartate and inorganic phosphate. For our purposes, the reason this enzyme
was and is so interesting is because the rate with which it carries out the reac-
tion ismodulated by the levels of both pyrimidines and purines. Specifically, the
final product of the pyrimidine pathway, namely, CTP, feeds back into the reac-
tion and slows it down. By way of contrast, ATP, the final product in the purine
pathway, speeds up the pyrimidine synthesis reactions. Thus, the system is sub-
ject to both negative and positive feedback in order to tune the quantities of the
pyrimidine substrate. The kinds of questions that arose in light of these obser-
vations centered on how molecules such as CTP and ATP could interact with
the enzyme itself in such a way as to tune the reaction rate.

The puzzle faced by early investigators of proteins that were subject to
inhibition and activation was how a battery of regulatory molecules could be
fine-tuned to fit into the active sites of their binding partners, as shown in
Figure 1.16(B). The simple answer is that often they don’t. Rather, groups in
Paris and Berkeley realized that a different regulatory strategy could be “action
at a distance,” in which the binding of a regulatory ligand in one part of amacro-
molecule could lead to a conformational change elsewhere in themolecule such
that the activity of the enzyme was changed. This thinking has been codified in
the so-called Monod-Wyman-Changeux (MWC) model. We now turn to this
allosteric resolution of the regulatory puzzle.



1.3 Reasoning about Feedback: The Rise of Allostery 17

ACTIVE STATES INACTIVE STATES

substrate

inhibitor

Figure 1.17

Allosteric regulation of an enzyme by an
inhibitor. The enzyme can exist in both
active (left column) and inactive (right
column) states. For each conformation,
there are four states of occupancy—empty,
bound by substrate, bound by inhibitor,
and bound by inhibitor and substrate. The
binding affinities for both inhibitor and
substrate are different in the two states,
with the binding of the inhibitor favored
in the inactive state.

1.3.2 The Resolution of the Molecular Feedback Puzzle

Figure 1.17 gives a schematic view of the extremely clever hypothesis that was
formulated as the allosteric alternative to the kind of direct regulation posited
originally and schematized in Figure 1.16. The essence of the cartoon is that
there is a regulatory site where a ligand binds that tunes the relative probabil-
ity of the active and inactive states. Note however that there is a nuance that
is captured in our cartoon. Specifically, the regulatory ligand does not have the
same binding energy when bound to the active and the inactive states, as indi-
cated by the difference in the shape of the binding site in the two conformations.
This critical mechanistic feature is the entire basis of the allostery framework,
as we will show in equation 1.2 (p. 26). Note further that the allosteric strategy
is noncommittal with respect to the question of whether the regulatory ligand
leads to inhibition or activation of its binding partner. If the effector molecule
favors binding the active state, then it will serve as an activator. If the effector
molecule favors binding the inactive state, then it will serve as an inhibitor. By
way of contrast, for the strategy highlighted in Figure 1.16, there is no obvious
mechanism for activation.

Though we provided a caricature of some of the classes of MWC molecules
we will consider here, in Figure 1.2 (p. 4), in fact, the detailed atomic structures
of some of these molecules are known for a variety of different conforma-
tional states both in the absence and presence of their substrates and effectors.
Structure has become one of the most powerful tools in modern biology. The
conceptual argument associated with the great push for structural insights into
biological problems is a deep confidence in the structure-function paradigm
that holds that function follows structure. Several examples of structures of
key allosteric molecules that will occupy our attention throughout the book are
shown in Figure 1.18. For example, our first concrete case study in quantita-
tive allosteric thinking will focus in chapter 3 (p. 77) on the ligand-gated ion
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ion channels receptors regulatory proteins physiological proteins

Figure 1.18

Structures of MWC molecules. Many different macromolecules can exist in distinct conformational states including ion channels,
such as the nicotinic acetylcholine receptor shown here, G protein–coupled receptors such as the adrenergic receptor shown here,
transcription factors such as the Lac repressor shown here, and proteins relevant to human physiology such as hemoglobin. Illustrations
courtesy of David Goodsell.

channel known as the nicotinic acetylcholine receptor and shown in the left of
Figure 1.18.

Chapters 4 (p. 124) and 5 (p. 170) take up the topic of allosteric membrane
receptors like those shown in Figure 1.18. First, we tackle the behavior of the
bacterial receptors responsible for chemotaxis and quorum sensing, followed
by an in-depth examination of G protein–coupled receptors.

Another classic example that dates all the way back to the inception of the
allostery concept itself is the Lac repressor molecule (third structure shown
in Figure 1.18) that binds DNA, thus shutting down transcription of genes
associated with lactose usage. This molecule can be thought of as an MWC
molecule because in the presence of allolactose it undergoes a conformational
change that reduces its binding affinity for DNA, thus permitting the transcrip-
tion of the genes for β-galactosidase that make it possible to metabolize this
alternative carbon source. There are also numerous examples of transcriptional
activators.

The final example shown in Figure 1.18 is hemoglobin, the critical oxygen
carrier. We devote chapter 7 (p. 231) to the fascinating allosteric mechanisms
of hemoglobin and the basis for its physiological and evolutionary adaptation.

A zoomed-out view of the secondary structure of some representative
allosteric proteins is shown in Figure 1.19. For example, in our discussion of
gene regulation in chapter 8 (p. 272), we will consider both repression and acti-
vation, using classic examples from bacteria as our critical case studies. One of
the most beloved and well-studied examples of activation is offered by the bac-
terial protein CRP, shown in the upper left panel of Figure 1.19, bound to its
effector cAMP. The remaining structures in Figure 1.19 give other examples of
allosteric proteins, revealing transcription factors, macromolecular assemblies,
and enzymes.
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ACTIVATOR CRP(A) (B)

(C) (D)
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20S CORE PARTICLE
PROTEASOME
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cAMP

PRFAR
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Figure 1.19

Structures of MWCmolecules in complex
with effectors and substrates. (A) The
bacterial transcriptional activator CRP
bound to cAMP (green). (B) PBX1 home-
odomain bound to DNA. (C) Structure
of the protein degradation apparatus
from the archaeon Thermoplasma aci-
dophilum. (D) Key metabolic enzyme
relevant to both amino acid (histidine)
and nucleotide (purine) biosynthesis.
The structure shows both the sub-
strate (glutamine) and the allosteric
effector (PRFAR). Adapted from Grutsch,
Bruschweiler, and Tollinger (2016), CC
BY-NC 4.0.

Though it is clear that structural insights are a critical cornerstone of mod-
ern biology, the approach advocated here is quite different. Indeed, in many
ways the entire goal of the kinds of models to be described throughout the
book is to telescope out from the atomic-level mindset to more coarse-grained
perspectives which make predictions about howMWCmolecules will respond
quantitatively in new situations. In some sense, the way that structure is inter-
nalized at the level of the models described here is through a very small set
of parameters. As will be shown in the next section, there is one overarch-
ing conceptual framework for describing MWC molecules that in its simplest
incarnation features three key parameters, namely, the difference in energy
between the active and inactive states in the absence of ligand, and the dissoci-
ation constants (KA and KI) for ligand binding in the active and inactive states,
respectively. In the context of the MWCmodel, the structural details for MWC
molecules found in the Protein Data Bank influence only these three param-
eters. Our aim is to show how one can talk about the huge swaths of biology
reflected in the case studies shown in Figure 1.18 in terms of abstract models
without appealing to detailed atomic-level positions.
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A fundamental pillar uponwhich the entire book is constructed is the idea of
the power, the rigor, and the intuition that can be developed by self-consciously
suppressing features of a system. As will be highlighted repeatedly through-
out the book, statistical mechanics teaches us how to “integrate out” degrees of
freedom. This does not mean that we approximate the system by ignoring some
feature (such as the existence of intrinsically disordered domains in a protein)
but rather that we formally and mathematically compute the implications of
those hidden degrees of freedom for the rest of the system.

1.3.3 Finding the Allosterome

A puzzle that remains in the field of allostery in this high-throughput era is
that we have had very limited tools that allow us to answer the general ques-
tion of which proteins in the proteome are allosteric and who their binding
partners are. Despite Monod’s characterization of the allostery phenomenon as
the second secret of life, because of this important knowledge gap, as a field
we are often flying blind because of our ignorance of how the key molecular
players in signaling pathways have their activity modified by other chemical
agents, and because of our ignorance of the identity of those chemical agents
themselves.

To that end, the emergence of mass spectrometry has provided an exciting
opportunity to query not only the posttranslational modifications suffered by a
given signaling molecule but also, because of recent innovations, when signal-
ingmolecules have bound a given small molecule. The idea of one suchmethod
is shown in Figure 1.20. We see that by lysing cells in the absence and in the
presence of some small-molecule allosteric effector candidate, some proteins
will bind that small molecule and, as a result, be resistant to limited prote-
olysis by proteinase K. This means that when the proteins are denatured and
trypsin digested, the pattern of cuts in the polypeptide chain will be different
for any protein that was bound to the candidate small molecule, as indicated in
Figure 1.20(B). Approaches such as this hold the promise of systematic iden-
tification of the allosterome for any organism and will be a critical part of our
resolution of the puzzle of how the macromolecules of the cell are controlled by
a battery of small molecules.

1.4 Mathematicizing the Two-State Paradigm

By peering at allostery through a mathematical lens we learn there are
many common biophysical features shared by these molecules, as shown in
Figure 1.21. This figure focuses our attention on the function of thesemolecules
rather than their structure. One important feature is how much activity they
exhibit even in the absence of ligand, a quantity we will call the leakiness. Just
as we interest ourselves in the activity of allosteric molecules in the absence
of ligand, their behavior in “saturating” concentrations is also critical to their
function. Another parameter of great physiological and evolutionary signifi-
cance is the critical concentration at which the activity reaches the midpoint
between the inactive and active states, sometimes denoted as the EC50. We will
also be deeply interested in how sharp the switching events are between the two
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Figure 1.20

Finding allosteric proteins and the molecules that regulate them. (A) Incubation of cell lysate with and without some candidate small
molecule leads some proteins to have a different pattern of peptide fragmentation because the binding of the small molecule protects
some parts of the polypeptide. (B) Partial proteolysis is performed with proteinase K, followed by a trypsin digestion of denatured
protein. This leads to peptide fragments that can be measured using mass spectrometry. In the example shown here, the measurement
is made on the protein FixJ bound to aspartyl phosphate (PDB: 1DBW) and its ligand-free form (PDB: 1D5W) (C) Differences in
spectrum resulting from mass spectrometry for the two different situations, revealing which parts of the molecule has been protected.
Adapted from Piazza et al. (2018).
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Figure 1.21

Macromolecular activity as a function of
ligand concentration. This curve shows
key phenotypic properties of allosteric
molecules including leakiness, dynamic
range, the EC50, and the effective Hill
coefficient, which gives a measure of the
sharpness of the regulatory response.
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conformational states of interest as a function of the ligand concentration that
drives this shift. The examination of such sharpness in molecular responses led
to one of the most preeminent ideas in biology, namely, cooperativity, an idea
that falls very naturally within the purview of the statistical mechanical models
of allostery to be described throughout the book.

The MWC model is the mathematical framework that was introduced to
describe molecules with two states of activity and modulated by the binding
of regulatory ligands. Monod, Wyman, and Changeux saw how to enumerate
the various microscopic states of the system and to compute their relative prob-
abilities. As any lover of statistical mechanics knows, the two-state paradigm
is one of the centerpieces of statistical physics and has had enormous reach
in the form of the Ising model and its generalizations. In the physics setting,
the two states referred to in the statistical mechanical setting of Ising models
can refer to the orientations of magnetic “spins,” for example. The kinds of
questions that people were interested in addressing with such two-state mod-
els centered on phase transitions between the low-temperature magnetic state
and a high-temperature nonmagnetic state of somematerials. Monod, Wyman,
and Changeux, without knowing it at the time, were introducing another over-
whelmingly important statistical mechanical model that could have impact in
biology similar to that of the Ising model in physics. To get a better idea of
how specific models can have such broad reach, we consider examples of such
transcendent concepts in physics.

1.4.1 Transcendent Concepts in Physics

How can we describe the behavior of allosteric transitions mathematically? The
answer to that question is the subject of this book! The goal will be to show
in many different biological contexts like those described earlier in the chap-
ter how the allostery phenomenon can be described in mathematical terms. In
particular, we aim to reveal how to enumerate both the various microscopic
states that are available to an MWCmolecule and the probabilities of these dif-
ferent states as a function of the concentration of various ligands. The simplest
version of these ideas will unfold here, and then in the remaining chapters, we
will see how those ideas can be generalized to include features such as oligo-
merization, cooperativity, and applications to a variety of distinct biological
situations.

Certain scientific concepts like the MWC model have very broad reach. To
clarify what I mean by that, let’s explore some examples of scientific broad
reach in physics. Young scientists and engineers of all stripes are subjected to
a first indoctrination in physics during their early years in university. Shortly
after beginning a foray into mechanics, these students are exposed to the seem-
ingly sterile world of masses and springs. After drawing a free-body diagram to
reckon how all the forces act on the mass, they obtain an equation of motion
that gives the position of that mass as a function of time. Little do they expect
that in talking about the abstract behavior of blocks and springs, they have
opened a vista onto one of the most far reaching of ideas: periodic motion
around an equilibrium point. If they are lucky, these same students will later see
that, in fact, the mass-spring problem lays the groundwork for thinking about
very different problems such as the pendulum and electrical circuits built up of
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Figure 1.22

Resonance as a concept that transcends
any particular example. (A) Mass-spring
system. Forced oscillator with damping
due to motion in a fluid. The graph shows
the amplitude of the oscillations as a func-
tion of the frequency of the driving force.
(B) Resonance in an RLC circuit. The
circuit is composed of a resistor (R), a
capacitor (C), and an inductor (L). Z is
the impedance. The graph shows the cur-
rent as a function of frequency of the
voltage for several choices of resistor. (C)
Child pushed on a swing. (D) Transmis-
sion of infrared radiation passing through
a thin film of sodium chloride as a func-
tion of thewavelength of the incident radi-
ation. (A) adapted from French (1965);
(B) adapted from Hyperphysics website
(C.R. Nave); (C) c© Konstantin Yuganov,
Dreamstime.com / ID 75499691; and (D)
adapted from Feynman, Leighton, and
Sands (1963), see Further Reading.

resistors, capacitors, and inductors. All are surprisingly described by the same
equation,

ẍ + γ ẋ +ω2x = F(t), (1.1)

where x is the displacement from equilibrium, ẋ = dx/dt is the velocity, ẍ =
d2x/dt2 is the acceleration, γ provides a measure of the damping, and ω is
the vibrational frequency. Furthermore, depending upon the behavior of the
forcing function F(t), the periodic motions can give rise to the general phe-
nomenon of resonance, as shown in Figure 1.22. Here we see that for certain
driving frequencies, the amplitude of the vibrations become very large—the
phenomenon of resonance familiar to anyone who has pushed a child on a
swing.

This resonance idea is so far-reaching as to be astonishing. The mechan-
ics of a pendulum, represented by a child on a swing set in the figure, can be
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Figure 1.23

Seiche in Lake Wakatipu. A large-scale example of resonance in an unexpected place. (A) Satellite image of the lake. (B) Scale map
showing the sites of measurement. (C) Lake height at different points in the lake as a function of time. Adapted from Bottomley (1956).

mapped onto the problem of a mass-spring system, and hence all the things
we learned about resonance in the context of the mass-spring system apply just
as well to the pendulum (as long as the amplitude of the swinging is not too
large). Things become increasingly surprising when we learn that precisely the
same mathematics describes the dynamics of charge flow in simple electrical
circuits featuring capacitors and inductors. These insights become even more
impressive when we find that the very same thinking helps us understand the
sloshing motion of a giant lake such as Lake Wakatipu in New Zealand, home
to a famed seiche, as shown in Figure 1.23. My point here is to demonstrate a
fundamental principle in physics that is now ready for prime time in biology,
too: the mathematical unity of apparently disparate phenomena.

Another example of this kind of surprising deep connection between appar-
ently quite different phenomena is offered by the ubiquitous random-walk
concept, shown in Figure 1.24. The key point here is that an idea so simple as
rolls of a die or flips of a coin can be repurposed to help us understand phenom-
ena as diverse as the diffusion of molecules in solutions or cells, or the statistical
conformations of polymer molecules such as DNA. But how? Themiddle panel
of the figure shows howwe can think of a randomwalker as being able tomarch
in any one of six directions each step: east, west, north, south, and up or down.
The outcome of the roll of our die tells the walker which one of those steps to
make. Importantly, the outcome of this analysis is a statistical description of the
molecular configurations.

A final physical example of the transcendence of certain physical concepts is
given by the all-important wave phenomenon of interference, one of the fruits
of Thomas Young’s interconnected thinking on physiology and physics (see
Figure 1.25 and the article by Mollon (2002) referenced in the Further Read-
ing section). Young was the first to see the phenomenon of interference in all
of its sameness, applying it not only to the well-known example of light but
also to auditory beats and to the seemingly obscure phenomenon of the tides
in the Gulf of Tonkin, which don’t exhibit the usual twice-daily tides we are
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Figure 1.24

The broad reach of the random-walk concept. The center panel of the figure shows how successive rolls of a die determine the nature
of the walk. Molecular diffusion, shown on the left, can be analyzed using nothing more than this simplified die rolling. In this case,
a bacterium has had the fluorescence in its middle destroyed through photobleaching, and over time, because of diffusion, the fluo-
rescence is restored in the photobleached region. Similarly, the conformations of a polymer such as DNA can be thought of using the
same ideas. (Left and right) From Phillips, R., J. Kondev, J. Theriot and H. Garcia (2013), Physical Biology of the Cell, 2nd ed. Repro-
duced by permission of Taylor & Francis LLC. (Left) Adapted fromMullineaux, C. W., A. Nenninger, N. Ray, and C. Robinson (2006),
J. Bacteriol. 188:3442, fig. 5. Amended with permission from American Society for Microbiology. (Right) Adapted fromWiggins, P. A.,
et al. (2006), Nat. Nanotech 1:37, fig. 1a.

accustomed to at most beaches. Most of us have experienced interference first
hand in the form of beautifully colored oil slicks on our driveway after a rain.
Isaac Newton mapped out how the color depends upon the thickness of the air
layer between two glass plates (one of which was curved; see Figure 1.25(A)),
and Thomas Young saw how to compute those colors on the basis of the simple
idea of waves either reinforcing one another or canceling each other out, as
shown in Figure 1.25(B). The critical idea of sameness is that in all these cases,
the interference phenomenon can be simply expressed as the result of several
waves adding up either constructively or destructively in a way that is relatively
indifferent to whether those waves are sea waves, sound waves, or light waves.
This idea was described by Young in what might be thought of as The Feynman
Lectures on Physics of his time, and his explanation is shown in Figure 1.25(D).
As Young responsed to critics of his idea, “I was so forcibly impressed with the
resemblance of the phenomena that I saw, to those of the colours of thin plates,
with which I was already acquainted, that I began to suspect the existence of
a closer analogy between them than I could before have easily believed.” It is
just such a resemblance of phenomena that the allostery concept allows us to
understand, as we will see in the pages that follow.

1.4.2 One Equation to Rule Them All

But what does this have to do with biology in general, and this book in partic-
ular? A superficial appearance that phenomena are different may mask a very
subtle but deep connection between those phenomena or the theory used to
describe them. The argument of this book is that the allostery phenomenon is
such an example that has the same status as ideas such as resonance or random
walks, but unlike those cases, the allostery universality is one that animates the
subject of biology.

One of the deep appeals of the kind of universality offered by the allostery
concept and its statistical mechanical implementation via the MWC model
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Figure 1.25

The broad impact of the inter-
ference concept. (A) Newton
examined the colors in a layer of
air between two glass surfaces.
(B) Using his theory of interfer-
ence, Thomas Young predicted
the observed wavelengths as a
function of film thickness. The
final column is the addition of
Mollon (2002), who gave the
wavelengths in nanometers. (C)
Figure from Thomas Young’s
Lectures on Natural Philosophy
(1807) that shows the inter-
ference in water “obtained by
throwing two stones of equal size
into a pond at the same instant.”
(D) Page from Thomas Young’s
Lectures on Natural Philosophy
that show how waves interfere.
The dark lines correspond to
the waves being superposed,
and the broken line shows their
composition (though Young
used a different scale.) Adapted
from Mollon (2002), see Further
Reading.

(A)

(B) (C)

(D)

and its generalizations is that it provides a different way of connecting bio-
logical phenomena. Thus, we can imagine organizing biological phenomena
on the basis of their biological proximity. For example, we might talk about
ion channels and their role in muscle contraction in a physiology course and
talk about transcription factors and their induction in a systems biology course.
Alternatively, as suggested by Figure 1.26, we can organize biological phenom-
ena according to their physical proximity. In this case, the ion channels and the
transcription factors can be seen as the “same” phenomenon, despite howappar-
ently different the biological phenomena they explain mechanistically may be.
Figure 1.26 attempts to make this point by showing the MWC model as an
intellectual node that links many disparate biological phenomena.

To be specific, Figure 1.26 puts forward the suggestion that phenomena
as diverse as the packing of DNA in nucleosomes and the binding of oxygen
to hemoglobin are related through physical proximity. But the relatedness of
these different problems becomes really clear only when formulatedmathemat-
ically, in precisely the same way that a mass-spring system and an LC circuit
are the “same” thing is revealed by the underlying mathematics. The allostery
phenomenon as embodied in the MWC model can be stated through the idea
that there is one equation to rule them all, namely,

pactive(c)=
(
1+ c

KA

)n

(
1+ c

KA

)n + L
(
1+ c

KI

)n . (1.2)
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Figure 1.26

Physical proximity of diverse biological
phenomena. The MWC model links
hemoglobin, ligand-gated ion chan-
nels, G protein–coupled receptors, and
nucleosomes all through one physical/
mathematical framework. Courtesy of
David Goodsell.

This equation tells us the probability that anMWCmolecule with n ligand bind-
ing sites will be in the active state as a function of ligand concentration c. The
model features three key parameters L, KA and KI . The parameter L is the equi-
librium constant between the active and inactive states in the absence of ligand,
KA and KI are the dissociation constants for ligand binding to the active and
inactive states, respectively.

A recent exciting development in evolutionary cell biology is the realization
that it is possible to explore the biophysical basis of the parameters that yield the
different phenotypes shown in Figure 1.21 such as leakiness, EC50, and effec-
tive Hill coefficient explored by evolution. In the context of the MWC model,
the entire space of phenotypes is determined by the three molecular parame-
ters introduced in the context of equation 1.2: L, KA and KI . That is to say, the
only way molecular structure reflects on function in the context of the MWC
model is through the value of these three parameters which set key character-
istics such as the leakiness, the dynamic range, the EC50, and the effective Hill
coefficient which determine the sensitivity of the molecule to ligand concentra-
tion. Of course, this is a very naive view of molecules and their evolution, but it
will serve as the jumping off point for our thinking.

Inmanyways, the task of the book is to showwhere equation 1.2 comes from,
why it is the same for so many distinct biological problems, and what its impli-
cations are for thinking about biological phenomena ranging from quorum
sensing to enzyme feedback. An array of examples of the way this equation can
be used to describe different biological phenomena is highlighted in Figure 1.27.
This figure is intended to whet the reader’s appetite for statistical mechanical
modeling of a host of different biological phenomena. There we see examples
as diverse as the activity of enzymes of glycolysis such as phosphofructokinase
(see chap. 6), oxygen binding to hemoglobin (see chap. 7), ligand-gated ion
channels (see chap. 3), the activity of chemotaxis receptors (see chap. 4), and
the activity of G protein–coupled receptors (see chap. 5). For now, we content
ourselves with admiring these various activity curves for the generality of the
allosteric phenomena that they reveal.



28 Chapter 1 It’s An Allosteric World

en
zy

m
e 

ac
ti

vi
ty

(n
or

m
al

iz
ed

)

ADP PEP

fructose-6-phosphate (μM)
100 102 104

0.0

0.2

0.4

0.6

0.8

1.0

EGF receptors

receptor density

epidermal growth factor (μM)

fr
ac

ti
on

al
 s

at
ur

at
io

n

0.0

0.2

0.4

0.6

0.8

1.0

(A) (B) (C)phosphofructokinase

100 100102 10210–2 10–2 10–5 10–4 10–3 10–210–4

100102101 102101

ki
na

se
ac

ti
vi

ty
 (

re
la

ti
ve

)

(D) (E) (F)Tar receptors

methylation

methyl-aspartate (mM)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

G protein-coupled receptors

BQCA

carbachol (μM)

fr
ac

ti
on

al
 r

es
po

ns
e

0.0
0.2
0.4
0.6
0.8
1.0

CNG ion channels

calmodulin

cyclic guanosine
monophosphate (μM)

cu
rr

en
t 

(n
or

m
al

iz
ed

)

0.0

0.2

0.4

0.6

0.8

1.0

partial pressure of O2
 (mmHg)

hemoglobin

pH

0.0

0.2

0.4

0.6

0.8

1.0

ox
yg

en
 s

at
ur

at
io

n

Figure 1.27

Diversity of activity curves of key allostericmolecules. Each dose-response curve shows the activity as a function of an effectormolecule.
In each case, there is a family of curves reflecting the fact that the activity curve can be tuned by other molecules (shown by the arrows
above each graph) in the process of adaptation. Adapted from Olsman and Goentoro (2016).

1.5 Beyond the MWC Two-State Concept

From the outset, I want tomake clear that our subject has a long and rich history
filled with subtle phenomena, deep and creative models, and colorful person-
alities. What this means to those that participated in the creation of the subject
is that there are many nuances that represent years of work tied to fierce intel-
lectual battles. Though it may seem to miss some of the nuance, my plan is
largely to fly below the radar of these debates and to provide a warm statisti-
cal mechanical embrace to many different variations of the same basic theme.
Specifically, we will argue that these different categories of models all fall within
the same statistical mechanical fold because they are based upon discrete state
spaces and because ligand binding tunes the relative free energies of inactive
and active configurations. We provide a first view of these ideas now.

1.5.1 Molecular Agnosticism: MWC versus KNF versus Eigen

A central theme of the book is the power and beauty of coarse-grained descrip-
tions that intentionally suppress reference to the microscopic degrees of free-
dom. A corollary of this point of view will be that sometimes we will have a
measured indifference to themolecular particulars of a given problem. As such,
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Figure 1.28

Compact representation of theMWC (yel-
low states), KNF (blue states), and Eigen
models (all states) for a two-site allosteric
molecule. The active state has the rectan-
gular shape, and the inactive monomers
have a rounded shape.

we will pass freely between descriptions based on either all-or-nothing (MWC)
or sequential (KNF) or hybrid models of molecular conformations.

To get a flavor for the different conformational states and states of occu-
pancy that allosteric molecules can sustain, Figure 1.28 shows some of the
different ways that one can imagine assigning microscopic states to allosteric
molecules. TheMWCmodel will be our reference model, culminating in equa-
tion 1.2. However, an alternative picture is offered by the sequential model of
Koshland, Némethy, and Filmer developed in 1966. This model imagines obli-
gate conformational changes whenever a subunit is bound by a ligand, as seen
in the blue states of Figure 1.28. An even broader generalization introduced by
Manfred Eigen (1968) allows for the possibility that the different subunits inde-
pendently change between the inactive and active states and that both sets of
states allow for ligand binding, albeit with different dissociation constants. As
already mentioned, the debates surrounding these different molecular possibil-
ities have engendered passionate debates. For our purposes, we will view them
much more liberally as comprising different collections of allowed states but
with the key unifying property of the presence of inactive and active states that
have different binding constants for ligands.

One concern justifiably put forth by those critical of the two-state concept is
that real biological macromolecules sometimes have more than two dominant
conformational states. Part of the reason that I find debates about the nature
of allostery dated is that such arguments miss for me the statistical mechanical
essences which are simpler and can be flexibly altered to account for the more
complex situations, going all the way to the case of intrinsically disordered pro-
teins in which there is a continuum of different states, as will be discussed in
detail in chapter 11 (p. 347).

To be specific, we can easily accommodate generalizations to cases involv-
ing more substates, as shown in Figure 1.29, where we consider a molecule
with three conformational states. In this case we show the “three-state MWC
molecule” in which there are three conformational states, each of which is sub-
ject to ligand binding or not, resulting in a total of six possible states. The
statistical mechanical protocol we will develop in the next chapter will allow
us to write the energies of each of these states, as well as their statistical weights,
resulting in expressions for their different probabilities, though we need to be
alert to the proliferation of parameters as we accept more and more states.
Similarly, we can also accommodate the even further generalizations of these
multistate models to the full level of the Eigen model by allowing for all states
of occupancy and all partial conformational states.

We can explore this proliferation of parameters more systematically by
reflecting on what we have done thus far and by generalizing to cases involving
N states andM binding sites. For amolecule with only one conformational state
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Figure 1.29

Generalizations of the two-state concept.
In this example we consider a three-state,
one-site model in which there are three
conformational states, each of which can
be empty or bound by ligand.

but M binding sites, the number of distinct states is 2M , since each site can be
either empty or occupied by ligand. The general rule for the generalized MWC
model is that if we have N states and M binding sites, then the total number
of distinct configurations that we need to consider in our states-and-weights
diagram is

N∑
i=1

2M = N2M . (1.3)

Each of the N conformational states will have its own εi characterizing the
energy of that conformation. Further, for each of those states, there will be a
distinct binding energy (or Kd).

The two-state paradigm can be generalized even further to the case in which
there is a continuum of allowed states, as we will discuss in chapter 11 (p. 347).
As early as the 1980s, Cooper and Dryden explored generalizations of the
allostery concept in which there was not a strict conformational change, but,
nevertheless, the inactive and active conformations had different free energies
of binding because such binding altered the vibrational free energy of the sys-
tem. An exciting recent development that builds on this kind of thinking has
been the emergence of the paradigm of intrinsically disordered proteins, which
forces us to think more broadly about the different states allowed to allosteric
proteins.

1.6 On Being Wrong

As already highlighted in the preface, the aim of this book is to explore a highly
idealized and abstracted view ofmodels of allosteric molecules. There aremany
opinions on the value of models in the context of biology, some of which are
negative and focus on how such models are wrong by “missing” some key ele-
ment of the system. In that vein, it has become a cliché to quote George Box’s
refrain that “all models are wrong, but some are useful”, at this point, however,
I think that this quote itself has outlived its usefulness. In his great essay Com-
mon Sense, Thomas Paine notes “A long habit of not thinking a thing wrong
gives it a superficial appearance of being right.” I also worry that a long habit of
not thinking a thing right gives it a superficial appearance of being wrong. In
the context of the subject of this book, I have been amazed at the diversity of
unsubstantiated opinions starting with the words “we all know that” that then
go on to assert that either the MWC model has already been shown either to
work or to fail, with both opinions held with equal conviction.

It is hard to escape the feeling after studying the literature that often the
wrongness is not with the model but with a lack of a truly rigorous dialogue
between theory and experiment or an incomplete generalization of the model
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when faced with new circumstances. For example, there are some that continue
to use equation 1.2 (p. 26) as “the MWC model” even when they are consider-
ing cases with more than one molecular species. However, in the case in which
there is some competitor ligand, equation 1.2 needs to be generalized to

pactive(c1, c2)=
(1+ c1

KA,1
+ c2

KA,2
)n

(1+ c1
KA,1

+ c2
KA,2

)n + L(1+ c1
KI,1

+ c2
KI,2

)n (1.4)

where c1 is the concentration of species 1, and c2 is the concentration of species
2, the competitor.

A second way in which the model of equation 1.2 must be generalized is
in the case of important situations like those shown in Figure 1.7, (p. 10) in
which there are multiple inputs to the same allosteric molecule. The one equa-
tion that rules them all (the traditional MWC model) must account for these
multiple inputs. For example, if there are two ligands that interact with the
MWCmolecule, equation 1.2 must be generalized as

pactive(c1, c2)=
(1+ c1

KA,1
)n(1+ c2

KA,2
)n

(1+ c1
KA,1

)n(1+ c2
KA,2

)n + L(1+ c1
KI,1

)n(1+ c2
KI,2

)n . (1.5)

For the case in which there areM distinct sites subject to binding by different
ligands labeled by the index i, the MWC equation introduced earlier as eqn. 1.2
must be generalized even further to

pactive({ci}) =
∏M

i (1+ ci
KA,i

)n

∏M
i (1+ ci

KA,i
)n + L

∏M
i (1+ ci

KI,i
)n
. (1.6)

The point here is that these kinds of generalizations are really necessary in order
to broaden the scope of the originalMWC formulation. Each scenario will have
a slightly different equation, and as far as this book is concerned, they all fall
within the bailiwick of the MWC framework. Failure to use the right equation
will invariably lead to a superficial appearance of wrongness that may not be
justified at all.

1.7 Summary

Our first chapter set the stage for all that will follow. It began with one of
the most important facts of biology (many of the macromolecules of life are
allosteric) and one of the most important concepts in biology (the MWCmodel
of allostery). I heard of a very distinguished and well-known biologist who
refused to talk to physicists entering biology until they could properly define
allostery, and the aim of this chapter was to give the reader enough background
to pass that test. To that end, I showed how allosteric molecules are found in
all corners of biology, whether neuroscience or physiology or evolution. The
mathematical implementation of the allostery concept leads to a transcendent
biological framework in many ways analogous to the way that concepts such
as resonance or interference are transcendent in physics. The chapter ended by
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openly acknowledging themany oversimplifications and caricatures inherent in
this class of models but argued that despite these shortcomings, the framework
is extremely potent.

1.8 Further Reading

Alon, U. (2007) An Introduction to Systems Biology. Boca Raton, FL: Chap-
man and Hall/CRC. This excellent book is visionary in showing the interplay
between careful theoretical thinking and well-designed experiments to attempt
to deeply understand biological problems.

Ben-Naim, A. (2001) Cooperativity and Regulation in Biochemical Processes.
New York: Kluwer Academic/Plenum. This excellent book channels earlier
work from Terrell Hill that demonstrates the naturalness of Gibbs’s grand par-
tition function for describing the binding and activity of allosteric molecules.

Cantor, C. R., and P. R. Schimmel (1980) Biophysical Chemistry. New York:
W. H. Freeman. This series of books digs deeply into many aspects of allostery.
The cover of my edition of the book pays homage to the concept of allostery.

Feynman, R. P., R. B. Leighton, and M. Sands (1963) The Feynman Lectures on
Physics. Reading, MA: Addison-Wesley. Everything here is worth reading, but
the chapter on resonance is particularly delightful.

Lim, W. B. Mayer, and T. Pawson (2014) Cell Signaling. New York: Garland
Science. Over a happy and challenging six months I read every page of this
excellent book. My book is an attempt to see what happens when one tries to
mathematicize the ideas in this work.

Lindsley, J. E., and J. Rutter (2006) “Whence cometh the allosterome?” Proc.
Natl. Acad. Sci. 103:10533–10535. This very important paper lays down the
gauntlet by noting the challenge of figuring out which proteins are allosteric
and if they are, what molecules control that allostery.

Martins, B. M. C., and P. S. Swain (2011) “Trade-offs and constraints in allo-
steric sensing.” PLoS Comput. Biol. 7(11):e1002261. This article is a must-read
for anyone truly interested in allostery. The authors explore many important
facets of the statistical mechanics of models of allostery.

Mollon, J. D. (2002) “The origins of the concept of interference.” Phil. Trans.
R. Soc. London A360, 807–819. This fascinating article describes how Thomas
Young brought unity to our understanding of the phenomenon of wave interfer-
ence. For those interested in delving more deeply into the topic and especially
how it touches on biology, see Nelson, P. (2017) From Photon to Neuron: Light,
Imaging, Vision. Princeton, NJ: Princeton University Press. And any interested
scientific reader should study Feynman, R. P. (2014) QED: The Strange Theory
of Light and Matter. Princeton, NJ: Princeton University Press.

Motlagh, H. N., J. O. Wrab, J. Li, and V. J. Hilser (2014) “The ensemble nature
of allostery.” Nature 508:331. This paper reflects on the evolution of our under-
standing of the allostery phenomenonwith the emergence of new experimental
techniques such as NMR which have substantially generalized the mechanistic
underpinnings of how molecules can behave allosterically.

(continued...)
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