© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents

List of Color Plates ix
Preface xi
Prologue: Cambridge, England, 1993 1
1 Mesopotamia, 1800 bCE 4
Sidebar 1: Did the Egyptians Know It? 13
2 Pythagoras 17
3 Euclid's Elements 32
Sidebar 2: The Pythagorean Theorem in Art, Poetry, and Prose 45
4 Archimedes 50
5 Translators and Commentators, 500-1500 ce 57
(6) François Viète Makes History 76
I From the Infinite to the Infinitesimal 82
Sidebar 3: A Remarkable Formula by Euler 94
B 371 Proofs, and Then Some 98
Sidebar 4: The Folding Bag 115
Sidebar 5: Einstein Meets Pythagoras 117
Sidebar 6: A Most Unusual Proof 119
(9) A Theme and Variations 123
Sidebar 7: A Pythagorean Curiosity 140
Sidebar 8: A Case of Overuse 142
1 (1) Strange Coordinates 145
11 Notation, Notation, Notation 158
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
12 From Flat Space to Curved Spacetime 168
Sidebar 9: A Case of Misuse 177
13 Prelude to Relativity 181
14 From Bern to Berlin, 1905-1915 188
Sidebar 10: Four Pythagorean Brainteasers 197
15 But Is It Universal? 201
16 Afterthoughts 208
Epilogue: Samos, 2005 213
Appendixes
A. How did the Babylonians Approximate $\sqrt{2}$? 219
B. Pythagorean Triples 221
C. Sums of Two Squares 223
D. A Proof that $\sqrt{2}$ is Irrational 227
E. Archimedes' Formula for Circumscribing Polygons 229
F. Proof of some Formulas from Chapter 7 231
G. Deriving the Equation $x^{2 / 3}+y^{2 / 3}=1$ 235
H. Solutions to Brainteasers 237
I. A Most Unusual Proof 241
Chronology 245
Bibliography 251
Illustrations Credits 255
Index 257

Mesopotamia, 1800 bce

We would more properly have to call
"Babylonian" many things which the Greek
tradition had brought down to us as
"Pythagorean."
-Otto Neugebauer, quoted in Bartel van der Waerden, Science Awakening, p. 77

The vast region stretching from the Euphrates and Tigris Rivers in the east to the mountains of Lebanon in the west is known as the Fertile Crescent. It was here, in modern Iraq, that one of the great civilizations of antiquity rose to prominence four thousand years ago: Mesopotamia. Hundreds of thousands of clay tablets, found over the past two centuries, attest to a people who flourished in commerce and architecture, kept accurate records of astronomical events, excelled in the arts and literature, and, under the rule of Hammurabi, created the first legal code in history. Only a small fraction of this vast archeological treasure trove has been studied by scholars; the great majority of tablets lie in the basements of museums around the world, awaiting their turn to be deciphered and give us a glimpse into the daily life of ancient Babylon.

Among the tablets that have received special scrutiny is one with the unassuming designation "YBC 7289," meaning that it is tablet number 7289 in the Babylonian Collection of Yale University (fig. 1.1). The tablet dates from the Old Babylonian period of the Hammurabi dynasty, roughly 1800-1600 bce. It shows a tilted square and its two diagonals, with some marks engraved along one side and under the horizontal diagonal. The marks are in cuneiform (wedge-shaped) characters, carved with a stylus into a piece of soft clay which was then dried in the sun or baked in an oven. They turn out to be numbers, written in the peculiar Babylonian numeration system that used the base 60. In this sexagesimal system, numbers up to 59 were written in essentially our modern base-ten numeration system, but without a zero. Units were written as vertical Y-shaped notches, while tens were marked with similar notches written horizontally. Let us denote these symbols by \mid and - , respectively. The number 23 , for example, would be written as - - ||| When a number exceeded 59 ,
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Mesopotamia, 1800 bce

Figure 1.1. YBC 7289
it was arranged in groups of 60 in much the same way as we bunch numbers into groups of ten in our base-ten system. Thus, 2,413 in the sexagesimal system is $40 \times 60+13$, which was written as - - - - ||| (often a group of several identical symbols was stacked, evidently to save space).

Because the Babylonians did not have a symbol for the "empty slot"-our modern zero-there is often an ambiguity as to how the numbers should be grouped. In the example just given, the numerals - - - - _ ||| could also stand for $40 \times 60^{2}+13 \times 60=144,780$; or they could mean $40 / 60+$ $13=13.666$, or any other combination of powers of 60 with the coefficients 40 and 13. Moreover, had the scribe made the space between - - - and _ ||| too small, the number might have erroneously been read as - -
 must be deduced from the context, presenting an additional challenge to scholars trying to decipher these ancient documents.

Luckily, in the case of YBC 7289 the task was relatively easy. The number along the upper-left side is easily recognized as 30 . The one immediately under the horizontal diagonal is $1 ; 24,51,10$ (we are using here the modern notation for writing Babylonian numbers, in which commas separate the sexagesimal "digits," and a semicolon separates the integral part of a number from its fractional part). Writing this number in our base-10 system, we get $1+24 / 60+51 / 60^{2}+10 / 60^{3}=1.414213$, which is none other than the decimal value of $\sqrt{2}$, accurate to the nearest one hundred thousandth! And when this number is multiplied by 30 , we get 42.426389 , which is the sexagesimal number $42 ; 25,35$-the number on the second line below the diagonal. The conclusion is inescapable: the Babylonians knew the relation between the length of the diagonal of a square and its side, $d=a \sqrt{2}$. But this in turn means that they were familiar with the Pythagorean theorem-or at the very least, with its special case for the diagonal of a square $\left(d^{2}=a^{2}+a^{2}=2 a^{2}\right)$-more than a thousand years before the great sage for whom it was named.

Two things about this tablet are especially noteworthy. First, it proves that the Babylonians knew how to compute the square root of a number to a remarkable accuracy-in fact, an accuracy equal to that of a modern eight-digit calculator. ${ }^{1}$ But even more remarkable is the probable purpose of this particular document: by all likelihood, it was intended as an example of how to find the diagonal of any square: simply multiply the length of the side by $1 ; 24,51,10$. Most people, when given this task, would follow the "obvious" but more tedious route: start with 30 , square it, double the result, and take the square root: $d=\sqrt{30^{2}+30^{2}}=\sqrt{1800}=42.4264$, rounded to four places. But suppose you had to do this over and over for squares of different sizes; you would have to repeat the process each time with a new number, a rather tedious task. The anonymous scribe who carved these numbers into a clay tablet nearly four thousand years ago showed us a simpler way: just multiply the side of the square by $\sqrt{2}$ (fig. 1.2). Some simplification!

Figure 1.2. A square and its diagonal

But there remains one unanswered question: why did the scribe choose a side of 30 for his example? There are two possible explanations: either this tablet referred to some particular situation, perhaps a square field of side 30 for which it was required to find the length of the diagonal; or-and this is more plausible-he chose 30 because it is one-half of 60 and therefore lends itself to easy multiplication. In our base-ten system, multiplying a number by 5 can be quickly done by halving the number and moving the decimal point one place to the right. For example, $2.86 \times 5=(2.86 / 2) \times 10=1.43 \times 10=14.3$ (more generally, $a \times 5=\frac{a}{2} \times 10$). Similarly, in the sexagesimal system multiplying a number by 30 can be done by halving the number and moving the "sexagesimal point" one place to the right ($a \times 30=\frac{a}{2} \times 60$).

Let us see how this works in the case of YBC 7289. We recall that $1 ; 24,51,10$ is short for $1+24 / 60+51 / 60^{2}+10 / 60^{3}$. Dividing this by 2 , we get $\frac{1}{2}+\frac{12}{60}+\frac{25 \frac{1}{2}}{60^{2}}+\frac{5}{60^{3}}$, which we must rewrite so that each coefficient of a power of 60 is an integer. To do so, we replace the $1 / 2$ in the first and third terms by by $30 / 60$, getting $\frac{30}{60}+\frac{12}{60}+\frac{25+\frac{30}{60}}{60^{2}}+\frac{5}{60^{3}}=\frac{42}{60}+\frac{25}{60^{2}}+\frac{35}{60^{3}}=0 ; 42,25,35$. Finally, moving the sexagesimal point one place to the right gives us $42 ; 25,35$, the length of the diagonal. It thus seems that our scribe chose 30 simply for pragmatic reasons: it made his calculations that much easier.

If YBC 7289 is a remarkable example of the Babylonians' mastery of elementary geometry, another clay tablet from the same period goes even further: it shows that they were familiar with algebraic procedures as well. ${ }^{2}$ Known as

Figure 1.3. Plimpton 322

Plimpton 322 (so named because it is number 322 in the G. A. Plimpton Collection at Columbia University; see fig. 1.3), it is a table of four columns, which might at first glance appear to be a record of some commercial transaction. A close scrutiny, however, has disclosed something entirely different: the tablet is a list of Pythagorean triples, positive integers (a, b, c) such that $a^{2}+b^{2}=c^{2}$. Examples of such triples are $(3,4,5),(5,12,13)$, and $(8,15,17)$. Because of the Pythagorean theorem, ${ }^{3}$ every such triple represents a right triangle with sides of integer length.

Unfortunately, the left edge of the tablet is partially missing, but traces of modern glue found on the edges prove that the missing part broke off after the tablet was discovered, raising the hope that one day it may show up on the antiquities market. Thanks to meticulous scholarly research, the missing part has been partially reconstructed, and we can now read the tablet with relative ease. Table 1.1 reproduces the text in modern notation. There are four columns, of which the rightmost, headed by the words "its name" in the original text, merely gives the sequential number of the lines from 1 to 15 . The second and third columns (counting from right to left) are headed "solving number of the diagonal" and "solving number of the width," respectively; that is, they give the length of the diagonal and of the short side of a rectangle, or equivalently, the length of the hypotenuse and the short leg of a right triangle. We will label these columns with the letters c and b, respectively. As
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Mesopotamia, 1800 bсе 9

Table 1.1
Plimpton 322

$(c / a)^{2}$			
$[1,59,0] 15$,	1,59	c	
$[1,56,56] 58,14,50,6,15$,	56,7	$3,12,1$	1
$[1,55,7] 41,15,33,45$,	$1,16,41$	$1,50,49$	2
$[1] ,5[3,1] 0,29,32,52,16$	$3,31,49$	$5,9,1$	3
$[1] 48,54,1,40$,	1,5	1,37	4
$[1] 47,6,41,40$,	5,19	8,1	5
$[1] 43,11,56,28,26,40$,	38,11	59,1	6
$[1] 41,33,59,3,45$,	13,19	20,49	9
$[1] 38,33,36,36$,	9,1	12,49	10
$1,35,10,2,28,27,24,26,40$	$1,22,41$	$2,16,1$	11
$1,33,45$	45	1,15	12
$1,29,21,54,2,15$	27,59	48,49	13
$[1] 27,0,3,45$,	$7,12,1$	4,49	14
$1,25,48,51,35,6,40$	29,31	53,49	15
$[1] 23,13,46,40$,	56	53	6

Note: The numbers in brackets are reconstructed.
an example, the first line shows the entries $b=1,59$ and $c=2,49$, which represent the numbers $1 \times 60+59=119$ and $2 \times 60+49=169$. A quick calculation gives us the other side as $a=\sqrt{169^{2}-119^{2}}=\sqrt{14400}=120$; hence $(119,120,169)$ is a Pythagorean triple. Again, in the third line we read $b=1,16,41=1 \times 60^{2}+16 \times 60+41=4601$, and $c=1,50,49=1 \times 60^{2}+50 \times$ $60+49=6649$; therefore, $a=\sqrt{6649^{2}-4601^{2}}=\sqrt{23040000}=4800$, giving us the triple ($4601,4800,6649$).

The table contains some obvious errors. In line 9 we find $b=9,1=$ $9 \times 60+1=541$ and $c=12,49=12 \times 60+49=769$, and these do not form a Pythagorean triple (the third number a not being an integer). But if we replace the 9,1 by $8,1=481$, we do indeed get an integer value for a : $a=\sqrt{769^{2}-481^{2}}=\sqrt{360000}=600$, resulting in the triple (481, 600, 769). It seems that this error was simply a "typo"; the scribe may have been momentarily distracted and carved nine marks into the soft clay instead of eight; and once the tablet dried in the sun, his oversight became part of recorded history.

Figure 1.4. The cosecant of an angle: $\csc A=c / a$

Again, in line 13 we have $b=7,12,1=7 \times 60^{2}+12 \times 60+1=25921$ and $c=$ $4,49=4 \times 60+49=289$, and these do not form a Pythagorean triple; but we may notice that 25921 is the square of 161, and the numbers 161 and 289 do form the triple (161, 240, 289). It seems the scribe simply forgot to take the square root of 25921 . And in row 15 we find $c=53$, whereas the correct entry should be twice that number, that is, $106=1,46$, producing the triple $(56,90$, 106). ${ }^{4}$ These errors leave one with a sense that human nature has not changed over the past four thousand years; our anonymous scribe was no more guilty of negligence than a student begging his or her professor to ignore "just a little stupid mistake" on the exam. ${ }^{5}$

The leftmost column is the most intriguing of all. Its heading again mentions the word "diagonal," but the exact meaning of the remaining text is not entirely clear. However, when one examines its entries a startling fact comes to light: this column gives the square of the ratio c / a, that is, the value of $\csc ^{2} A$, where A is the angle opposite side a and csc is the cosecant function studied in trigonometry (fig. 1.4). Let us verify this for line 1 . We have $b=1,59=119$ and $c=2,49=169$, from which we find $a=120$. Hence $(c / a)^{2}=(169 / 120)^{2}=$ 1.983 , rounded to three places. And this indeed is the corresponding entry in column 4: $1 ; 59,0,15=1+59 / 60+0 / 60^{2}+15 / 60^{3}=1.983$. (We should note again that the Babylonians did not use a symbol for the "empty slot" and therefore a number could be interpreted in many different ways; the correct interpretation must be deduced from the context. In the example just cited, we assume that the leading 1 stands for units rather than sixties.) The reader may check other entries in this column and confirm that they are equal to $(c / a)^{2}$.

Several questions immediately arise: Is the order of entries in the table random, or does it follow some hidden pattern? How did the Babylonians find
those particular numbers that form Pythagorean triples? And why were they interested in these numbers-and in particular, in the ratio $(c / a)^{2}$-in the first place? The first question is relatively easy to answer: if we compare the values of $(c / a)^{2}$ line by line, we discover that they decrease steadily from 1.983 to 1.387 , so it seems likely that the order of entries was determined by this sequence. Moreover, if we compute the square root of each entry in column 4that is, the ratio $c / a=\csc A$-and then find the corresponding angle A, we discover that A increases steadily from just above 45° to 58°. It therefore seems that the author of this text was not only interested in finding Pythagorean triples, but also in determining the ratio c / a of the corresponding right triangles. This hypothesis may one day be confirmed if the missing part of the tablet shows up, as it may well contain the missing columns for a and c / a. If so, Plimpton 322 will go down as history's first trigonometric table.

As to how the Babylonian mathematicians found these triples-including such enormously large ones as $(4601,4800,6649)$-there is only one plausible explanation: they must have known an algorithm which, 1,500 years later, would be formalized in Euclid's Elements: Let u and v be any two positive integers, with $u>v$; then the three numbers

$$
\begin{equation*}
a=2 u v, \quad b=u^{2}-v^{2}, \quad c=u^{2}+v^{2} \tag{1}
\end{equation*}
$$

form a Pythagorean triple. (If in addition we require that u and v are of opposite parity-one even and the other odd-and that they do not have any common factor other than 1 , then (a, b, c) is a primitive Pythagorean triple, that is, a, b, and c have no common factor other than 1.) It is easy to confirm that the numbers a, b, and c as given by equations (1) satisfy the equation $a^{2}+b^{2}=c^{2}$:

$$
\begin{aligned}
a^{2}+b^{2} & =(2 u v)^{2}+\left(u^{2}-v^{2}\right)^{2} \\
& =4 u^{2} v^{2}+u^{4}-2 u^{2} v^{2}+v^{4} \\
& =u^{4}+2 u^{2} v^{2}+v^{4} \\
& =\left(u^{2}+v^{2}\right)^{2}=c^{2} .
\end{aligned}
$$

The converse of this statement-that every Pythagorean triple can be found in this way-is a bit harder to prove (see Appendix B).

Plimpton 322 thus shows that the Babylonians were not only familiar with the Pythagorean theorem, but that they knew the rudiments of number theory and had the computational skills to put the theory into practice-quite remarkable for a civilization that lived a thousand years before the Greeks produced their first great mathematician.

Notes and Sources

1. For a discussion of how the Babylonians approximated the value of $\sqrt{2}$, see Appendix A.
2. The text that follows is adapted from Trigonometric Delights and is based on
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Otto Neugebauer, The Exact Sciences in Antiquity (1957; rpt. New York: Dover, 1969), chap. 2. See also Eves, pp. 44-47.
3. More precisely, its converse: if the sides of a triangle satisfy the equation $a^{2}+b^{2}=c^{2}$, the triangle is a right triangle.
4. This, however, is not a primitive triple, since its members have the common factor 2 ; it can be reduced to the simpler triple $(28,45,53)$. The two triples represent similar triangles.
5. A fourth error occurs in line 2 , where the entry $3,12,1$ should be $1,20,25$, producing the triple ($3367,3456,4825$). This error remains unexplained.
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Index

Note: Arabic names with the prefix al are listed alphabetically according to their main name, preceded by al-; for example, al-Biruni is to be found under the letter B.

Abbott, Edwin Abbott (1838-1926), 157 n. 7
Absolute value (of vectors). See Magnitude
Acoustics, 18, 138
Action at a distance, 192
A'h-mose (Ahmes, ca. 1650 BCE), 14
Alexander III of Macedonia ("the Great," 356-323 BCE), 33
Alexandria (Egypt), 33, 60; Great Library of, 33, 34, 60, 68
Algebra, geometric, 23; symbolic, 23
Alhambra (Granada, Spain), 72
Almagest. See Ptolemy (Claudius Ptolemaeus)
Analytic geometry. See Geometry, analytic
Annairizi of Arabia (ca. 900 ce), 114 n .6
Anthony, Mark (Marcus Antonius, ca. 83-30 BCE), 216
Antiderivative, 84
Apéry, Roger (1916-1994), 96 n. 4
Apollonius of Perga (ca. 262-ca. 190 BCE), 57, 60
Arago, Dominique François Jean (1786-1853), quoted, 94
Arc length: of astroid, 90-91; of catenary, 92; of cycloid, 89-90; of logarithmic spiral, 86-88, 89; of parabola, 86; on a cylinder, 171-172, 176 n.2; on Mercator's map, 180; on a sphere, 170-171. See also Metric (in differential geometry)
Archimedes of Syracuse (287-212 все), 50-51, 54-56, 57, 60, 71, 77, 81, 132; formulas of, 51-54, 229-230; Measurement of a Circle, 51-56; The Method, 51, 55 n .2 ; spiral of, 181
Architas of Tarentum (fl. ca. 400 BCE), 32
Arecibo (Puerto Rico), radio message, 205-206; radio telescope, 205
Aristarchus of Samos (ca. 310-230 BCE), 213, 216, 217 n. 1
Arithmetic, fundamental theorem of, 201, 227
Astroid, 90-91, 153, 157 n.5, n.6, 235-236; rectification of, 90-91, 153, 233-234

Athens (Greece), 32, 213; Academy of, 33, 60, 61, 213
Aubrey, John (1626-1697), quoted, 47
Augustus, Gaius Julius Caesar Octavianus
($63 \mathrm{BCE}-14 \mathrm{CE}$), 216
Axioms (Euclid), 34-35
Babylonians, the, xi, xiv-xv, 3, 4, 6-7, 10-11, 13, 155 (note), 219-220
Baghdad (Iraq), 68-69, 70
Basel (Switzerland), 181-182
Baudhayana (fl. 600? BCE), 66-67
Beckmann, Petr (1924-1993), quoted, 76
Beethoven, Ludwig van (1770-1827), Violin Concerto in D major, Op. 61, 174
Berkeley, George (1685-1753), quoted, 82
Bernoulli, Jakob (1654-1705), 77, 92, 94, 181
Bernoulli, Johann (1667-1748), 92, 94
Bessel, Friedrich Wilhelm (1784-1846), 212 n.1; functions, 211, 212 n. 1

Besso, Michele Angelo (1873-1955), 186
Bhaskara ("the Learned," 1114-ca. 1185), 64; Lilavati, 199
Billingsley, Sir Henry (d. 1606), 73
al-Biruni, Mohammed ibn Ahmed, Abul Rihan, (973?-1048), 131
Bogomolny, Alexander (website of), 111, 114 n. 5
Börne, Karl Ludwig (1786-1837), quoted, 46
Boyer, Carl Benjamin (1906-1976), quoted, 139 n. 8
Broken Bamboo, The, 64-66
Bronowski, Jacob (1908-1974), quoted, xi, 46
Calandri, Filippo (fl. 15th century), 73
Calculus, 82, 145, 202, 208, 211; differential, 83-84; fundamental theorem of, 84; integral, 84, 87
Carroll, Lewis. See Dodgson, Charles Lutwidge
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Catenary, 91-92; area under; 92; rectification of, 92
Chamisso, Adelbert von (1781?-1838), quoted, 46
Chao Pei Suan Ching, 62, 74 n. 8
Characteristic triangle, 82-83, 85, 87
Cheops, Great Pyramid of, 14
Chinese, the, xiii, 25, 45, 62-66, 75 n. 20
Chiu Chang Suan Shu, 64, 198
Circle(s), xii, 35, 75 n.19, 88-89, 94, 96 n.3, 123-126, 225-226; generated by its tangent lines, $148,150,153$; inscribed and circumscribed by regular polygons, 51-56, 77-81, 229-230; line equation of, 154; used in proofs of the Pythagorean theorem, 102-104, 108-110, 111-112. See also Great circle; Latitude, circles of; Longitude, circles of
Circular functions. See Trigonometric functions
Circumcircle, 123, 133
Clairaut, Alexis Claude (1713-1765), 134, 139 n. 8
Clavius, Christopher (1537-1612), 77
Cleopatra (queen of Egypt, 69-30 BCE), 216
Columbus, Christopher (1451-1506), 72
Condit, Ann (age 16, 1938), proof of the Pythagorean theorem, 102, 106-108
Congruence modulo m, 223-224
Constantine I (280?-337 CE), 60
Constantinople (Turkey), 60, 72
Construction with straightedge and compass. See Straightedge and compass, construction with
Coolidge, E. A. (blind girl, 1888), 102
Coolidge, Julian Lowell (1873-1954), quoted, 195
Copernicus, Nicolaus (1473-1543), 20, 58, 216
Cosine function. See Trigonometric functions, cosine
Curved space, 175, 176 n. 4
Cycloid, 86, 87, 88-90; area under, 88-89; rectification of, 89-90, 232-233
Cylinder, surface of, 171-172
Dantzig, Tobias (1884-1956), quoted, 32, 39
Darius (king of Persia, 558?-486 BCE), 32
Dee, John (1527-1608), 73
Derivative, 82-83, 92
Desargues, Gérard (1593-1662), 48
Descartes, René (1596-1650), 28, 34, 73, 76, 88, 133, 139 n.11, 145, 158, 168, 204
Differential geometry. See Geometry, differential

Differentials, 83
Differentiation, 83
Diophantus of Alexandria (fl. ca. 250-275 CE), 2, 57-58, 60, 224
Dirac, Paul Adrien Maurice (1902-1984), quoted, 28
Distance formula, 85, 133-134, 139 n.8, 159, 161, 166, 172, 180, 190-191, 192, 204, 211
Dodgson, Charles Lutwidge (Lewis Carroll, 1832-1898), xi-xii, 45; quoted, 45-46
Dot product. See Vectors, dot product of
Double-angle formula for sine, 79-80, 81 n .3
Drake, Frank (1930-), 206-207; quoted, 206, 207
Duality, principle of, 146-148, 149-151
Dudeney, Henry Ernest (1857-1930), 197, 198; quoted, 197
e (base of natural logarithms), 86, 92, 212
$E=m c^{2}, 117,189,195 \mathrm{n} .3$
Early European universities, 71
Eddington, Sir Arthur Stanley (1882-1944), 193
Einstein, Albert (1879-1955), 28, 117-118, 186, 188-196; quoted, 117, 191; summation notation, 164; "thought experiments," 184, 193, 204
Electromagnetism, 184-185, 188, 202
Elementary functions, $92,93 \mathrm{n} .8,211$
Elements, The (Euclid), xi, xiii, 25, 30 n .2 , 34-36, 43, 58, 60, 61, 69, 71, 73, 82, 204, 206 n.5; Propositions: I 1, 35; I 5, 45; I 38, 36-37; $I 47$, xi, 25, 36-43, 59, 92, 94, 113, 140; I 48, 42-43; II 9, 48; II 12, 127-128; II 13, 127-128; II 14, 75 n.19; III 20, 78, 96 n.3; III 31, 123; III 35, xii-xiii, 11, 108; III 36, 48, 108, 110; VI 31, 6, 25, 41-43, 115, 123; IX 20, 201
Envelope of a curve, 148, 235
Epicycle, 20
Equivalence, principle of, 193
Eratosthenes of Cyrene (ca. 275-ca. 194 вCE), 58
Escher, Maurits Cornelis (1898-1972), 72
Ether, 185-186
Euclid (fl. 300 BCE), 25, 30 n.3, 33-36, 39, 41-43, 44 n.11, 113; quoted, 33, 34, 61. See also Elements, The (Euclid)
Euclidean geometry. See Geometry, Euclidean
Eudemus of Rhodes (fl. ca 335 все), 30 n .2 , 61-62; Summary of, see Proclus, Eudemian Summary
Eudoxus of Cnidus (ca. 408-ca. 355 bCE), 25, 42, 55
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Euler, Leonhard (1707-1783), 134, 168, 181, 202; and Fermat primes, 155 n.1; and Fermat's Last Theorem, 2; formula of ($e^{i \pi}+1=0$), xii; infinite product, 81 n .4 ; infinite series, $94-95,96 \mathrm{n} .1, \mathrm{n} .4$; and perfect numbers, 30 n .3
Eupalinus (fl. 6th century BCE), 215; Eupalinus Tunnel, 215, 217 n. 4
Eves, Howard W. (1911-2004), quoted, 31 n. 9,43 n. 4

Fermat, Pierre de (1601-1665), 1-2, 85;
Fermat's Last Theorem (FLT), 1-3, 212;
Fermat primes, 155 n.1, 212
Fibonacci, Leonardo ("Pisano," ca. 1170-ca. 1250), 58

Five (number), 20-21
Fluent(s), 82, 202
Fluxion, 82
Fréchet, Maurice (1878-1973), 167 n. 1
Frey, Gerhard (1944-), 2
From Here to the Moon (Jules Verne), 203, 206 nn .3 and 4
Function space(s), 165-166
Galileo Galilei (1564-1642), 58, 88, 91
Garfield, James Abram (20th U.S. President; 1831-1881): 106; proof of the Pythagorean theorem by, 106-107
Gauss, Carl Friedrich (1777-1855), 30 n.4, 146, 155 n.1, 168, 173, 175-176, 203, 206 n. 4
Geodesic, 237. See also Great circle
Geometer (spherical ruler), 169
Geometry: analytic, 27, 145, 204, 208; differential, 168, 192; Euclidean, 35, 145-146, 172, 174-175, 211; non-Euclidean, 168, 174-175, 211; projective, 146-148, 157 n.4, 168; variable, 173-175
Gherardo of Cremona (1114-1187), 71
Gibbs, Josiah Willard (1839-1903), 159
Gilbert and Sullivan, The Pirates of Penzance, 47
Gillings, Richard J., quoted, 13-14
GIMPS (Great Internet Mersenne Prime Search), 202. See also Mersenne Marin, primes
Goethe, Johann Wolfgang von (1749-1832), quoted, 158
Goldbach, Christian (1690-1764), 202; conjecture, 202
Golden section, 49 n. 10
Gravity, 192-195
Great circle, 169, 175, 240 n.1. See also Geodesic

Greek, cosmology, 20, 28
Greek mathematics: geometry, $30 \mathrm{n} .2, \mathrm{n} .5,59$, $75 \mathrm{n} .20,145,204$; infinity, their fear of, 76, 80, 93, 138
Gregory, James (1638-1675), 96 n. 2
Gregory XIII (Pope, 1502-1585), 77
Grossmann, Marcel (1878-1936), 192
Guldin, Paul (1577-1643), 58, 74 n. 3
Gutenberg, Johannes (1400?-1468), 73
Hakim, Joy, quoted, 13
Half-angle formulas, 77-80, 81 n .3
Hamilton, Sir William Rowan (1805-1865), 158-159
Han dynasty (China; 206 bce-221 ce), 62, 64
Harmonics (overtones), 138, 212 n. 2
Harmonic series, 19, 94
Heath, Sir Thomas Little (1861-1940), quoted, 15, 31 n .9
Henry IV (French king, 1553-1610), 76
Heraion (temple in Samos), 216
Heron (ruler of Sicily, 2nd century bсе), 50
Heron (Hero) of Alexandria (1st century CE?), 132; formula of, 131-133
Higher-dimensional spaces, 173-176, 190-191, 192. See also Spacetime
Hilbert, David (1862-1943): Hilbert Space, 166-167
Hindus, the, 25, 66-68, 75 n. 17, n. 20
Hipparchus of Nicaea (ca. 190-ca. 120 вСе), 56 n. 3,58
Hippasus (5th century bCe), 28
Hippocrates of Chios (fl. 440 bCE), 125
Hjelmslev, J. (1873-1950), 157 n. 2
Hobbs, Thomas (1588-1679), 47
Hoffmann, Banesh (1906-1986), 117
Hsiang Chieh Chiu Chang Suan Fa, 64
Hundred-Year War (1338-1453), 71
Huygens, Christiaan (1629-1695), 88, 102
Hypatia (ca. 370-415 Ce), 60-61
Hyperbolic cosine. See Hyperbolic functions
Hyperbolic functions, 92, 93 n.5, n. 7
Hyperbolic sine. See Hyperbolic functions
Hyperboloid, 89-90
Hypotenuse, middle point of, 107; origin of word, xiii; perpendicular to, 127, 153; theorem, see Pythagorean theorem
$i(\sqrt{-1}), 166,190-191$
Iambilicus of Apamea (ca. 245-ca. 325 ce), quoted, 213
Incircle, 126, 133
Incommensurable (numbers), 227-228
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Infinite product: Euler's, 81 n.4; Viète's, 77, 79-81
Infinite series, 94-97, 120-121, 137-138, 211
Infinitesimals, 83
Infinity, 76, 80, 93, 137-138, 157 n.4, 162, 165
Inner product, 162, 166
Integral(s), 84, 165, 166, 208, 210-211
Integration, 84, 86
Irrational: double meaning of the word, 26; numbers, 26-28, 227-228
Islamic Empire, 68-71
Isoperimetric problem, 58

Jashemski, Stanley (age 19, 1934), 116
Joseph, George Gheverghese, 75 n.18; quoted, 66
Justinian I (483-565 CE), 60
Kaku, Michio (1947-), quoted, 168, 201
Kapoor, Anish (1954-), Cloud Gate (sculpture), 176 n.4, plate 3
Karlovasi (Samos, Greece), 216
al-Kashi, Jemshid ibn Mes'ud ibn Mahmud, Giyat ed-din, (d. 1429 or 1436), 71
Katyayana (fl. ca. 400? bCE), 67
Kepler, Johannes (1571-1630), 20, 28, 47, 58; quoted, 47
Kerkis, Mt. (Samos, Greece), 216-217
al-Khowarizmi, Mohammed ibn Musa (ca. 780-ca. 850), 69
Kolaios (fl. 7th century BCE), 215
Kou-ku theorem, 64, 66

La Hyre, Laurent de (1606-1656), 47-48, 49 n.12; Allegory of Geometry (painting), 48, 49 n.12. See also cover illustration
Lanczos, Cornelius (1893-1974), quoted, 181
Landau, Edmund (1877-1938), 119-121; quoted, 119
Latitude, circles of ("parallels"), 168-171, 176 nn.1-3, 178-180, 204
Law of Cosines, 127-130, 131, 172
Lederman, Leon (1922-), quoted, 46-47, 123
Legendre, Adrien-Marie (1752-1833), 102, 118
Leibniz, Gottfried Wilhelm Freiherr von (1646-1716), 82-85, 92, 96 n.2, 102
Length, 161-162, 163, 165, 191; of radius vector, 190. See also Arc length; Distance formula
Leonardo da Vinci. See Vinci, Leonardo da
Levi-Civita, Tullio (1873-1941), 192

Light, 184-186; aberration of, 194; bending of, 193-194; speed of, 188-189, 191, 192
Lilavati, the (Bhaskara), 199
Line: equation, 153-154, 235; coordinates, 148-154, 236; designs, 154, 156
"Little Pythagorean theorem," 127
Littrow, Joseph Johann von (1781-1840), 206 n. 4
Logarithmic spiral, 86-88, 183; rectification of, 86-88, 89, 231-233
Longitude, 177, 204; circles of (meridians), 168-171, 178-180
Loomis, Elias (1811-1899), 98, 99
Loomis, Elisha Scott (1852-1940), xiii, 98-102, 106, 107, 116 n.1, 119; quoted, 98, 99, 106, 107, 111, 116, 119, 140; The Pythagorean Proposition, xiii, xvi, 98, 99-110, 116, 117, 119, 140-141
Loomis Joseph (17th century), 98, 99
Lorentz, Hendrik Antoon (1853-1928), 189; transformation, 189-190
Lune of Hippocrates, 125-126

M-13 (star cluster in Hercules), 205, 206 n. 6
Magnitude, 159, 161
al-Mamun (reigned 809-833), 69
al-Mansur (712?-775), 69
Map projections, 178-180
Marcellus, Marcus Claudius (268?-208 BCE), 50, 51
Mascheroni, Lorenzo (1750-1800), 146, 157 n .2
Mathematics, nature of, 204-206, 208
Maxwell, James Clerk (1831-1879), equations of, xii, 184-185
Mercator, Gerhard (Gerardus, 1512-1594), 177-180; projection, 177-180
Mercer, John ("Johnny") Herndon (1909-1976), quoted, 45
Meridians. See Longitude, circles of
Mersenne Marin (1588-1648), 30 n.3, 202; primes of, $30 \mathrm{n} .3,202,212$
Mesopotamia, 4, 13. See also Babylonians, the
Meter (in music), 174
Method of exhaustion, 42, 55, 71
Metric (in differential geometry), 168,172 , 173-175, 195, 211
Michelson, Albert Abraham (1852-1931), 185-186
Michelson-Morley experiment, 185-186, 188
Miletus (Asia Minor), 17
Miller, Walter James, quoted, 206 n. 4
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Minkowski, Hermann (1864-1909), 190-191, 195n; quoted, 188
Mohammed (prophet and founder of Islam, 570-632), 68
Mohr, Georg (1640-1697), 157 n. 2
Moon, the, 203
Morley, Edward Williams (1838-1923), 185-186
"Mover's dilemma, the," 153
Mozart, Wolfgang Amadeus (1756-1791), 208-209, 211; Piano Concerto No. 16 in D major, K. 451, 209
Music, 19, 28, 158, 174, 208-209, 211, 212 n. 2
Musical, harmony, 19-20, 28, 195; intervals, 19; sound, 138, 139 n. 12
Mykale, Strait of (Greece), 216
Needham, Joseph Terence Montgomery (1900-1995), 74 n.8; quoted, 64
Nelsen, Roger B., 114 n. 6
Neugebaur, Otto E. (1899-1990), quoted, 4
Newton, Sir Isaac (1642-1727), 73, 82, 84-85, 145, 158, 185, 188, 192, 195 n. 6 , 202; second law of motion, xii, 161; universal law of gravitation, 211-212
Newton-Raphson formula, 219-220
Non-Euclidean geometry. See Geometry, non-Euclidean
Norm, 165-166
Notation, 158-167
Nowak, Martin, 30 n. 3
Numbers, 20-23; figurative, 22-23, 30 n.4; irrational, 25, 26-27; perfect, 21-22, 30 n .3 , 212; rational, 19, 27, 28; triangular, 30 n. 4 .
See also Prime numbers
Number theory, 19, 20, 202, 208, 212. See also Prime numbers

Orthogonal: coordinates, 172; functions, 166; vectors, 164, 166
Overtones. See Harmonics
$\pi($ pi) , 51-55, 71, 77, 80, 81 n.4, 90, 94-95, 96 n.2, 125, 212, 233

Pacioli, Luca (ca. 1445-1509), 45
Pappus of Alexandria (fl. ca. 300 CE), 58-59, 74 n. 3
Parabola, 91; arc length of, 86; area of a segment of, 51
Parallel, postulate (Euclid's Fifth), 35; lines, 175, 176 n. 3
Parallelogram rule. See Triangle rule
Parallels (circles of latitude). See Latitude, circles of

Pascal, Blaise (1623-1662), 85
Peloponesian War, 32
Perfect numbers. See Numbers, prefect
Persia, 32, 216
Perspective (in art), 146
Philip (Macedonian king, 382-336 BCE), 33
Plato (ca. 427-347 BCE), 33, 60; quoted, 33
Plimpton 322, 7-12, 225
Plücker, Julius (1801-1868), 148, 154
Plutarch (46?-120? CE), quoted, 50
Polar coordinates, 86, 151, 168
Polycrates (ruler of Samos, d. ca. 522 bce), 17, 215-216
Polygons, regular: built on the sides of a right triangle, 115, 123-124; circumscribing a circle, 51, 53-54, 56 n.3, 81, 229-230;
constructible with straightedge and com-
pass, $146,155 \mathrm{n} .1,212$; inscribed in a circle, 51-53, 54, 56 n.3, 77, 79-81
Polyhedra, regular, 20-21
Prime numbers, 30 n.3, 155 n.1, 201-203, 206, 212, 227
Proclus (412-485 CE), $30 \mathrm{n} .2,42,61$;
Eudemian Summary, 30 n.2, 42, 61, 62
Projective geometry. See Geometry, projective
Ptolemy (Claudius Ptolemaeus, ca. 85-165 CE), 58, 60, 102; Almagest, 58, 60, 69, 71, 102; theorem, 102-104, 113 n .4
Ptolemy I (king of Egypt, fl. 306 BCE), 33
Pyramids, the, 13-14
Pythagoras of Samos (ca. 572?-ca. 501? BCE), 17-19, 25, 32; general reference to, xi, 28, $32,36,43,62,93,99,100,123,138,186$, 195, 213-215, 217; landmarks named for, 214, 215; his proof of his theorem, see Pythagorean theorem, proofs of
Pythagorean cuboids, 134
"Pythagorean Curiosity," 101, 140-141
Pythagorean identities, xiv, 119, 211
Pythagorean magic squares, 101
Pythagorean quadruples, 134
Pythagorean Square (puzzle), 197-198, 237
Pythagorean theorem:
Babylonian knowledge of, xi, 6, 145, 155 (note);
in China, 25-26, 62-66, 75 n.16;
converse of, $12 \mathrm{n} .3,42-43$;
on a cylinder, 171-172;
differential form of, 85;
Egyptian knowledge of, 13-16;
generalizations of, 58-59, 69, 123-125, 127-130;
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Pythagorean theorem (continued)
general reference to, xi, xii, xiii, 1,8 , 25-26, 30, 32, 39, 48, 51, 73, 77, 81, 87, $92,98,99,111,117,119,133,142,148$, $172,195,198,208,211,214,215,217$;
in higher dimensions, 134, 137-138;
in Hilbert space, 166;
in India, 25, 66-68;
on Mercator's map, 180;
names of, xi, 45, 48 nn .1 and 4, 64;
in popular culture, xi, 45-49;
proofs of, xi, xiii, xiv, 98-114; based on circles, 108-110; Chinese, 26, 39, 61, 63-64; Ann Condit's, 102, 106-108; by differentials, 111-112; by dissection, 39, 61, 63-64; Henry E. Dudeney's, 198-199; "dynamic," 39, 43 n.4, 100; Albert Einstein's, xi, 117-118, 192; Euclid I47, 36-40, 41, 43, 47, 48, 59; Euclid VI 31, 41-42, 43, 117; "Folding Bag," 115-116; James A. Garfield's, xi, 106-107; Hindu, 25, 68; Stanley Jashemski's, 116; Ed-
mund Landau's, 119-121; Leonardo da Vinci's, 104-106; longest, 102, 103;
Ptolemy's, 102-104; Pythagoras's, 24-26, 31 n.9, 42, 61, 99; shortest, 102, 115-116; by tessellation, 112-113;
and SETI, 203, 206 n.4;
special case of 45-45-90-degree triangle, 25, 26, 67;
on a sphere, 169-171, 175;
and the theory of relativity, 186, 190;
universality of, 203-204;
in vector notation, 160, 164 .
See also Elements, The, Propositions I 47, I 48, VI 31
Pythagorean triangles. See Pythagorean triples
Pythagorean triples, 1, 8-12, 23-24, 67, 126-127, 139 n.3, 223, 225; primitive, 11, 12 n.4, 24, 58, 221-222
Pythagoreans, the, 17-24, 26-28, 30 n.6, 31 n.8, 32; motto of, 17

Pythagorio (Samos, Greece), 214-216
QED, 43 n. 3
Quadrivium, 19, 48
Quaternions, 99, 158-159

Radius vector, 160-161, 190
al-Rashid, Harun ("the Just," 764?-809), 69
Rate of change, 82-83
Rectangular coordinates, 151, 153, 168

Rectification, 85-93; of the astroid, 90-91, 233-234; of the catenary, 92 ; of the cycloid, 89-90, 232-233; of the logarithmic spiral, 86-88, 89, 231-232; of the parabola, 86
Relativity, theory of, 186, 202; general, 28, 117, 176, 186, 192-196; special, 117, 186, 188-191, 192
Renaissance, the, 47
Rhind, Alexander Henry (1833-1863), 14; Rhind Papyrus, 14-15
Rhine (river), 181-183
Rhumb line, 177-178
Ribet, Kenneth Alan, 2
Ricci-Curbastro, Gregorio (1853-1925), 192
Riemann, Georg Friedrich Bernhard (1826-1866), 168, 173-176, 192, 195; hypothesis, 97 n. 4
Roberval, Gilles Persone de (1602-1675), 89
Roman Empire, 60, 216
Romans, the, 202-203

Sagan, Carl Edward (1934-1996), 46, 49 n.9, 201
Samaina (Samian boat), 215-216
Samos (Greece), 17, 213-217; history of, 215-217
Scalar, 162
Schmidt, Erhard (1876-1959), 167 n. 1
Schopenhauer, Arthur (1788-1860), 39, 113; quoted, 39
Semiperimeter, 131, 133
SETI (Search for Extraterrestrial Intelligence), 206
Sexagesimal system, 4-7, 55, 155 (note)
Shi Huang-ti (Chinese emperor, 259-210 BCE), 62
Simha, Evelyn, quoted, 16 n. 6
Sine function. See Trigonometric functions, sine
Smith, David Eugene (1860-1944), 48 n.1, 74 n.3, n.20; quoted, 48 n. 1

Snake and the Peacock, The (brainteaser), 199-200, 240
Spacetime, 190-191, 192, 195
Spain, 71-72
Sparta (Greece), 32-33
Sphere, surface of, 168-171, 174-175, 177-178, 203-204, 206 n.5, 240 n.1. See also Great circle
Spider and the Fly, The (brainteaser), 197, 237
Square root of two $(\sqrt{2}), 6,11 \mathrm{n} .1,26-28,81$; irrationality of, 26-28, 227-228; Babylonian computation of, 219-220
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Square root spiral, 126
"Squaring": of a circle, 126; of a rectangle, 67, 75 n. 19; of a triangle, 125
St. Paul's Cathedral (London), 89
Straightedge and compass, construction with, 35, 95, 96 n.3, 125-126, 145-146, 155 n.1, 212
Stravinsky, Igor Fyodorovitch (1882-1971), The Rite of Spring, 174
Strings, vibrations of, 18-19, 28, 138, 165-166
Struik, Dirk Jan (1894-2000), 16 n.6; quoted, 15
Sulbastura(s), 66-67
Sums of squares, 94, 223-225
Symmetry, xii, 20
Synthetic geometry. See Geometry, synthetic
Syracuse (Sicily, Italy), 50, 60
Tabit ibn Qorra ibn Mervan, Abu-Hasan, al-Harrani (826-901), 69-70
Talmud, the, 34
Tangent line(s), 82-83, 148-149, 152, 153, 232, 236
Taniyama, Yutaka (1927-1958), 2
Tarentum (Italy), 32
Taylor, Richard, 2
Tensor, 192, 195, 196 n.8; analysis, 193-194
Thales of Miletus (ca. 640-ca. 546 вCE), 17, 59, 215
Theodosius I (Roman emperor, 346?-395 CE), 60
Theon of Alexandria (fl. ca. 390 CE), 60
Thoreau, Henry David (1817-1862), quoted, 115
Tigani (Samos, Greece). See Pythagorio
Time, relativity of, 188-189, 195 n. 1
Tinseau, D'Amondans Charles de (1748-1822), 139 n. 11
Torricelli, Evangelista (1608-1647), 87, 88
Triangle inequality, 160, 166, 211
Triangle rule, 159

Trigonometric functions, $92,93 \mathrm{n} .5, \mathrm{n} .8$, 120-121, 211; cosine, 77-80, 81 n.3, n.4, 92, 120-121, 211; sine, 71, 79-80, 81 n.3, n.4, 92,93 n.7, 96 n.1, 113 n.4, 120-121, 138, 166, 211
Trigonometry, xiv, 11, 56 n.3, 76-77, 102, 119, 127, 208, 211, 237; spherical, 174.
See also Trigonometric functions
Trivium, 48
Twin primes, 201-202
Two (number), 20, 77, 208, 211-212
Ulugh Beg (1393-1449), 71
Van der Waerden, Bartel Leendert (1903-1996), quoted, 15, 15 n. 5
Vectors, 159-167, 191; addition of, 159-164, 181-184; dot product of, 163-164, 166; orthogonal, 164, 166; unit, 160-161; world, 191
Vector spaces, 162-167
Viète, François (1540-1603), 76-81, 158; product, 77-81
Vinci, Leonardo da (1452-1519), proof of the Pythagorean theorem, 102, 104-106

Wantzel, Pierre-Laurent (1814-1848), 155 n. 1
Wells, David (1940-), quoted, 208
Wheeler, John Archibald (1911-), quoted, 192
Wiles, Andrew John (1953-), 1-3
Winding Vine, The (brainteaser), 198-199, 237-240
World vectors. See Vectors, world
Wren, Sir Christopher (1632-1723), 89-90
Wright, Edward (ca. 1560-1615), 180
$x^{2}+y^{2}$, frequent occurrence of in mathematics, xiv, 208-211

Yang Hui (fl. ca. 1260 ce), 64-66
YBC 7289, 4-7, 219
Zeta function, 96 n. 4

