
125-81390 Downey Hierarchy 4p 6th February, 2020 08:30 6.125x9.25 Page vii

Contents

Acknowledgments ix

1 Introduction 1
1.1 Historical context 1
1.2 Background: unifying constructions and

natural definability 3
1.3 Toward the hierarchy of totally α-c.a. degrees 8
1.4 The contents of this monograph 14
1.5 An application to admissible computability 16
1.6 Notation and general definitions 17

2 α-c.a. functions 23
2.1 R-c.a. functions 23
2.2 Canonical well-orderings and strong notations 29
2.3 Weak truth-table jumps and ωα-c.a. sets

and functions 37

3 The hierarchy of totally α-c.a. degrees 55
3.1 Totally R-c.a. degrees 55
3.2 The first hierarchy theorem: totally ωα-c.a. degrees 58
3.3 A refinement of the hierarchy: uniformly totally

ωα-c.a. degrees 68
3.4 Another refinement of the hierarchy: totally

<ωα-c.a. degrees 74
3.5 Domination properties 80

4 Maximal totally α-c.a. degrees 84
4.1 Existence of maximal totally ωα-c.a. degrees 84
4.2 Limits on further maximality 94

5 Presentations of left-c.e. reals 106
5.1 Background 106
5.2 Presentations of c.e. reals and non-total

ω-c.a. permitting 110
5.3 Total ω-c.a. anti-permitting 123

-1
0
1

viii

125-81390 Downey Hierarchy 4p 6th February, 2020 08:30 6.125x9.25 Page viii

CONTENTS

6 m-topped degrees 134
6.1 Totally ω-c.a. degrees are not m-topped 135
6.2 Totally ω2-c.a. degrees are not m-topped 140
6.3 Totally <ωω-c.a. degrees are not m-topped 145

7 Embeddings of the 1-3-1 lattice 149
7.1 Embedding the 1-3-1 lattice 150
7.2 Non-embedding critical triples 167
7.3 Defeating two gates 176
7.4 The general construction 184

8 Prompt permissions 188
8.1 Prompt classes 188
8.2 Minimal pairs of separating classes 202
8.3 Prompt permission and other constructions 212

Bibliography 215

-1
0
1

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 1

Chapter One

Introduction

What does it take to perform a certain construction? In computability theory,
this question is the basis of a long-term programme which seeks to understand
the relationship between dynamic properties of sets and their algorithmic com-
plexity. Our main thesis in this monograph is that where the computably enu-
merable (c.e.) Turing degrees are concerned, a degree can compute complicated
objects if and only if some functions in the degree are difficult to approximate.
Computability-theoretic tools allow us to quantify precisely what we mean by
“difficult to approximate.” More specifically, we use a classification of Δ0

2 func-
tions defined by Ershov in [39–41]. While Ershov’s hierarchy of complexity is
orthogonal to complexity as measured by Turing reducibility, we show that com-
bining these two notions of complexity yields a new, transfinite hierarchy inside
the low2 c.e. degrees, and that two levels of this hierarchy capture the dynamics
of a number of seemingly unrelated constructions in different areas of com-
putability. Further, some of these constructions show that these two levels are
naturally definable in the c.e. degrees.

1.1 HISTORICAL CONTEXT

The roots of computability theory go back to the work of Borel [8], Dedekind
[18], Hermann [50], Dehn [19], and others in the late nineteenth and early twenti-
eth centuries. From a modern point of view, these authors were highly interested
in algorithmic procedures in algebra. Around the same time, Hilbert famously
posed the Entscheidungsproblem, which asked whether there was an algorith-
mic procedure to decide the validity of statements in first-order logic. To show
that the answer is yes, we would need to give such an algorithm, as we do with
truth tables in propositional logic. However, to demonstrate that there is no
such algorithm, we would first need to mathematically specify what an algo-
rithm is. Culminating in the work of Turing [97], several authors gave proofs
that first-order logic is undecidable; there is no such algorithm. Turing’s work
built on Gödel’s First Incompleteness Theorem, and gave a beautiful conceptual
analysis which convincingly laid the foundations of computability theory. Turing
machines gave a universal model of computation.

Following these early results, many problems, such as Hilbert’s 10th problem,
the word problem for groups, or DNA self-assembly, have been shown to be

-1
0
1

2

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 2

CHAPTER 1

undecidable. These proofs mostly followed a familiar pattern. They used Turing’s
notion of a reduction [98], and typically showed that the halting problem is
reducible to the algorithmic decision problem at hand by some effective coding
process.

A major impetus for the development of computability theory was Post’s
[78] which gave an analysis of the fine structure of reductions, and set a research
agenda in the “structure theory” of computation. This paper was also famous
as it “stripped away the formalism associated with the development of recur-
sive functions in the 1930’s and revealed in a clear informal style the essential
properties of recursively enumerable sets and their role in Gödel’s incomplete-
ness theorem” (Soare [91]). Following Post’s paper, there were three major
developments:

• The Kleene-Post development of the finite extension method. This and related
techniques demonstrated the richness of the structure of the Turing degrees,
and were arguably a precursor to Cohen’s method of forcing.

• The Friedberg-Muchnik theorem showing that there were intermediate
computably enumerable Turing degrees. This result introduced the priority
method to computability theory and is a hallmark of the area to this day.

• Sacks’s work [81, 82] which culminated in his book [80] which proved a num-
ber of penetrating results on the structure of degrees, and developed the
infinite-injury priority method, first introduced by Shoenfield [85]. Sacks’s
book famously proposed a research agenda with a number of difficult ques-
tions still open.

There were subsequent books by, for example, Rogers [79], Lerman [66], and
Soare [91] exploring the universe of the degrees of unsolvability. But conceptual
clarification provided by this early work has seen a flowering of applications of
computability theory to many areas of mathematics. These include computable
analysis [102] (a subject going back to Turing’s [97]), computable algebra and
model theory (see, for example, [38]), algorithmic randomness [27, 69, 74], algo-
rithmic learning theory ([45]), and reverse mathematics [89], to name but a few.
(See [22] for a general historical discussion of this development, mainly focussing
on randomness.) Each of these areas has its own subareas, and hence the area
of computability has become remarkably diverse.

This monograph has several goals. Some are in the spirit of Sacks’s book.
That is, we wish to introduce new techniques and classification tools for under-
standing the complexity of computation. These include some new nonuniform
methods and certain symmetric games in the sense of Lachlan [60], in which
obstacles in constructions turn out to reflect the boundary between what is and
what is not possible. These games allow us to prove new definability results in
the computably enumerable degrees. Another goal is in the spirit of Soare’s book;
we carefully guide the graduate student through complex techniques involving
modern arguments. Our final goal is to formalize the persistent intuition that
many of the constructions in the diverse areas of computability theory seem to-1

0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 3

3

have common combinatorics. How should we explain that? We will draw several
areas back together by showing that the hierarchy we introduce can be used to
explain, classify, and unify combinatorics in these areas.

1.2 BACKGROUND: UNIFYING CONSTRUCTIONS

AND NATURAL DEFINABILITY

1.2.1 Unifying constructions and levels of permitting

Computability theory has a small number of classes of degrees which capture the
underlying dynamics of a number of apparently similar constructions. A good
example is the class of high degrees, the degrees d satisfying d′ �0′′. Martin
[70] showed that a c.e. degree is high if and only if

(1) it contains a function dominating all computable functions;
(2) it contains a maximal set;
(3) it contains a hyperhypersimple set.

Another example would be the class of the promptly simple degrees (Ambos-
Spies, Jockusch, Shore, and Soare [2]), which coincide with the low-cuppable
degrees and the non-cappable degrees. A more recent example of current interest
is the class ofK-trivial degrees (see, for example, [28, 72, 73]), which have several
characterisations arising from lowness constructions.

The example most relevant to this monograph is the class of array com-
putable degrees, defined by Downey, Jockusch, and Stob [30, 31]. Recall that
by Shoenfield’s Limit Lemma [84], a function g : ω→ω is Δ0

2 if and only if
it has a computable approximation: a uniformly computable sequence 〈gs〉 of
functions which converge to g in the discrete topology, that is, for which for
all n, gs(n)= g(n) for all but finitely many s. We think of each gs as a stage s
approximation for g. Associated to every computable approximation 〈gs〉 is its
mind-change function, which maps each n to the number of stages s such that
gs+1(n) �= gs(n).

A c.e. Turing degree a is array computable if every function g ∈a has a com-
putable approximation 〈gs〉 such that for all n there are at most n many stages s
such that gs+1(n) �= gs(n), that is, whose mind-change function is bounded by
the identity function. The array computable degrees capture the combinatorics
of a wide class of constructions. To wit, we observe that a c.e. degree is array
noncomputable if and only if

(1) it is the degree of a perfect thin Π0
1 class (Cholak, Coles, Downey, and

Herrmann [12]);
(2) it bounds a disjoint pair of c.e. sets which have no separator computing H′

(Downey, Jockusch, and Stob [30]);
(3) it contains a c.e. set with maximal Kolmogorov complexity (Kummer [57]); -1

0
1

4

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 4

CHAPTER 1

(4) it does not have a strong minimal cover in the Turing degrees (Ishmukhame-
tov [51]);

(5) it has effective packing dimension 1 (Downey and Greenberg [24]);
(6) it contains two left-c.e. reals with no common upper bound in the cl-degrees

of left-c.e. reals (Barmpalias, Downey, and Greenberg [7]);
(7) it contains a set which is not reducible to the halting problem with tiny use

(Franklin, Greenberg, Stephan, and Wu [43]).

The dynamics captured by classes of degrees are often phrased in terms
of permitting. We perform some computable construction, often using the pri-
ority method. To make the construction succeed, we need to satisfy infinitely
many requirements, and to meet each requirement, we need to enumerate some
numbers into a c.e. set A that we are building. The question is whether we
can perform the construction “below” a given c.e. degree d, which means, can
we make A�T d? In the standard framework, we choose a c.e. set D∈d, and
along with the construction we define a Turing reduction Φ of A to D. Then,
when we want to enumerate a number n into A, we seek permission from D to
do so, which means that we want to see some number enter D below the use
ϕ(n) that we declared for computing A(n) from D using Φ. Naturally, we will
not always receive such permission, and so we need to make several attempts
at meeting the requirement, using different potential numbers n to enumerate
into A.

The “amount” of permitting that is required to carry out the construction
(that is, to meet every requirement) corresponds to the class of degrees d below
which we can perform the construction. The most common notion is simple per-
mitting, which is given by any nonzero c.e. degree d. Here it suffices for at least
one of the attempts made by a given requirement to receive permission. This
argument then shows, for example, that every c.e. degree bounds two incompa-
rable c.e. degrees (the Friedberg-Muchnik construction can be performed using
simple permitting), or that every c.e. degree bounds a 1-generic sequence.

Prompt permission, given by any promptly simple degree, also needs just
one attempt to receive permission, but this permission must be given quickly: the
required change in D needs to happen within some computable bound given the
stage number. At the other extreme from simple permitting is high permitting,
in which every requirement makes infinitely many attempts, and to meet the
requirement, all but finitely many of these attempts need to be permitted.

Array noncomputable permitting, originally called “multiple permitting,” is
an intermediate version, in which for each attempt at meeting a requirement,
a number of required permissions is stated in advance. The connection with
the complexity of approximations of functions in the degree is direct: mind-
changes essentially correspond to instances of permission; the computable bound
on the number of mind-changes is the same bound on the number of permissions
required to meet a requirement. The remarkable fact is that in many cases it is
shown that the level of permitting is not only sufficient but also necessary for
the construction to succeed.

-1
0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 5

5

As we shall see, in this monograph we introduce a transfinite hierarchy of
classes, each of which has its own level of permitting; these classes generalise
the array noncomputable degrees.

1.2.2 Natural definability and lattice embeddings

Ever since Lachlan and Yates’s [59, 105] construction of a minimal pair refuted
Shoenfield’s conjecture [86] that the c.e. degrees are homogeneous, research in
the c.e. degrees tended toward showing that they are as complicated as can be.
For example, their theory (as a partial ordering) is computationally equivalent
to full first-order arithmetic (see [49, 75]). This paradigm leads us to study
definability in the partial ordering of the c.e. degrees, with the expectation that
full bi-interpretability with arithmetic would hold. That would entail that a
relation in the c.e. degrees is definable if and only if it is induced by a degree-
invariant, arithmetic relation on indices of c.e. sets. Currently, this has almost
been achieved, up to double jump classes:

Theorem 1.1 (Nies, Shore, Slaman [75]). Any relation on the c.e. degrees which
is invariant under the double jump is definable in the c.e. degrees if and only if
it is definable in first-order arithmetic.

The proof of Theorem 1.1 involves interpreting the standard model of arith-
metic in the structure of the c.e. degrees without parameters, and obtaining a
definable map from degrees to indices (in the model) which preserves the double
jump. The result gives a definition of a large collection of classes of degrees (for
example, all jump classes highn and lown, the latter for n� 2).

Theorem 1.1 has two shortcomings. One is the reliance on the invariance of
the relation under the double jump. It follows that no collection of c.e. degrees
that contains some, but not all, low2 degrees can be defined using the theorem;
these are the kinds of collections that we investigate in this monograph.

Another issue is that the definitions provided by the theorem are not natural,
as discussed by Shore [88]. The definitions given by Theorem 1.1 are not struc-
tural; they do not give insights into the role of the relations being defined in the
structure of the c.e. degrees. To date, there are not many examples of natural
definitions in the c.e. degrees. Among them are:

• the promptly simple degrees are defined as the non-cappable ones (Ambos-
Spies, Jockusch, Shore, and Soare [2]);

• the contiguous degrees are defined as the locally distributive ones (Downey
and Lempp [33]) and also as the ones which are not the top of a copy of the
pentagon lattice (the nonmodular, 5-element lattice N5) in the c.e. degrees
(Ambos-Spies and Fejer [1]);

• a third example takes place in the truth-table c.e. degrees rather than the
Turing c.e. degrees: a c.e. truth-table degree is low2 if and only if it has no
minimal cover in the c.e. truth-table degrees (Downey and Shore [34]).

-1
0
1

6

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 6

CHAPTER 1

The example of the contiguous degrees (Turing c.e. degrees all of whose c.e.
elements are weak truth-table equivalent) shows that natural definability results
can be found when considering lattice embeddings into the c.e. degrees (see, for
example, [63, 64, 67]). The question of which finite lattices can be embedded
into the c.e. degrees (preserving join and meet) is also closely related to the
problem of determining how much of the theory of the c.e. degrees is decidable.
For example, Kleene and Post [55] showed that every finite partial ordering is
embeddable into the c.e. degrees, and so that the 1-quantifier theory of the c.e.
degrees is decidable. Deciding 2-quantifier questions involves lattice embeddings
and extensions of embeddings.

All distributive finite lattices are embeddable into the c.e. degrees (Thoma-
son [96], and independently Lerman, unpublished). All nondistributive lattices
contain copies of one of the two following lattices:

M5 N5

Figure 1.1. The two basic nondistributive lattices.

As mentioned, the lattice N5 is nonmodular (the relation a∨ (x∧ b)=
(a∨x)∧ b fails for some a� b), and every nonmodular lattice contains a copy
of N5. The lattice M5, also known as the 1-3-1 lattice, is modular, and every
nondistributive, modular lattice contains a copy of the 1-3-1 lattice. Both lattices
are embeddable into the c.e. degrees (Lachlan [61]).

The general question of which finite lattices are embeddable into the c.e.
degrees remains open. The 1-3-1 is a significant obstacle, in that a slightly more
complicated formation, known as the lattice S8 (fig. 1.2), is not embeddable into
the c.e. degrees (Lachlan and Soare [62]).

Thus, the 1-3-1 lattice is “just barely embeddable” in the c.e. degrees. Recall-
ing our discussion above about permitting, the next natural question is how
much computational power is required to embed this lattice. The point is that
the embedding of the 1-3-1 lattice is quite complicated. Such an embedding,
which is often done preserving the bottom element, involves the enumeration of

-1
0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 7

7

Figure 1.2. The lattice S8.

three c.e. sets, A0, A1 and A2, which pairwise form a minimal pair, and pairwise
join above the third. The join and meet requirements interact very badly, and
to overcome the difficulties, Lachlan used what became known as “continuous
tracing.” These difficulties were exploited by Downey [21], who showed that not
every c.e. degree bounds a copy of the 1-3-1 lattice. In that paper, Downey noted
that the embedding of the 1-3-1 lattice seemed to be tied up with multiple per-
mitting in a way that was similar to non-low2-ness. This intuition was verified
by Downey and Shore [35], who showed that every non-low2 c.e. degree bounds
a copy of the 1-3-1 lattice in the c.e. degrees.

In attempting to synthesize the exact lattice structure which creates the
embedding problems, Downey [21] and Weinstein [103] isolated the notion of a
critical triple. A critical triple in a lattice consists of elements a0, a1 and b such
that a0 ∨ b= a1 ∨ b but a0 ∧ a1 � b (fig. 1.3)

More generally, in an upper semilattice (which may fail to be a lattice), the
meet requirement is replaced by c� a0, a1 → c� b. Weinstein also introduced
the notion of a weak critical triple (which we will not use in this manuscript);
there the meet requirement is replaced by c� a0, a1 → a0 � b∨ c. In the 1-3-1
lattice, the middle three elements, in any order, form a critical triple. Downey
actually constructed an initial segment of the c.e. degrees in which there are no
critical triples, and Weinstein did the same for weak critical triples.

The notion of non-low2-ness seemed too strong to capture the class of degrees
which bound a copy of the 1-3-1 lattice, but it was felt that something like that
should suffice. On the other hand, Walk [101] constructed an array noncom-
putable c.e. degree bounding no weak critical triples, and hence it was already
known that array noncomputability was not enough for such embeddings. In any

-1
0
1

8

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 8

CHAPTER 1

a0 b a1

Figure 1.3. A critical triple.

case it was presumed that bounding the 1-3-1 lattice is equivalent to bounding
a critical triple (or a weak critical triple). Our main result in this monograph
implies that this presumption is false, and completely characterises the amount
of permitting required to embed the 1-3-1 lattice.

1.3 TOWARD THE HIERARCHY OF TOTALLY

α-C.A. DEGREES

We now turn to discussing two levels of the new hierarchy that we introduce.
Some preliminary ideas and results appear in the companion papers [23, 25],
and some related results appeared after our work was discussed with colleagues.
Now we will discuss these ideas and results together in a mathematically, rather
than historically, coherent way. Later we will discuss in detail the content of this
monograph.

1.3.1 Totally ω-c.a. degrees

In 2005, J. Miller (unpublished) defined a non-uniform version of the class
of array computable degrees. We call a function ω-computably approximable
(ω-c.a.) if it has a computable approximation whose mind-change function is
bounded by some computable function. This is equivalent to the function being
weak truth-table reducible to H′. The notion is widely used in computabil-
ity, with applications in algorithmic randomness as well (for example, in [42, 44,
47, 48]).1

This first step toward our new hierarchy is inspired by the above charac-
terisation of array computable c.e. degrees as those which only contain func-
tions with computable approximations with mind-change functions bounded by

1The terminology “ω-c.a.” is new. In the literature one usually finds “ω-c.e.,” although
“ω-computable” is also used. In Chapter 2 below we justify the new terminology.

-1
0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 9

9

the identity. This is in some sense a “forced marriage” between two notions of
complexity: complexity in terms of Turing degree; and complexity in terms of
simplicity of approximations. ω-c.a. functions are in some sense relatively simple,
in that we can guess them with few mistakes; on the other hand, they can be Tur-
ing equivalent to 0′, making them as complicated as possible among all Δ0

2 func-
tions when we consider Turing reducibility. When we consider approximations
of all functions in a Turing degree, we get a new, useful concept. Thus Miller
defined:

Definition 1.2. A c.e. degree is totally ω-c.a. if every function in it is ω-c.a.

Array computability is a uniform version of this notion: it requires the same
bound on the mind-change function for all functions in the degree.

As discussed, this notion naturally aligns itself with a level of permitting.
Recall that in array noncomputable permitting (previously named “multiple
permitting”), each requirement plans infinitely many attempts at meeting it.
Roughly, for the nth attempt to succeed, it needs n many permissions on num-
bers associated with this attempt. This corresponds to the identity bound on
the number of mind changes. In non-totally ω-c.a. permitting, we again set
up infinitely many attempts, but we are allowed to wait to declare how many
permissions each attempt requires. Thus, for example, if the nth attempt is
set up at stage s, then we could require s many permissions; and s could be
much larger than n. For each requirement, the function mapping n to the
number of permissions required to meet the nth attempt is computable, but
different requirements will define different computable functions, likely with
no uniform computable bound on these functions when all requirements are
considered.

Using this notion of permitting, the class of totally ω-c.a. degrees captures
the dynamics of a number of constructions. The first result appeared in [25], in
which the authors, together with R. Weber, proved:

Theorem 1.3. The following are equivalent for a c.e. degree d:

(a) d bounds a critical triple in the c.e. degrees;
(b) d bounds a weak critical triple in the c.e. degrees;
(c) d is not totally ω-c.a.

Note that this theorem shows that the totally ω-c.a. degrees are naturally
definable in the c.e. degrees.

In this book we show another equivalence, characterising the dynamics of
an existing construction. It considers presentations of left-c.e. reals in the unit
interval [0, 1]. A real is left-c.e. if the left cut it defines in the rationals is c.e.
These reals are the measures of effectively open subsets of Cantor space; equiv-
alently, each such real equals the sum

∑
σ∈A 2−|σ| for some prefix-free c.e. set

-1
0
1

10

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 10

CHAPTER 1

A⊂ 2<ω. Such a set A is called a presentation of the sum, and is always com-
putable from the sum. However, presentations can be simpler than the sum; in
fact, every left-c.e. real has a computable presentation, even though the left-c.e.
real itself may be noncomputable. The question is whether we can always code
the complexity of a left-c.e. real into one of its presentations. In [32], Downey
and LaForte answered this question negatively in a strong way: they constructed
a noncomputable left-c.e. real, all of whose presentations are computable. The
dynamics of coding complexity into presentations are captured by the totally
ω-c.a. degrees:

Theorem 1.4.

(1) If a c.e. degree d is not totally ω-c.a. then there is a left-c.e. real ��T d and
a c.e. set B<T � such that every presentation of � is B-computable.

(2) If a left-c.e. real � has totally ω-c.a. degree then there is a presentation of �
which is Turing equivalent to �.

For more background and details see Chapter 5, where we prove Theorem 1.4.

After our results were announced, Barmpalias and the authors [7] obtained
yet another construction whose dynamics are captured by this class. Their
results concern the interaction of Turing and weak truth-table reducibility. They
showed that a c.e. degree is totally ω-c.a. if and only if every set in that degree
is weak truth-table reducible to a ranked set (equivalently, to a hyperimmune
set, or to a proper initial segment of a computable, scattered linear ordering).
In further work, Brodhead, Downey, and Ng [9] showed that the totally ω-c.a.
degrees capture a finite form of randomness.

Also, Adam Day [17] proved that a c.e. degree bounding a generic set which
could compute an indifferent subset for itself cannot be totally ω-c.a. In his
Ph.D. thesis, McInerney [71] has established similar results relating “multiple
genericity” and “integer valued martingales” to being totally ω-c.a.

In the same way that array computability has become a central area of
computability theory and its applications, we are confident that once researchers
become sensitized to the combinatorics involving the notion of total ω-c.a.-ness,
many further applications will be found.

1.3.2 Totally <ωω-c.a. degrees

As mentioned, contrary to expectation, we show in this monograph that in the
c.e. degrees, bounding critical triples is not equivalent to bounding the 1-3-1
lattice. Very roughly speaking, the “continuous tracing” used in the embedding
of the 1-3-1 lattice requires layers over layers of permitting. We now describe
the dynamics of the construction, without connecting them to the requirements;
more details will be given in Chapter 7.-1

0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 11

11

The basic cycle in the construction of a critical triple goes as follows. A
requirement starts defining a sequence x0, x1, x2, . . . of numbers which it may
want to enumerate into a c.e. set that we are building. At each stage s, we choose
another number xs and add it to the list. Then, possibly, at some stage t, a pri-
mary Σ1 event happens (the realisation of a follower), and we want to enumerate
these numbers into the sets, starting with xt and working backwards. For each
such number we need to wait for a secondary Σ1 event (a new length of agree-
ment of a minimal pair requirement). The requirement is met when the first
number x0 is enumerated. In a permitting argument, each such enumeration
needs permission, so to meet the requirement we need t many permissions. This
kind of permitting is precisely the kind given by non-totally ω-c.a. degrees.

In the 1-3-1 embedding, though, the number of minimal pair requirements
stronger than the one we are looking at makes the process more complicated.
If there is just one such requirement to contend with, the behaviour is just
like the critical triple embedding. If there are two, though, the process is as
follows:

(a) Define a sequence x0, x1, x2, . . . , adding a new number at each stage.
(b) When the primary Σ1 event happens, start with xt, and repeat the follow-

ing t times:

(i) If we are currently dealing with xj (for j� t), start appointing a sequence

yj0, y
j
1, y

j
2, . . . , adding a new number at each stage.

(ii) When a secondary Σ1 event happens at some stage s= sj , say, we start
enumerating the numbers yjs, y

j
s−1, . . . , each time waiting for some ter-

tiary Σ1 event.
(iii) When all numbers yji for i< sj have been enumerated, we also enu-

merate xj , and repeat the cycle with xj−1. If j=0, the requirement is
met.

When dealing with three minimal pair requirements, we add a layer:

(a) Define a sequence x1, x2, . . . , adding a new number at each stage.
(b) When the primary Σ1 event happens, start with xt, and repeat the follow-

ing t times:

(i) If we are currently dealing with xj , start appointing a sequence y
j
0, y

j
1, y

j
2,

. . . , adding a new number at each stage.
(ii) When a secondary Σ1 event happens at some stage s= sj , start with

yjs, and repeat the following s times:

(1) If we are currently dealing with yji (for i< s
j), we appoint a sequence

zj,i0 , zj,i1 , zj,i2 , . . . , adding a new number at each stage.

(2) When a tertiary Σ1 event happens, at some stage r= rj,i, we start
enumerating the numbers zj,ir , z

j,i
r−1, . . . , each time waiting for a

quaternary Σ1 event. -1
0
1

12

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 12

CHAPTER 1

(3) When all numbers zj,ik have been enumerated, we also enumerate

yji , and repeat the cycle with yji−1. If i=0 then we exit this cycle.

(iii) We enumerate xj ; we repeat the outer cycle with xj−1. If j=0, the requi-
rement is met.

How many permissions are needed to meet the requirement? With two min-
imal pair requirements constraining us, we need t+ s0 + s1 + · · ·+ st many per-
missions; with three, we need

t+

s0 + r0,0 + r0,1 + r0,2 + · · ·+ r0,s
0

+

s1 + r1,0 + r1,1 + r1,2 + · · ·+ r0,s
1

+

...

st+ rt,0 + rt,1 + rt,2 + · · ·+ rt,s
t

.

We come now to the key insight. The real question is not how many per-
missions are required, but what is the reason that the process of meeting a
requirement requires only finitely many steps. And the answer to the latter
question is that we can attach a transfinite ordinal number to the process, and
count down the ordinal along with the steps. With two minimal pair require-
ments, we start with the ordinal ω2. When stage t is discovered, we go down
to ω(t+1). When st is discovered, we descend to ωt+ st, and then decrease
by 1 each time we enumerate another yti . When yt0 is enumerated, we are
at ωt; when st−1 is discovered, we go down to ω(t− 1)+ st−1, and repeat.
When three minimal pair requirements are present, we need to start at ω3;
then we go down to ω2(t+1), then ω2t+ω(st+1), then ω2t+ωst+ rt,s

t

,

then decrease by 1 each time some zt,s
t

k is enumerated, and so on. Each time an

inner cycle is finished (we enumerate some yji) we go past some multiple of ω;
each time an outer cycle is finished (we enumerate some xj) we go past some
multiple of ω2.

In terms of permitting, the corresponding notion comes from Ershov’s hier-
archy of Δ0

2 functions. We give exact details in Chapter 2, but informally, for a
computable ordinal α, an α-computable approximation is a computable approxi-
mation 〈gs〉 of a Δ0

2 function g equipped with a counting down α which witnesses
the fact that gs(n) changes only finitely many times: it is a uniformly com-
putable sequence 〈os〉 of functions from N to α such that for all n, os(n)<α,
os+1(n)� os(n), and if gs+1(n) �= gs(n) then os+1(n)<os(n). The function g is
called α-computably approximable, or α-c.a. Note that for α=ω the notion coin-
cides with the definition above. We thus see that in the 1-3-1 embedding, very
roughly, to meet a requirement which has to contend with n stronger minimal
pair requirements, we need permission from a function which is not ωn-c.a. Thus
we define:

-1
0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 13

13

Definition 1.5. A c.e. degree is totally <ωω-c.a. if every function in it is ωn-c.a.
for some n.

And the main theorem in this monograph, which realises the intuitive descrip-
tion above, is:

Theorem 1.6. A c.e. degree bounds a copy of the 1-3-1 lattice if and only if it
is not totally <ωω-c.a.

Note that, as above, Theorem 1.6 shows that the class of totally <ωω-c.a.
degrees is naturally definable in the c.e. degrees.

Nonuniform anti-permitting arguments

When we show that a class of degrees captures the dynamics of a construction
(such as we do in Theorems 1.3 and 1.6) the argument has two parts: a per-
mitting argument, which shows that the construction can be performed below
a degree which permits accordingly; and an anti-permitting argument, which
shows the converse. The latter is not a priority argument; we usually have dif-
ferent attempts at constructing objects which give that direction of the theorem,
but these have very little interaction with each other. On the other hand, there
is a certain nonuniformity to the construction, in that one of the attempts will
succeed, but we cannot computably tell which. In the case of totally <ωω-c.a.
degrees, we have ω levels of nonuniformity, which means that even though no
injury occurs, only the oracle H(ω) can tell which of the constructions we per-
formed actually succeeds. This kind of argument, which we hinted at in [23], is
presented in this monograph (in Chapters 6 and 7) in full for the first time. We
believe that it will have wider applications.

1.3.3 The hierarchy of totally α-c.a. degrees

We have characterised the degrees which bound critical triples and degrees which
bound a copy of the 1-3-1 lattice; but we have not yet argued that these classes
are distinct, that is, that there is a degree which bounds a critical triple but
not a copy of the 1-3-1. This will come out of a general investigation into a
hierarchy of classes of degrees. The two classes under discussion are two levels
of this hierarchy.

Armed with the definition of α-c.a. functions (which, as discussed, will require
clarification, which we give in Chapter 2), we can extend the definitions above
and define a degree to be totally α-c.a. if every function in it is α-c.a.; and
more generally, to be totally <α-c.a. if every function in it is β-c.a. for some
β <α. All such degrees are low2. In the first part of this monograph, we give a
detailed investigation of these classes, and in particular we find which are the
proper levels of the hierarchy. For example, we show:

-1
0
1

14

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 14

CHAPTER 1

• there is a totally α-c.a. degree which is not totally β-c.a. for any β <α if and
only if α is a power of ω;

• there is a totally <α-c.a. degree which is not totally <β-c.a. for any β <α if
and only if α is a limit of powers of ω.

This, in particular, shows that there are ω many distinct levels between the
totally ω-c.a. degrees and the totally <ωω-c.a. degrees.

1.4 THE CONTENTS OF THIS MONOGRAPH

In the first part of the monograph, we introduce and investigate our new
hierarchy.

InChapter 2, we give a rigorous treatment of the notion ofα-c.a. functions. The
main issue is to properly define what we mean by a computable function o from N
to α, which is required for the definition of α-computable approximations. Natu-
rally, to deal with an ordinal α computably, we need a notation for this ordinal,
or more generally, a computable well-ordering of order-type α. To form the basis
of a solid hierarchy, the notion of α-c.a. should not depend on which well-ordering
we take, rather it should only depend on its order-type. Thus we cannot consider
all computable copies of α. Rather, we restrict ourselves to a class of particularly
well-behaved well-orderings, in a way that ensures that they are all computably
isomorphic. For example, when considering copies of ω2, we must compute not
only the collection of limit points and the successor function, but we also need to
know which copy of ω inside ω2 is which. In general, we need the Cantor normal
form to be computable. This turns out to be sufficient for small enough ordinals;
we develop the theory for ordinals α� ε0. The theory can be pushed further, but
not all the way up to ωCK1 ; we do not pursue such extensions here.

Having defined α-c.a. functions, we also (in Section 2.3) relate these func-
tions to iterations of the bounded jump (the jump inside the weak truth-table
degrees). This extends and solidifies work by Coles, Downey, and LaForte [15],
and independently Anderson and Csima [3]. Extending the familiar result for ω,
we show (Theorem 2.40) that a function is ωα-c.a. if and only if it is weak truth-
table reducible to the αth iteration of the bounded function jump; an analogous
result holds for sets.

In Chapter 3 we investigate the hierarchy of totally α-c.a. degrees. As men-
tioned above, we show precisely when this hierarchy collapses (Theorem 3.6), and
refine this hierarchy when we consider totally <α-c.a. degrees (Theorem 3.25).
We further consider uniform versions of our classes. Recall that the array com-
putable degrees were a uniform version of the totally ω-c.a. degrees, in that we
took a single computable bound on the mind-change function of approximations
of functions in the degree. We find the right formulation that generalises this to
define uniformly totally α-c.a. degrees, and show (Theorem 3.20) how they fit
in our hierarchy. For a general picture, see Figure 3.3.

-1
0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 15

15

1.4.1 Maximality

It is not common to find maximal elements of classes in the c.e. degrees; usually,
density prevails. However, in Chapter 4 we show that at every level of our main
hierarchy there are maximal degrees (Theorem 4.1). Thus, for example, there are
maximal degrees with respect to not bounding a critical triple, namely, maximal
totally ω-c.a. degrees. Since the totally ω-c.a. degrees are naturally definable,
we obtain a naturally definable antichain in the c.e. degrees; the only previously
known such antichain consisted of the maximal contiguous degrees (Cholak,
Downey, and Walk [14]).

On the other hand, we show (Theorem 4.12) that maximality cannot go too
far, that is, to the next level. For example, no totally ω-c.a. degree can be maxi-
mal totally ω2-c.a. A corollary of the argument shows that there are no maximal
totally <ωω-c.a. degrees, that is, no degrees maximal with respect to not bound-
ing a 1-3-1.

We remark that in further work with Katherine Arthur [5] we investigate
bounding by maximal degrees. For example, there are totally ω-c.a. degrees
bounded by no such maximal degrees. The general picture is interesting. We
suspect that, in general, the following holds:

• Let α�β� ε0 be powers of ω. Then every totally α-c.a. degree is bounded
by a maximal totally β-c.a. degree if and only if β�αω.

Further questions consider collapse of our hierarchy in upper cones. Theorem 4.12
implies that every totally ω-c.a. degree is bounded by a strictly greater degree
which is totally ω2-c.a. However we do not know if we can always make that
degree not totally ω-c.a. The best result so far, which appears in [5], implies
that every totally ω-c.a. degree is bounded by a totally ω4-c.a. degree which is
not totally ω-c.a. Is it ω2, or ω3? We cannot yet tell.

1.4.2 Calibrating the dynamics of constructions

The second part of the monograph consists of Chapters 5, 6, and 7, in which
we discuss and calibrate the dynamics of three different constructions. In Chap-
ter 5 we prove Theorem 1.4 about presentations of left-c.e. reals. In Chapter 7
we prove our main Theorem 1.6. In Chapter 6 we consider m-topped degrees,
continuing [23]. The notion of m-topped degrees comes from a general study of
the interaction between Turing reducibility and stronger reducibilities among
c.e. sets. For example, this study includes the contiguous degrees. A c.e. Turing
degree d ism-topped if it contains a greatest degree among the many-one degrees
of c.e. sets in d. Such degrees (other than 0′) were constructed in Downey and
Jockusch [29]. They are all low2. In [23] we showed that there are totally ωω-c.a.
m-topped degrees. Here we show that this is the best possible: no m-topped
degree is totally <ωω-c.a. (Theorem 6.1). We remark though that in this case
we cannot hope to get full equivalence: we cannot prove that every degree which
is not totally <ωω-c.a. bounds an m-topped degree. This is because m-topped

-1
0
1

16

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 16

CHAPTER 1

degrees cannot be low, whereas every level of our hierarchy contains both low
degrees and degrees which are low2 but not low.

1.4.3 Promptness

One can ask, regarding the embedding of the 1-3-1 lattice, what it would take to
get an embedding preserving the bottom, that is, an embedding whose bottom
degree is 0 (as is obtained in Lachlan’s original construction). We discuss this
in Chapter 8, where we introduce prompt versions of all levels in our hierarchy.
This generalises the already familiar notion of prompt permitting, which is the
prompt version of simple permitting. Prompt array noncomputable permission,
for example, allows us to construct a pair of separating classes whose elements
form minimal pairs (Theorem 8.22); whereas traditional (non-prompt) array
noncomputable permission only gives Turing incomparability [30]. Similarly, a
degree which is promptly not totally <ωω-c.a. bounds a copy of the 1-3-1 lattice
with bottom 0.

This however cannot be reversed: every high degree bounds a copy of the
1-3-1 lattice with bottom 0, and there are high degrees which are not promptly
simple (let alone promptly non-totally <ωω-c.a.). Informally what this says is
that there are at least two ways to get such an embedding: either by quickly
getting the precise number of permissions required; or by getting many permis-
sions (cofinitely many), in which case we can wait for the permissions and don’t
need them promptly.

It would be interesting to find a common generalisation.

1.5 AN APPLICATION TO ADMISSIBLE COMPUTABILITY

Combined with results of the second author, our work has an application to admi-
ssible computability. This is a generalisation of traditional computability to ordi-
nals beyond ω. In [46] it is shown that for any admissible ordinal α, the α-c.e.
degrees are not elementarily equivalent to the c.e. degrees. This was done in
cases, depending on the proximity of α to ω. In one case the separation between
the theories is not natural but relies on coding models of arithmetic. However
one result is:

Theorem 1.7 ([46]). Let α>ω be an admissible ordinal, and let a be an incom-
plete α-c.e. degree. The following are equivalent:

(1) a computes a cofinal ω-sequence in α.
(2) a bounds a copy of the 1-3-1 lattice.
(3) a bounds a critical triple.

Again, it is the analysis of continuous tracing that underlies this result. The
basic idea is the following. Consider again the dynamic aspect of the embedding

-1
0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 17

17

of a critical triple which we discussed above. We start by appointing elements
x0, x1, x2, . . . , adding one at each stage. When the primary Σ1 event happens
(the follower is realised), it is important (because of use considerations) that
we attempt to enumerate the elements xj starting with the last number xt and
working backwards.

Trying to do this when time goes beyond ω presents a completely new prob-
lem: after ω many stages, we will have elements xj for all j <ω, that is, we will
not have a last element. We cannot then peel it back, each step removing only
the last element. It turns out that this blockage is fundamental. The only case
it might be possible for a degree a to bound a critical triple is if it itself can see
that α is far from being a regular cardinal—if it can essentially re-order time
and space to order-type ω, so that the construction can be (at least after the
fact) seen to have taken ω steps, avoiding infinite sequences of numbers. In one
direction, effectively closed and unbounded sets are used to show that this is
necessary. In the other direction, a fine-structural result of Shore’s [87] says that
an incomplete degree of computable cofinality ω must be high, and can compute
a bijection between α and ω. Working below such a degree, we can translate back
to ω-computability, and use non-low2 permitting to embed the 1-3-1 lattice (for
a technical reason, we cannot quite use high permitting).

To sum, what this says is that once we go beyond ω, the fine distinctions
between totally ω-c.a. degrees and totally <ωω-c.a. degrees completely disap-
pear. Combined with the current work, this gives us a single, natural sentence
which separates the elementary theory of the c.e. degrees from the theory of the
α-c.a. degrees for any admissible α>ω.

Theorem 1.8. Let α�ω be admissible. The following are equivalent:

(1) There is an incomplete α-c.e. degree which bounds a critical triple but not
the 1-3-1 lattice.

(2) α=ω.

1.6 NOTATION AND GENERAL DEFINITIONS

We recap some notions that we discussed above, and introduce terminology
and conventions that will be used throughout the monograph. First, though,
we comment on the expected mathematical background a reader will need. We
assume that the reader has mastered the basics of computability theory, up to
and including basic finite-injury priority arguments, in particular the Friedberg-
Muchnik theorem, and basic infinite-injury priority constructions, mainly the
construction of a minimal pair of c.e. degrees, as performed on a priority tree. For
years, the standard reference in this area has been Soare’s [91]. Other possible
sources are the second chapter of [27], the first chapter of [74], Cooper’s [16],
Odifreddi’s [77], or Steffen Lempp’s unpublished notes on priority arguments
in computability theory, available on his website. We also assume some basic

-1
0
1

18

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 18

CHAPTER 1

information on ordinals and ordinal arithmetic; any standard set theory text
would be more than sufficient.

1.6.1 Computable approximations and enumerations

A computable approximation for a function f : ω→ω is a uniformly computable
sequence 〈fs〉s<ω of functions such that for all x, for almost all s, fs(x)= f(x).
In other words, f = lims fs when we equip ω with the discrete topology. Shoen-
field’s limit lemma [84] states that a function f is Δ0

2-definable if and only if
it is computable from the halting set H′ if and only if it has a computable
approximation. If A is a set (a subset of ω, identified with an element of Cantor
space) then a computable approximation of A is a sequence of sets.

A computable enumeration of a c.e. set A is a computable, ⊆-increasing
sequence of finite sets 〈As〉 such that A=

⋃
sAs. We can also think of a com-

putable enumeration as a computable approximation of A, again by taking
characteristic functions. We say that a number x is enumerated into As if x∈
As \As−1.

1.6.2 Turing functionals

A (Turing) functional is a c.e. set of triples 〈σ, x, y〉 consisting of a finite sequence
σ of natural numbers and a pair of natural numbers x and y. We consider such
triples as axioms, and sometimes write them as σ �→ (x, y). If f : ω→ω and Φ is a
functional, then we define the multi-valued function (i.e., relation) Φ(f)⊆ω×ω
by letting Φ(f, x)= y if there is some finite σ≺ f such that the axiom σ �→ (x, y)
is in Φ. We write Φ(f, x)↓ for x∈ domΦ(f) and Φ(f, x)↑ for x /∈ domΦ(f).

In general we allow functionals, especially the ones that we build, to be incon-
sistent. That is, we allow them to contain contradictory axioms: a pair of axioms
σ �→ (x, y) and τ �→ (z, w) such that σ and τ are comparable (that means that
σ� τ or τ �σ), x= z but y �=w. A functional Φ is called consistent relative to
an oracle f if Φ(f) is a partial function, i.e., is not multi-valued. A functional
is consistent if and only if it is consistent relative to every oracle.

The following are equivalent for f, g : ω→ω:

(1) there is a consistent functional Φ such that Φ(f)= g;
(2) there is a functional Φ, consistent relative to f , such that Φ(f)= g;
(3) g�T f .

If 〈Φs〉 is a computable enumeration of a functional Φ, then each Φs is also a
functional. If 〈fs〉 is a computable approximation of a function f : ω→ω, then
the finite multi-valued function Φs(fs) can be effectively obtained from s. If for
all s, Φs is consistent relative to fs, then Φ is consistent relative to f . Note that

if, further, Φ(f) is a total function, then we can extend 〈Φs(fs)〉 to a computable approximation

of Φ(f), since 〈domΦs(fs)〉 is uniformly computable. When the notation Φs(fs) becomes
unwieldy, we sometimes write Φ(f)[s], and in general may use Lachlan’s square
bracket notation.

-1
0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 19

19

Suppose that Φ is a functional which is consistent relative to an oracle f .
If x∈ domΦ(f), we also refer to Φ(f, x)= y as a “computation.” Let σ be the
shortest initial segment of f for which σ �→ (x, y) is an axiom in Φ. Often in fact
there will be a unique such initial segment. The string σ determines the use
of the computation, denoted by ϕ(f, x) (and when f is clear from the context,
by ϕ(x)). We will use two conflicting notions:

• If either f or Φ are given, then the use is the length of σ.
• If both f and Φ are built by us then we let the use be |σ| − 1, the “greatest

number queried during the computation.” In this case f is usually a c.e. set A.
The idea is that we may want to void the computation by enumerating the
use ϕ(x) into A.

If 〈Φs〉 is a computable enumeration of a Turing functional Φ, and 〈fs〉 is a
computable approximation of a function f (and again we assume that for all s,
Φs is consistent relative to fs), s<ω and x∈ domΦs(fs), then we say that the
computation Φs(fs, x) is destroyed (or injured) at stage s+1 if σ⊀ fs+1, where σ
as above is the shortest axiom applying to f giving the computation at stage s.
That is, if fs+1�u �= fs�u where u=ϕs(fs, x) is the use of the computation, in
the case in which either f or Φ are given; if both are built by us, then the
computation is destroyed if fs�u+1 �= fs+1�u+1, and as described above, this will
often happen because we enumerate u into fs+1.

In contrast, we say that a computation Φs(fs, x)= y is f -correct if σ≺ f . The
fundamental fact about Turing computations, used without mention through-
out computability theory, is that x∈ domΦ(f) if and only if there is a stage s
(equivalently, for almost all stages s) such that x∈ domΦs(fs) by an f -correct
computation. When working with c.e. sets we often use the fact that correct
computations never go away: if 〈As〉 is a computable enumeration of a c.e. set
A, and Φs(As, x) is an A-correct computation, then for all t� s, x∈ domΦt(At)
by the same computation.

The following lemma is used when we build functionals which apply to c.e.
sets that we enumerate.

Lemma 1.9. Let 〈Φs〉 be a computable enumeration of a functional Φ, and let
〈As〉 be a computable enumeration of a c.e. set A. Suppose that for all s,

(1) if an axiom σ �→ (x, y) is enumerated into Φs, then σ≺As;
(2) for each x, at most one axiom σ �→ (x, y) is enumerated into Φs.

Let s<ω, and suppose that Φs is consistent for As. Suppose that for all x<ω,

(3) if an axiom σ �→ (x, y) is enumerated into Φs+1, and x∈ domΦs(As), then
some number u�ϕs(As, x) is enumerated into As+1.

Then Φs+1 is consistent for As+1.

Hence if conditions (1)–(3) hold at every stage s, then Φ is consistent for A.
Note that usually Φ will not be consistent for all oracles: we could void a

-1
0
1

20

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 20

CHAPTER 1

computation Φs(As, x) by enumerating u=ϕs(As, x) into As+1, and then define
a new computation Φs+1(As+1, x) with smaller use, so Φs+1 may be inconsistent
for As.

Convention 1.10. We often assume that for a given consistent functional Φ,
for any oracle f , domΦ(f) is an initial segment of ω. That is, we require that if
σ �→ (x, y) is in Φ, then for all x′<x there is some σ′ �σ and some y′ such that
σ′ �→ (x′, y′) is also in Φ. We simply prevent σ �→ (x, y) from entering Φ until we
see the other necessary axioms.

In this situation we also assume that if 〈Φs〉 is a computable enumeration of
a Turing functional Φ, then for all s and f , domΦs(f) is an initial segment of ω.

The point is that if we are only interested in total functions computable from
an oracle f , then we can restrict ourselves to functionals of the type described.

We let 〈Φe〉 be some enumeration of all consistent functionals; associated
with which we are given uniformly computable enumerations 〈Φe,s〉 of Φe.

Convention 1.11. We sometimes identify natural numbers with the von Neu-
mann ordinals isomorphic to them; that is, we identify the natural number n with
the set {0, 1, 2, . . . , n− 1}. In particular, if for some functional Φ and oracle f ,
domΦ(f) is an initial segment of ω (per Convention 1.10), then we write x<
domΦ(f) for x∈ domΦ(f), and x�domΦ(f) for {0, 1, . . . , x− 1}⊆domΦ(f).

Functionals which take more than one oracle are treated in a similar fashion.
For example, when taking two oracles, axioms will be of the form (σ, τ) �→ (x, y).
Usually, for a pair of oracles f, g in which we are interested, for each x there
will be at most one pair of strings σ≺ f and τ ≺ g such that (σ, τ) �→ (x, y) is in
the functional Φ we are building or examining. These determine the f -use and
the g-use of the computation Φ(f, g, x), according to the notational convention
discussed above. When Φ is not built by us we often assume that the f -use
and the g-use are the same, and that common value is referred to simply as the
use ϕ(f, g, x) of the computation.

1.6.3 Priority arguments and tree constructions

In our constructions we keep the convention of small numbers.

Convention 1.12. At stage s of a construction, all numbers played by the
“opponent” are bounded by s. These are the values of functions that are not
defined by us during the construction.

On the other hand, the constructions would often call on us to define new
values for functions that are large. This means that the new values are picked to
be numbers that are larger than any other number previously used or observed
in the construction, including the stage number.-1

0
1

INTRODUCTION

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 21

21

Most terminology we will use in priority constructions is common. We will
attempt to meet requirements. Positive requirements are those which can be met
by enumerating numbers into c.e. sets we are enumerating. Negative requirements
are met by imposing restraint on other actors. The numbers enumerated into
the c.e. sets are sometimes called followers. In the standard Friedberg-Muchnik
construction, for example, a requirement attempting to ensure that Φ(A) �=B
will appoint a follower x, which means choose some number x (that will not
be used by any other requirement), wait until we see that Φ(A, x)↓=0, and
then enumerate it into B. The prototypical negative requirements, on the other
hand, are met in the Lachlan-Yates minimal pair construction. In most of our
constructions, restraint will be imposed by initialising other requirements. Typi-
cally, initialising a positive requirement means that any follower x it appointed is
cancelled : this means that the number x will not be involved in the construction
any longer. Any new follower will be chosen to be large.

Tree constructions, namely priority constructions done with the aid of a tree
of strategies, are now standard; a reference is Chapter XIV of [91]. Elements of
the tree are called strategies, or nodes ; these are finite sequences of symbols. To
describe the tree of strategies, we give two pieces of information:

(a) An association of requirements for nodes; we say that a node works for the
requirement associated with it. Often, but not always, all nodes of a given
level of the tree work for the same requirement.

(b) For nodes working for some requirement, the list of outcomes of these nodes.

The tree is then defined recursively. The empty node is always on the tree of
strategies; if a node σ has already been determined to lie on the tree of strategies,
and a requirement R has been associated with it, then the immediate successors
of σ on the tree are the nodes of the form σ ô, where o is a possible outcome for
nodes working for R.

The collection of possible outcomes of any node will be linearly ordered; we
say that an outcome o is stronger than an outcome o′ if o< o′. This ordering
induces a linear ordering of the tree of strategies, by taking a lexicographic
amalgamation of the orderings of outcomes: σ < τ if σ≺ τ , or if there are η, o
and o′ such that σ� η ô, τ � η ô′, and o< o′. We say that a node σ is stronger
than a node τ if σ < τ , and that a node σ lies to the left of a node τ if σ < τ but
σ⊀ τ . We sometimes write σ <L τ ; this has nothing to do with the constructible
universe.

At any stage s, the construction describes the (finite) collection δs of nodes
that are accessible at stage s. In our constructions this will always be an initial
segment of the tree of strategies, linearly ordered by extension of nodes. We
will not use constructions with links. Usually, the empty node 〈〉 is accessible at
every stage.

We then say that a node σ lies on the true path δω if there are infinitely many
stages s of the construction such that σ ∈ δs (that is, such that σ is accessible at
stage s), but the same is not true for any node τ that lies to the left of σ. The -1

0
1

22

125-81390 Downey Hierarchy 4p 6th February, 2020 08:06 6.125x9.25 Page 22

CHAPTER 1

true path δω will be a linearly ordered initial segment of the tree of strategies.
We will need to prove that the true path is infinite.

As with simpler constructions, tree constructions will involve initialisations,
this time of nodes rather than of requirements. Again, when a node is initialised,
all parameters associated with the node (such as followers) are removed (or
cancelled), and new ones will have to be defined, either immediately, or more
often, at the next stage at which the node is accessible. When a stage ends, every
node which lies to the right of an accessible node (a node in δs) is initialised.
Often, but not always, nodes extending the longest node in δs are also initialised
at the end of stage s. We ensure that whenever a node σ is initialised, and τ is
a node weaker than σ, then τ is also initialised at the same time.

We say that the construction is fair to a node σ if σ is initialised only
finitely many times (i.e., at only finitely many stages of the construction). The
main fairness lemma for each construction will state that the construction is
fair to every node on the true path δω. If σ is a node on the true path and the
construction is not fair to σ then there will be some node τ ≺σ on the true path
which initialises σ at infinitely many stages. This is because initialisation has to
respect the priority ordering; no node weaker than σ can initialise σ.

Other standard conventions of priority constructions are employed without
mention. For example, we use “stickiness” or “persistence” of parameters: if,
for example, a requirement R or strategy σ has a follower at some stage s, and
the requirement or node is not tampered with (e.g., initialised) at stage s+1,
say, then that follower is still considered to be a follower for the requirement or
strategy at stage s+1.

-1
0
1

