
CONTENTS

Preface xi

1 Introduction 1
1.1 Book Overview . 3
1.2 Chapter Summaries 4
1.3 How to Use This Book 5
1.4 Why Learn to Analyze Data? 6

1.4.1 Learning to Code 6
1.5 Getting Ready . 7
1.6 Introduction to R . 8

1.6.1 Doing Calculations in R 9
1.6.2 Creating Objects in R 10
1.6.3 Using Functions in R 12

1.7 Loading and Making Sense of Data 14
1.7.1 Setting the Working Directory 15
1.7.2 Loading the Dataset 15
1.7.3 Understanding the Data 16
1.7.4 Identifying the Types of Variables Included 19
1.7.5 Identifying the Number of Observations . . 20

1.8 Computing and Interpreting Means 21
1.8.1 Accessing Variables inside Dataframes . . . 21
1.8.2 Means . 22

1.9 Summary . 24
1.10 Cheatsheets . 25

1.10.1 Concepts and Notation 25
1.10.2 R Symbols and Operators 26
1.10.3 R Functions 26

2 Estimating Causal Effects with Randomized Experiments 27
2.1 Project STAR . 27
2.2 Treatment and Outcome Variables 28

2.2.1 Treatment Variables 29
2.2.2 Outcome Variables 29

2.3 Individual Causal Effects 29
2.4 Average Causal Effects 33

2.4.1 Randomized Experiments and the
Difference-in-Means Estimator 35

2.5 Do Small Classes Improve Student Performance? . 39

viii CONTENTS

2.5.1 Relational Operators in R 39
2.5.2 Creating New Variables 40
2.5.3 Subsetting Variables 42

2.6 Summary . 46
2.7 Cheatsheets . 47

2.7.1 Concepts and Notation 47
2.7.2 R Symbols and Operators 50
2.7.3 R Functions 50

3 Inferring Population Characteristics via Survey Research 51
3.1 The EU Referendum in the UK 51
3.2 Survey Research . 52

3.2.1 Random Sampling 53
3.2.2 Potential Challenges 54

3.3 Measuring Support for Brexit 55
3.3.1 Predicting the Referendum Outcome 56
3.3.2 Frequency Tables 57
3.3.3 Tables of Proportions 57

3.4 Who Supported Brexit? 58
3.4.1 Handling Missing Data 59
3.4.2 Two-Way Frequency Tables 62
3.4.3 Two-Way Tables of Proportions 64
3.4.4 Histograms 66
3.4.5 Density Histograms 68
3.4.6 Descriptive Statistics 71

3.5 Relationship between Education and the Leave
Vote in the Entire UK 76
3.5.1 Scatter Plots 78
3.5.2 Correlation 82

3.6 Summary . 88
3.7 Cheatsheets . 90

3.7.1 Concepts and Notation 90
3.7.2 R Symbols and Operators 96
3.7.3 R Functions 96

4 Predicting Outcomes Using Linear Regression 98
4.1 GDP and Night-Time Light Emissions 98
4.2 Predictors, Observed vs. Predicted Outcomes, and

Prediction Errors . 99
4.3 Summarizing the Relationship between Two

Variables with a Line 100
4.3.1 The Linear Regression Model 101
4.3.2 The Intercept Coefficient 103
4.3.3 The Slope Coefficient 104
4.3.4 The Least Squares Method 106

4.4 Predicting GDP Using Prior GDP 107
4.4.1 Relationship between GDP and Prior GDP 109
4.4.2 With Natural Logarithm Transformations . . 113

4.5 Predicting GDP Growth Using Night-Time Light
Emissions . 116

CONTENTS ix

4.6 Measuring How Well the Model Fits the Data with
the Coefficient of Determination, R2 120
4.6.1 How Well Do the Three Predictive Models

in This Chapter Fit the Data? 122
4.7 Summary . 123
4.8 Appendix: Interpretation of the Slope in the Log-

Log Linear Model . 124
4.9 Cheatsheets . 126

4.9.1 Concepts and Notation 126
4.9.2 R Functions 128

5 Estimating Causal Effects with Observational Data 129
5.1 Russian State-Controlled TV Coverage of 2014

Ukrainian Affairs . 129
5.2 Challenges of Estimating Causal Effects with

Observational Data 130
5.2.1 Confounding Variables 130
5.2.2 Why Are Confounders a Problem? 131
5.2.3 Confounders in Randomized Experiments . 133

5.3 The Effect of Russian TV on Ukrainians’ Voting
Behavior . 135
5.3.1 Using the Simple Linear Model to Compute

the Difference-in-Means Estimator 136
5.3.2 Controlling for Confounders Using a

Multiple Linear Regression Model 142
5.4 The Effect of Russian TV on Ukrainian Electoral

Outcomes . 147
5.4.1 Using the Simple Linear Model to Compute

the Difference-in-Means Estimator 149
5.4.2 Controlling for Confounders Using a

Multiple Linear Regression Model 151
5.5 Internal and External Validity 153

5.5.1 Randomized Experiments vs.
Observational Studies 153

5.5.2 The Role of Randomization 154
5.5.3 How Good Are the Two Causal Analyses

in This Chapter? 155
5.5.4 How Good Was the Causal Analysis in

Chapter 2? 156
5.5.5 The Coefficient of Determination, R2 157

5.6 Summary . 157
5.7 Cheatsheets . 159

5.7.1 Concepts and Notation 159
5.7.2 R Functions 161

6 Probability 162
6.1 What Is Probability? 162
6.2 Axioms of Probability 163
6.3 Events, Random Variables, and Probability

Distributions . 165

x CONTENTS

6.4 Probability Distributions 166
6.4.1 The Bernoulli Distribution 166
6.4.2 The Normal Distribution 169
6.4.3 The Standard Normal Distribution 173
6.4.4 Recap . 179

6.5 Population Parameters vs. Sample Statistics 179
6.5.1 The Law of Large Numbers 180
6.5.2 The Central Limit Theorem 183
6.5.3 Sampling Distribution of the Sample Mean 188

6.6 Summary . 189
6.7 Appendix: For Loops 190
6.8 Cheatsheets . 192

6.8.1 Concepts and Notation 192
6.8.2 R Symbols and Operators 194
6.8.3 R Functions 195

7 Quantifying Uncertainty 196
7.1 Estimators and Their Sampling Distributions . . . 196
7.2 Confidence Intervals 202

7.2.1 For the Sample Mean 203
7.2.2 For the Difference-in-Means Estimator . . 206
7.2.3 For Predicted Outcomes 209

7.3 Hypothesis Testing 211
7.3.1 With the Difference-in-Means Estimator . . 218
7.3.2 With Estimated Regression Coefficients . . 220

7.4 Statistical vs. Scientific Significance 224
7.5 Summary . 225
7.6 Cheatsheets . 226

7.6.1 Concepts and Notation 226
7.6.2 R Symbols and Operators 229
7.6.3 R Functions 229

Index of Concepts 231

Index of Mathematical Notation 235

Index of R and RStudio 237

1. INTRODUCTION

This book provides a friendly introduction to data analysis for the R symbols, operators, and functions intro-
duced in this chapter: +, −, *, /, <-,
", (), sqrt(), #, setwd(), read.csv(), View(),
head(), dim(), $, and mean().

social sciences. It covers the fundamental methods of quantita-
tive social science research, using plain language and assuming
absolutely no prior knowledge of the subject matter.

Proceeding step by step, we show how to analyze real-world
data using the statistical program R for the purpose of answering
a wide range of substantive questions. Along the way, we teach
the statistical concepts and programming skills needed to conduct
and evaluate social scientific studies. We explain not only how
to perform the analyses but also how to interpret the results and
identify the analyses’ strengths and potential limitations.

Through this book, you will learn how to measure, predict, and
explain quantities of interest based on data. These are the three
fundamental goals of quantitative social science research. (See
outline 1.1.)

OUTLINE 1.1. The three goals of quanti-
tative social science research.

WHY DO WE ANALYZE DATA
IN THE SOCIAL SCIENCES?

In the social sciences we analyze data to:
- measure a quantity of interest, such as the proportion

of eligible voters in favor of a particular policy
- predict a quantity of interest, such as the likely winner

of an upcoming election
- explain a quantity of interest, such as the causal effect

of attending a private school on student test scores.

Figuring out whether you aim to measure, predict, and/or explain
a quantity of interest should always precede the analysis and
often also precede the data collection. As you will learn, the
goals of your research will determine (i) what data you need to
collect and how, (ii) the statistical methods you use, and (iii)
what you pay attention to in the analysis. As you read this book
and learn about each goal in detail, the distinctions will become
clearer. Here we provide a brief preview.

2 CHAPTER 1

To measure a quantity of interest such as a population charac-
teristic, we often use survey data, that is, information collected
on a sample of individuals from the target population. To analyze
the data, we may compute various descriptive statistics, such as
mean and median, and create visualizations like histograms and
scatter plots. The validity of our conclusions depends on whether
the sample is representative of the target population. To measure
the proportion of eligible voters in favor of a particular policy,
for example, our conclusions will be valid if the sample of voters
surveyed is representative of all eligible voters.

To predict a quantity of interest, we typically use a statisti-
cal model such as a linear regression model to summarize the
relationship between the predictors and the outcome variable of
interest. The stronger the association between the predictors and
the outcome variable, the better the predictive model will usu-
ally be. To predict the likely winner of an upcoming election,
for example, if economic conditions are strongly associated with
the electoral outcomes of candidates from the incumbent party,
we may be able to use the current unemployment rate as our
predictor.

To explain a quantity of interest such as the causal effect of a
treatment on an outcome, we need to find or create a situation
in which the group of individuals who received the treatment is
comparable, in the aggregate, to the group of individuals who
did not. In other words, we need to eliminate or control for all
confounding variables, which are variables that affect both (i) the
likelihood of receiving the treatment and (ii) the outcome vari-
able. For example, when estimating the causal effect of attending
a private school on student test scores, family wealth is a poten-
tial confounding variable. Students from wealthier families are
more likely to attend a private school and also more likely to
receive after-school tutoring, which might have a positive impact
on their test scores. To produce valid estimates of causal effects,
we may conduct a randomized experiment, which eliminates all
confounding variables by assigning the treatment at random. In
the current example, we would achieve this by using a lottery to
determine which students attend private schools and which do not.
Alternatively, if we cannot conduct a randomized experiment and
need to rely on observational data instead, we would need to use
statistical methods to control for all confounding variables such
as family wealth. Otherwise, we would not know what portion of
the difference in average test scores between private and public
school students was the result of the type of school attended and
what portion was the result of family background.

INTRODUCTION 3

1.1 BOOK OVERVIEW
The book consists of seven chapters.

Chapter 1 is the introductory chapter, which lays the groundwork
for the forthcoming data analyses.

Chapters 2 through 5 each introduce one or two published social
scientific studies. In these chapters, we show how to analyze real-
world datasets to answer different kinds of substantive questions.
Specifically, we teach how to use several quantitative methods to
measure, predict, and explain quantities of interest. (See outline
1.2, which indicates how each chapter relates to the three goals
of quantitative social science research.)

OUTLINE 1.2. Book outline showing how
each chapter relates to the three goals of
quantitative social science research.

BOOK OUTLINE

Chapter Goal
1. Introduction
2. Estimating Causal Effects with

Randomized Experiments
Explain

3. Inferring Population Characteristics
via Survey Research

Measure

4. Predicting Outcomes Using Linear
Regression

Predict

5. Estimating Causal Effects with
Observational Data

Explain

6. Probability
7. Quantifying Uncertainty All Three

As you can see, chapters 2 and 5 are both about explanation, also
known as causal inference. They teach how to estimate causal
effects using different types of data. Since the methods differ,
they are presented in separate chapters.

The book progresses from simple to more complex methods. Chap-
ter 2 shows how to estimate causal effects using data from a
randomized experiment. Chapter 3 is about measurement and
teaches how to infer the characteristics of an entire population
from a sample of survey respondents. Chapter 4 is about pre-
diction and demonstrates how to use simple linear regression.
Chapter 5 shows how to estimate causal effects with observational
data and teaches multiple linear regression, the most complicated
method we see in the book.

In chapter 6, we cover basic probability, and in chapter 7 we
complete some of the analyses from chapters 2 through 5 by quan-
tifying the uncertainty of our empirical findings. A more detailed
description of each chapter is below.

4 CHAPTER 1

1.2 CHAPTER SUMMARIES
In the current introductory chapter, we discuss why data analysis
is a required skill among social scientists. We also explain how to
get our computers ready, and we familiarize ourselves with RStu-
dio and R, the two programs we will use. Then, we learn to load
and make sense of data and practice computing and interpreting
means.

In chapter 2, we define and learn how to estimate causal effects
using data from a randomized experiment. As the working exam-
ple, we analyze data from one of the largest experiments in U.S.
education policy research, Project STAR, to determine whether
attending a small class improves student performance.

In chapter 3, we use survey research to measure population char-
acteristics. In addition, we learn how to visualize and summarize
the distribution of single variables as well as the relationship
between two variables. To illustrate these concepts, we analyze
data related to the 2016 British referendum on withdrawing from
the European Union, a decision popularly known as Brexit.

In chapter 4, we learn how to predict outcomes using simple linear
regression models. For practice, we analyze data from 170 coun-
tries in order to predict growth in gross domestic product (GDP)
using night-time light emissions as measured from space.

In chapter 5, we return to estimating causal effects, but this
time using observational data. We define confounding variables,
examine how their presence complicates the estimation of causal
effects, and learn how to use multiple linear regression models
to help mitigate the potential bias these variables introduce. To
illustrate how this works step by step, we estimate the effects of
Russian TV reception on the 2014 Ukrainian parliamentary elec-
tions. In this context, we introduce the concepts of internal and
external validity. We then discuss the pros and cons of random-
ized experiments and of observational studies.

In chapter 6, we shift our focus away from data analysis to cover
basic probability. We learn about random variables and their
distributions as well as the distinction between population param-
eters and sample statistics. We then discuss the two large sample
theorems that enable us to measure statistical uncertainty.

In chapter 7, we use everything we have learned in the preceding
chapters and show how to quantify the uncertainty in our empir-
ical findings in order to draw conclusions at the population level.
In particular, we show how to quantify the uncertainty in (i) popu-
lation inferences, (ii) predictions, and (iii) causal effect estimates.
As illustrations, we complete some of the analyses we started in
chapters 2 through 5.

INTRODUCTION 5

1.3 HOW TO USE THIS BOOK
This is no ordinary textbook on data analysis. It is intention-
ally designed to accommodate readers with a variety of math and
programming backgrounds.

The book uses a two-column layout: a main column and a side
column or margin.

The main column contains the essential material and code, which
are intended for all readers, except for the sections labeled
FORMULA IN DETAIL. These contain more advanced material
and are clearly identified so that you can easily skip them if you
so choose.

In the margin are various types of notes and figures, each with a
different purpose:

- At the beginning of each chapter, we list the R functions, sym-
bols, and operators that will be introduced. You can look
through the list to get a sense of what will be covered. (See,
for example, the list for this chapter shown on the first page,
and note that we always display code in cyan.)

- TIPs include supplemental material, such as additional expla-
nations, answers to common questions, notes on best practices,
and recommendations.

- RECALLs remind you of relevant information mentioned earlier
in the book. These reminders are particularly helpful when the
book is read only a few pages at a time, such as over the course
of a semester.

- To help you review the core concepts, which are shown in bold
red in the main text, we repeat their definitions in the margin.
These notes are displayed in red.

- To help you with R functions, symbols, and operators, the
first time these are introduced, we include in the margin an
explanation of how they work and provide an example. These
explanations are displayed in a cyan-colored frame.

At the end of each chapter, in place of the usual list of supplemen-
tary exercises, we include CHEATSHEETS to help you review the
core concepts as well as the R functions, symbols, and operators
covered.

Supplementary chapter-specific exercises, categorized by degree
of difficulty, are available at http://press.princeton.edu/dss.

Finally, at the end of the book, we include three separate indexes
for concepts, mathematical notation, and R-related topics.

6 CHAPTER 1

1.4 WHY LEARN TO ANALYZE DATA?
As a social scientist, sooner or later you will need to rely on
data to (i) measure the characteristics of a certain population of
interest, (ii) make predictions, and/or (iii) make or evaluate deci-
sions involving cause-and-effect relationships. What proportion
of a population is in favor of a particular policy? Who is the
candidate most likely to win an upcoming election? Shall we
implement a particular policy to boost economic growth? You will
want to be able to answer these types of questions either by ana-
lyzing data yourself or by understanding and assessing someone
else’s data analysis.

Even if you are not planning to become a social scientist, it is use-
ful for you to know how to analyze data and/or how to distinguish
a good quantitative study from a poorly conducted one. These
are highly marketable skills. Recent advancements in computing
power and the proliferation of data have increased the demand
for data analysts who can inform decision makers in the public
and private sectors alike.

The analytical skills you will learn by making your way through
this book can also be used to improve everyday decisions, from
choosing a candidate to vote for to determining the best way to
increase your productivity. Perhaps most importantly, by learning
the strengths and limitations of different quantitative methods,
you will become less vulnerable to arguments based on faulty
inferences from data. In the era of big data, we all stand to
benefit from becoming savvy consumers of quantitative research,
even if we do not all become skilled researchers ourselves.

1.4.1 LEARNING TO CODE
For the purpose of analyzing data, we write and run code. Code
contains instructions that a computer can implement. These
instructions consist of sequences of clearly defined steps written
in a particular programming language. In this book, we code in R,
which is a programming language used by many data analysts.

Don’t worry if you have never done any coding before. Learning
to code is not as difficult as one might think. You may even find
it fun. Back in 1944, when the first programmable computer in
the United States was built, only highly trained mathematicians
were able to code. At that time, coding required punching paper
tape in specific sequences that the machine could read. (See a
rendition of what this tape looked like in the margin.) Today,
anyone with access to a computer, some spare time, and a little
patience can learn how to code.

INTRODUCTION 7

1.5 GETTING READY
To perform the analyses in this book, we first need to download
and install the necessary files and programs. We should also
familiarize ourselves with RStudio, which is the interface we use
throughout.

Ê DOWNLOAD AND SAVE FILES
All the files we will use are in a folder named DSS, which is TIP: By default, your computer will likely

save the DSS folder to your Downloads.
To move it, you can copy and paste it or
drag it to the new location.

available at http://press.princeton.edu/dss. For easy access, we
recommend saving the folder on your Desktop. This is where the
code used throughout the book assumes the DSS folder is located.
In case you choose to save the folder elsewhere, we also provide
instructions for making the necessary changes to the code.

Ë DOWNLOAD AND INSTALL R AND RSTUDIO
We will use two programs: R and RStudio. R is the statistical Unfortunately, these programs are com-

patible only with Linux, Mac, and Win-
dows operating systems. They cannot be
used on tablets or phones. We provide
instructions for using these two programs
on a Mac or a Windows computer.

program, the engine if you will, that will perform the calculations
and create the graphics for us. RStudio is the user-friendly inter-
face we will use to communicate with R. While we could use R
directly, going through RStudio makes writing and running code
much easier.

Why do we use R as our statistical program? Because it is free,
open-source (anyone can see the underlying code and improve it),
powerful, and flexible. It is also widely used. Indeed, many jobs
these days require knowledge of R.

To download and install R, go to
http://cran.r-project.org, select the link
that matches your operating system, and
follow the instructions.

To download and install RStudio, go to
http://rstudio.com, select the link that matches
your operating system, and follow the instruc-
tions.

Ì BECOME FAMILIAR WITH RSTUDIO
To analyze data, we always operate R through RStudio. Let’s TIP: How do we open a new R script? In

the RStudio dropdown menu, click on File
> New File > R Script. A new “Untitled”
file will open. The extension of this type
of file is “.R”, which is why R scripts are
also called R files.

take a moment to become acquainted with RStudio’s layout.

After installing both programs, go ahead and start RStudio. Then,
from within RStudio, open a new R script, which is the type of file
we use to store the code we write to analyze data. Instructions
are shown in the margin.

8 CHAPTER 1

After opening a new R script, RStudio’s interface should look like
figure 1.1.

- The upper-left window is the R script , which is where we write
and run code, giving R commands to execute.

- The lower-left window is the R console, where R provides either
the results of successfully executed code (known as outputs) or
any error messages.

- The upper-right window is the environment , which is the stor-
age room of the current R session. It lists all the objects we
have created. (We will soon explain what objects are and pro-
vide examples showing how the environment works.)

- The lower-right window is where we find the help and plots
tabs, which we will learn how to use later on.

FIGURE 1.1. Layout of RStudio after
opening a new R script. The upper-left
window is the R script. The lower-left win-
dow is the R console. The upper-right
window is the environment of the R ses-
sion. The plots and help tabs appear in
the lower-right window.

1.6 INTRODUCTION TO R
To use R, we need to learn the R programming language. (R is
the name of both the statistical program and the programming
language.) Learning a programming language is like learning a
foreign language. It is not easy, and it takes a lot of practice and
patience. The exercises in this book will help you learn to code
in R, so be sure to follow along. Practice is everything!

Let’s begin. R can be used to do many things. In our case, we
will use R (i) as a calculator; (ii) to create objects, which is how
R stores data; and (iii) to interact with data using functions.

WE WILL USE THE STATISTICAL PROGRAM R TO:
(i) do calculations

(ii) create objects
(iii) use functions.

INTRODUCTION 9

1.6.1 DOING CALCULATIONS IN R
We can use R as a calculator. R can do summation (+), subtraction +, −, *, and / are some of the

arithmetic operators recognized by
R. Example: (4 − 1 + 3) * (2 / 3)

(−), multiplication (*), and division (/), as well as other more
complicated mathematical operations. For example, the code to
ask R to calculate 1 plus 3 is:
1 + 3

To run this or any other code, we first type it in the R script (the
upper-left window of RStudio). Then, we highlight as much of it
as we want to run and either (a) manually hit the run icon (shown
in the margin) or (b) use the shortcut command+enter in Mac or
ctrl+enter in Windows. The result, or output, of the executed code
will show up in the R console (the lower-left window of RStudio).
(Instead, we could type the code directly in the R console and
hit enter, but we should avoid doing it that way. It is best to run
code through an R script so that you can save it, re-run it, tweak
it, expand it, and share it.)

After running the code above, we should see the following in the
R console: first, the executed code shown in blue, indicating that
R was able to run it without problems, and then the output shown
in black. In this case, the output is:
4

Indeed, one plus three equals four.

Congratulations! You just wrote and ran your first line of code TIP: To save any changes you make to the
R script, either (a) use the shortcut com-
mand+S in Mac or ctrl+S in Windows or
(b) click on File > Save or Save As. . .

in R. Notice that now that you have written some code in the
R script, RStudio shows the name of the file in red. This is to
remind you that you have some unsaved changes. Once you save
the file, the file name will return to black.

Throughout the book, we show the output that you should see in
the R console right after the code that produces it. To distinguish
the output from the code, we display the output with the symbol
at the beginning of the line. For example, we display the
code and output above as follows:
1 + 3
[1] 4

TIP: Adding spaces around operators
makes the code easier to read. R ignores
these spaces. Example: 1+3 produces the
same output as 1 + 3.

The first line, shown in cyan, is the code to be typed and run in
the R script. The second line, which begins with ## and is shown
in gray, is what should appear in the R console after running the
code.

What does the number in brackets before the 4 mean? It indicates
the position of the output immediately to its right. In this instance,
[1] indicates that 4 is the first output of the code we ran. Later in
the chapter, we will see examples of code that produce multiple
outputs, which will clarify how this works.

10 CHAPTER 1

1.6.2 CREATING OBJECTS IN R
In order to manipulate and analyze data, we need to load and
store datasets. R stores information in what are known as objects,
and so we need to learn how to create objects in R.

Think of an object as a box that can contain anything. All we
need to do is give it a name, so that we know how to refer to it,
and specify its contents.

To create an object in R, we use the assignment operator <-:<- is the assignment operator. It
creates new objects in R (unless one
with the same name already exists,
in which case R overwrites its con-
tents). To its left, we specify the
name of the object (without quotes).
To its right, we specify the contents
of the object. Example: four <- 4.

- To its left, we specify the name we want to give the object.
This name can be anything as long as it does not begin with a
number or contain spaces or special symbols like $ or % that
are reserved for other purposes. Underscores _ are permitted
and are good substitutes for spaces.

- To its right, we specify the contents of the object, that is, the
data we want to store.

CREATING OBJECTS: To store data as an object in R, we
run code using this format:

object_name <- object_contents

where:
- object_name is the name we want to give the object
- <- is the assignment operator, which creates an object by

assigning contents to a name
- object_contents is the data we want to store in the object.

For example, if we want to create an object called four containingTIP: We would accomplish the same thing
by running: four <- 4. the output of the calculation 1+3, we run:

four <- 1 + 3

Notice that after running the code above, the object will showTIP: RStudio continues to work in the
same R session until you quit the program.
At that time, R will ask whether you want
to save the workspace image, which con-
tains all the objects you created during
the R session. We recommend that you
do not save it. If you need to continue to
work with those objects, you can always
re-create them by re-running your code.

up in the environment (the upper-right window in RStudio). As
mentioned earlier, the environment is the storage room of the
current R session. It shows the objects that we have created and
that are available for us to use.

If we want to know the contents of the object four, we can type
and run the name of the object in the R script. Its contents will
appear in the R console. This is equivalent to asking R, what is
inside the object named four?
four
[1] 4

INTRODUCTION 11

Not surprisingly, the object four contains the number 4.

Objects can contain text as well as numbers. For example, to
create an object called hello containing the text “hi” we run:
hello <- "hi"

After running the code above, the environment should contain two
objects: four and hello.

Let’s stop here to learn something important about R. Look at the " when writing code, the names
of objects, names of functions, and
names of arguments as well as spe-
cial values such as TRUE, FALSE,
NA, and NULL should not be in
quotes; all other text should be in
quotes. Examples: "this is just text",
object_name. Never use quotes
around a number unless you want R
to treat it as text, in which case you
will not be able to use it to perform
arithmetic operations.

code above. Why did we use quotation marks around the content
of the object "hi" but not around the name of the object hello? In
other words, when do we use quotes " when coding in R? Here
is the rule: When writing code, the names of objects, names of
functions, and names of arguments as well as special values such
as TRUE, FALSE, NA, and NULL should not be in quotes; all
other text should be in quotes. (In the next subsection, we will
see what we mean by functions and arguments. We will learn the
meaning and usage of TRUE and FALSE in chapter 2 and of NA
and NULL in chapter 3.)

What would have happened had we tried to run the code above
without quotes around hi? Go ahead and try it:
hello <- hi
Error: object ’ hi ’ not found

In the R console, you will see an error message (in red) that reads, TIP: If you have problems figuring out what
a particular error means, Google it. Lots
of data analysts participate in Q&A sites,
such as Stack Overflow, which can be very
helpful for this sort of thing.

“Error: object ’hi’ not found”. Indeed, by typing hi without quotes,
you are telling R that hi is the name of an object. Because there
is no object named hi in the environment, R gives you an error
message. Encountering programming errors is part of the coding
process. Try not to be discouraged by them.

A word of caution: R overwrites (replaces) old objects if we use
the same name when creating a new object. For example, go
ahead and run the following:
hello <- "hi , nice to meet you"

You should see that you still have only two objects in the envi-
ronment: four and hello, but now hello contains the text “hi, nice
to meet you” instead of simply “hi”. To confirm this, we run:
hello
[1] " hi , nice to meet you"

Note also that R is case-sensitive. It will treat Hello as a com-
pletely different object name than hello. If we run the name Hello
by mistake, R will not be able to find the object because there is
no object in the environment called Hello with an uppercase H
at the beginning. To avoid this problem, we recommend using all
lowercase letters when naming objects.

12 CHAPTER 1

1.6.3 USING FUNCTIONS IN R
Finally, we use R to interact with data, which requires using
functions.

Think of a function as an action that you request R to perform
with a particular piece of data, such as calculating the square
root of four. A function takes one or more inputs, such as the
number four; performs one or more actions with the inputs, such
as calculating the square root of the inputs; and produces one
or more outputs, such as the number two, which is the result of
taking the square root of four.

AN R FUNCTION

takes
input(s) →

performs
action(s)
with the
input(s)

→ produces
output(s)

Throughout the book, we will learn how to use the functions listedR functions in this book: sqrt(), setwd(),
read.csv(), View(), head(), dim(), mean(),
ifelse(), table(), prop.table(), na.omit(),
hist(), median(), sd(), var(), plot(), abline(),
cor(), lm(), log(), c(), sample(), rnorm(),
pnorm(), print(), nrow(), predict(), abs(),
and summary().

in the margin, which come automatically loaded with R. In time,
we will learn their names, the actions they perform, the inputs
they require, and the outputs they produce. Meanwhile, here are
some important things to know about functions:
- The name of a function (without quotes) is always followed by

() the names of functions are
always followed by parentheses.
Inside the parentheses, we write
the argument(s) of the function,
separated by commas if there is
more than one argument. Example:
function_name(arg1, arg2).

parentheses: function_name()
- Inside the parentheses, we specify the inputs to be

used by the function, which we refer to as arguments:
function_name(arguments)

- Most functions require that we specify at least one argument
but can take many optional arguments. When multiple argu-
ments are specified inside the parentheses, they are separated
by commas: function_name(argument1, argument2)

- To identify the type of argument that we are specifying,TIP: There are two types of arguments:
required and optional. Required argu-
ments are the inputs that we must spec-
ify in order to use a particular function.
Optional arguments are the inputs that we
could specify if we wanted to modify the
function’s default settings.

we either enter the arguments in a particular order or
include their names (without quotes) in our specification:
function_name(argument1, argument2) or
function_name(argument1_name = argument1,

argument2_name = argument2)
- In this book, we follow the most common practices. We always

specify required arguments first. If there is more than one
required argument, we enter them in the order expected by
R. We specify any optional arguments we want next and
include their names so that R knows how to interpret them:
function_name(required_argument,

optional_argument_name = optional_argument)

INTRODUCTION 13

USING R FUNCTIONS: To use a function in R, we typically
write code in one of these two formats:

(a) function_name(required_argument)

(b) function_name(required_argument,
optional_argument_name = optional_argument)

where:
- function_name is the name of the function; for example,

“mean” is the name of the function that computes the mean
of a set of values

- required_argument is the argument the function requires,
such as the values we want to calculate the mean of; we
typically do not include the names of required arguments;
we enter the required arguments first, and if there is more
than one, we enter them in the order expected by R

- , is a comma, which we use to separate different arguments
- optional_argument_name is the name of the optional

argument we want to use, such as the argument that
enables us to eliminate missing values before calculating
a mean

- optional_argument is what we set the optional argument
to be.

We will see some complex R functions in the next section. For now, sqrt() calculates the square root of
the argument specified inside the
parentheses. Example: sqrt(4).

TIP: Here, the name of the function is
sqrt, which, as with all function names,
is followed by parentheses (). Inside
the parentheses, we need to specify the
required argument, which is 4, in this
case. The output of the executed code is
2. Indeed, the square root of four is two.

let’s look at a simple one. The function sqrt(), which stands for
“square root,” calculates the square root of the argument specified
inside the parentheses. For example, to calculate the square root
of 4, we run:
sqrt (4)
[1] 2

The output here is the number 2. Alternatively, given that the
object four currently contains the number 4, we can run:
sqrt (four)
[1] 2

Note that R will be able to execute the code above only after
we have created the object four. If we start a new R session and
attempt to run this code without having first created the object
four, R will not be able to find the object in the environment and
will give us an error message. This is just to say that one must
run code in order. When returning to work on an R script, it is a
good idea to run all the code from the beginning of the file up to
the line that we are working on.

14 CHAPTER 1

One of the major advantages of writing code using an R script
(instead of writing it directly into the R console) is that we can
always replicate our results by re-running the code we have writ-
ten previously. Using an R script, we are able to work on complex
problems that might require running hundreds or thousands of
lines of code. As long as we save the code in an R script, we
can keep tweaking and expanding it. Writing code in R scripts
also means we can share our work and collaborate with others.
Anyone with access to our R script will be able to replicate our
analyses, which leads us to our next topic: the importance of
annotating, or commenting, code.

It is good practice to comment code, that is, to include short# is the character used to comment
code. R ignores everything that fol-
lows this character until the end of
the line. Example: # this is a com-
ment.

notes to ourselves or to our collaborators explaining what the
code does. This will make reading and understanding our code
easier. To write comments in the R script, we use #. R ignores
everything that follows this character until the end of the line
and will not execute it. For example, running the following code
produces exactly the same output as the code above:

sqrt (four) # calculates square root of four
[1] 2

After seeing the # character, R stopped reading until the end
of the line. Had we inserted the comment at the beginning of
the line, before the code, R would not have executed the function
sqrt() at all. Go ahead, run:

calculates square root of four sqrt (four)

R will not produce an output. R thinks the whole line is a comment
because it starts with #.

RStudio helps us write and read code by color coding it in the
R script. For example, comments are shown in light green, while
executable code is shown in black, gray, blue, and dark green.
Becoming familiar with this color scheme will help you detect
errors in your code. (In this book, we use only two colors when
displaying code: cyan for executable code and gray for comments.)

1.7 LOADING AND MAKING SENSE OF DATA
Before starting any analysis, we must load the dataset. Then, weTIP: We recommend that when you start

a new study, you either (a) start a new R
session (Session > New Session) or (b)
remove all objects from the environment
(Session > Clear Workspace > Yes) to
avoid operating with objects from previous
studies by mistake.

must understand what the observations represent and what each
of the variables means. In this section, we show how to do all of
this for the data from the Project Student-Teacher Achievement
Ratio (Project STAR) in preparation for the analysis in chapter
2. The goal of Project STAR was to examine the causal effects
of small classes on student performance. While exploring the

INTRODUCTION 15

data from Project STAR, we learn what variables are and how
to distinguish between different types of variables based on their
contents.

To follow along, you can create a new R script (as shown in the TIP: How do we open an existing R script?
In the RStudio dropdown menu, click on
File > Open File. . . and then click on the
“.R” file you want to open.

previous section) and practice typing the code yourself. Alterna-
tively, you can open the “Introduction.R” file, which contains the
code used in the remainder of this chapter.

Here are the steps we recommend you follow before starting a
data analysis:

Ê SET THE WORKING DIRECTORY
Before we can load a dataset, we need to direct R to the working
directory, that is, the name and location of the folder containing
the data. If you followed the advice from the earlier section, all
the files necessary for the exercises in this book will be in the
DSS folder on your Desktop.

The easiest way to set the working directory is to first save the TIP: To save an R script to the DSS folder,
either (a) click on File > Save As . . . and
select the DSS folder, or (b) manually drag
the corresponding “.R” file from its current
location to the DSS folder.

R script to the folder that contains the dataset, the DSS folder,
in this case. Then, you can use the dropdown menu to set the
working directory manually: Session > Set Working Directory >
To Source File Location. After your last click, you will see a line
of code appear in the R console. Every time you start a new R
session and want to work with a dataset saved in the DSS folder,
you will need to run this line of code. You may, therefore, want
to copy and paste it in the R script as your first line of code.

The code to set the working directory uses the function setwd(), setwd() sets the working direc-
tory, that is, directs R to the
folder on your computer where
the dataset is saved. The only
required argument is the path to
the folder in quotes. Examples:
setwd("∼/Desktop/folder ") for Mac,
setwd("C:/user/Desktop/folder ") for
Windows (where user is your own
username).

which stands for “set working directory.” The only required argu-
ment is the path to the folder, which should be in quotes because
it is text and not the name of an object, the name of a function, the
name of an argument, or a special value such as TRUE, FALSE,
NA, and NULL. The path differs depending on whether you have a
Mac or a Windows computer. The code to set the working direc-
tory to the DSS folder on your Desktop should resemble one of
these (where user is your own username):
setwd("∼/Desktop/DSS") # example of setwd() for Mac
setwd("C:/user/Desktop/DSS") # example for Windows

Ë LOAD THE DATASET
Now we are ready to load the dataset. R can read a variety TIP: Resist the temptation to double-click

on a CSV file. If you open a CSV file
directly, you risk inadvertently changing
or losing data.

of data formats. In this book, datasets are always provided in
comma-separated values files, known as CSV files. As the name
indicates, CSV files contain data separated by commas. (See
figure 1.2 for a rendition of a CSV file.)

16 CHAPTER 1

FIGURE 1.2. CSV files contain data sep-
arated by commas.

To read the contents of a CSV file in R, we use the read.csv()read.csv() reads CSV files. The only
required argument is the name of
the CSV file in quotes. Example:
read.csv("file.csv ").

function, which requires that we specify inside the parentheses
the name of the CSV file in quotes. (We need to use quotes around
the name of the CSV file because it is text and not the name of
an object, the name of a function, the name of an argument, or a
special value such as TRUE, FALSE, NA, and NULL.)

To store the dataset so that we can analyze it later, we need to
not only read the CSV file but also save its contents as an object.
We can do so by using the assignment operator <-. As we saw
earlier, to the left of the assignment operator, we specify the name
of the object. To its right, we specify the contents, which in this
case are produced by reading the CSV file using the function
read.csv().

Here, the dataset is in a file called “STAR.csv”, and we choose to
name the object where we store the dataset star. Putting it all
together, the code to read and store the dataset is:
star <- read.csv("STAR.csv") # reads and stores data

After running the line of code above, the name of the object,
star, should appear in the environment (the upper-right window
in RStudio). If R gives you an error message instead, make sure
that (i) you have set the working directory to the folder where the
CSV file is saved, (ii) the name of the CSV file you are using in
the code is exactly the same as the name of the CSV file saved
in the working directory, and (iii) the extension of the CSV file in
the working directory is indeed “.csv”.

Ì UNDERSTAND THE DATA
To make sense of the dataset, we should start by looking at its
contents.

To look at the data, we could type the name of the object, star,
in the R script and run it. R will show the entire contents of the
dataset in the R console, which might be hard to read unless the
dataset is small.

INTRODUCTION 17

A better option is to use the function View(), which requires that View() opens a new tab in the
upper-left window of RStudio with
the contents of a dataset. The
only required argument is the name
of the object where the dataset
is stored (without quotes). Exam-
ple: View(data). Note that R is
case-sensitive and the name of this
function starts with uppercase V.
The good news is this is the only
function we will see in this book
that uses any uppercase letters; all
others are written in all lowercase
letters.

we specify inside the parentheses the name of the object where
the dataset is stored (without quotes). Alternatively, you can
manually click on the object name in the environment. Both of
these actions open a new tab in the upper-left window of RStudio
with the dataset in spreadsheet form. We can then easily scroll up,
down, left, and right to look at the data in an organized manner.
Figure 1.3 shows how the data will be displayed if we run:
View(star) # opens a new tab with contents of dataset

FIGURE 1.3. Tab that opens in the
upper-left window of RStudio with entire
contents of the star dataset as a result
of either (a) running View(star) in the R
script or (b) clicking on the object star in
the environment. (To return to the R script,
we can either close this tab by clicking on
the gray X next to the name or by clicking
on the R script tab.)

Sometimes it might be enough for us to see only the first few head() shows the first six rows or
observations in a dataset. The
only required argument is the name
of the object where the dataset is
stored (without quotes). To change
the number of observations dis-
played, we use the optional argu-
ment n. Examples: head(data)
shows the first six rows and
head(data, n=3) shows the first
three. In the output, the first column
identifies the position of the obser-
vations, and the first row identifies
the names of the variables.

rows of data. For this purpose, we use the function head(), which
requires that we specify inside the parentheses the name of the
object where the dataset is stored (without quotes):
head(star) # shows the first six rows
classtype reading math graduated
1 small 578 610 1
2 regular 612 612 1
3 regular 583 606 1
4 small 661 648 1
5 small 614 636 1
6 regular 610 603 0

By default, the function head() displays the first six lines of data.
If we want R to display a different number of lines, we specify
an optional argument inside the parentheses. In particular, we
specify the argument named n and set it to equal the number of
lines we want R to show. For example, to ask R to display the
first three lines of star, we run:

RECALL: In R functions, multiple argu-
ments are separated by commas, and the
names of arguments should not be in
quotes. Failing to follow these instructions
will prevent R from executing the code and
result in an error message.

head(star , n=3) # shows the first three rows
classtype reading math graduated
1 small 578 610 1
2 regular 612 612 1
3 regular 583 606 1

18 CHAPTER 1

How do we make sense of the data inside the dataset? Knowing
the following common features of datasets should help:

- Datasets capture the characteristics of a particular set of indi-
viduals or entities: citizens, organizations, countries, and so on.
As we will soon learn, this dataset contains information about
students who participated in Project STAR.

- Datasets are typically organized as dataframes, where rowsIn a dataframe, each row is an observa-
tion, and each column is a variable. An
observation is the information collected
from a particular individual or entity in the
study. The unit of observation of a dataset
defines what each observation represents.
The notation i identifies the position of
the observation; the observation for which
i=1 is the first observation. A variable
captures the values of a changing charac-
teristic for multiple individuals or entities.

are observations and columns are variables.

- What is an observation?
- An observation is the information collected from a partic-

ular individual or entity in the study.
- The unit of observation of the dataset defines the individ-

uals or the entities that each observation in the dataframe
represents. The unit of observation in the STAR dataset is
students. Hence, every row of data in the star dataframe
represents a different student in the study.

- We usually refer to an observation by the row number in
the dataframe, which we denote as i . See, for example,
that in the output of head(), the rows are labeled by their
position, i . When R displays the first six observations of
a dataframe, the values of i range from 1 to 6.

- What is a variable?
- A variable captures the values of a changing characteristic

for the multiple individuals or entities in the study.
- Every column of data in the star dataframe is a variable;

each variable captures a specific feature of the students,
for all the students in the study.

- We usually refer to a variable by its name. See, for exam-
ple, that in the output of head(), the columns are labeled
with the variable names: classtype, reading, math, and
graduated. (Note that, for easy recognition, we italicize
the names of variables in the text.)

- From time to time, in this book we define new variablesTIP: In this book, we are also going to
teach you mathematical notation, a system
of symbols and expressions that represent
mathematical concepts. To help you keep
track of the meaning of these symbols and
expressions, at the end of the book we have
included an index of all the mathematical
notation we use.

for the purpose of illustrating concepts. We represent a
variable and its contents using the following mathematical
notation:

X = {10, 5, 8}

- On the left-hand side of the equal sign, we identify the
name of the variable: X , in this case.

- On the right-hand side of the equal sign and inside curly
brackets, we have the contents of the variable: multiple
observations, separated by commas. In the simple exam-
ple above, the variable contains three observations: 10,
5, and 8.

INTRODUCTION 19

- To represent each individual observation of the variable
X , we use Xi (pronounced X sub i) where i stands for
the observation number. The subscript i means that we
have a different value of X for each value of i . Here,
because there are only three observations, i can equal
only 1, 2, or 3. For example, we represent the second
observation (the observation for which i=2) as X2, which
in this case equals 5.

Now that we have looked at the data, we should read the descrip-
tion of the variables provided in table 1.1.

variable description
classtype class size the student attended: “small” or

“regular”
reading student’s third-grade reading test scores (in

points)
math student’s third-grade math test scores (in points)
graduated identifies whether the student graduated from

high school: 1=graduated or 0=did not graduate

TABLE 1.1. Description of the variables in
the STAR dataset, where the unit of obser-
vation is students.

Reading table 1.1, we learn that:
- classtype captures the size of the class the student attended,

which was either “small” or “regular”
- reading records the scores, measured in points, the student

earned on the third-grade reading test
- math records the scores, measured in points, the student earned

on the third-grade math test
- graduated indicates whether the student graduated from high

school (it equals 1 if the student graduated and 0 if the student
did not graduate).

Now we can look at the first few lines of data again and substan-
tively interpret them. For example, the first observation represents
a student who attended a small class, earned 578 points on the
third-grade reading test and 610 points on the third-grade math
test, and graduated from high school.

Í IDENTIFY THE TYPES OF VARIABLES INCLUDED
At this point, we should learn the typology of the variables
included in the dataset. This information will be especially
helpful when we need to interpret the results of the analysis.

Based on the contents of the variables, we can distinguish
between the types listed in outline 1.3.

20 CHAPTER 1

variables

character
(if text)

numeric
(if numbers)

binary
(if only 2 values)

non-binary
(if more than 2 values)

OUTLINE 1.3. Types of variables based
on their contents.

- The first distinction we make is between character and numericA character variable contains text, such
as names={Elena, Kosuke, Kathryn}. A
numeric variable contains numbers, such
as rank={2, 1, 3}. A binary variable
can take only two values; in this book, we
define binary variables as taking only 1s
and 0s, such as voted={1, 0, 1}. A non-
binary variable can take more than two
values, such as distance={1.452, 2.345,
0.298} and dice_roll={2, 4, 6}.

variables. While character variables contain text, numeric
variables contain numbers. For example, in the STAR dataset,
classtype is a character variable, and reading, math, and grad-
uated are numeric variables.

- Among numeric variables, we differentiate between binary and
non-binary. A binary variable can take only two values (“bi”
means two). In this book, all binary variables take only 1s and
0s to represent the presence or absence of a particular trait. In
this type of binary variable, also known as a dummy variable,
you may think of the 1s as capturing the positive responses to
simple yes or no questions and of the 0s as capturing the neg-
ative responses. For example, in the STAR dataset, graduated
is a binary variable that captures responses to the question,

graduated i =

1 if student i

graduated

0 if student i
didn’t graduate

did the student graduate? The variable takes the value of 1
when the answer is yes (the student graduated) and 0 when
the answer is no (the student did not graduate). (See mathe-
matical definition in the margin.)

- In contrast, we categorize as non-binary all other numeric
variables, that is, those that can take more than two values.
For example, in the STAR dataset, both reading and math are
non-binary variables because they each contain more than two
different numbers.

Î IDENTIFY THE NUMBER OF OBSERVATIONS
Finally, we should find out how many observations the datasetdim() provides the dimensions of a

dataframe. The only required argu-
ment is the name of the object where
the dataframe is stored (without
quotes). The output is two values:
the first indicates the number of
observations in the dataframe; the
second indicates the number of vari-
ables. Example: dim(data).

contains. For this purpose, we use the function dim(), which stands
for “dimensions” and requires that we specify inside the parenthe-
ses the name of the object where the dataframe is stored (without
quotes). This function returns two values because dataframes
have two dimensions: rows and columns. The first corresponds to
the number of rows, which is equivalent to the number of obser-
vations. The second corresponds to the number of columns, which
is equivalent to the number of variables.
dim(star) # provides dimensions of dataframe: rows, columns
[1] 1274 4

INTRODUCTION 21

Given the output above, we learn that the STAR dataset contains The notation n stands for the total num-
ber of observations in a dataframe or in a
variable.

1,274 observations. And, as we already knew by looking at the
data directly, it contains four variables. Given that each observa-
tion represents a student, we now know that we have information
for 1,274 students in Project STAR. In mathematical notation, we
represent the number of observations in a dataframe as n. In this
case, we can state that n=1,274.

1.8 COMPUTING AND INTERPRETING MEANS
The mean, or average, of a variable is one of the foundational TIP: In chapter 3, we will see how to calcu-

late and interpret other statistics, such as
the median, standard deviation, and vari-
ance of a variable.

concepts of data analysis. In this section, we first show how to
access a variable inside a dataframe in R so that we can operate
with its values. Then, we explain in detail how to calculate and
interpret the mean of a variable.

1.8.1 ACCESSING VARIABLES INSIDE DATAFRAMES
Suppose we want to operate with the variable reading inside the
dataframe star. How do we access the values within this variable?

If we run the name of the variable, reading, R will give us an error
message informing us that the object reading cannot be found.
Indeed, there is no object called reading in the environment. If
instead we run the name of the object that contains the dataframe,
star, R will show all the values in the dataframe, not just those of
the variable reading.

To access the values of a single variable, we use the $ character. $ is the character used to access
an element inside an object, such
as a variable inside a dataframe.
To its left, we specify the name
of the object where the dataframe
is stored (without quotes). To
its right, we specify the name
of the variable (without quotes).
Example: data$variable accesses
the variable named variable inside
the dataframe stored in the object
named data.

To its left, we specify the name of the object where the dataframe
is stored (without quotes). To its right, we specify the name of the
variable (without quotes). In this case, star$reading is the code
that instructs R to select the variable reading from within the
object named star. It is equivalent to saying to R: look inside of
star and find the variable called reading. (Note that when writing
code, we do not use quotes around the names of elements within
an object, such as the names of variables within a dataframe.) Go
ahead and run:
star$reading
[1] 578 612 583 661 614 610 595 665 616 624
[11] 593 599 693 545 565 654 686 570 529 582
...

In your R console (the lower-left window), you should see all
the observations of reading. Here, we show you only the first 20.
We use an ellipsis—three dots—to signify that more observations
should appear after those displayed here.

22 CHAPTER 1

What are the numbers in brackets at the beginning of each line?TIP: The number in brackets shown on the
second line in your R console might not
be 11 because the size of your lower-left
window might be different than ours. The
larger the window, the more observations
R will be able to display per line, and the
higher the number in brackets shown on
the second line will be.

They indicate the position of the observation immediately to the
right. The [1] on the first line indicates that the number 578 is
the first observation of the variable reading (reading1=578). The
[11] on the second line indicates that the number 593 is the 11th
observation of reading (reading11=593), and so on.

Now that we know how to access the contents of a variable, we
can learn how to compute and interpret the mean of a variable.

1.8.2 MEANS
The mean, or average, of a variable characterizes its central ten-The mean, or average, of a variable equals

the sum of the values across all observa-
tions divided by the number of observa-
tions.

dency. It equals the sum of the values across all observations
divided by the number of observations. In mathematical notation,
the mean of a variable is often represented by the name of the
variable with a bar on top, like so:

name of the variable

The formula to compute the mean of X is:TIP: The mean of a variable is a single
number, which does not vary by observa-
tion. As a result, the mean of X (X) is not
subscripted by i . X =

∑n
i=1 Xi

n =
X1 + X2 + · · ·+ Xn

n
where:

- X (pronounced X-bar) stands for the mean of X
- Xi (pronounced X sub i) stands for a particular observation of

X , where i denotes the position of the observation
- n is the number of observations in the variable
- the symbol

∑
(the Greek letter Sigma) is the mathematical

notation for summation;
∑n

i=1 Xi stands for the sum of all Xi
(observations of X) from i=1 to i=n, meaning from the first
observation of the variable X to the last one.

For example, if X={10, 4, 6, 8, 22}, then n=5 because the vari-
able has five observations, and the mean of X is:

X =

∑n
i=1 Xi

n =
X1 + X2 + X3 + X4 + X5

5

=
10 + 4 + 6 + 8 + 22

5 =
50
5 = 10

To calculate the mean of a variable in R, we can use the functionmean() computes the mean of a vari-
able. The only required argument
is the code identifying the variable.
Example: mean(data$variable).

mean(). The only required argument is the code identifying the
variable. For example, to calculate the mean of the reading test
scores of the students in the STAR dataset, we run:

INTRODUCTION 23

mean(star$reading) # calculates the mean of reading
[1] 628.803

How shall we interpret this output? First, we need to figure out The unit of measurement is the quantity in
which a value is measured. For example,
depending on where you live, you might
measure temperature in ◦F or ◦C and dis-
tance in miles or kilometers.

the quantity in which the value is measured. This is called the
unit of measurement. When interpreting numeric results, you
should make it clear whether the number is measured in points,
percentages, miles, or kilometers, for example.

The unit of measurement of the mean of a variable depends on TIP: Categorical, or factor, variables take
a fixed number of values, where each
value represents a qualitative outcome.
For example, we can capture adult edu-
cation levels in a categorical variable
where 1=no qualifications, 2=high school
diploma, and 3=undergraduate degree.

whether the variable is non-binary or binary. Outline 1.4 sum-
marizes how to interpret the mean of a variable (including units
of measurement) based on this distinction. (We exclude from this
discussion categorical variables, whose means generally have no
straightforward substantive interpretation.)

OUTLINE 1.4. Interpretation of the mean
of a variable based on the type of variable.

interpretation of the mean of a variable

if variable is non-binary:
as an average, in the same

unit of measurement
as the variable

if variable is binary:
as a proportion, in %

after multiplying
the result by 100

When the variable is non-binary, the mean should be interpreted TIP: It is good practice to round numeric
results to meaningful decimal places. This
usually means no more than two decimals,
but often one or none.

in the same unit of measurement as the values in the variable.
For example, in the output above, because reading is a non-
binary variable measured in points, the mean of reading is also
in points. We can, therefore, interpret the output as meaning that
the students in Project STAR scored 629 points, on average, on
the third-grade reading test.

When the variable is binary, the mean should be interpreted as TIP: The proportion of observations that
meet a criterion is calculated as:

number of observations
that meet criterion

total number of observations

To interpret the resulting decimal as a per-
centage, we multiply it by 100. For exam-
ple, if X={1, 1, 1, 1, 1, 0}, the proportion
of observations in X that are 1s is 83%
(5/6 = 0.8333. . . and 0.83×100=83%).

When the variable is binary, the numer-
ator of the mean, the sum of the 1s and
0s, is equivalent to the number of obser-
vations that meet the criterion. As a result,
the mean is equivalent to the proportion of
observations in the variable that are 1s.

a percentage, after multiplying the result by 100. Why? Because
the mean of a binary variable is equivalent to the proportion of
the observations that are 1s (that have the characteristic identified
by the variable). Let’s go over a simple example to see how this
works. Suppose we want to calculate the mean of the first six
observations of the binary variable graduated. As we saw earlier
in the output of head(), these are {1, 1, 1, 1, 1, 0}. The average
of these six observations would be:

sum of observations
number of observations =

1+ 1+ 1+ 1+ 1+ 0
6 =

5
6 = 0.8333. . .

Notice that the fraction 5/6 is equivalent to the proportion of the
observations that are 1s. (See TIP in the margin.) Now, to convert
the result from decimal form (0.83) into a percentage, we multiply
it by 100 (0.83×100=83%).

24 CHAPTER 1

Putting it all together, we interpret the average of the first six
observations of graduated as indicating that about 83% of the
first six students in the STAR dataset graduated.

Now, let’s compute the mean of all the observations within the
binary variable graduated (rather than just the first six). We do
so by running:
mean(star$graduated) # calculates the mean of graduated
[1] 0.8697017

How shall we interpret this output? Since the variable is binary,
the output means that about 87% of all the students in Project
STAR received a high school diploma (0.87×100=87%).

1.9 SUMMARY
We began this chapter by providing an overview of the book and
its main features. We then argued that knowing how to perform
and evaluate data analyses is particularly useful for studying
society and human behavior but can be helpful to anyone. These
skills are also highly marketable in the current era of big data.
We then got our computers ready and became acquainted with R
and RStudio, the two programs we use. Finally, in preparation
for the next chapter’s data analysis, we learned how to load and
make sense of data and how to compute and interpret means.

INTRODUCTION 25

1.10 CHEATSHEETS

1.10.1 CONCEPTS AND NOTATION

concept/notation description example(s)

dataframe structure of data in which each row is an
observation and each column is a variable

variables
1 2 . . .
↓ ↓

1 →
observations 2 →

. . .

variables classtype and reading in
dataframe form:

i classtype reading
1 small 725
2 regular 692
3 small 725
.

observation information collected from a particular
individual or entity in the study; each row
in a dataframe is an observation

the first observation in the dataframe
above represents a student who attended
a small class and scored 725 points on the
reading test

unit of observation defines what each observation represents students, schools, states, countries, . . .

i identifies the position of the observation the observation for which i=3 is the third
observation in a dataframe or in a variable

variable
(X)

captures the values of a changing
characteristic for multiple individuals or
entities; each column in a dataframe is a
variable

X={10, 8, 12}

character variable variable that contains text names = {Elena, Kosuke, Kathryn}

numeric variable variable that contains numbers rank = {2, 1, 3, 5, 4}

binary variable variable that can take only two values, in
this book 1s and 0s

voted = {0, 1, 1, 0, 1}

non-binary variable variable that can take more than two
values

distance = {2.568, 5.367, 7.235}
dice_roll = {2, 5, 4, 3, 1}

n stands for the total number of observations
in a dataframe or in a variable

in the variable dice_roll above, n=5∑
Greek letter Sigma; mathematical notation
for summation;

∑n
i=1 means “sum what

follows for all the observations, from i=1
to i=n” (the first to the last)

if X={10, 8, 12}, then:∑n
i=1 Xi = X1 +X2 +X3

= 10+ 8+ 12 = 30

unit of
measurement

quantity in which a value is measured ◦F, ◦C, miles, kilometers, points,
percentages, percentage points, . . .

mean or average
of a variable
(X)

characterizes the central tendency of the
variable; equals the sum of the values
across all observations divided by the
number of observations:

mean of X = X =

∑n
i=1 Xi

n

unit of measurement of X :
- if X is non-binary: in the same unit of

measurement as X
- if X is binary: in percentages, after

multiplying the result by 100

if X={10, 8, 12}, then:

X =

∑n
i=1 Xi

n = (X1 +X2 +X3)/3

= (10+ 8+ 12)/3 = 30/3 = 10

26 CHAPTER 1

1.10.2 R SYMBOLS AND OPERATORS

code description example(s)

+ − * / some of the arithmetic operators recognized by R (4 − 1 + 3) * (2 / 3)

<- assignment operator; creates new objects or overwrites existing
ones (if an object with the same name already exists); to its left,
we specify the name of the object (without quotes); to its right,
we specify the contents of the object; the name of an object
cannot begin with a number or contain spaces, $, or %

object_name <- object_contents

" when writing code, the names of objects, names of functions,
and names of arguments as well as special values such as
TRUE, FALSE, NA, and NULL should not be in quotes; all
other text should be in quotes; numbers should not be in quotes

"this is text"

object_name

() the names of functions are always followed by parentheses;
inside the parentheses, we write the argument(s) of the
function, separated by commas if there is more than one
argument; we enter required arguments first and in the order
expected by R; we specify optional arguments by including
their names in the specification (without quotes)

function_name(required_argument)

function_name(required_argument,
optional_argument_name =
optional_argument)

character used to comment code; R ignores everything that
follows this character until the end of the line

executable_code # comment

$ character used to access an element inside an object, such as a
variable inside a dataframe; to its left, we specify the name of
the object where the dataframe is stored (without quotes); to its
right, we specify the name of the variable (without quotes)

data$variable
accesses the variable named
variable inside the dataframe
stored in the object named data

1.10.3 R FUNCTIONS

function description required argument(s) example(s)

sqrt() calculates the square root what we want to compute the
square root of

sqrt(4)

setwd() sets the working directory,
that is, directs R to the
folder on your computer
where the dataset is saved

path to folder in quotes setwd("∼/Desktop/folder ")
for Mac

setwd("C:/user/Desktop/folder ")
for Windows, where user is
your own username

read.csv() reads CSV files name of CSV file containing
the dataset in quotes

read.csv("file.csv ")

View() opens a tab with the entire
contents of a dataframe

name of object where the
dataframe is stored

View(data)

head() shows the first six
observations in a dataframe;
in the output, observations
are identified by their
position, i , and variables by
their names

name of object where the
dataframe is stored

optional argument n: changes
the number of observations
displayed

head(data)
shows first six observations

head(data, n=2)
shows first two observations

dim() provides the dimensions of a
dataframe; output is:

[1] number of rows or
observations

[2] number of columns or
variables

name of object where the
dataframe is stored

dim(data)

mean() calculates the mean of a
variable

code identifying the variable
(see $)

mean(data$variable)

Index of Concepts

absolute value, 219
alternative hypothesis, 212, 218, 222, 227
average, 22, 25
average causal effects, 33, 48
average estimation error, 199, 226
average outcome for the control group, 37, 50
average outcome for the treatment group, 37, 50
average treatment effects, 33, 48
axioms, 163

Bayesian interpretation of probabilities, 162,
192

Bernoulli distribution, 166, 179, 192
bias, 199, 226
binary random variables, 20, 25, 29, 179
binary variables, 166, 192
bivariate linear model, 121

categorical variables, 23
causal assumption, 43, 130, 134, 139, 147, 151,

153
causal effects, 27, 29, 129, 196, 206, 218, 220,

224
causal inference, 27, 129, 211
causal language, 43, 139, 145
causal relationships, 28, 47
central limit theorem, 183, 194
character variables, 20, 25
coefficient of determination, 120, 128, 157

coefficients, 103, 104, 127, 140, 141, 144, 151,
220

confidence interval, 202, 227
confidence level, 202
confounders, 130, 159
confounding variables, 130, 159
control condition, 29, 47
control group, 35, 49
control variables, 159
correlation, 82, 95, 109, 121
correlation coefficient, 82, 95, 121
counterfactual outcomes, 32, 48
critical value, 215, 228
cross-tabulations, 62, 91
cumulative distribution function, 172, 174

dataframes, 18, 25
density function, 170, 193
density histograms, 68, 93
dependent variables, 28, 47, 99, 126
descriptive statistics, 71, 93
difference-in-means estimator, 37, 49, 136, 138,

206, 218
dummy variables, 20

estimate, 196, 226
estimated intercept, 127
estimated slope, 127
estimation error, 199, 226
estimator, 196, 197, 226

232 INDEX OF CONCEPTS

events, 163, 192
expectation, 180, 194
experimental data, 38, 50
experiments, 35, 49
explaining a quantity of interest, 27, 129, 196,

206, 218, 220, 224
external validity, 153, 160
extrapolation, 111

factor variables, 23
factual outcomes, 32, 48
fitted line, 105, 126
fitted linear model, 102, 105, 126, 144
fitted log-log linear model, 116, 128
fitted multiple linear regression model, 160
fitted multiple linear regression model where X1

is the treatment variable, 160
fitted simple linear model, 126
fitted simple linear regression model, 126
fitted simple linear regression model where X is

the treatment variable, 159
frequency tables, 57, 90
frequentist interpretation of probabilities, 162,

192

histograms, 66, 92
hypothesis testing, 211, 227

independent variables, 28, 47, 99, 126
individual causal effects, 29, 48
intercept, 103
intercept coefficient, 103, 127
internal validity, 153, 160
item nonresponse, 54, 90

large sample theorems, 180
law of large numbers, 180, 194
least squares, 106
level of test, 214, 228
line of best fit, 82, 100, 101, 106
linear association, 82, 95
linear model, 101, 121, 126, 143

linear regression, 101, 126
linear relationship, 82, 83, 95, 109
log-log linear model, 116, 124
logarithmic transformation, 113

margin of error, 205, 227
mean, 22, 25, 72
measuring a quantity of interest, 51, 196, 203
median, 72, 93
misreporting, 54, 90
multiple linear regression model, 121, 143, 159
mutually exclusive events, 163, 192

natural logarithm, 113
non-binary random variables, 20, 25, 29, 179
non-binary variables, 169, 193
nonlinear relationship, 88
nonresponse, 54, 90
normal distributions, 169, 179, 193
normal random variables, 169, 179
null hypothesis, 211, 218, 222, 227
numeric variables, 20, 25

observational data, 38, 50
observational studies, 38, 50, 153
observations, 18, 25
observed outcomes, 100, 126
omitted variables, 159
one-sided p-value, 214
outcome, 47, 163, 192
outcome variables, 28, 47, 99, 126

p-value, 213, 228
p.p., 44, 49, 58, 127, 138, 140, 147, 150, 151,

153, 205, 222, 227
parameter, 179, 196, 226
percentage change, 44, 117
percentage points, 44, 49, 58, 127, 138, 140,

147, 150, 151, 153, 205, 222, 227
percentage-point change, 44, 117
population mean, 180, 194
population variance, 180

INDEX OF CONCEPTS 233

post-treatment variables, 146, 160
potential outcome, 30
potential outcome under the control condition,

47
potential outcome under the treatment condition,

47
pre-treatment characteristics, 36, 49
predicted outcomes, 100, 126, 209
predicting a quantity of interest, 98, 196, 209
prediction errors, 100, 107, 126
predictors, 99, 126
probability, 162
probability density function, 170, 193
probability distributions, 165, 192
proof by contradiction, 211
proportions, 23

random sampling, 53, 90, 154
random treatment assignment, 35, 36, 49, 134,

154
random variables, 165, 192
randomized controlled trials, 35, 49
randomized experiments, 35, 49, 133, 153
RCT, 35, 49
regression line, 101, 126
replication, 203, 215
representative sample, 52, 90
residuals, 100, 107

sample, 52, 90
sample mean, 180, 188, 194, 203
sample space, 163, 192
sample statistic, 179
sample variance, 180, 194
sampling distribution, 188, 194, 198, 226
sampling frame, 54, 90
sampling variability, 180, 194
sampling with replacement, 168, 195
sampling without replacement, 168, 195
scatter plots, 78, 94
scientific significance, 224, 228
significance level, 214, 228
simple linear model, 121

simple linear regression model, 101, 121, 126
simulations, 167, 171, 186, 187
slope, 104
slope coefficient, 104, 127
standard deviation, 73, 93
standard error, 198, 226
standard normal distribution, 173, 193
standardize, 176
standardized estimator, 201
standardized variable, 176, 201
statistical controls, 143
statistical significance, 215, 228
sum of squared residuals (SSR), 107, 120
survey research, 51
surveys, 51

t-distribution, 223
t-statistic, 223
table of proportions, 57, 91
test statistic, 212, 218, 222, 227
total sum of squares (TSS), 120
treatment condition, 29, 47
treatment group, 35, 49
treatment variables, 28, 47
trial, 163, 192
two-sided p-value, 213, 228
two-way frequency tables, 62, 91
two-way tables of proportions, 64, 92
type I error, 215

unbiased estimator, 199, 226
uniform distribution, 67
unit nonresponse, 54, 90
unit of measurement, 23, 25, 43, 112, 138, 140,

141, 151
unit of observation, 18, 25

variables, 18, 25
variance, 76, 94, 194

z-scores, 84, 94, 176
z-statistic, 212, 218, 222, 228

Index of Mathematical Notation

α, 101, 143, 159
α̂, 103, 127, 140, 144, 160
β, 101
βj , 143, 159
β̂, 102, 104, 127, 138, 140, 151, 153
β̂1, 145–147, 220, 222
β̂j , 144, 160
△, 30, 47
△X , 104
△Yi , 30, 34, 48
△Ŷ , 104, 112, 127
ϵi , 101, 143, 159
ϵ̂, 100, 126
ϵ̂i , 102
θ, 212, 228
µ, 169–171, 173, 176, 179, 193
π, 170, 193∑

, 22, 25
σ, 169, 170, 173, 176, 193
σ2, 169–171, 173, 176, 179, 193
Ω, 163, 164, 192

≈, 167
∼, 169, 171, 173, 176, 179, 193
approx.∼ , 183

→, 28, 47, 130, 142, 145, 159

cor(X , Y), 82, 95, 121

E, 180, 184, 199, 200, 218
E(X), 180, 181, 183, 188, 194
E[Yi(Xi=1)− Yi(Xi=0)], 218
e, 170, 193
estimatei , 199, 200
estimation error i , 199
estimator , 200–202, 212

H0, 211, 227
H1, 212, 227

i , 18, 25

log(X), 113, 128

median(X), 72, 93

N (number of observations in the population), 52
N (a normal distribution), 169, 171, 173, 176,

179, 183, 193
name of the variable, 22, 25
N(0, 1), 172, 173, 176, 183, 193, 201, 202, 212
n, 21, 22, 25, 34, 52, 181, 183, 204
n control group, 207, 218
n treatment group, 207, 218

P , 163, 192
p, 166, 179, 192

R2, 120, 128, 157

236 INDEX OF MATHEMATICAL NOTATION

sd(X), 73, 93
SSR , 107, 120
(standard error)2, 200
standard error of β̂1, 222
standard error, 200–202, 212

true value, 199–201
TSS, 120

V, 180, 185, 200
V(X), 180, 183, 188, 194
var(X), 76, 94, 180, 194
var(Y), 204
var(Ycontrol), 207, 218
var(Ytreatment), 207, 218

X (a predictor), 99, 126
X (a random variable), 18, 22, 25, 166, 169, 171,

176, 179, 181, 183, 188, 193
X (the treatment variable), 28, 47, 130, 159
X1 (the treatment variable), 145
X2, . . . , Xp (statistical controls), 145
Xi , 18, 22, 25, 101, 102

Xi j , 143, 144, 159, 160
X , 22, 25, 72, 180, 181, 183, 188, 194
x , 166, 170

Y , 28, 47, 99, 100, 126, 130, 159
Yi , 101, 126, 143, 159
Yi(Xi=0), 30, 47, 218
Yi(Xi=1), 30, 47, 218
Y (X=0), 36, 48
Y (X=1), 36, 48
Y , 204
Y control group, 37, 49, 50, 207, 218
Y treatment group, 37, 49, 50, 207, 218
Y treatment group−Y control group, 37, 49, 138, 207, 218
Ŷi , 102, 126, 144, 160
Ŷ , 100, 105, 112, 126, 127, 209

Z (a confounding variable), 130, 159
Z (the standard normal random variable), 173,

176, 193, 201, 202
ZX

i , 84, 94
zobs, 213, 228
z , 174

Index of R and RStudio

", 11, 26
−, 9, 26
∼, 110, 128
(), 12, 26
*, 9, 26
+, 9, 26
„ 13
/, 9, 26
<-, 10, 26
,̂ 76, 96
==, 39, 40, 50
[], 42, 50, 61, 187, 208, 229
#, 14, 26
##, 9
$, 26, 40, 50, 57, 110, 128, 223

abline(), 80, 97, 111, 128
abs(), 219, 229
arguments, 12, 26
assignment operator, 10, 26

c(), 167, 195
cor(), 86, 97
CSV file, 15

data, 110, 128
data.frame(), 210, 229
dim(), 20, 26

environment, 8

Error in plot.new(): figure margins too large, 66,
109

Error: object not found, 11
exclude, 59, 96

FALSE, 11, 26, 39, 70, 96
for(i in 1:n){}, 187, 190, 194
freq, 70, 96

Google, 11

h, 80, 97
head(), 17, 26
help, 8, 60
hist(), 66, 70, 96

ifelse(), 40, 50, 56
interval, 210, 229

level, 210
lm(), 110, 115, 128, 140, 147, 161
log(), 113, 128
lty, 80, 97

margin, 65, 96
mean, 171, 175, 195
mean(), 22, 26, 96
median(), 72, 97

n, 17

238 INDEX OF R AND RSTUDIO

NA, 11, 26, 59, 96
na.omit(), 60, 96
na.rm, 60, 96
newdata, 210, 229
nrow(), 205, 229
NULL, 11, 26, 59, 96

plot(), 79, 97, 109
plots, 8, 66
pnorm(), 195
predict(), 210, 229
print(), 190, 195
prob, 181, 195
prop.table(), 58, 64, 96, 168

R console, 8
R errors, 8, 11, 13, 14, 16, 17, 66, 81, 109, 111,

187
R functions, 12, 26
R objects, 10, 26
R script, 8
read.csv(), 16, 26
replace, 181, 195
rnorm(), 171, 195
run icon, 9

sample(), 168, 195
sd, 171, 175, 195
sd(), 75, 97
setwd(), 15, 26
size, 181, 195
sqrt(), 13, 26
Stack Overflow, 11
summary()$coef, 223, 229

t-value, 223
table(), 57, 63, 96, 168
TRUE, 11, 26, 39, 60, 96, 181, 195

v, 80, 97
var(), 76, 97
View(), 17, 26

working directory, 15, 26
workspace, 10, 14

x, 79, 97

y, 79, 97

