Contents

Acknowledgements .. xi

1 Introduction .. 1

1 Preamble .. 3
 1.1 How to Read This Book ... 3
 1.2 How to Work This Book ... 5
 1.3 What This Book Will Not Do ... 5

2 What Is a Research Design? ... 6
 2.1 MIDA: The Four Elements of a Research Design .. 6
 2.2 Declaration, Diagnosis, Redesign ... 14
 2.3 Example: A Decision Problem ... 17
 2.4 Putting Designs to Use ... 22

3 Research Design Principles ... 24

4 Getting Started .. 28
 4.1 Installing R .. 28
 4.2 Declaration ... 29
 4.3 Diagnosis ... 30
 4.4 Redesign ... 31
4.5 Library of Designs ... 32
4.6 Long-Term Code Usability... 32

II Declaration, Diagnosis, Redesign 33

5 Declaring Designs ... 35
5.1 Definition of Research Designs................................. 35
5.2 Declaration in Code .. 38

6 Specifying the Model .. 41
6.1 Elements of Models.. 42
6.2 Types of Variables in Models 46
6.3 How to Specify Models .. 48
6.4 Summary... 51

7 Defining the Inquiry ... 52
7.1 Elements of Inquiries ... 53
7.2 Types of Inquiries .. 58
7.3 How to Define Inquiries .. 61
7.4 Summary... 64

8 Crafting a Data Strategy ... 65
8.1 Elements of Data Strategies 67
8.2 Challenges to Data Strategies 87
8.3 Summary... 91

9 Choosing an Answer Strategy .. 92
9.1 Elements of Answer Strategies 92
9.2 Types of Answer Strategies 97
9.3 How to Choose an Answer Strategy 107
9.4 Summary... 115
10 Diagnosing Designs ... 116
 10.1 Elements of Diagnoses 118
 10.2 Types of Diagnosands ... 122
 10.3 Estimation of Diagnosands 124
 10.4 How to Diagnose Designs 131
 10.5 Summary .. 136

11 Redesigning .. 137
 11.1 Redesigning over Data Strategies 137
 11.2 Redesigning over Answer Strategies 143
 11.3 Summary .. 146

12 Design Example .. 148
 12.1 Declaration in Words .. 148
 12.2 Declaration in Code .. 149
 12.3 Diagnosis .. 151
 12.4 Redesign .. 152

13 Designing in Code ... 154
 13.1 Model .. 154
 13.2 Inquiry .. 164
 13.3 Data Strategy .. 166
 13.4 Answer Strategy .. 169
 13.5 Declaration .. 173
 13.6 Diagnosis .. 175
 13.7 Redesign .. 179

III Research Design Library .. 181

14 Research Design Library ... 183
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Observational: Descriptive</td>
<td>185</td>
</tr>
<tr>
<td>15.1</td>
<td>Simple Random Sampling</td>
<td>185</td>
</tr>
<tr>
<td>15.2</td>
<td>Cluster Random Sampling</td>
<td>190</td>
</tr>
<tr>
<td>15.3</td>
<td>Multilevel Regression and Poststratification</td>
<td>193</td>
</tr>
<tr>
<td>15.4</td>
<td>Index Creation</td>
<td>198</td>
</tr>
<tr>
<td>16</td>
<td>Observational: Causal</td>
<td>203</td>
</tr>
<tr>
<td>16.1</td>
<td>Process Tracing</td>
<td>203</td>
</tr>
<tr>
<td>16.2</td>
<td>Selection-on-Observables</td>
<td>208</td>
</tr>
<tr>
<td>16.3</td>
<td>Difference-in-Differences</td>
<td>211</td>
</tr>
<tr>
<td>16.4</td>
<td>Instrumental Variables</td>
<td>216</td>
</tr>
<tr>
<td>16.5</td>
<td>Regression Discontinuity Designs</td>
<td>221</td>
</tr>
<tr>
<td>17</td>
<td>Experimental: Descriptive</td>
<td>227</td>
</tr>
<tr>
<td>17.1</td>
<td>Audit Experiments</td>
<td>228</td>
</tr>
<tr>
<td>17.2</td>
<td>List Experiments</td>
<td>232</td>
</tr>
<tr>
<td>17.3</td>
<td>Conjoint Experiments</td>
<td>236</td>
</tr>
<tr>
<td>17.4</td>
<td>Behavioral Games</td>
<td>242</td>
</tr>
<tr>
<td>18</td>
<td>Experimental: Causal</td>
<td>249</td>
</tr>
<tr>
<td>18.1</td>
<td>Two-Arm Randomized Experiments</td>
<td>250</td>
</tr>
<tr>
<td>18.2</td>
<td>Block-Randomized Experiments</td>
<td>257</td>
</tr>
<tr>
<td>18.3</td>
<td>Cluster-Randomized Experiments</td>
<td>260</td>
</tr>
<tr>
<td>18.4</td>
<td>Subgroup Designs</td>
<td>263</td>
</tr>
<tr>
<td>18.5</td>
<td>Factorial Experiments</td>
<td>266</td>
</tr>
<tr>
<td>18.6</td>
<td>Encouragement Designs</td>
<td>271</td>
</tr>
<tr>
<td>18.7</td>
<td>Placebo-Controlled Experiments</td>
<td>279</td>
</tr>
<tr>
<td>18.8</td>
<td>Stepped-Wedge Experiments</td>
<td>283</td>
</tr>
<tr>
<td>18.9</td>
<td>Randomized Saturation Experiments</td>
<td>288</td>
</tr>
<tr>
<td>18.10</td>
<td>Experiments over Networks</td>
<td>292</td>
</tr>
</tbody>
</table>
19 Complex Designs .. 299
 19.1 Discovery Using Causal Forests 299
 19.2 Structural Estimation ... 305
 19.3 Meta-analysis ... 310
 19.4 Multi-site Studies .. 313

IV Research Design Lifecycle .. 319

20 Research Design Lifecycle .. 321

21 Planning .. 322
 21.1 Ethics ... 322
 21.2 Partners ... 326
 21.3 Funding ... 329
 21.4 Piloting ... 330
 21.5 Criticism ... 333
 21.6 Preanalysis Plan .. 334

22 Realization .. 338
 22.1 Pivoting ... 338
 22.2 Populated Preanalysis Plan 340
 22.3 Reconciliation ... 341
 22.4 Writing ... 344

23 Integration .. 347
 23.1 Communicating .. 348
 23.2 Archiving .. 349
 23.3 Reanalysis .. 351
 23.4 Replication .. 356
 23.5 Meta-analysis ... 358
V Epilogue 361

24 Epilogue .. 363

VI References 365

Bibliography .. 367
Index .. 377
CHAPTER 1

Preamble

This book introduces a new way of thinking about research designs in the social sciences. Our hope is that this approach will make it easier to develop and to share strong research designs.

At the heart of our approach is the MIDA framework, in which a research design is characterized by four elements: a model, an inquiry, a data strategy, and an answer strategy. We have to understand each of the four on their own and also how they interrelate. The design encodes your beliefs about the world, it describes your questions, and it lays out how you go about answering those questions, in terms of both what data you collect and how you analyze it. In strong designs, choices made in the model and inquiry are reflected in the data and answer strategies, and vice versa.

We think of designs as objects that can be interrogated. Each of the four design elements can be “declared” in computer code and—if done right—the information provided is enough to “diagnose” the quality of the design through computer simulation. Researchers can then select the best design for their purposes by “redesigning” over alternative, feasible designs.

This way of thinking pays dividends at multiple points in the research design lifecycle: planning the design, implementing it, and integrating the results into the broader research literature. The declaration, diagnosis, and redesign process informs choices made from the beginning to the end of a research project.

1.1 How to Read This Book

We had multiple audiences in mind when writing this book. First, we were thinking of people looking for a high-level introduction to these ideas. If we only had 30 minutes with a person to try and communicate the core ideas, we would give them Part I. We were thinking of people who are new to the practice of research design and who are embarking on their first empirical projects. The MIDA framework introduced in Part I accommodates many different empirical approaches: qualitative and quantitative, descriptive and causal, observational and experimental. Beginners starting out in any of these traditions can use our framework to
consider how the design elements in those approaches fit together. We were also thinking of researchers-in-training: graduate students in seminar courses where the main purpose is to read papers and discuss the credibility of research findings. Such discussions can sometimes feel like a laundry list of complaints, but we hope our framework can focus attention on the most relevant issues. What, exactly, is the inquiry? Is it the right one to be posing? Are the data and answer strategies suited to the inquiry? We were also thinking of funders and decision-makers, who often wish to assess research in terms not of its results but of its design. Our approach provides a way of defining the design and diagnosing its quality.

Part II is more involved. We provide the formal foundations of the MIDA framework. We walk through each component of a research design in detail, describe the finer points of design diagnosis, and explain how to carry out a “redesign.” We hope Part II will resonate with several audiences of applied researchers both inside and outside of academia. We imagine it could be assigned early in a graduate course on research design in any of the social sciences. We hope data scientists and monitoring and evaluation professionals will find value in our framework for learning about research designs. Scholars will find value in declaring, diagnosing, and redesigning designs whether they are implementing randomized trials or multi-method archival studies, or calibrating structural theories with data.

In Part III, we apply the general framework to specific research designs. The result is a library of common designs. Many empirical research designs are included in the library, but not all. The set of entries covers a large portion of what we see in current empirical practice across social sciences, but it is not meant to be exhaustive.

We are thinking of three kinds of uses for entries in the design library. Collectively, the design entries serve to illustrate the fundamental principles of design. The entries clarify the variety of ways in which models, inquiries, data strategies, and answer strategies can be connected and show how high-level principles operate in common ways across very different designs. The second use is pedagogical. The library entries provide hands-on illustrations of designs in action. A researcher interested in understanding the “regression discontinuity design,” for example, can quickly see a complete implementation and learn under what conditions the standard design performs well or poorly. They can also compare the suitability of one type of design against another for a given problem. We emphasize that these descriptions of different designs provide entry points but they are not exhaustive, so we refer readers to recent methodological treatments of the different topics. The third use is as a starter kit to help readers get going on designs of their own. Each entry includes code for a basic design that can be fine-tuned to capture the specificities of particular research settings.

The last section of the book describes how our framework can help at different stages of the research process. Each of these sections should be readable for anyone who
has read Part I. The entry on preanalysis plans, for example, can be assigned in an experiments course as guidance for students filing their first preanalysis plan. The entry on research ethics could be discussed among coauthors at the start of a project. The entry on writing a research paper could be assigned to college seniors writing their first original research papers.

1.2 How to Work This Book

We will often describe research designs not just in words, but in computer code. If you want to work through the code and exercises, fantastic. This path requires investment in R, the tidyverse, and the DeclareDesign software package. Chapter 4 helps get you started. We think working through the code is very rewarding, but we understand that there is a learning curve. You could tackle the declaration, diagnosis, and redesign processes using any computer language you like,1 but it is easier in DeclareDesign because the software guides you to articulate each of the four design elements.

If you want nothing to do with the code, you can skip it and just focus on the text. We have written the book so that understanding of the code is not required in order to understand research design concepts.

1.3 What This Book Will Not Do

This is a research design book, not a statistics textbook, or a cookbook with recipes applicable to all situations. We will not derive estimators, we will provide no guarantees of the general optimality of designs, and we will present no mathematical proofs. Nor will we provide all the answers to all the practical questions you might have about your design.

What we do offer is a language to express research designs. We can help you learn that language so you can describe your own design in it. When you can declare your design in this language, then you can diagnose it, figure out if it works the way you think it should, and then improve it through redesign.

1 On our Web site, we provide examples in R, Python, Stata, and Excel.
Index

A
Abadie, A., 111
Aguijar, R., 242
Ahram, A., 207
answer strategy, 12–13, 36, 48, 92–115; Bayesian, 102; characterization, 93; examples, 13; procedure, 96
archiving, 349
Ardchar, A. A., 288
assignment: block randomized, 78–80; cluster randomized, 78–80; complete randomized, 78–79, 186; multi-arm random, 80; nonrandomized, 83–84; saturation, 78–80, 288–291; simple randomized, 80; stepped-wedge random, 82, 283–288; response-adaptive strategies, 83
attrition, 88–89
audit experiments, 228–232; design examples, 231–232
Avdeenko, A., 248
Average Treatment Effect (ATE), 36, 53, 108, 148, 267, 288
Average Treatment Effect on the Treated (ATT), 53, 58, 59, 214
Average Treatment Effect on the Untreated (ATU), 54, 58

B
Baron, H., 323
Bateson, R., 211
Bauer, P. C., 305
Baum, M. A., 305
Bayesian learning, 123
behavioral games, 242–248; design examples, 248
Berinsky, A. J., 266
bias, 123, 129
bias-eliminated coverage, 123
bias-variance trade-off, 143; illustration, 145
Birkelund, G., 231
Bisbee, J., 194
Blair, G. 312
Blair, R. A., 278
block-randomized experiments, 257–260; design examples, 260
Bonilla, T., 337
Boerghardt, E., 208
Bradley, V. C., 189
Broockman, D., 202, 282

C
Carnegie, A., 226
Carreri, M., 216
Castillo, A. V., 278
causal forest designs, 299–305; design examples, 305
Christensen, D., 312
Clemm von Hohenberg, B., 305
corner-randomized experiment, 260–263; design examples, 263
corner random sample, 190–193; design examples, 193
Collins, J. E., 266
communicating, 348–349
compliance types, 87–88, 218, 272–273, 276–282
Complier Average Causal Effect (CACE), 54, 57, 273–278, 282
Conditional Average Treatment Effect (CATE), 57, 165, 251, 267–270, 343
conjoint experiments, 236–242; design examples, 241–242
Cook, T., 53
Cooper, J., 283
Copock, A., 231, 236, 298, 310, 312
Coverage, 118, 123, 129, 131
criticism, 333–234
crossover design, 82–83
Cruz, C., 236

D
data strategy, 11–12, 36, 65–91; challenges, 83–91; elements, 27–85; examples, 12; illustration, 88
deception, 242, 247
de Chaisemartin and d’Haultfoeuille estimator, 212, 214–215
declaration, diagnosis, redesign workflow, 14–17;
example, 17
design declaration, 14, 35–40; in code, 29; complete,
118
design diagnosis, 14–15, 116–136; analytic, 124–
126; by simulation, 126–130; under model
uncertainty, 133–135
DesignLibrary, 32
diagnosand, 15–16, 118; definition, 116, 118;
diagnosand-completeness, 48, 118; estimation,
124; examples, 123; statistics, 118–119
diagnosis, 30
diagnostic statistics, 15; of competing models, 135;
definition, 15, 118–119; examples, 122
difference-in-differences, 211–216; design examples,
215–216
Directed Acyclic Graphs (DAGs), 43–44
discovery, 299–305; design examples, 305
Druckman, J. N., 305
Dube, O., 216
Dunning, T., 317

E
ecker, U.K.H., 266
eckles, D., 288
Egger, D., 292
encouragement designs, 271–279; design examples,
278–279
Epstein, Z., 288
estimand, 10–11
ethics, 322–329
excludability assumption, 50, 89–90, 219, 274
exogeneity assumption, 219, 274
expected maximum cost, 123
experiments over networks, 292–298; design
examples, 298

F
factorial designs. See factorial experiments
factorial experiments, 266–271; design examples,
270–271
Fang, A., 232
Farrell, B. D., 298
Fisher, R. A., 111
Flaxman, S., 189
Foos, F., 113
Francois, P., 310
Frederiksen, K. V. S., 317
Freedman, D., 255
Frey, A., 310
funding, 329

G
gelman, A., 116
gerber, A. S., 89, 113, 124–125, 285, 288, 327
Gilligan, M., 248
green, D. P., 124–125, 263, 283, 298, 327
Green, J., 305
Gulzar, S., 148
guess, A., 232

H
Hauschuefer, J., 292
Humphreys, M., 76, 103, 232, 306, 323
hypothesis tests, 99–102, 113–115, 120

I
Imai, K., 125, 233, 259
index creation, 198–202; design examples, 202
instrumental variables, 216–221; design examples,
221
inquiry, 10–11, 36, 52–64; causal, 53; causal attribu-
tion, 58–60; complex counterfactual, 60;
with continuous causal variables, 60–61; data-
dependent, 58; descriptive, 36, 53, 55–56, 185;
examples, 11; outcomes, 9, 55; units, 9, 53–55;
values, 9, 54 (see also estimand)
instrumental variables, 46, 203, 216–221; design
examples, 221
Intention-to-treat (ITT), 218, 274–275
interference, 87, 90–91
interval estimators, 104–107
Intra-cluster Correlation (ICC), 158, 190,
260–263
Isakov, M., 189
Iyengar, S., 248

J
Jacobs, A., 76, 103, 204
Jefferson, H., 202

K
Kalla, J. 202, 259, 282
Kao, K., 241
Karpowitz, C. F., 270
Khan, M., 148
Kirkland, P., 226
Krasno, J. S., 298
Kuriwaki, S., 189

L
Lance, B., 231
Larsen, E. N., 231
Lax, J. R., 198
Lazer, D., 305
Lenoir, B., 298
Lewandowsky, S., 266
Lin, J., 305
Lin, W., 255
Lin estimator, 255–257
list experiments, 232–236; design examples, 236
Local Average Treatment Effect (LATE), 54, 222,
273
López-Moctezuma, G., 310
Lyall, J., 259, 323
Sejdinovic, D., 189
selection-on-observables, 208–211; design examples, 211
Siddiqui, N., 221
Simonson, M., 305
simulation, 116–117, 125–126; error, 130–131; in MIDA, 117. See also Monte Carlo simulation
Slough, T., 323
Snyder, J., 208
Stable Unit Treatment Value Assumption (SUTVA), 251
statistical power. See power
Stecula, D., 190
stepped-wedge experiments, 283–288; design examples, 288
Stokes, L., 221
Stokes, S., 193
structural estimation, 305–310; design examples, 309–310
subgroup designs, 263–266; design examples, 266
success, 15, 17, 19, 123, 331
Swire, B., 266

two-way fixed effects estimator, 214–215
Type I error, 102, 123
Type II error, 102, 120, 123
Type-S error rate, 116, 123

U
uncertainty, 94–95; Bayesian, 94; frequentist, 95
UTOS framework, 53

V
value for money, 124, 329
variable, latent, 198–202

W
Walker, M. W., 292
Warren, S. S., 278
Warshaw, C., 198
Weintraub, M., 278
Westwood, S., 248
Wilke, A. M., 271, 283, 306
Wood, E., 323
writing, 344–346

Y
Yemane, R., 231
Young, L., 323

Z
Zelizer, A., 298
Zingher, J. N., 298