CONTENTS

List of Illustrations ix
Foreword xiii
Preface xvii

1. Stone Age Wine 1
 Sifting Fact from Legend 3
 Man Meets Grape: The Paleolithic Hypothesis 7
 Whence the Domesticated Eurasian Grapevine? 11
 When and Where Was Wine First Made? 14

2. The Noah Hypothesis 16
 Genetics and Gilgamesh 16
 Transcaucasia: The Homeland of Viniculture? 19
 Exploring Georgia and Armenia 21
 Ancient DNA 25
 Casting a Wider Net in Anatolia 29
 The Indo-European Homeland 30
 “Noah’s Flood” 35
 Farther Afield 37

3. The Archaeological and Chemical Hunt for the Earliest Wine 40
 Godin Tepe 40
 Molecular Archaeology Comes of Age 48
 Identifying the Godin Tepe Jar Residues by Infrared Spectrometry 51
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeological Inference</td>
</tr>
<tr>
<td>From Grape Juice to Wine to Vinegar</td>
</tr>
<tr>
<td>Winemaking at the Dawn of Civilization</td>
</tr>
<tr>
<td>The First Wine Rack?</td>
</tr>
<tr>
<td>A Symposium in the True Sense of the Word</td>
</tr>
</tbody>
</table>

4. Neolithic Wine!

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Momentous Innovation</td>
<td>65</td>
</tr>
<tr>
<td>Liquid Chromatography: Another Tool of Molecular Archaeology</td>
<td>68</td>
</tr>
<tr>
<td>Ancient Retsina: A Beverage and a Medicine</td>
<td>70</td>
</tr>
<tr>
<td>A Media Barrage</td>
<td>72</td>
</tr>
<tr>
<td>Wild or Domesticated Grapes?</td>
<td>74</td>
</tr>
<tr>
<td>More Neolithic Wine Jars from Transcaucasia</td>
<td>74</td>
</tr>
<tr>
<td>Creating a Ferment in Neolithic Turkey: A Hypothesis to Be Tested</td>
<td>78</td>
</tr>
</tbody>
</table>

5. Wine of the Earliest Pharaohs

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Royal Industry Par Excellence</td>
<td>85</td>
</tr>
<tr>
<td>An Amazing Discovery from a Dynasty 0 Royal Tomb</td>
<td>91</td>
</tr>
<tr>
<td>Ancient Yeast DNA Discovered</td>
<td>103</td>
</tr>
</tbody>
</table>

6. Wine of Egypt’s Golden Age

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Hyksos: A Continuing Taste for Levantine Wines</td>
<td>107</td>
</tr>
<tr>
<td>Festival Wine at the Height of the New Kingdom</td>
<td>120</td>
</tr>
<tr>
<td>Wine as the Ultimate Religious Expression</td>
<td>134</td>
</tr>
<tr>
<td>Wines of the Heretic King, Akhenaten, and of Tutankhamun</td>
<td>137</td>
</tr>
<tr>
<td>The Vineyard of Egypt under the Ramessides</td>
<td>141</td>
</tr>
</tbody>
</table>

7. Wine of the World’s First Cities

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Beer-Drinking Culture Only?</td>
<td>149</td>
</tr>
<tr>
<td>Banqueting the Mesopotamian Way</td>
<td>158</td>
</tr>
</tbody>
</table>
CONTENTS

Wine, Too, Was Drunk in the Lowland Cities 160
Transplanting the Grapevine to Shiraz 164

8. Wine and the Great Empires of the Ancient Near East 167
Wine Down the Tigris and Euphrates 168
Wines of Anatolia and the Lost Hittite Empire 174
Assyrian Expansionism: Cupbearers, Cauldrons, and Drinking Horns 188
The Fine Wines of Aram and Phoenicia 201
Eastward to Persia and China 206

9. The Holy Land’s Bounty 210
Winepresses in the Hills, and Towers and Vineyards in the Wadi Floors 212
The Success of the Experiment 217
Serving the Needs of a Cosmopolitan Society 220
Wine for the Kings and the Masses 225
Dark Reds and Powerful Browns 233
Wine: A Heritage of the Judeo-Christian Tradition 236

10. Lands of Dionysos: Greece and Western Anatolia 239
Drinking the God 240
A Minoan Connection? The Earliest Greek Retsina 247
Wine Mellowed with Oak 259
“Greek Grog”: A Revolution in Beverage Making 262
Wine and “Greek Grog” during the Heroic Age 268

11. A Beverage for King Midas and at the Limits of the Civilized World 279
King Midas and “Phrygian Grog” 279
Re-creating an Ancient Anatolian Beverage and Feast 293
To the Hyperborean Regions of the North: “European Grog” 296

12. Molecular Archaeology, Wine, and a View to the Future 299
Where It All Began 299
Consumed by Wine 302
Why Alcohol and Why Wine? 305
The Lowly Yeast to the Forefront 307
Mixing Things Up 308
Wine, the Perfect Metaphor 312

Afterword 317
Selected Bibliography 375
Illustration Credits and Object Dimensions 397
Index 403
A SINGLE Eurasian grape species (*Vitis vinifera* L. subsp. *sylvestris*), among approximately 100 that grow wild in temperate zones of Asia, Europe, and North America, is the source of 99 percent of the world’s wine today (color plate 1). We may call the vine a Cabernet Sauvignon, a Gewürztraminer, or a Shiraz cultivar. We may be impressed by the varietal wines that are produced from the fruit of these vines, whether a dense red color, redolent of blackberries and cedar, or a flinty white with a hint of straw. The fact remains that we owe the seemingly infinite range of color, sweetness, body, acidity, taste, and aroma of this delectable beverage to one grape species.

The predominance of the Eurasian grapevine is all the more remarkable because the ancient inhabitants of the regions in which numerous wild grape species thrive today—China and North America, in particular—do not appear to have exploited the grapevine as a food source or to have brought it into cultivation. Leif Eriksson and his Viking compatriots were impressed enough by the proliferation of grapevines throughout the northeastern forests of the New World to call it Vinland. Yet, except for the occasional grape seed from an ancient village or encampment, there is as yet no archaeological evidence that Native Americans collected the wild grape for food, let alone domesticated the plant and made wine from its fruit.

Ancient Chinese sites are thus far similarly devoid of grape remains, although that picture is changing as more sophisticated techniques are used (see chapter 12). The earliest literary reference to
CHAPTER ONE

Map 2. The ancient Near East and Egypt. The distribution of the modern wild grapevine (*Vitis vinifera sylvestris*) is shown by hatching; isolated occurrences of the wild grape also occur in Turkmenistan, Uzbekistan, and Tajikistan, off the map to the east. The grape cluster symbol indicates wild and domesticated grape remains—primarily pips but occasionally skins and wood—that were recovered from representative sites primarily dating from the Neolithic to the beginning of the Early Bronze Age (ca. 8000–3000 B.C.) but sometimes much earlier (e.g., Ohalo, dating 20,000 years ago). The jar symbol marks wine jar types for the period from ca. 6000 to 3000 B.C., which have been chemically confirmed.

Wine in China is the account of General Zhang Qian, who traveled to the northwestern fringes of the Western Han realm in the late second century B.C. He reported that there (in the modern province of Xinjiang), astride the Silk Road, and farther along in Bactria and Sogdiana in Uzbekistan whose grapes were already legendary in the
West, the most popular beverage was wine. Indeed, in the fertile valley of Fergana on the western side of the Pamir Mountains, the wealthiest members of the society stored thousands of liters of grape wine, aging it for a decade or more. Zhang was so impressed with the beverage that he brought cuttings back to the imperial palace, where they were planted and soon produced grapes whose juice was made into wine for the emperor. Zhang's vines, however, did not belong to any East Asian species, such as *Vitis amurensis* with its huge berries growing along the Amur River in Manchuria, but to the Eurasian grape species, *Vitis vinifera*.

How can the Eurasian grape's dominant position in the world of wine be explained? *Vitis labrusca* and *Vitis rotundifolia* (the latter also known as scuppernong or muscadine) eventually established footholds as wine grapes in the New World, despite their foxy or sour undertones and a cloying sweetness that seemed better suited to a Concord jelly than a Niagara or Manischewitz wine. By crossing an American species with the Eurasian species, experiments that were promoted by Thomas Jefferson and others, varieties that produce quite good wines were eventually established in Virginia and in the southeastern United States. In China, grapes with high residual sugar, such as *Vitis amurensis*, which can be further enhanced by raisining, can also produce a decent wine. But again, the Eurasian grape was crossed with Chinese species in recent centuries to provide the impetus for developing a native industry.

Sifting Fact from Legend

To understand why and how the Eurasian grapevine is central to the story of wine, we must travel back to a period in human prehistory shrouded in the mists of time. Barring time travel, would-be interpreters of the past are trapped within the fourth dimension. Time's arrow is pointed in one direction, and our task is to peer back millions of years and reconstruct the series of unique events that led to the domestication of the Eurasian grape and wine.

Archaeology—the scientific study of ancient remains—will be our principal resource and guide in proposing a plausible scenario for
CHAPTER ONE

Stone Age wine. Ancient records provide no signposts in this quest, because the earliest written texts, dating to about 3500 B.C., are much later and consist of brief, often cryptic records. Extensive treatises on wine—such as chapter 14 of Pliny the Elder’s Historia naturalis (Natural History), written in the first century A.D.—are only as good as the writer’s sources or experience and are refracted through the Weltanschauung of the time.

As intriguing and often exciting as the stories of the origins of viniculture (encompassing both viticulture—vine cultivation—and winemaking) are, this tangled “vineyard” needs to be trod with caution. Many books on the history of wine give undue weight to one legend or another and rely on dubious translations. If ancient Greek writers variously state that Dionysos, the Greek god of wine, came from Phoenicia, Crete, Thrace, Lydia, or Phrygia, one must plumb deeper. Another widespread view, shared by many ancient Mediterranean cultures, was that the vine sprang from the blood of humans who had fought against the gods.

A Persian tale of a king Jamsheed, otherwise unknown in that country’s dynastic history, is very endearing. The monarch was fond of fresh grapes and stored them in jars to have a year-round supply. One consignment unfortunately went bad, and the jar was labeled as poison. Suffering from severe headaches, a harem consort then mistakenly drank from the jar and fell into a deep sleep, to awake miraculously cured. She informed the king of what had happened, and, in his wisdom, he discerned that the “poison” was actually fermented grape juice or wine with medicinal effects. He then ordered more such poison to be prepared, and thus humanity embarked upon its ages-long wine odyssey.

The Jamsheed story says nothing about how a mass of solid grapes could have fermented into a liquid beverage. Was the same procedure followed to make subsequent batches? There is also no mention of the domestication of the grapevine and vineyard management. In short, it is a simple tale, floating somewhere in time, like many other origin legends. If its historical details are suspect, it cannot be a basis for inferring that Iran is the homeland of winemaking, as has been done.

Archaeology, together with other historical sciences dealing with
geology and plant remains (paleontology and archaeobotany), is able to provide a better starting point for hypotheses about the beginnings of viniculture than ancient texts. Despite its narrow database and mute testimony, archaeological evidence has a powerful explanatory dimension. There is no hidden bias lurking in a pottery sherd or a stone wall, as there might be in a written document. The archaeological artifact or ecofact (a term for a natural object, unmodified by humans, such as a grape seed or vine) is there because it played a role in the life of the community or was incorporated into the deposit by some other natural agency. It represents unintentional evidence that is contemporaneous with the events that one seeks to explain.

A host of scientific methods—ranging from radiocarbon dating to high-resolution microscopy to DNA analysis—can now be used to extract the maximum amount of information from archaeological remains. Increasingly, minuscule amounts of ancient organics, sometimes deriving from grapes or wine, have a story to tell.

Sufficient archaeological excavation has now been carried on around the world to reveal that human beings, given enough time, are remarkably adept at discovering practical and innovative solutions to life’s challenges. Beginning as small bands, increasingly complex societies developed and led to the earliest civilizations of the world—those in the Middle East, East Asia, South Asia, and Mesoamerica and Peru in the New World. Although sporadic interactions between these regions might have occurred from time to time, their writing systems, monumental architecture, arts, and technologies are largely explainable within their own contexts.

One example of human innovation that occurred in different regions is purple dyeing. It was most likely independently discovered by humans living along the coasts of the Mediterranean Sea and on the western and eastern shores of the Pacific Ocean in China and Peru. The intense purple dye has only one source in nature: chemical precursors of the indigoid compound (6,6′-dibromoindigo) contained in the hypobranchial glands of certain marine mollusks. These animals, variously assigned to the genera *Murex*, *Concholepas*, *Thais*, and *Purpura*, among others, live in saltwater bodies around the world. Somehow, beginning as early as 1500 B.C. in the Mediterranean region, probably somewhat later in China, and about 700 B.C. in Peru,
human beings discovered by extracting the glandular contents in quantity and exposing the liquid to light and air enabled them to produce this unique color for dyeing textiles and other materials. Because it requires as many as 10,000 animals to produce a gram of the dye, it was very expensive to make. In each civilization, the molluscan purple dye eventually came to be associated only with the highest political authorities and was imbued with special religious significance. In first-century Rome, Nero issued a decree that only the emperor could wear the purple—hence, the name Royal Purple.

Some observers might argue that a transference of dyeing technology from a more advanced culture (e.g., the Near East) to a more fledgling one (China or Peru) accounts for the available evidence. Some might even go so far as to invoke a deus ex machina or extraterrestrial visitors. Another scenario is more likely for this example of convergent development, in keeping with Occam’s razor or rule (the simplest, most straightforward explanation is often the right one). It runs as follows. The mollusks with the purple dye precursors were probably also a source of food in each region. The Mediterranean species, for example, are still a great delicacy in France and Italy, and the Chinese are renowned for exploiting every food source in their environment. When the animal is removed from its shell in preparation for eating, the hypobranchial gland, which is located on the outside of the creature, is easily broken. Once the liquid has seeped out, it will immediately begin to change from greenish to purple. A shellfish-monger’s hands would soon be covered with the purple dye, which is one of the most intense natural dyes known and can be removed only by using a reducing agent. By no great leap of imagination, people began to collect the purple and use it as a dyeing agent. Although this scenario may never be proved absolutely, it accounts for the archaeological data and is in keeping with human inventiveness.

Food is a basic necessity of human life. It is also one of life’s main pleasures and serves many auxiliary roles in medicine, social interactions, and religious symbolism. Just as people probably discovered the famous purple dye in the process of exploiting a food resource, humans have long been in search of that strange or exotic taste, texture, or aroma that will stimulate their senses, provide a sense of
well-being, or even elevate them to metaphysical heights. Food is thus much more than simple nourishment, taken three times a day to survive. Because humans are omnivores who came on the world scene relatively late in the earth’s evolution, they had an enormous range of plants and animals from which to choose. Yet they had to be willing to explore their environment and experiment to discover the delectable foods and beverages awaiting them, as well as to avoid danger.

Man Meets Grape: The Paleolithic Hypothesis

The wild Eurasian grapevine (Vitis vinifera L. subsp. sylvestris) grows today throughout the temperate Mediterranean basin from Spain to Lebanon, inland along the Danube and Rhine Rivers, around the shores of the Black Sea and the southern Caspian Sea, at the headwaters of the Tigris and Euphrates Rivers, and farther east in the oases of Central Asia. This distribution is likely only a shadow of what prevailed some 50 million years ago in warmer times, leading up to the most recent Ice Age in Quaternary times, starting about 2.5 million years ago. Pockets of the wild Eurasian grape managed to survive the four cold, dry spells of this Ice Age in lower-lying valleys and plains.

Fossil seeds and leaf impressions of the family Vitaceae, including the American, Eurasian, and Asian groups, shared more physical features during the late Tertiary period, 50 million years ago, than now. Possibly, this plant even traces its ancestry back much earlier—to Ampelopsis, a climbing vine of 500 million years ago. With the breakup of the single landmass (Pangaea) and a gradual distancing of the continents from one another, however, the individual groups emerged. More recently, increasing desertification in Central Asia, North Africa, and North America and other natural barriers have isolated populations and led to the approximately 100 modern species thus far described.

Just as they were with the mollusks and their purple dye, humans certainly would have been acquainted with the wild Eurasian grapevine and its peculiar fruit at a very early date. Groups of human
beings (*Homo sapiens*) migrated from East Africa about 2 million years ago, across the natural land bridge of the Sinai Peninsula into the Middle East. Their first encounter with the wild grape might have been in the upland regions of eastern Turkey, northern Syria, or northwestern Iran. Perhaps they saw the plant in a more southerly locale—the Hill Country of Palestine and Israel or the Transjordanian Highlands—because of moister conditions prevailing during interglacial periods than at present.

The general framework that brings human and grapevine together for the first time in the Paleolithic period also leads to a set of postulates about the discovery of wine, which is conveniently referred to as the Paleolithic Hypothesis. It was seriously entertained and debated at a watershed conference titled “The Origins and Ancient History of Wine” at the Robert Mondavi Winery in 1991 (see chapter 3).

One can imagine a group of early humans foraging in a river valley or upland forest, dense with vegetation, at some distance from their cave dwelling or other shelter. They are captivated by the brightly colored berries that hang in large clusters from thickets of vines that cover the deciduous or evergreen trees. They pick the grapes and tentatively taste them. They are enticed by the tart, sugary taste of the grapes to pick more. They gather up as many of the berries as possible, perhaps into an animal hide or even a wooden container that has been crudely hollowed out. A hollow or crevice in the rock might also serve the purpose. Depending on the grapes’ ripeness, the skins of some rupture and exude their juice, under the accumulated weight of the grape mass. If the grapes are then left in their “container,” gradually being eaten over the next day or two, this juice will ferment, owing to the natural yeast “bloom” on the skins, and become a low-alcoholic wine. Reaching the bottom of “barrel,” our imagined caveman or -woman will dabble a finger in the concoction, lick it, and be pleasantly surprised by the aromatic and mildly intoxicating beverage that has been produced accidentally. More intentional squeezings and tastings might well ensue.

Other circumstances could have spurred on the discovery. Many animals, especially birds, have a fondness for grapes, probably as a result of their having occupied the same ecological niches as the grapevine since at least the Tertiary period. Under the right climatic
conditions, grapes will ferment on the vine. The berries are attacked by molds, which concentrate the sugar and open up the grape to fermentative attack by the natural yeast, to yield an even higher alcoholic product than normal. As an aside, the deliberate use of a mold to make a late-harvest, ambrosia-like wine had to wait another million years or more, when in the late seventeenth and eighteenth centuries A.D. both the Hungarians at Tokay and the Germans in the Rheingau took credit for discovering noble rot (Botrytis cinerea).

Observant humans, such as our prehistoric ancestors must have been to survive, would have seen birds and other mammals eagerly eating the fermented grapes. Their intrigue would have been aroused if they saw any ensuing uncoordinated muscular movements (robins have been known to fall off their perches). Sooner or later, humans would have carried out some firsthand experimentation.

Organisms as different as the fruit fly and the elephant gravitate to fermented fruits, and they have similar physiological responses. In the most general sense, their predilections are understandable because sugar fermentation (or glycolysis) is the earliest form of energy production for sustaining life. It is hypothesized that the earliest microbes dined on simple sugars in the primordial soup of 4 billion years ago and excreted ethanol and carbon dioxide. Yeast carry out a similar kind of anaerobic metabolism today, although they are hardly primitive; their single cells contain many of the same organelles as a multicellular plant or animal as well as a nucleus with chromosomes. Their ethanol production is like a signal sent up to the sugar lovers of the world, since this pungent, volatile compound leads back to a source of glucose or fructose.

Our common biological heritage with Stone Age humans, with a mental acuity similar to our own, strongly supports the Paleolithic Hypothesis. Yet it is extremely unlikely that the supposition will ever be proved. The greatest obstacle in the way of the Paleolithic Hypothesis is the improbability of ever finding a preserved container with intact ancient organics or microorganisms that can be identified as exclusively due to wine. In later chapters, we will see how fired clay (pottery) was ideal for absorbing and preserving ancient organic remains. The earliest fired clay artifacts—figurines in the form of
pregnant females from the site of Dolni Vestoniče in the Czech Republic—date to about 26,000 years ago. Yet, the figurines were a serendipitous discovery, isolated in time and space; no evidence has been found that they were followed up by the making of any pottery vessels. The earliest pottery containers as such were produced toward the end of the Paleolithic period at about 10,000 B.C. in East Asia and Japan.

If pottery vessels were nonexistent, might tightly woven baskets, leather bags, or wooden containers have been used? Again, although the occasional plaited grass or reed textile fragment or impression on clay may be found, a preserved specimen is yet to be recovered from a Paleolithic excavation. Stone vessels have been found, and, if the stone was porous enough, they might retain enough intact organic material to determine what they contained. Rock crevices in the vicinity of an encampment are another possibility, but they would be exposed to weathering and degradation. As yet, none of the stone vessels have been tested by molecular archaeological techniques (chapters 3 and 4). It should be noted that most such vessels are open bowls and do not have a narrow mouth that might have been stoppered. Any Paleolithic wine made in such a receptacle must have had a very restricted production schedule, only during the fall when the grapes matured, and must have been drunk quickly before it turned to vinegar. We might imagine it as a kind of Austrian Heurige or Beaujolais nouveau. The latter is the intensely fruity wine of the Saône River region of France that is produced by carbonic maceration and released to the public a few months after the harvest. In this fermentation process, whole grape clusters are piled into a vat (as the Paleolithic Hypothesis proposes) and the accumulated weight of the grapes above crushes those below. The free-run juice then begins to ferment because of the natural yeast present, setting up an anaerobic, carbon dioxide–rich environment that triggers the whole grapes to alter their metabolism and to break down their sugar reserves into alcohol.

Paleolithic humans would have had little control over the fermentation process. Their vessels, whatever they might have been made of, were not airtight. Carbonic maceration might have taken place at the bottom of the vessel, but the overripe grapes and juice, harboring
many other microorganisms, would have developed off odors and off tastes. The erratic fermentation would also have yielded less alcohol. Still, the final concoction or compote might have been quite stimulating and aromatic.

The analysis of Paleolithic stone vessels holds out the prospect of eventually determining where and perhaps how “Stone Age Beaujolais nouveau” was made. Its discovery might have taken place at many times and in many places within the geographic range of the wild Eurasian grapevine. One thing we can be sure of: once the delights of this new-found beverage were known, roaming bands of humans would return year after year to the same vines.

Whence the Domesticated Eurasian Grapevine?

Winemaking, whether in the Paleolithic period or in today’s wineries with all the tools of the trade and means to preserve the product, is very much limited by the grapevine itself. The modern wild vine of Eurasia exists only in areas with relatively intact woodlands and sufficient water, but it is fast disappearing because of modern development. Studies of Vitis vinifera L. subsp. sylvestris are important, because as the living progenitor of the domesticated species and its numerous cultivars, it accounts for nearly the entire stock of the world’s wine.

Between 1950 and the present, wild grape populations were botanically described in the upper Rhine River region; at Klosterneuberg near Vienna along the Danube River; in the mountains of Bulgaria; in the lush, almost tropical, lowlands of Georgia along the eastern Black Sea (ancient Colchis, where Jason sought the Golden Fleece); and in the oases of arid Central Asia. Collectively, these investigations underscore the fact that the primitive forms of Vitis of Tertiary times were possibly hermaphroditic plants like the modern domesticated Vitis vinifera L. subsp. vinifera. Thus, on either end of the long time span that Vitis has existed on the earth stands a grapevine that combines the male (stamen with anthers bearing pollen) and female (the pistil or ovary from which the seeds and fruit develop, after pollination) on the same flower. The advantages of this arrangement
are obvious: the pistil is readily fertilized by wind and gravity and bears fruit that falls to the ground or is eaten (largely by birds). The seeds germinate in the area of the parent plant or are transported and take root some distance away, perhaps hundreds or thousands of kilometers distant.

For reasons yet to be explained and possibly related to harsh climatic conditions during the last Ice Age, the wild grapevine became dioecious throughout its range; that is, the sexes were segregated from one another on separate plants. Each still had stamens and pistils, but in males, a dominant mutation of a gene on one of the 38 small nuclear chromosomes, found in all Vitis species, suppressed the development of the female organ (denoted SuF). In females, a recessive mutation (Su") impeded the development of the male stamen. Cross-pollination under these circumstances is more difficult than for hermaphroditic plants and must be helped along by insects or other animals, including humans. As a result, the male flowers rarely produce any fruit, and, to make matters worse, the female fruit is highly variable in its palatability because of the genetic polymorphism of the plant. In general, the modern Eurasian wild grape produces a rather astringent, small fruit with many seeds, hardly the kind of grape for making a good wine. Its sugar is relatively low and acids are high, as compared with the domesticated Eurasian cultivars, and the skin of its fruit is tough. Wild grapes are black or dark red, rarely white.

In contrast with that of its wild ancestor, the fruit of the domesticated Eurasian plant almost defies description. Its berries can be large or small; spherical or elongated and date-shaped, like the Mare’s Nipple of Central Asia; of almost any color in the visual spectrum; and with varying amounts and endless combinations of sugars, acids, and a host of other chemical compounds. It is no wonder that a Wine Aroma Wheel had to be developed to deal with the plethora of tastes and smells of which this grape is capable. The wine taster performs an almost Herculean feat by characterizing the fruit (Is it a fresh, tart grapefruit; a clean, mild apple; or a rich, succulent blackberry?), together with its spicy accents, earthy or woody undertones, and more oxidative, even caramelized qualities. The sheer number of cultivars or clonal types, which has been estimated to be as many as 10,000
worldwide, further testifies to the plant’s pliable, almost chimeric nature.

Much of this diversity, of course, is very recent, and the result of choosing those traits that are desirable and propagating them by cuttings or rootings. The grapevine growing tip actually consists of a core and an outer epidermal layer comprising different genetic systems. With time, mutations of one sort and another—often deleterious—accumulate in these tissues. After a vine has been dormant because of shorter days and lower temperatures, growth is reinitiated not at the old tip but at new lateral shoots with different genetic histories and different characteristics.

Horticultural methods of selecting and propagating desirable traits—whether size, shape, juiciness, color, skin toughness, taste, or aroma—were unknown to our Stone Age forebears. Each wild Eurasian vine is highly individual because it derives from a single grape seed with a unique genetic heritage, resulting from the combination of male and female gametes from specific polymorphic plants. Even before nuances of grape taste and aroma were made, however, a more basic decision had to be made by the first “viticulturalist.” A single individual probably had an intuitive insight and acted on the idea, as has happened for many other advances in human history. He or she had to select plants that had reverted to their primitive hermaphroditic state. Such plants might have been observed to produce a large and regular supply of fruit. But how could a population of largely dioecious plant be converted to one that was hermaphroditic and a guarantor of greater productivity? If propagation by cuttings or rootings was not yet known, a very concerted effort must have been made, perhaps over generations, to plant and nurture seeds of hermaphroditic vines. In short, the wild vine had to be taken into cultivation, thus beginning it on its way to become the domesticated Eurasian grapevine that we know today. Once the basic principles of interbreeding and transplanting were mastered, additional crosses could be made or germ plasm chosen that produced the traits desired. The goal might have been a sweeter eating grape; a sourer, more bitter grape for vinegar; or a wine grape with balanced sugar content and acidity.
When and Where Was Wine First Made?

The wild Eurasian grapevine has a range that extends over 6000 kilometers from east to west, from Central Asia to Spain, and some 1300 kilometers from north to south, from the Crimea to Northwest Africa. Somewhere in this vast region, the wild Eurasian grapevine was taken into cultivation and eventually domesticated, perhaps more than once and in more than one place. The plasticity of the plant and the inventiveness of humans might appear to argue for multiple domestications. But, if there was more than one domestication event, how does one account for the archaeological and historical evidence that the earliest wine was made in the upland, northern parts of the Near East? From there, according to the best substantiated scenario, it gradually spread to adjacent regions such as Egypt and Lower Mesopotamia (ca. 3500–3000 B.C.). Somewhat later (by 2200 B.C.), it was being enjoyed on Crete. Inexorably, the elixir of the ancient world made its way in temporal succession westward to Rome and its colonies and up the major rivers into Europe. From there, the prolific Eurasian grapevine spread to the New World, where it continues to intertwine itself with emerging economies.

Winemaking implies a whole constellation of the techniques beyond taking the wild grapevine into cultivation. The plants must be tended year-round to ensure that they are adequately watered and protected from animals, which might trample them, graze on the vegetation, or eat the fruit. Pests, such as mites, louses, fungi, and bacteria that the vine is subject to, might have been invisible or just barely perceptible to Stone Age humans, but an early viticulturalist would have observed the tell-tale signs of disease and have tried to find a solution. Perhaps, suspect plants were rooted up, or the healthy plants moved and segregated elsewhere. With increasing knowledge of horticulture and natural contingencies, growers established new plants with the desired characteristics. The magnitude of this accomplishment is accentuated by the fact that it takes five or six years before a young vine produces fruit. Other prerequisites of the technology probably were developed in tandem with vineyard management. Airtight vessels were needed to control the fermentation and
to prevent the beverage from becoming vinegar or otherwise spoiling. Subsidiary equipment, including hoes and cutting implements, vats for stomping out or pressing the grapes and separating the pomace from the must, funnels and sieves, and stoppers, were also essential.

The tool kit of a Paleolithic hunter-gatherer was well enough stocked with blades and pounders to squash grapes at the right time of the year and make wine. Yet the essentials of deliberate wine production—horticultural technique, pottery, and food-processing techniques such as fermentation—lay in the future. The Neolithic period, from about 8500 to 4000 b.c., is the first time in human prehistory when the necessary preconditions came together for the momentous innovation of viniculture. Numerous year-round villages had been established by this time in the Near East, especially in upland regions bordering the Fertile Crescent—the foothills of the Zagros Mountains bordering the Tigris and Euphrates Rivers on the east, Transcaucasia to the north, and the upland plateaus descending from the Taurus Mountains in eastern Turkey.
INDEX

Page numbers followed by letters f and m refer to figures and maps, respectively.

aborigines, Australian, 306
absinthe, 312
Abu Hureyra (Turkey), grape remains from, 78
Abu Simbel (Egypt), temple of Ramesses II at, 142
Abydos (Egypt), 86; location and climate of, 94; temple to Seth at, 142; tomb of Scorpion I at (see Scorpion I tomb); Wag-festival at, 134–35
Acemhöyük (Turkey), ivory box from, 179
acetic acid bacteria (Acetobacter): and spoilage of wine, 55; tree resins suppressing, 309
additives, wine, 308–12; in Assyria, 191; in Cyprus, 275f, 275–76; in Egypt, 130–33, 133f; in Levant, 94, 102, 105, 213, 235; medicinal properties of, 71; in Turkey, 186. See also herbs and spices; tree resins
Africa, beer-drinking in, 155–56
Ağaoğlu, Sabit, 29
Aghios Kosmas (Greece): grape remains from, 257; winemaking at, 271
agriculture, spread to Europe, 33. See also domestication; Neolithic Revolution
Aha (Egyptian pharaoh), 91
Ahiram (king of Byblos), coffin of, 204
Ahmose I (Egyptian pharaoh), 108
Ai (West Bank), pottery from, 220
'Ain Ghazzal (Jordan), 218
Akhenaten (Egyptian pharaoh), 137–38
Akkad, first Semitic dynasty of, 159
Akkadian language: word for wine in, 34, 150, 173
Akrotiri (Greece): brewing facility at, 272; painted jugs from, 265, 278
Alaca Höyük (Turkey), drinking set from, 83
Albright, William F., 225
Alcaeus of Mytilene (Greek poet), 246
alcohol (ethanol), 8–11, 21, 51, 55, 57–58, 82, 106, 133, 158, 187, 209, 235–36, 268, 303, 305–6, 308–9, 311
alcoholism, 306; in northern Europe, 311
ale. See barley beer; beer
Aleppo (Syria), 170
Aleppo pine (Pinus halepensis), 72, 260
Alexander the Great, preservation of body of, 287
Algaze, Guillermo, 182
alkyl-γ-lactone, 260–61
Alp, Sedat, 176–77
Amasis Painter, black-figured vase by, 252f
Amen (Egyptian god), 121, 123, 146
Amenhotep III (Egyptian pharaoh), 121, 137; palace of (see Malkata)
Amenhotep IV (Egyptian pharaoh). See Akhenaten
Amennose (Egyptian commander), frescoes in Theban tomb of, 224
Ammonite wine, 235
Amorgos (Greece), grape remains from, 257
Amorites (Amurru), 171
Amphelography, 20
Amphoras: design features of, 121, 123; Greek and Roman, 109f; INAA study of, 126–30; Israelite, 232; large-scale production of, 215; Levantine vs. Egyptian, 121–23; maritime transport of, 110, 111f, 130, 276; miscellaneous contents of, 121, 126; origins of, 110; Philistine, 232–33, 235; reuse and single use of, 125–26; resinated wine in, 123–32, 138–41, 139f, 145f; as stylistic descendants of Canaanite Jar, 121; unstoppering of, 125. See also Ashkelon Jar; Canaanite Jars; Gaza Jar
Amurru (Amorites), 171
An (Sumerian god), 152
Anshan (Tepe Malyan) (Iran), 165
Anthesteria (Greek festival), 245
Anthocyanidins, 68, 73
Antioxidants, in wine, 69, 133, 306
An (Sumerian god), 158
Apis mellifera (European honey bee), 266
Apodoulou (Crete), 262; conical cups from, 261f, 262; tripod cooking pot from, 261f
Apophis (Hyksos king), 119
Appellation d’Origine Contrôlée (AOC) system, 26, 123
Aram, kingdom of, 205–6
Aramaeans, 190
Araras (Hittite king), 198
Ararat, Mount (Turkey), 17, 18, 19, 302
Ararat Valley, 24–25
Aras, Sümer, 29
Araxes River, 19, 25
archaeobotany, 5; vs. studies of modern plants, 27–28. See also specific archaeological sites and regions
archaeology: definition of, 3; evidence from, vs. textual evidence, 4–5; hypothesis generation and testing in, 57–58; scientific methods used in, 5, 48–49, 300 (see also molecular archaeology); underwater, 36
Archilochos (Greek lyric poet), 298
Argiştihinili (Armenia), 25
Ariadne (mythological Minoan princess), 244, 247
Armenia: linguistic diversity of, 31; Neolithic settlements in, 19, 24; Trialeti culture, silver goblet from, 77f, animal-headed vessels: Anatolian, 183–84, 185f; Levantine, 223, 224, 224f; rhyta, 183–84, 273. See also lion-headed situlae; ram-headed situlae
animal sacrifice: in Anatolia, 174, 175f; in Greece, 273; in Israel, 236; in Levant, 231
Ankara Museum of Anatolian Civilizations (Turkey), 83, 176
Anshan (Tepe Malyan) (Iran), 165
Anshan (Tepe Malyan) (Iran), 165
Anthesteria (Greek festival), 245
Anthocyanidins, 68, 73
Antioxidants, in wine, 69, 133, 306
An (Sumerian god), 152
Anonna (Sumerian god), 158
Apis mellifera (European honey bee), 266
Apodoulou (Crete), 262; conical cups from, 261f, 262; tripod cooking pot from, 261f
Apophis (Hyksos king), 119
Appellation d’Origine Contrôlée (AOC) system, 26, 123
Aram, kingdom of, 205–6
Aramaeans, 190
Araras (Hittite king), 198
Ararat, Mount (Turkey), 17, 18, 19, 302
Ararat Valley, 24–25
Aras, Sümer, 29
Araxes River, 19, 25
archaeobotany, 5; vs. studies of modern plants, 27–28. See also specific archaeological sites and regions
archaeology: definition of, 3; evidence from, vs. textual evidence, 4–5; hypothesis generation and testing in, 57–58; scientific methods used in, 5, 48–49, 300 (see also molecular archaeology); underwater, 36
Archilochos (Greek lyric poet), 298
Argiştihinili (Armenia), 25
Ariadne (mythological Minoan princess), 244, 247
Armenia: linguistic diversity of, 31; Neolithic settlements in, 19, 24; Trialeti culture, silver goblet from, 77f, animal-headed vessels: Anatolian, 183–84, 185f; Levantine, 223, 224, 224f; rhyta, 183–84, 273. See also lion-headed situlae; ram-headed situlae
animal sacrifice: in Anatolia, 174, 175f; in Greece, 273; in Israel, 236; in Levant, 231
Ankara Museum of Anatolian Civilizations (Turkey), 83, 176
Anshan (Tepe Malyan) (Iran), 165
Anshan (Tepe Malyan) (Iran), 165
Anthesteria (Greek festival), 245
Anthocyanidins, 68, 73
Antioxidants, in wine, 69, 133, 306
An (Sumerian god), 152
Anonna (Sumerian god), 158
Apis mellifera (European honey bee), 266
Apodoulou (Crete), 262; conical cups from, 261f, 262; tripod cooking pot from, 261f
Apophis (Hyksos king), 119
Appellation d’Origine Contrôlée (AOC) system, 26, 123
Aram, kingdom of, 205–6
Aramaeans, 190
Araras (Hittite king), 198
Ararat, Mount (Turkey), 17, 18, 19, 302
Ararat Valley, 24–25
Aras, Sümer, 29
Araxes River, 19, 25
archaeobotany, 5; vs. studies of modern plants, 27–28. See also specific archaeological sites and regions
archaeology: definition of, 3; evidence from, vs. textual evidence, 4–5; hypothesis generation and testing in, 57–58; scientific methods used in, 5, 48–49, 300 (see also molecular archaeology); underwater, 36
Archilochos (Greek lyric poet), 298
Argiştihinili (Armenia), 25
Ariadne (mythological Minoan princess), 244, 247
Armenia: linguistic diversity of, 31; Neolithic settlements in, 19, 24; Trialeti culture, silver goblet from, 77f,
78; viniculture of, 24–25, 193; wine culture in, 68; wine trade with Babylon, 167–68; wine vessels of, 25, 167–68. See also Urartu; specific archaeological sites
Armenoi (Crete): cemetery of, 269, 270; kylikes from, 269, 270
Arnold, Dieter, 124
Arnold, Dorothea, 124, 128
ARPANET, 114
Arslan Tepe (Turkey), 148–49; droop-spouted jars from, 161
Artemisia absinthum (wormwood), 312; as wine additive, 309
Aryans, 31
Ashdod (Israel), 215
Ashkelon (Israel), 114, 115–16; destruction of, 232; excavations at, 115, 225; harbor of, 117; role in trade between Levant and Egypt, 213, 221; wine of, 118; wine shop at, 235; winemaking at, 232–33
Ashkelon Jar, use in exporting Eucharist wine abroad, 215
Assur (Assyrian capital), 174; capture by Mesopotamians, 201
Assur (Assyrian god), 196
Assur-sharrat (Assyrian queen), 199, 200
Assurbanipal (Assyrian king), 199–201, 200; library at Nineveh, 17; palace at Nineveh, 192, 199–200, 200
Assurnasirpal II (Assyrian king), 190; palace at Nimrud, 192
Assyria, 174, 188–201; appropriations from other cultures, 191, 196; destructive proclivities of, 191, 200, 226; drinking bowls and cups of, 192–93; expansionism of, 188–89, 197; merchants in Anatolia, 174, 188; metalworking of, 196; pleasure gardens of, 191–92; royal banquets of, 190, 199–200, 200; royal wine cellars of, 193; vineyards of, 190; wine consumption by, 193–94; wine culture of, 190; winemaking by, advances in, 191
“Assyrian Doomsday Book,” 190
Aten (Egyptian god), 123, 137
Athena, The Deipnosophists, 147, 260
Athens (Greece): Market Hill, 190; National Museum exhibition on Bronze Age beverages and cuisine, 245
Attrahasis (Mesopotamian hero), 17
Atox belladonna (nightshade), as beverage additive, 297
Attica, thias in, 245
Australian aborigines, 306
Austria: Heuringe wine of, 10; wild Eurasian grapevine in, 11
Ayrochthon, 21
autolysis, 28
Avaris (Hyksos capital), 108, 110–11; import of Canaanite Jars, 113–14, 119; maritime contacts of, 117–18; preservation of organic remains at, 119; stimulus for settling, 117; trade with Southern Palestine, 116–18; winemaking installation at, 119–20. See also Tell el-Dab’a (Egypt)
Ayia Triada (Crete), 269; sarcophagus from, 273
Azerbaijan, Neolithic sites in, 39
Azor (Israel), pottery from, 220
Ba’al (Canaanite god), 120
Bab edh-Dhra’ (Jordan), grape remains from, 100, 213
Babel, 152
Babylonia: celebrations of, 206; date wine of, 201; Hittite occupation of, 180; wine trade with Armenia, 167–68. See also Hammurapi
Babylonian Talmud, 237
The Bacchae (Euripides), 239–41, 244–45
Bacchic poets, 165
Bacchus. See Dionysos
bacteria, and spoilage of wine, 55. See also stoppering; tree resins
Bactria, wine culture in, 2–3, 208
Baden culture, 297
Badler, Virginia, 62; and Mesopotamian jar study, 161–62; and Godin
Badler, Virginia (cont.)
Tepe Jar study, 40–41, 51, 60; at
Robert Mondavi Winery conference,
61, 62f; and Titriş Höyük treading
vat, 182
Balkans, and Greek viniculture, 257
Ballard, Robert, 36–37, 313
banquets: Anatolian, 175f, 176–77; As-
syrian, 199–200, 200f; Israelite, 229–
30; Persian, 207–8; Phoenician/
Canaanite, 204–5; reconstruction
from chemical evidence, 293; Su-
merian, 155, 158, 159–60, 163. See
also funerary feasts
baobab tree, 56
baqa (Turkish beverage), 187
Baq‘ah Valley (Jordan): Iron Age sites
in, 98–100, 214; Philistine-type
“wine-jug” from, 226f, 227–28
Baqet III (Egyptian monarch), 86
barley, as wine additive, 191
barley beer: in Anatolia, 186–87, 286–
87, 293; beerstone as fingerprint
compound for, 265, 266f, 287; on
Crete, 265–66; in Egypt, 88, 126,
132–33, 136, 265; grapes as yeast
source for, 105, 308; in Greece, 265–
66, 272; in Mesopotamia, 47, 149,
155–56, 160
“barley-wine,” 186–87
basdaq (Turkish beverage), 187
basket-handled vessels: Anatolian, 177,
179; Palestinian, 219–20
Bass, George, 110
“bathtubs.” See treading vats
baqa (Turkish beverage), 187
beak-spouted (cut-away-spouted) jugs:
Anatolian, 178f; Minoan, 249f, 254;
Hittite, 184–86, 185f
Beaujolais nouveau, 10
Beck, Curt, 256, 260, 262, 275, 289
beer: in Africa, 155–56; brewing pro-
cess, 308; classical Greek disdain for,
296; in Mesopotamia, 47, 149, 155–
56, 160; in Minoan and Mycenaean
cultures, scholarly debate about, 250,
265–66, 276. See also barley beer
“beer-jugs,” Philistine, 225, 226f
“beer mugs,” Greek, 276, 277f
beer-wine (kašt getin), 186–87
beerstone (calcium oxalate), 265, 266f,
287
bees: as carriers of yeast, 104, 307–8; in
Greece, 266; natural products of (see
beeswax; honey)
beeswax: on drinking bowls, 287; as ev-
dence for honey, 266, 287
Bel-Marduk (Mesopotamian god), 150
Belgium, lambic beer production in, 308
Bell Beakers, 297
“belly-button” (omphalos) bowls, 192,
284, 286f
ben-oil, 132
Beni Hasan (Egypt), 86
β-methyl-γ-octalactone, 260–61
Beth Shan (Israel), pottery from, 108,
233–34
Beycesultan (Turkey), “wine shop” at,
257
Bible: on annual harvest festivals, 217,
231; on feasts of Philistines, 225;
flood story in, 16–17; Israelite assess-
ment of land of Canaanites, 212; on
marza‘ah feast, 229–30; on medicinal
properties of wine, 305; on Persian
wine-drinking, 207–8; viticultural
references in, 17, 216–17; wine refer-
ences in, 236–37; wine varieties in,
235; winepress associated with divine
punishment in, 135, 236
Bietak, Manfred, 108, 114, 116, 118
bikos phoinikeious (Armenian wine con-
tainers), 167–68
biodegradation, 288
birds: Chalcolithic pottery decorated
with, 219; drinking vessels in shape
of, 178f; and grape seed dispersal, 12;
importance to peoples of Anatolia,
84; intoxication of, 9; role in discov-
ery of wine, 8–9
Bitik (Turkey), vase from, 176
Bittel, Kurt, 180, 184
bitter vetch, origin of domesticated
plant, 29

For general queries, contact webmaster@press.princeton.edu
bittering agent: saffron as, 295–96
Black (Basalt) Desert (Jordan), grape remains from, 213
Black Sea: catastrophic in-filling of, theory of, 35–36; as proto-Indo-European homeland, hypothesis of, 35–37; introduction of domesticated grapevine by classical Greeks to region of, 203
Blegen, Carl, 244
blended wine: Egyptian, 132; Mesopotamian, 172–73
blood, symbolic association with wine, 274, 303; in Egypt, 135; in Judeo-Christian tradition, 236
blue lotus (Nymphaea caerulea), 132, 223
Boğazhere grape, 30
Boğazkale (Turkey). See Hattusha
“The Book of the Heavenly Cow” (Egyptian cycle of stories), 136
Bordeaux 1855 classification system, 123
Bosphorus Strait, flooding of Black Sea through, 35
Botrytis cinerea (noble rot), 9, 187
bottle-shaped jars, Egyptian, 95f, 96. See also Scorpion I tomb
Bowers, John, 26–27
bowls, drinking: Assyrian, 192–93, 229–30; “belly button” (omphalos), 192, 284, 286f; Canaanite, 231; Israelite, 229; Phoenician, 204, 230; Sumerian, 156, 157f. See also cups, drinking
British Museum, excavations at Ur, 156–57
British School of Archaeology, excavations at Nimrud, 193
Brookhaven National Laboratory (Long Island), 99–100, 108
Brookhaven Old World databank, 100
buckets, lion-headed. See lion-headed situlae
Bulgaria, wild Eurasian grapevine in, 11, 20
bull(s): cauldrons adorned with protomes of, 196–97; Dionysos’s transformation into, 245; Hittite statues in shape of, 184; in Minoan and Mycenaean life and cult, 177–78, 271, 273; rhyta in shape of, 224, 273
burial chambers, and preservation of ancient organics, 94, 106, 281, 289, 313
bush-shaped grapevines, 234, 253
Buto (Egypt), 96
Butrym, Eric, 289–90
Büyük Agri Dağı (Turkey). See Ararat, Mount
Byblos (Lebanon): Hathor as goddess of, 136; origin of Hyksos, hypothesis concerning, 114, 116–17; pottery from, 220; trade with Egypt, 114; wine from, 202
Cabernet Sauvignon grape, parentage of, 27, 37
Cabernet Sauvignon wine, oak flavorant in, 261
Calabria (Italy), 203
Calagione, Sam, 294
calcium oxalate (beerstone), 265, 266f, 287
calcium tartrate, in wine, 67, 286
Can Hasan (Turkey), 79; grape seeds from, 81
Canaan: Egyptian invasion of, spoils and tribute from, 224; Israelite assessment of, 212; wine of, 118. See also Canaanites; Israel; Palestine; Phoenicia
Canaan (biblical character), 17
Canaanite Jars, 108, 109f, 220–21; amphoras as stylistic descendants of, 121; design features of, 110; INAA study of, 108–10, 114–19; maritime transport of, 118; replication in Nile alluvial clay, 119; resinated wine in, 118. See also amphoras
Canaanites: banquets of, 204–5; discovery of purple dye by, 50; famous wine of, 202; as seafarers of ancient world, 202; urban renaissance of, 112. See also Phoenicians
cannibalism, in Greek religion, 245–46
Cannabis, as beverage additive, 209
Cappadocia (Turkey): modern wine production in, 83; native grape cultivars of, 30
carbonic maceration, 10
Carchemish (Turkey), 198
Carnarvon, George Edward, Lord, 138
Carter, Howard, 138, 281
Carthage (Tunisia), domesticated grape at, earliest evidence for, 203
Çatal Höyük (Turkey): early agriculture at, 33; hackberry seeds from, 80; lack of grape remains from, 80, 82–83; special artifacts from, 79–80; wall paintings of, 84
Cato (Roman statesman), 299
Caucasus Mountains: grape remains from, 39; languages of, 31–32; wine exports from, 163. See also Armenia; Georgia
cauldrons: from Cyprus, 197; debate on origins of, 198; Greek and Etruscan, 196–97; from Midas Mound at Gordion, 283, 283f; Urartian, 195f, 196
Cavalieri, Duccio, 104
Çayönü (Turkey): early agriculture at, 33; grape remains from, 78, 81
Cedar Forest (probably Lebanon), 19
celebrations, 300; in Anatolia, 175f, 176–77, 182; in Assyria, 190, 193–95; in Egypt, 124–25, 134–36; in Greece, 245; in Israel, 217, 231, 237; in Palestine, 217, 223, 224f; in Persia, 206–8; in Philistia, 225; in Sumer, 153–55, 159–60, 163. See also banquets; funerary feasts
Celera Genomics, 25
Central Asia: fermented beverages of, 208–9; Mare’s Nipple grape of, 12; wild Eurasian grapevine in, 2m, 11; wine in, 2–3, 208
Chachabash grape, 25
chalices, 79–80, 83, 138, 141, 150, 178, 221, 269
chalk, as wine additive, 309
Chania (Crete), 262, 264; conical cups from, 263f, 266; shrine at, 263f; stirrup jars from, 267
Chardonnay grape, parentage of, 26
Cheops (Egyptian pharaoh), 87
chickpea, origin of domesticated plant, 29
China: earliest literary reference to wine in, 1–3, 208; Eurasian grapevine in, 3; native grape species of, 1, 3, 208, 315; Near Eastern contacts of, unanswered questions about, 314–15; Neolithic fermented beverage from, 314–15; purple dye discovered in, 5–6
Chios (Greece), amphora from, 109f
Chios mastic, 70
Chishmish grape, 25
chloroplasts, 26
Chokh (Dagestan), Neolithic site of, 39
Christianity: wine in, 21, 215, 236–38. See also Bible; Jesus
cromatography, 53. See also gas chromatography–mass spectrometry; high-performance liquid chromatography; liquid chromatography–mass spectrometry
chromosomes, 26
churns, 220
cinnamon, as wine additive, 235
clay artifacts, earliest fired, 9–10. See also pottery
clays, 66; marl, 127, 128; of southern Palestine, 115; in Theban area, 127
Cleopatra (Egyptian queen and pharaoh), 147
clonal types. See cultivars
cloning, in horticulture, 27
Code of Hammurapi, 18, 153
cognac, oak flavorant in, 261
cognac lactone, 260–61
Colchis (Georgia), wild Eurasian grapevine of, 11
Columella (Latin author), 299; De rustica, 71, 267
Concholepas mollusks, as source of indigoid compounds, 5
conical cups, Minoan, 261f, 263f, 264; organic analyses of, 262, 264, 266
consonantal shift, law of, 31
contamination problems, in DNA analysis, 28, 105–6
convergent development, 6
convivium (Rome), Mesopotamian antecedents for, 155, 199
Cresol, 290
Crete: barley beer of, scholarly debate about, 265–66; bull cult of, 177–78, 273; goddesses of, 255–56; grape cultivars of, 253; “Greek grog” of, 264, 266, 268–69; honeys of, 266–67; oak flavorant in wine of, 260–62; relations with Mycenaeans, 269–71; spread of viniculture to, 14, 256–59; trade with Egypt, 255, 259; treading vats of, 251–52, 252f; underground wine storage on, 252, 254; wine production of, 251–54, 253f, 259; wine trade of, 277–78. See also specific archaeological sites
crocus flower, 295
cross-breeding of grapevine: in China, 3, 208; DNA analysis demonstrating, 26–27; ease of, 27; in North America, 3
Cueva del Monte de la Barsella (Spain), 37
cuisine: cultural stability of, 117; Greek, 291; molecular archaeology in study of, 293; Neolithic, 66; Phrygian (at Gordion), 198, 288–92
cultivars, grape: distinguishing among, 26; number of, 12–13; parentage of, establishing, 26–27
cuneiform writing system, 43
cups, drinking: Anatolian, 176, 179, 183, 185f, 194; Assyrian, 192–93, 199, 200f, 201; Canaanite, 223, 224f; Elamite, 166; Greek, 255, 258, 261f, 262, 263f, 264; Mesopotamian, 159; Minoan conical, 263f, 264; two-handled (depata amphikypella), 84, 258. See also bowls, drinking cut-away-spouted jugs. See beak-spouted jugs
cyanidin, 73, 306
Cybele. See Matar (Phrygian goddess)
Cyclops, 243
cylinder seals. See seal impressions
Cyprus: beverage vessels from, 197–98; Hubbard Amphora from, 275–76, 275f; wine exports of, 304
Cyrus the Great (Persian king), 206–7
Dagestan, Neolithic sites in, 39
Dakhla oasis (Egypt), 123
Damascus (Syria), 205
Danube River, wild Eurasian grapevine along, 11
Darius the Great (Persian king), 206
database(s): INAA, 97–98, 100, 112–13, 126; molecular, 56, 256
date wine: in Israel, 235–36; in Mesopotamia, 148–49, 201
dates, in Turkish fermented beverages, 187
dating, 5, 300. See also specific archaeological sites
DBI. See 6,6’dibromoindigotin
Dead Sea scrolls, 219
decoration: on Anatolian pottery, 178, 178f; on Egyptian jars, 85, 95f, 96, 141; on Godin Tepe jars, 45, 47, 60–61; on Greek pottery, 265, 278; on Minoan pithoi, 250, 260; on Shulaveris-Gora jars, 75–76
The Deipnosophists (Athenaeus), 147, 260
Deir el-Medineh (Egypt), 128
Den (Egyptian pharaoh), 86–87
Dendera (Egypt), 136
Dendra (Greece), wine set from, 262, 271f
Denmark, funnel beakers (Trichterbecher) from, 297
depata amphikypella (two-handled cups), 84, 258
Ter-Martirossov, Felix, 25
desertification, and grape speciation, 7
“The Destruction of Mankind” (Egyptian cycle of stories), 136
Deucalion (mythological Greek hero), 243
6,6’-dibromoindigotin (DBI), 5, 42; discovery of earliest chemically attested instance of, 49–51. See also purple dye
Dimitra (Greece), evidence for domesticated grape at, 256–57
diöcosmia, exhibited by wild grapevine, 12
Dionysia (Greek festival), 245
Dionysos (Greek god): epigraphic finds related to, 244–45; mythological departure from Mesopotamia, 149; Jesus compared with, 237; legendary origins of, 4, 240–46; marriage to Ariadne, 244, 247
distillation, 235
diterpenoids, bactericidal properties of, 71
Dja’da (Syria), grape remains from, 78
DNA analysis: contamination problems, 28, 105–6; of einkorn wheat, 29, 302; future targets of, 39; grape cultivar parentage established by, 26–27; microsatellites in, 26; of modern samples vs. archaeological specimens, 23; recent successes of, 25; use in archaeology, 5, 300–1; of yeast in Scorpion I wine jars, 104–6. See also Ancient DNA Grape Project
Dogfish Head Brewery (Milton, Delaware), 294
Dolni Vestonice (Czech Republic), female figurines from, 10
Dolphin Vase, 222f
domesticated Eurasian grapevine. See Vitis vinifera vinifera
domestication of plants and animals, 29, 65–66, 302–3; of einkorn wheat, 29, 302; of wild grapevine (see domestication of grapevine)
domestication of grapevine, 14; in Europe, unconvincing evidence for, 37–38; in Greece, evidence for, 241, 256–57; Noah Hypothesis for, 16–39; possible multiple occurrences of, 37; in Transcaucasia, evidence for, 19–21, 39
Dreyer, Günther, 91
drinking horns. See horns, drinking; rhyta
drinking tubes (straws): African, 155–56; Anatolian, 179, 187; Greek, 275f, 276; Hittite, 187; Mesopotamian, 155–56, 160; Phrygian, 298
drinking sets. See wine sets
droop-spouted jars, Mesopotamian, 161–63
drug(s): additives to fermented beverages, 208–9, 268; wine as, 303, 305
“The Drunkenness of Hathor” (Egyptian festival), 136
Dumuzi (Sumerian god), 154
Dupont Company, 49
Dur Sharrukin (Iraq). See Khorsabad
Eanna temple (Uruk), 154, 162; goblet from, 201
East Asia: earliest pottery of, 10. See also China
East Asian grapevine species, 3, 208, 315
eating utensils, 290–91
ecofact, 5
Ectabana (Iran), celebrations at, 206
Egypt: beer of, 88, 126, 132–33, 136, 265; domesticated grapevine in, 86, 102–3; earliest written records from, 92; festivals of, 124–25, 134–36; First Intermediate Period of, 112; and Greek viticulture, possible transference from, 258; importation of wine into, 100–1, 118–19; internationalism during New Kingdom, 130–31, 134; invasion of Retenu or Canaan, 224; maritime trade of, 130–31; mortuary wine varieties of, 88–89; mummification in, 28, 102,
INDEX

130–31; mythology of, 135–37, 142; offering stelae of, 88; pharmacopoeia of, 133, 305; and Philistia, 233; private wine production in, 91, 143–46; under Ramessides, 141–47; recreation of ancient wine of, 147; religion and wine in, 134–37; seal impressions on stoppers from, 85–87, 90, 139f, 145f; spread of viniculture to, 14, 85, 91, 102–3; story of Sinuhe, 210–12; and Syro-Palestinian culture, 117; tomb paintings depicting viniculture, 89–90, 144f–145f; trade with Crete, 255, 259; trade with Levant, 101–2, 114, 213, 221; treading of grapes in, 89–90, 120; tree resin use in, 94, 130; vineyards and winemaking areas of, 85, 91, 102, 119–20, 123, 127, 129, 138, 140–41, 143, 146; wine additives of, 130–33, 133f; wine offerings to gods in, 88, 137, 146; winemaking of, 89–90, 134, 144f–145f; winemaking industry in, hypothetical origins of, 102–3. See also specific archaeological sites

Egyptian hieroglyphs for wine, 85–87, 123; similarity with Greek signs, 258

Egyptian language, 32; word for wine in, 34, 87, 123

Ein Gedi oasis (West Bank), cultic structure at, 219
einkorn wheat, origin of domesticated plant, 29, 302

Ekron (Tell Miqne), 225

El (Canaanite god), 204–5

el-Amarna (Egypt), 137–38

El Prado de Jumilla (Spain), 37

Elam: Assyrian destructiveness in, 200; cylinder seals of, 165–66; transplantation of grapevine to, 164–65. See also proto-Elamites

Elamite language, 207

Eleusian Mysteries, 246

elite, and wine culture, 68, 102, 152, 221, 300, 303

elite emulation, and spread of wine culture, 102, 152, 278, 304

elongated jars, Egyptian, 88, 90

Emir grape, 30

’En Besor (Levant): grape seeds from, 100, 213; trade station at, 102

endorphins, in wine, 305

Engija (Armenia), 24

enkephalins, in wine, 305

Enki (Sumerian god), 158

Enkidu (Mesopotamian epic character), 18

Enlil (Sumerian god), 158

Ephedra, as beverage additive, 209

Epic of Gilgamesh (Mesopotamia), 17–19; female tavern owner in, 18, 153; scenes from, in palace at Carchemish, 198; vinicultural references in, 17

Erebuni (Armenia), 25

Ergül, Ali, 29

Eriksson, Kathryn, 131

Eriksson, Leif, 1

Erzincan (Turkey), grape cultivar from, 30

Esarhaddon (Assyrian king), 194

Eshcol, Valley of, 212

Eskimos, 306

ethyl alcohol (ethanol). See alcohol ethnographic analogy, interpretation by, 155–56, 300

Etruscans: cauldrons of, 196–97; viniculture of, 203

Eucharist, 236; wine exported for, 215

Euphrates River. See Tigris and Euphrates Rivers

Eurasian grapevine: domesticated (see Vitis vinifera vinifera); wild (see Vitis vinifera sylvestris)

Euripides, The Bacchae, 239–41, 244–45

Europa (mythological Greek princess), 242

Europe: domestication of Eurasian grapevine in, unconvincing evidence for, 37–38; “drinking cultures” of, 297, 311; fermented beverages of, 311; spread of agriculture to, 33; spread of wine culture to, 14, 304
“European grog,” 297
European honey bee (Apis mellifera), 266
Evans, John, 272
Evans, Sir Arthur, 247; Palace of Minos, 265
Eve Hypothesis, 16, 27
Exekias (Athenian potter), kylix of, 242–43

faience vessels, 137, 223
Falernian wine, 234
Farsi language, 31
feasts. See banquets; funerary feasts
Feigl, Fritz, 54
Feigl test, 54, 56
Feindt, Friedel, 94
Fergana Valley (Tajikistan): grapevines of, 3, 208; wine culture of, 3
fermentation: carbonic maceration, 10; ease of discovery world-wide, 8–9, 306–7; and energy production, 9; ideal breeding ground in wine, 308; ingredients required for, 82; lack of ancient inhibitor for wine disease, 57; natural, and discovery of wine, 8–11; rapid process in Middle East, 54–55; secondary, 88, 90, 129; stuck, 255; yeast and, 82, 104, 307–8
fermented beverages: in China, 314–15; drug additives to, 208–9, 269; Neolithic experimentation with fruit sources, 81–82, 310–11; shared production method for, 84, 310–12; ubiquity of, 306; wine’s advantages among, 308; yeast in, 82. See also mixed fermented beverages; wine fertility, grape as metaphor of, 246
fertility rituals: Egyptian, 124–25; Sumerian, 154, 159. See also sacred marriage
festivals. See celebrations
figs: in Abydos jars, 94, 102; cultivation in Palestine, 102; in Turkish fermented beverages, 187; as wine additive, 94, 102, 105, 213
figurine(s): from Dolni Vestoníče (Czech Republic), 10; “Goddess of Myrtos,” 249f, 255
filtering of wine: in Anatolia, 178; in Greece, 254, 274–75; in Palestine, 220, 225, 226f
Firatlı, Çetin, 79–80
flavonoids, 68, 73
flood story: biblical, 16–17; Mesopotamian, 17–19; Thracian, 243
food: production in Neolithic period, 66; search for, and human innovation, 6–7. See also cuisine
Fort Shalmaneser (Iraq), 193
founder plants, 29, 302
400-Year Stela, 142–43
Fourier-transform infrared (FT-IR) spectrometry, 50, 52; amount of organic material needed for, 286; database and analysis, 56; of Godin Tepe jar residues, 52–53
France: apéritifs of, 312; Beaujolais nouveaux of, 10; Cabernet Sauvignon grape of, 37; cognac of, 261; wine culture of, 302
Franchthi Cave (Greece), 256
frankincense, 71, 235
fruit beverages: in Babylonia, 201, 236; in Europe, 297; in Near East, 225; Neolithic experimentation with, 81–82, 310–11; in Philistia, 235–36
FT-IR. See Fourier-transform infrared spectrometry
funerary feasts: on Crete, 269; of Egypt, 135, 141; in Homeric epics, 291; of Phrygia (for “King Midas”), 279–80, 285–91; reconstruction from chemical evidence, 293–95. See also marzeah
funnel: from Çatal Höyük, 80; from Godin Tepe, 47; from Myrtos, 251
funnel beakers (Trichterbecher), 297
Gamkrelidze, Thomas, 31, 32, 34, 76
Garstang, John, 221
gas chromatography–mass spectrometry (GC-MS), 57, 256, 290; amount of
organic material needed for, 286; database and analysis, 256
Gaza (Palestine), 114; role in trade between Levant and Egypt, 213, 221; wine of, 118, 213
Gaza Jar, use in exporting Eucharist wine abroad, 215
GC-MS. See gas chromatography–mass spectrometry
Gebel Adda (Egypt), amphora from, 52
Genetic structure and morphology, grapevine, 12–13, 26
Georgia: Bacchanalian scenes on monuments of, 75; evidence for early viticulture of, 23–24; linguistic diversity of, 31; Neolithic pottery from, 75–76, 76f; Neolithic settlements in, 19, 23–24; traditional winemaking in, 21–22; wild Eurasian grapevine in, 11; wine culture of, 19, 21, 68, 302
Georgian Agricultural University: collection of archaeological specimens, 23; experimental viticultural station of, 22f
Georgian National Museum, Tbilisi: Neolithic pottery in, 75; Trialeti goblets in, 78
Gerani (Greece), vessels from, 256
German Archaeological Institute, 201
Germanic languages, evolution of, 31
Germany: funnel beakers (Tichterbecher) from, 297; noble rot discovery in, 9
Geshtinanna (Sumerian goddess), 154, 173
geštin (Sumerian word for wine), 150
Gezer Calendar, 217
Gianaclis, Nestor, 147
Gibeon (West Bank), 232
Gibson, McGuire, 47
Gilat, naked lady from, sculpture of, 220
Gilmesh (Mesopotamian hero), 17–19, 42, 157, 191
Girsu (Iraq), 150; short-spouted miniature jar from, 162
Glascock, Michael, 100
gløgg (Swedish drink), 312
glycolysis, 9. See also fermentation
Godart, Louis, 262
“Goddess of Myrtos” (pottery figurine), 249f, 255
Godin Tepe (Iran): Chalcolithic (Late Uruk) site of, 40–48, 148; artifacts from, 44–48 (see also Godin Tepe jars); geography and climate of, 42; location of, 40; as Lower Mesopotamian administrative center, 44; proto-Elamites as probable builders of, 164–65; society of, 43; viniculture at, hypotheses regarding, 59–60; winemaking at, evidence for, 47–48, 58–59
Godin Tepe jars, 41–42, 46f; hole for decanting, 45; organic analyses of, 51–54; rope design on, 45, 47, 60–61, 162; stoppers for, 55; storage of, 60–61; unanswered questions about, 62–63
gold jewelry, Hyksos, 115
gold vessels, from Royal Cemetery at Ur, 157f
Golden Cup of Nestor, 276–77, 277f
Gorbachev, Mikhail, 191
Gordian (Turkey). See Midas Mound (Gordion)
Gordius (Phrygian king), 283
Gouais blanc grape, cross with Pinot grape, 26
grape(s): as beer additive, 105; in Chinese fermented beverage, 314–15; color of, 8, 17, 26–27, 89, 278; in production of fermented beverages, 82, 84; as source of antioxidants, 69, 133; as sugar source, advantages of, 307–8; and tartaric acid, 52, 56.
See also grape seeds; grapevine; Vitis vinifera sylvestris; Vitis vinifera vinifera
grape-picking, tools used for, 89
grape seed index, 24
grape seeds: aggregations in archaeological excavations, 165; as material...
grape seeds (cont.)
for DNA analysis, 23; misleading measurements of, 66–67; morphology of domesticated vs. wild, 23–24
grape syrup (shireh), Iran, 54
grapevine: anatomy of, 13; botanical evolution of, 7, 11; cross-breeding of, 3, 26–27; genetic structure of, 12–13, 26. See also under Vitis
“Great Khorasan Road” or “High Road” (Iran), 44
Greater Caucasus Mountains, 19
Greece, ancient: barley beer of, 265–66, 272; cauldrons of, 196–97; cuisine of, 291; Dionysiac cult of, 240–46; festivals of, 245; mythology of, 242–43, 246; origins of viniculture in, 241–44, 257–59; retsina of, 250, 259, 296; and spread of wine culture, 203; symposion of, 155, 199; transplantation of domestic grapevine to, 241, 256–59; wild grapevine in, 256; wine culture of, 239; wine exports of, 304; word for wine in languages of, 34. See also Crete; specific archaeological sites
Greece, modern: retsina of, 72, 250–51; wine culture of, 302
“Greek grog,” 186, 264; herbs and spices in, 274–75; Homer’s kykeon as version of, 267–68; honey in, 266–67; Mycenaean and, 276–77; origin of, 271; vs. “Phrygian grog,” 297–98; popularity of, 268–69, 279; rhyta used for, 272, 274
griffin protomes, on cauldrons from Cyprus, 196
Grimm, Jacob, 31
grog. See “European grog”; “Greek grog”; “Phrygian grog”
Grüss, Johannes, 103
Gudea (governor of Lagash), temple hymn of, 150
Habuba Kabira (Syria), 149
Hacilar (Turkey), 79; early agriculture at, 33; pottery vessels from, 83
Hacinebi (Turkey), grape remains from, 78
hackberry (Celtis sp.) seeds, from Çatal Höyük (Turkey), 80
Hafiz (Bacchic poet), 165
Hajji Firuz Tepe jars: contents with tree resin additive, 69–72; dating of, 72–73; organic analyses of, 67–70; stoppers for, 67–68
Haldi (Urartian god), 194
Hallager, Eric, 267
Haloa (Greek festival), 245
haloes, 237
Hammurapi (Babylonian king), 171; Code of, 18, 153; destruction of Mari by, 169
haoma (Zoroastrian soma) drugs, 209
Hartung, Ulrich, 96, 101
Harvard University: excavations at Ashkelon, 232; excavations at Samaria, 228
hashish, as beverage additive, 209
Hassek Höyük (Turkey), grape remains from, 78
Hathor (Egyptian goddess), 135–37; celebrations in honor of, 136; wine offerings to, 137
Hattusha (Boğazkale) (Hittite capital), 180–81; absence of winemaking installations in, 181–82; bull-shaped statues from, 184; geographic location and climate of, 181; wine cellars at, 183, 184f; wine-related vessels from, 182–84, 186
Hayes, William, 124–26, 129, 131
Hazor (Israel), 112; temple at, 231
heb-sed festival (Egypt), 124–25
Helbon wine, 205–6
Heliopolis (Egypt), 143
henbane (Hyoscyamus niger), as beverage additive, 297
Hera (Greek goddess), 243
Herakleion Museum, Minoan collection of, 273
herbs and spices: as additives to fermented beverages, 82, 235, 268, 309; in “Greek grog,” 274–75; in Midas Tomb food remains, 290; in “Phrygian grog,” 294
hermaphroditic grapevine, selection for, 11–13
Hermopolis (Egypt), 143
Herodotus: on amphora reuse, 126; on Mesopotamian culture, 151, 167; on Persian wine-drinking, 207
Heurige wine, 10
Hiebert, Fredrik, 36
hieros gamos. See sacred marriage
high-performance liquid chromatography (HP-LC), 68; database and analysis, 56, 69, 289
high-resolution microscopy, 5
Hittite language, 32; word for wine in, 34
Hittites, 180–88; capital of, 180–81; drinking horns of, 183–84, 185f; legacy of, 188; mixed beverages of, 186; potters of, 131; raisin wine of, 187–88; viniculture of, 181–82; wine-related pottery of, 183–86, 184f. See also Anatolia; Turkey
Hodder, Ian, 79
holes: through Aghios Kosmas pithos, 257; through Godin Tepe jars, 45; through Myrto pithoi, 250
Holy Land. See Israel; Jordan; Palestine
Homer, 243; Iliad, parallels with Midas Tomb archaeological details, 291; kykeon of, 267–68; Odyssey, wine scene in, 272
Homo sapiens, migration into Middle East, 8
honey: Cretan varieties of, 266–67; detection by organic analysis, 266, 287; in fermented beverages, 187, 310–11; in “Greek grog,” 266–67; in Hittite mixed beverages, 186; molecular archaeological study of, 287; in “Phrygian grog,” 287; Turkish varieties of, 80–81
honey mead, 266; Phrygians and, 298
Hope, Colin, 129
Horace (Latin poet), 147
Horemhab (Egyptian pharaoh), 119, 142
horns, drinking: Anatolian, 178; Hittite, 183–84, 185f; Levantine, 223–24. See also rhyta
Horowitz, Pam, 295
horticulture: Assyrian, 191–92; crossbreeding and cloning in, 27; of Levant, 213, 219; origins of, 13, 66
Horus (Egyptian god), 86–87, 135, 142
Hosea (Israelite prophet), 202
HP-LC. See high-performance liquid chromatography
Hubbard Amphora, 275–76, 275f
Human Genome Project, 25, 104
human innovation: addition of tree resins to wine, 71–72; convergent developments in, 5–6; discovery of fermentation, 306–7, 310–12; search for food and, 6–7
human sacrifice: in Greece, 245, 247; in Sumer, 158
Hungary: Baden culture in, 297; noble rot discovery in, 9
Hunton, Joan, 108
Hurrian language, 32
Hurrian and Hittite weather god, 184
Hyksos: capital of, 110–11; and Egyptian winemaking industry, 119, 120–21; gold jewelry from Tell el-ʿAjjul, 115; imports of Canaanite Jars, 113–14, 119; maritime contacts of, 117–18; origins and rise to power, 107–8, 114, 117; and Ramesside kings, 142–43; Seth as god of, 142; trade with Southern Palestine, 116–17, 118; wine as principal import from Southern Palestine, 118–19; winemaking by, 119–20
Hyoscyamus niger (henbane), as beverage additive, 297
Ice Age, wild Eurasian grapevine after, 7, 12
Ice Man from Ötztal Alps, 106
Iliad (Homer): kykeon in, 267–68; parallels with Midas Tomb archaeological details, 291
INAA. See instrumental neutron activation analysis
Inandık (Turkey), vase from, 175f, 176–77, 186
Inanna (Sumerian goddess), 153, 159
indigoid precursors, in mollusks, 5
indigoid dyes, 50. See also purple dye
Indo-Europeans: languages of, 31–34 (see also proto-Indo-European language); proposed homeland of, 35–37
inebriation, at Ugaritic banquets, 205
Inena (Egyptian scribe), 143
innovation, human: addition of tree resins to wine, 71–72; convergent developments in, 5–6; search for food and, 6–7
instrumental neutron activation analysis (INAA), 97–100; of Canaanite Jars, 108–10, 116; of Malkata ostraca, 126; of Philistine-type vessels, 227; vs. pottery typology, 115; of Scorpion I wine jars, 100
Intef (Egyptian royal herald), tomb of, 144f–145f
Iran: as homeland of winemaking, unwarranted inferences regarding, 4; popular grape juice of (shirēh), 54; wild Eurasian grapevine in, 8, 59, 74. See also Elam, Persia; specific archaeological sites, including Godin Tepe and Hajji Firuz
Iraq: southern, vineyards in, 151. See also specific archaeological sites
Irish whiskey, oak flavorant in, 261
ιρρ όνμ (Egyptian sweet wine), 141
irrigation, 25, 150
Ishtar (Sumerian goddess). See Inanna
Islam, impact on wine cultures, 165, 215, 238
isoprene, 69
Israel: festivals of, 217, 237; religion and wine in, 231, 236–38; royal banqueting of, 229–30; wild Eurasian grapevine in, 8; wine culture of, 237; wine production of, 228, 232; winepresses in, 214–15. See also specific archaeological sites
Istanbul (Turkey), Topkapi palace in, 199
Italy: apéritifs of, 312; grappa of, 268; “vin santo” of, 234; wine culture in, 302. See also Rome
Ivanov, Vjaèeslav, 31–32, 34, 76
ivory plaques: from Megiddo, 223, 224f; from Samaria, 229
Ivriz (Turkey), lroc-carved relief of storm god at, 188, 189f
Jackson, Michael, 293
Jacobsen, Thorkild, 154
James, T. G. H., 87
Jamshid (Persian king), 4, 206
Japan, earliest pottery of, 10
Jaw (Levant), grape seeds from, 100
Jefferson, Thomas, 3
Jericho (West Bank), 218; grape remains from, 100, 213; tombs at, 221–23
Jerusalem, offerings at temple in, 231
Jesus: Dionysos compared with, 237; first miracle of, 236–37
Jewish rituals, 237. See also Bible; Israel; Judeo-Christian tradition
Jewish Talmud, 306
Jiahu (China): grape seeds from, archaeological study of, 315; jars from, organic analyses of, 314
Jordan: grape remains from, 100; hypothetical nomadic period in, 99; “megalithic” towers of, 216; pottery of, study of, 98–100; wine production of, 100–1, 213. See also Baq‘āh Valley; specific archaeological sites
Jordan Valley, wine production of, 100–1, 213
Josephus (Jewish historian), 108
Judeo-Christian tradition: wine in, 236–38. See also Bible; Israel
Kadmos (mythological Greek king), 242
Kaenkeme (Egypt), vineyard of, 120, 143
Kakheti (Georgia), 21
Kamose (Egyptian pharaoh), stelae of, 108, 110, 117–120
Kanta, Athanasia, 259
Kara Kum desert, 208–9
Karacadağı region (Turkey): grape cultivar of, 30; honey of, 80; origin of domesticated einkorn wheat in, 29, 80, 302
Karahun Festival (Hittite), 182
karahunu (Akkadian word for wine), 150, 173
karas (Armenian underground pithoi), 25, 183, 191, 254
Karashamb (Armenia), silver goblet from, 77f
Karataş-Semayük (Turkey), 84
Karmir-Blur (Armenia), 25. See also Teishebaini
Karna temple (Egypt), Hypostyle Hall in, 142
Kartvelian language, 32
Karun River, 43
Kaş (Turkey). See Uluburun
kaš geštin (beer-wine), 186–87
Kato Zakros (Crete): rhyta from, 273; “wine” ideogram from, 277; wine installations at, 252, 278
Keller, Catherine, 124
Kenamun, tomb of (Theban Tomb 93); maritime trade scene depicted in, 127; pottery workshop scene depicted in, 128
Kenya, beer-drinking in, 156
Kenyon, Kathleen, 221, 229
kessme (Turkish beverage), 187
Kharga oasis (Egypt), 123
Khasekhemwy (Egyptian pharaoh), 86
Khatunarkh (Armenia), 24
Khay (Egyptian vintner), 140
Khizanaant-Gora (Georgia), 23
Khorsabad (Iraq), Sargon II’s palace at: wall reliefs from, 194–95, 195f, 198, 283, 284f; wine cellar at, 195–96
Khranis Didi-Gora (Georgia), Neolithic jar from, 76f
Kiguradze, Tamaz, 21, 22f
Kish (Iraq), 43; third dynasty of, 153
Klosterneuberg (Austria), wild Eurasian grapevine of, 11
Knidos, amphora from, 109f
Knossos (Crete): “Campstool Fresco” at, 269; excavations at, 247, 259; mythological relationship to Dionysos, 244, 247; rhyta from, 273; shrine of the Double Axes at, 255–56
Koehl, Robert, 272–73, 274
Kofyars of Nigeria, beer-drinking among, 156
Kohler, Ellen, 280
Korucutepe (Turkey), grape seeds from, 78
Kotsifali grape, 253
krater(s): Greek, 262; on Megiddo ivory plaque, 223, 224f; for mixed fermented beverages, 225; Philistine, 227
Krikina grape, 22
Kültepe (Turkey): Assyrian merchant colony at, 174; gold pendant from, 179; wine cellars at, 183; wine-related vessels from, 84, 178f
Kura-Araxes culture, 23
Kura River, 19, 39
Kurban Höyük (Turkey): grape remains from, 78–79; viniculture of, 79
Kurgan nomads, 32
kwevris (Georgian underground pithoi), 21
kykeon (Homeric beverage), 186, 267–68, 298
kylix (Greek drinking cup), 242–43, 269, 270f, 272. See also bowls; cups
Kynebu, tomb of (Theban Tomb 113), 132
Lachish (Israel), 234
Lagash (Iraq), 43; viticulture of, 150
Laguna de las Madres (Spain), 37
lanthanide series of elements, 97
laws: Babylonian, 18, 153; Hittite, 181
LC-MS. See liquid chromatography–mass spectrometry
lead, as wine additive, 310
Lebanon: Hathor as goddess of, 136; viniculture of, 203–4; wild grapevine in, 205, 212. See also Phoenicia; specific archaeological sites
Lefort, François, 29, 253
legends: vs. historical reality, 241–42, 300; of origins of wine, 4, 240–45
lentils: from Godin Tepe, 47; from Midas Mound (Gordion), 290–91
Lerna (Greece), grape evidence from, 257
Lesser Caucasus Mountains, 24
leuco base, 50
Levant: clay INAA matches with Scorpion I wine jars, 100; Early Bronze–Middle Bronze Dark Age of, 112, 114; and Egyptian winemaking, 119–21, 140; Hyksos at Avaris and, 108; marzeah feast of, 204–5, 228–30; as source of vinicultural expertise, 103; wine varieties of, 119, 233; word for wine in languages of, 34. See also Israel; Jordan; Lebanon; Palestine; Philistines; Syria
libation(s): Anatolian, 179; Assyrian, 200–1; Canaanite, 231; Egyptian, 88, 137, 146; Greek, 268–69, 274, 291; Hittite, 178f, 182–84, 185f, 186; Israelite, 231, 236; Minoan, 255; Phrygian, 279; Sumerian, 152–53
libation vessels, Hittite, 178f, 184, 185f, 186
life expectancy, wine consumption and, 305
lime, as wine additive, 309
Linear A script: sign for beer in, 265; sign for wine in, 258–59
Linear B script, 32; “Dionysos” inscription in, 244; sign for beer in, 265; sign for wine in, 34, 258; texts recording wine taxes, 264; words for wine and honey in, 267
Linearbandkeramik culture, 32
lion-headed situlae (buckets): Assyrian, 194, 198, 284f; from Midas Mound (Gordion), 194, 198, 283, 285f
liquid chromatography–mass spectrometry (LC-MS): amount of organic material needed for, 286; database and analysis, 56–57, 256; in lipid analysis, 289
long-spouted jugs: Anatolian, 84, 179, 220; Palestinian, 225; Phrygian, 220, 284, 287. See also beak-spouted jugs
Lower Mesopotamia: barley beer of, earliest chemical evidence for, 47, 160; Late Uruk period of, 43–44; spread of wine culture to, 14, 148, 150; trade with Upper Mesopotamia, 44, 149, 150, 151–52, 160, 162–63, 167–73; transplantation of grapevine closer to, 163–65. See also Sumerian city-states
Lutz, Henry Frederick, 212
Lydia, 244
Ma’adi (Egypt), 101
Macalister, R. A. S., 217
maenads, 245–46; parallels in Egyptian mythology, 136
Mago (Carthaginian author), 203, 299
Malkata (Egypt): excavations at, 121 (see also Malkata ostraca; Malkata wine jars); and maritime trade, 127, 130–31; plan of, 122f
Malkata ostraca, 121, 123–25; INAA study of, 126; labeling process of, 128–29; occasions commemorated by, 123–24; translation and classification of, 124–25; wine types identified by, 132
Malkata wine jars, 121–23; contents of, determined by organic analyses, 130; local clay source for, 126–27; local production of, hypothesized, 129–30; myrrh in, 130–31; rebottling of wine in, 127–28; single use of, 125–26; stoppers for, 129–30; terebinth tree resin as additive to wine in, 130
Mallowan, Max, 193
malt, 225; as wine additive, 191
mandrakes, as wine additive, 235
Manetho (Egyptian priest), 91, 108
Mantilari grape, 253
Mareotic wine, 147
Mare’s Nipple grape, 12
Mari (Syria): cuneiform tablets found at, 169–73, 223; wine culture of, 171–73; wine-related pottery types from, 172
marijuana, as beverage additive, 209
maritime trade: Malkata (Egypt) and, 127, 130–31; Myrtos (Crete) and, 259; Phoenicians and, 202; pottery types suitable for, 110; between Southern Palestine and Avaris, 117–18. See also shipping
Markakis, Idomeneas, 253
marl clay, 127–28
Maronea (Thrace), wine from, 243
Martínez Zapater, José Miguel, 30, 38
Martlew, Holley, 239, 256
marzah (Near Eastern feast), 204–5, 228–30
Masai of Kenya, beer drinking among, 156
MASCA. See Molecular Archaeology Laboratory
mass spectrometry: limitations of, 57. See also gas chromatography–mass spectrometry; liquid chromatography–mass spectrometry
Matar (Phrygian goddess), 84, 244, 279 mead, 266; detection by organic analysis, 287; Phrygians and, 298. See also honey
meadowsweet, as beverage additive, 297 meat, barbecued, for funerary feast at Gordion, 289–91
Medes, 201
medicinal properties: of kykeon, 268; of tree resins, 70–71, 133; of wine, 133, 305–6
Medinet Habu (Egypt), Ramesses III’s mortuary temple at, 146
Mediterranean cultures: legends about origins of wine, 4, 240–45; purple dye discovered by, 5–6; spread of wine in, 202–3. See also specific archaeological sites and regions
Mediterranean trade, 277–78, 304–5; pottery vessels used in, 110
Megiddo (Israel), ivory plaque from, 223–24, 224f
Meidum (Egypt), 143
Mellaart, James, 79–80
Memphis (Egypt), 86; hieroglyphs indicating, 87; wine offering scene at, 137; as winemaking area, 123
Meredith, Carole, 26–27
Mesopotamia: barley beer of, 47, 149, 155–56, 160–61; cylinder and stamp seals from, 154–55; date wine of, 148–49, 201; drinking tubes (straws) used for barley beer in, 155–56, 160; entrepreneurship in, 170–71; Epic of Gilgamesh, 17–19, 153, 198; female tavern owners in, 18, 153; Old Babylonian period of, 173; pictograms for “grape, vineyard, or wine,” 150–51; religion and wine in, 152–53, 158–59; royal banqueting in, 155, 159–60; royal burials in, 156–58; royal gifts of, 223; spread of domesticated grapevine to, 148, 152, 165, 173; trade between uplands and lowlands, 44, 149, 150, 151–52, 160, 162–63, 167–73; vineyards of, textual evidence for, 150; wine-related pottery types of, 161–62, 172–73. See also Assyria; Lower Mesopotamia; Sumerian city-states; specific archaeological sites
Messenia (Greece), spread of domesticated grapevine to, 203
metalworking: Assyrian, 196; northern Levantine, 196; Persian, 206; Phrygian, 282–84, 283f, 296; Transcaucasan, 77f, 78; Urartian, 195f, 196
Metamorphoses (Ovid), 282
Metjen (Egyptian official), 91
Metropolitan Museum of Art: Egyptian Art department of, 124; Egyptian Expedition of, 121
Michel, Rudolph, 49
microorganisms. See bacteria; yeast
microsatellites, nuclear DNA, 26
Midas (Phrygian king), 282, 292f
Midas Mound (Gordion), 279–92;
belly-button (omphalos) bowl from,
192, 284, 286f; bronze cauldrons
from, 283, 283f; bronze drinking set
from, 282–84, 296; burial chamber
beneath, 281; excavation of, 281; fu-
erary feast at, 290–91; furniture
pieces from, 281–82; mixed fer-
mented beverage served at feast at,
286–88; occupant of, 291–92, 292f;
organic analyses of residues from,
279, 285–90; organic materials re-
covered from, 280–81, 284, 288–90,
288f, 291; parallels with Homeric
epics, 291; re-creation of feast at,
293–95; situlae from, 194, 198, 283,
285f; textiles from, 281
Middle East: fermentation process in,
54–55; human migration into, 8; lan-
guages of, 31; pottery fabrics of, 97;
tartaric acid in, grape as source of,
52, 56. See also Near East; specific ar-
chaeological sites and regions
Miliarakis, Nikos, 253
Miliarakis, Takis, 253
Miller, Naomi, 290
Mills, John, 130
mind-altering drug, wine as, 8, 303, 305
Minoans: relations with Mycenaeans,
269–71. See also Crete
Minos (mythological Greek king), 244,
247
minotaur (mythological Greek crea-
ture), 247
Minshat Abu Omar (Egypt), 101
mitochondria, 26
mixed fermented beverages, 309; An-
atolian, 177–79; Egyptian, 130–33;
“European grog,” 297; Greek (see
“Greek grog”); Hittite, 186; Homeric
(lykeon), 186, 267–68; modern, 311–
12; in Near East, 225; Phrygian (see
“Phrygian grog”). See also blended wine
Mohammed (prophet), 238
mold: deliberate use of, 9, 303; in Scor-
pion I wine jar, 106
molecular archaeology, 49; advances in,
42; applications of, 49; cuisines an-
alyzed by, 293; discoveries in “wine
history,” 301; hypothesis generation
and testing by, 57–58; potential of,
101, 134, 313; relative value of tech-
niques, 53, 56; and study of ancient
organics, 312–13; tools of, 49, 50,
57, 68, 97 (see also specific scientific
techniques)
Molecular Archaeology Laboratory, Mu-
seum Applied Science Center for Ar-
chaeology (MASCA), University of
Pennsylvania Museum, 49; analyses
of Abydos jars, 93–94; analysis of
Beth Shan jar, 233–34; analyses of
Gaza Jars, 215; analyses of Godin
Tepe jars, 51–54; analysis of Greek
“beer mug,” 276; analyses of Hajji
Firuz Tepe jars, 67–70, 73; analyses
of Jiahu jars, 314; analyses of Mal-
kata ostraca, 130–31; analyses of
Mesopotamian vessels, 162, 201;
analyses of Mids Mound residues, 279,
285–90; analyses of Minoan conical
cups, 264, 266–67, 269; analysis of
Monastraiki cooking pot, 260–61;
analyses of Myrtos pithoi, 250; anal-
ysis of Nubian amphora, 52–53;
analysis of red lustrous spindle bottle,
131; analyses of Royal Purple dye,
49–51; analyses of Scorpion I jars,
93–94; analysis of Shulaveris-Gora
jar, 75; analyses of Susa jars, 162; an-
alyses of Uluburun amphora con-
tents, 130; chemical methods used
in, 56–57; as repository of ancient
wine samples, 107
mollusks: as food source, 6; as dye
source, 5, 49–50
Monastraik (Crete), 259–60; organic
analysis of cooking pot from, 260–61
Mondavi, Robert. See Robert Mondavi
Winery
INDEX

Moreau, Robert, 289
moringa tree (Moringa aptera), 132
Morse, Roger, 287
Mortimer, Robert, 103–4
Mosul (Iraq), vineyards near, 190
Mtskheti (Georgia), 23
Mtsvane Kakhuri grape, 22
Mullis, Kary, 28
mulsum, recipe for, 267
mummies, Egyptian, 28, 102; resins used in preserving, 130–31
Murex mollusks, as source of indigoid compounds, 5
Mureybit (Turkey), grape seeds from, 78
Murshili I (Hittite king), 180
Musasir (Urartian city), 194
muscadine grape, 3
Muscat Alexandriul wine, 24
muscat grape, 202, 295, 313
mushroom-lipped juglets: Phoenician, 204; from Salamis (Cyprus), 197–98
mutations, genetic, 27
Mycenae (Greece): “beer mug” from, 276, 277f; Golden Cup of Nestor, 276, 276–77, 277f; Room with the Fresco, 276–77; rhyton from, 273
Mycenaeans: and “Greek grog,” 276–77; impact on Philistine pottery styles, 227; relations with Minoans, 269–71
myrrh: analgesic effects of, 71, 133; in Malkata wine jars, 130–31; as wine additive, 133, 235, 309
Myrtos-Phournou Koryphe (Crete): beer in pithoi from, possible evidence for, 265–66; “Goddess of Myrtos” from, 249f, 255; location of, 259; organic analyses of pithoi from, 250; pithoi from, 247–50, 248f, 249f; wine production of, 251, 255–56, 259
mythology: Assyrian, 194; Egyptian, 135–37, 142; Greek, 242–43, 246; Sumerian, 153–54

Nabonidus (Babylonian king), 151, 201
Nahal Mishmar (West Bank), bronze artifacts from, 219–20
narcotic substances, as beverage additives, 208–9, 268
naṣṣakum (Mesopotamian pithoi), 172
Naxos (Greece), 244, 247; grape seeds from, 257
Near East: contacts with China, unanswered questions about, 314–15; earliest wine made in, 14; mixed fermented beverages of, 225; Neolithic settlements in, 15; wine culture of, 258. See also Middle East; specific archaeological sites and regions
Nebuchadrezzar (Babylonian king), 232
Necho II (Egyptian pharaoh), 233
Neff, Hector, 100
Negev Desert (Israel), 215
Negrul, A. M., 20
Neolithic period, 15; experimentation with fermented beverages during, 81–82, 310–11; food production during, 66; origins of winemaking during, 15–16; in Palestine, 218–19; preconditions for winemaking during, 65–66; wine culture of, 303–4; wine production and consumption during, 74
Neolithic Revolution, 29; domestication of plants and animals and, 29, 302–3; in Palestine, 218
Nero (Roman emperor), 6
Nestor (Greek king), 272; Golden Cup of, 276–77, 277f; palace at Pylus, 271–72
New World: fermented beverages of, 307; native grape species and cultivars of, 1, 3; recent extension of wine culture to West Coast of, 304; Vikings in, 1
New Year’s celebration: Egyptian, 124; Sumerian, 153
Nigeria, beer-drinking in, 156
nightshade (Atropa belladona), as beverage additive, 297
Nile Delta: climate of, 102, 118; grape remains from, 94–96; wine industry of, 85–86, 88–89, 102, 119–20, 123, 138, 141, 143, 146–47. See also Egypt
Nile River, annual inundation of, 134, 136
Nimrud (Assyrian capital), 190; Assurbanipal’s palace at, 192; bronze bowls from, 229–30; royal tombs at, 192–93; wine lists from, 193
Nineveh (Assyrian capital): Assurbanipal’s library at, 17; Assurbanipal’s palace at, 192, 199–200, 200f; capture by Medes, 201; Sennacherib’s palace at, 234; vineyards near, 190
Ningirsu (Sumerian god), 150
Ninkasi (Sumerian goddess), 158
Nino, Saint, 21
Niš (Yugoslavia), analysis of liquid samples from, 51
Nisir, Mount, 17–19, 150
Noah (biblical character), as “first” viticulturalist, 17
Noah Hypothesis, 16, 301; geological evidence for, 35–37; linguistic evidence for, 31–34, 76; proof for, requirements for, 38; scientific evidence for, 19–21; textual evidence for, 16–19
Noah’s Flood (Ryan and Pitman), 35–36
noble rot (Botrytis cinerea), 9, 187
Northern Europe, alcoholism in, 311
Nosiri (Georgia), 23
Nubia: evidence for wine in, 52–53; Hathor as goddess of, 136
Numeira (Jordan), grape remains from, 213
Nufiez, Alberto, 289
Nymphaea caerulea (blue lotus), 132, 223
Nysa, Mount, 242–43
oak barrels, ageing of wine in, 261–62, 312
oak flavorant, in Minoan wine, 260–62
Occam’s razor (rule), 6, 33
Occidentalis grapevine family, 20. See also Vitis vinifera sylvestris; Vitis vinifera
octanol, 260
Odysseus (mythological Greek hero), 243
Odyssey (Homer): kykeon in, 268; wine scene in, 272
Oenotria (Calabria), 203
Ohalo (Israel), 212
Old Kingdom Pyramid Texts (Egyptian), 102
oleic acid, 262
olive oil, in Hittite mixed fermented beverages, 186
Omar Khayyam (Bacchic poet), 165
omphalos (belly-button) bowls, 192, 284, 286f
Onkhsheshonqi (Egyptian pottery), 140
opium, as beverage additive, 209, 268
Oren, Eliezer, 115, 117
Orestheus (mythological Greek hero), 243
organics, ancient: absorption into pottery, 9–10, 53, 66; at Çatal Hüyük (Turkey), 79–80; as crucial evidence, 40; long-term preservation of, 313; from Midas Mound (Gordion), 280–81, 284, 288–90, 288f, 291; molecular archaeology and study of, 312–13; tools for studying, advances in, 49
orgies: Dionysiac, 245. See also banquets
Orientalis grapevine family, 20. See also Vitis vinifera sylvestris; Vitis vinifera vinifera
Orpheus (mythological Greek hero), 246
Osiris (Egyptian god), 92, 142; funerary feast to, 135; religious center at Abydos, 134; resurrection of, 135
Ossetian language, 31
ostraca: from Ashkelon (Israel), 235; from el-Amarna (Egypt), 138; from Malkata (see Malkata ostraca); from Ramesseum (Egypt), 143; from Samaria (West Bank), 228
Ötztal Alps, Ice Man from, 106
Ovid, Metamorphoses, 282
oxygen, and conversion of wine into vinegar, 55, 57–58
Özgüç, Tahsin, 174, 183

“Painted Temple” (Iraq), 152
Palaikastro (Crete), 252, 269; rhyta from, 273
Paleolithic hypothesis, 7–11
paleontology, 5
Palestine: basket-handled vessels of, 219–20; celebrations of, 217, 223, 224f; climate of, 213; domesticated grapevine of, 213; earliest calendar of, 217; exports of, 221; fig cultivation in, 102; hill country of, 210; horticulture of, 213, 219; invasion by Sea Peoples, 226–27; marzeah feast of, 204–5, 228–30; Neolithic Revolution in, 218; towers in vineyards of, 215–17; trade with Egypt, 101–2, 213, 219–21; winepresses in, 214–15. See also Canaan; Israel; Philistines
Palestinian Talmud, 235
palimpsests, 125
Pangaea, breakup of, 7
Papyrus Anastasi, 120, 143–46
Papyrus Harris, 146
Parkinson, Eric, 285
Parrot, André, 169
PCR. See polymerase chain reaction
pepper, as wine additive, 309
Per-hebyt (Egypt), 123
Pergamon Museum (Berlin), 201
Persepolis (Iran), celebrations at, 206
Persepolis Fortification Tablets, 207
Persia: “barley-wine” of, 186–87; origins of wine in, story of, 4; territories ruled by, 208; wine culture of, 206–8; Zoroastrianism in, 209. See also Iran Persian (Farsi) language, 31
Peru, purple dye discovered in, 5–6
Phaistos (Crete), 260; rhyta from, 273
phenanthrene, 290
Philistine “beer-jug,” 225, 226f
Philistines: feasts of, 225; invasion of Palestine by, 226–27; name of, Palestine derived from, 227; original home of, 227; winemaking by, 232–33
Phoenicia, 201–2; Dionysos’s mythological origins in, 242; wine exports of, 304. See also Lebanon
Phoenicians: banquets of, 204–5; and purple dye, 49–50, 202; as seafarers of ancient world, 202; and spread of wine culture, 202–3; wine-related pottery types of, 204 (see also Canaanite Jars). See also Canaanites
Phrygia, 244; Midas of, 282 (see also Midas Mound, Gordion)
Phrygian cult, 244
“Phrygian grog,” 286–88; color of, 294; vs. “Greek grog,” 297–98; modern rendition of, 293–95; origins of, 296
Phrygians: cuisine of, 198, 288–92; “eating utensils” used by, 290–91; fermented beverage-related vessel types of, 84, 179, 186, 196, 282–84, 283f–286f, 288, 288f; and mead, 298; mother goddess of, 84, 244, 279; origins of, 296
Pi-Ramesses (Qantir) (Egypt), 142
PIE. See proto-Indo-European
pine tree honey, 81
pine tree resins. See tree resins
Pinot Noir grape: cross with Gouais blanc grape, 26; seeds of, 24
pis. See grape seeds
piriform jars (“noble jars”): from Godin Tepe (Iran), 45, 46f, 47–48, 60–61; Greek, 254–55; Mesopotamian, 162
Pistacia atlantica Desf. See terebinth tree pithoi (large jars): from Crete, 247–50, 248f–249f, 260; of Hittite empire, 183, 184f; from Mari, 172; underground, wine ageing in, 252, 252f. See also karas; kvevris
Pitman, Walter, 35–36
PIXE. See proton-induced X-ray emission spectrometry
Place, Victor, 195
plaster vessels, earliest, 66
Plato, Symposium, 239
Pliny the Elder, 299; Historia naturalis, 4, 70–71, 187, 298; on medicinal properties of wine, 306
Poliochini (Greece), two-handled cups from, 258
pollination, grapevine, 11–12. See also cross-breeding of grapevine
Polsinelli, Mario, 104
polyhydroxyaromatics, 69
polymerase chain reaction (PCR), 28
pomegranate wine, 132, 235
Pompei (Italy), wine rack from, 61
Pontica grapevine family, 20. See also Vitis vinifera sylvestris; Vitis vinifera vinifera
poppy (Papaver), as beverage additive, 209, 268
Porada, Edith, 108
Port wine, 89
Portugal, traditional winemaking in, 89
Poseidon (Greek god), 244–45, 247
potassium bitartrate, 67
pottery: Anatolian, 80, 83–84, 131, 175f, 178f, 178–79, 183–84, 257–58; Chinese, 314; Cypriot, 275f, 275–76; earliest containers, 10, 66; Egyptian, 85–88, 92–97, 93f, 95f, 100–1, 139f, 141; essential for beginnings of viticulture, 75; European, 297; Georgi- gan, 75–76, 76f; Hittite, 183–86, 184f; Israelite, 228, 234; Jordanian, 99–100, 226f; Mesopotamian, 41–42, 44–48, 46f, 52–55, 58–63, 62f, 64–68, 73–74, 161–62, 172–73, 201; Minoan, 247–50, 248f–249f, 253f, 254–55, 260–64, 263f, 269, 270f, 273, 278; Mycenaean, 269–72, 271f, 276–77, 277f; Palestinian, 96, 215, 218–25, 222f; Philistine, 225, 226f, 227–28; Phoenician, 49–51, 204; Phrygian, 84, 179, 186, 196, 288, 288f; and preservation of ancient organics, 9–10, 53, 66; provenience of, INAA to determine, 97–100; and study of ancient organics, 313; Theban, 128; types and uses of, assessment of, 57; Urartian, 196; utilitarian designs on, 60–61. See also amphoras; AshkelonJar; Canaanite Jars; Gaza Jar; instrumental neutron activation analysis (INAA); karas; kvevris; pithoi; specific archaeological sites, regions, and vessel types
Powell, Marvin, 151, 170
Pramnian wine, 186, 268
preservation, wine: stoppering and, 55, 58; tree resins and, 70–71, 296, 309
prestige item, wine as, 68, 102, 151–52, 258
price of wine: in Hittite empire, 181; in Mesopotamia, 170–71
priestesses, Sumerian, 153
priests, wine and food allotment to, 231
Pritchard, James, 49, 202, 232
proto-Elamites, 43; expansion into Zagros Mountains, 149; Late Uruk site of (see Godin Tepe)
proto-Indo-European (PIE) language, 31–34; Black Sea region as homeland of, hypothesis regarding, 35–37; Gamkrelidze and Ivanov’s reconstruction of, 32–33; statistical studies of, 33; vinicultural terms in, religious underpinnings of, 76; vocabulary of, 32
proto-Sumerians, 43; city-states of (see Sumerian city-states); cuisine of, 47; expansion into Upper Mesopotamia and Zagros Mountains, 149. See also specific archaeological sites
proton-induced X-ray emission (PIXE) spectrometry, 50
Provenience Postulate, 97
Puabi (Mesopotamian queen), tomb of, 156; gold vessels from, 157f
punishment: for vineyard destruction, in Hittite empire, 181; for wine drinking or serving by priestesses, in Babylonia, 153
INDEX

Punt (Somalia), myrrh imported from, 131

Purim (Jewish festival), 237

purple dye: chemical composition of, 5, 42; discovery of, 5–6; organic analysis of, 49–51; Phoenicians and, 49–50

Purple mollusks, as source of indigoid compounds, 5

Pusch, Edgar, 142

Pylos (Greece), Nestor’s palace at, 271–72

Pylos tablets, 244–45, 246; wine set described on, 271; wine consignments recorded on, 264–65, 267

Qantir (Pi-Ramesses) (Egypt), 142

Queen Isabella grapevine, 21

quercetin, 73, 306

radiocarbon dating, 5

raisin(s): in Abydos jars, 94; from Palestine, 213; in Turkish fermented beverages, 187

raisin wine: Anatolian, 187–88; Hittite, 187–88; Levantine, 234; north African, 203

ram-headed situlae (buckets): Anatolian, 178, 183; Palestinian, 223; from Midas Mound (Gordion), 283

Ramesses I (Egyptian pharaoh), 141

Ramesses II (Egyptian pharaoh), 141–42; winemaking industry under, 143

Ramesses III (Egyptian pharaoh), 146

Ramishvili, Revaz, 22–24, 22f

Ras Shamra. See Ugarit

Razdan River, 25

Re (Egyptian god), 136

red pine honey, 81

religion and wine: in Egypt, 134–37; in Georgia, 21; in Greece, 240–46; in Israel, 231, 236–38; in Mesopotamia, 152–53, 158–59; in Palestine, 215; in proto-Indo-European vocabulary, 76

Renfrew, Colin, 33, 258

resinated wine: in Abydos (Scorpion I) jars, 94; in Canaanite Jars, 118; in Greece (retsina), 72, 250–51, 259, 296; in Hajji Firuz Tepe jars, 69, 70, 73; lack in Phrygia, 296; in Makeda jars, 130; in Shulaveris-Gora jars, 75; in Uluburun amphoras, 130

resurrection: in Egyptian mythology, 135; grapevine as metaphor of, 246

resveratrol, 69, 306

retsina, Greek, 72, 250–51, 259, 296; earliest chemical evidence for, 250

Rheingau (Germany), noble rot discovery in, 9

Rhine River, wild Eurasian grapevine along, 11

Rhodes, amphora from, 109f

ṛhṭa: on Crete, 177–78; functions of, 274; and “Greek grog,” 272, 274; for mixed fermented beverages, 225; Palestinian, 223–24; types of, 273; use in funeral rites, 274

rice, in Chinese fermented beverage, 314

Ringe, Donald, 33

Rioni (Georgia), 21

Rkatsiteli grape, 22

Robert Mondavi Winery, 1991 conference at, 8, 45, 61–63, 151, 170

Romania, Baden culture in, 297

Rome: amphora from, 109f; convivium of, 155, 199; purple textiles of, 6; spread of wine culture to, 14; wine additives of, 71; wine varities of, 234

rope designs: on Egyptian jars, 85, 96; on Godin Tepe jars, 45, 47, 60–61, 162; on Myrtos pithoi, 250

royal banquet: Anatolian, 175f, 176–77; Assyrian, 199–200, 200f; Israelite, 229–30; Sumerian, 155, 159–60, 163

Royal Purple, 6. See also purple dye

Royal Scythian nomads, 31

ru: as beverage additive, 268, 275; medicinal properties of, 306

Rusa II (Armenian king), 25

Ryan, William, 35–36

For general queries, contact webmaster@press.princeton.edu
saccharides. See sugar
Saccharomyces cerevisiae (yeast): complete DNA sequencing of, 25, 103–4; in fermented beverages, 82, 186; grapes as preferred source of, 82, 84; insects as carriers of, 104, 307–8; precursor of, in Scorpion I wine jars, 105–6; role in fermentation, 307–8
Saccharomyces winlocki (yeast), 103
sacred marriage (hieros gamos): in Anatolia, 175f, 176; in Assyria, 200; in Israel, 229; in Sumer, 159
sacrifice. See animal sacrifice; human sacrifice
saffron: in “Phrygian grog,” 295; as wine additive, 235, 268, 309
Sahure (Egyptian pharaoh), pyramid temple of, 137
Salamis (Cyprus), necropolis of, vessels from, 197–98
Samaria (West Bank): excavations at, 228; ivory plaques from, 229; ostraca from, 228; royal banqueting at, 229–30
Samtauro (Georgia), 23
sandarac tree (Tetraclinis articulata), 72
Sanskrit, 32
Saqqara (Egypt), 86; tombs of nobles at, 88, 91. See also Memphis
Sarepta (Lebanon), 49–50; excavations at, 49, 202; Mycenaean pottery from, 272; purple dye production at, 49–51
Sargon the Great (Akkadian king), 155, 159
Sargon II (Assyrian king), 191; tomb of queen of, 193; palace at Khorsabad, wall reliefs from, 194–95, 195f, 198, 283, 284f; victories in Urartu, 194; wine cellars at, 195–96
Sayre, Edward, 99
Schliemann, Heinrich, 84, 257–58
Scorpion I tomb (Abydos, Egypt), 91–92, 93f; clay sealings from, 101; INAA study of wine jars from, 100; organic analyses of residues from, 93–94; pottery types from, stylistic parallels in Levant, 96; provenience of wine jars from, 100–1; wine jars from, 92, 94, 95f, 96; wine labels from, 92–93; yeast DNA from jars from, 104–6
Scotch, oak flavorant in, 261
scuppernong grape, 3
Scybelites or Siræum (Anatolian wine), 187
šdḥ (Egyptian wine), 132, 140
Sea of Galilee, 212
Sea Peoples, 226–27
sea water, as wine additive, 309–10
seal impressions: Egyptian, 85–87; Elamite, 165–66; Hittite, 187; Sumerian, 154–55, 159
secondary fermentation locks, 88; lack on Malkata stoppers, 129–30
sed-festival (Egypt), 124–25
seeds. See grape seeds
šēkar (Israelite “date wine”), 235–36
Semele (mythological Greek heroine), 242
Sennacherib (Assyrian king), 234
Seth (Egyptian god), 135, 142; temple at Abydos, 142; temple at Avaris, 119–20
Setnakhte (Egyptian pharaoh), 146
Sety I (Egyptian pharaoh), 141–42
Sety II (Egyptian pharaoh), 141; mortuary temple in Thebes, 146
sexual acts: Anatolian ceremonies and, 175f, 176; Phrygian drinking and, 298; Sumerian banqueting and, 158–59. See also sacred marriage
Shalmaneser V (Assyrian king), 193
Shamash (Babylonian god), 153, 171, 230
Sharuhen (Hyksos city), 114, 116
Shesmu (Egyptian god), 135
Shiloh (West Bank), Iron Age jug from, 234
shipping: Byblos and, 114; Canaanite jars and amphoras used in, 110; in Mediterranean trade, 277–78, 304–5; in Mesopotamian trade, 152, 167–68, 170–71. See also maritime trade
Shiraz (Iran), 164–66
Shiraz grape, 120
Shireh (grape syrup), 54
Shomu-Tepe (Azerbaijan), grape seeds from, 39
Shulaveris-Gora (Georgia), Neolithic site of, 23, 39; grape seeds from, 23, 24; wine-related pottery from, 75–76
Shulgi (Sumerian king), 159
Sidqum-Lanasi (Mesopotamian merchant), 170–71
Siduri (Mesopotamian epic character), 17–18, 153
Simpson, Elizabeth, 279–80, 282
Sinai (Egypt), temple of Hathor in, 136
Sinai overland trade route, 101, 213
Singleton, Vernon, 45
Sinuhe, Egyptian story of, 210–12
Sippar (Iraq), temple of Shamash at, 171
Siræum or Scybelites (Anatolian wine), 187
Siren protomes, on cauldrons, 196, 283f
Sirius (Sothis), 134, 243
Situlae. See lion-headed situlae; ram-headed situlae
Skyphos (Mycenaean drinking vessel), 227
“smoked wine,” 234
Snefru (Egyptian pharaoh), 91
social class, and wine culture, 68. See also elite
Sogdiana, wine culture of, 2–3, 208
Somalia, myrrh imported from, 131
“Song of Solomon,” 235
Sothis (Siris), 134, 243
Spain: aeneolithic sites in, unlikely recovery of domesticated grape at, 37; wine culture of, 302
Sphinx protomes, on cauldrons from Salamis (Cyprus), 196
spices. See herbs and spices
Spiegelberg, Wilhelm, 143
spindle bottle, 131
spoilage of wine: acetic acid bacteria and, 55. See also vinegar
spoilage yeast, in Scorpion I wine jars, 106
sports (accidental variations), 27
Stager, Lawrence, 115, 232
stirrup jars, Minoan, 267
stone vessels, Paleolithic, 10–11
stoppers: and wine preservation, 55, 58; in winemaking process, 59
stoppers: from Arslan Tepe (Turkey), 161; from Ashkelon (Israel), 233; Egyptian, from Malkata, 129–30; seal impressions on, 85–87, 90, 139f, 145f; secondary fermentation locks on, 88; from Godin Tepe (Iran), 55; from Hajji Firuz Tepe (Iran), 67–68; lack for Paleolithic stone vessels, 10
storage, wine: in Georgia, 21; at Godin Tepe (Iran), 60–61; in Greece, 252, 252f, 254. See also wine cellars
storm god: Asiatic, 120; Hittite, 188, 189f
Strabo (Roman historian), 205, 208
strainer-spouted vessels: Anatolian, 178; Palestinian, 219–20; Philistine, 225, 226f, 227–28; Phrygian, 220
straws. See drinking tubes
Stummer, A., 24
Succoth, Israelite festival of, 217
sugar: in ancient diet, 187; fermentation of, and energy production, 9; grape as source of, advantages of, 307, 308; in honey, 266; human taste for, 309; minimum requirements for fermentation process, 82; in modern wild Eurasian grapevine, 12; sources of, 307
sulfur, lack of evidence for, in winemaking until Roman period, 57
sulfur dioxide, in modern winemaking, 309
Sumerian city-states, 148–49; celebrations of, 153–54; drinking tubes (straws) used for beer in, 155–56;
Sumerian city-states (cont.)
importation of wine from Upper Mesopotamia and Zagros Mountains, 151–52, 153–54, 161; royal banquets of, 155, 159–60; royal burials of, 156–58; temples of, 152; wine drinking in, evidence for, 161–64; wine in temple cults of, 152–53. See also specific archaeological sites
Sumerian language, 43; pictograms for “grape, vineyard, or wine,” 150–51
Sumner, William, 165
Sun Disk (Aten) (Egyptian god), 123, 137
Šuppiluliuma (Hittite king), 180, 188
Susa (Iran): celebrations at, 206–7; jars with resinated wine from, 162, 164; Late Uruk society of, 43; location of, 164, 206; trading relations of, 164–65
Susiana, spread of wine culture to, 148
Sutekh (Hyksos god). See Seth
Sweden, glögg in, 312
sweet wine: in Egypt, 141; in Hittite culture, 188; in Israel, 234; in Mesopotamia, 172; preservation of, 310; as ultimate indulgence, 309
symbolism of grape and wine, 246. See also blood
Syme (Crete), 269
symposion (Greece), 258, 274; Assyrian precursor of, 199; Sumerian precursor of, 155
Symposium (Plato), 239
Synoro (Greece), grape remains from, 257
Syria: hill country of, 210; proto-Sumerian city-states in, 148; wild grapevine in, 8, 205; wine exports of, 304. See also specific archaeological sites
Syrian flask, 131, 139f, 141
Syro-Palestinian amphora, 123
Syros (Greece), grape seeds from, 257
Tajikistan, wild grapevine in, 20. See also Fergana Valley
Talmud, 306; Babylonian, 237; Palestinian, 235
tamada (Georgian toastmaster), 21
tamarind fruit, 56
Tanis (Egypt), 142
tannins, 68
Tarḫunta (Hittite storm god), 188, 189f
tartaric acid, 52, 286; chemical structure of, 53f; in Chinese fermented beverage, 314; in Godin Tepe jars, 53; in Hajji Firuz Tepe jars, 67, 73; laboratory techniques for establishing presence of, 56–57; natural sources of, 56
taste test, 51
Taurus Mountains: biblical flood story and, 18; founder plants in, 29, 302; as hypothetical homeland of domesticated vine, 301; Neolithic settlements in, 15, 39; wine exports from, 163
taverns: of Mesopotamia, 18; of Nubia, 52
tayf (Turkish beverage), 187
Taylor, Ann, 33
Tblisi (Georgia), excavations in and around, 19
Te-umman (Elamite king), 200
Teishebaini (Karmir Blur) (Armenia), 25; wine cellars at, 193
Tel ‘Erani (Palestine), 101, 213
Tell al-Rimah (Iraq), 173
Tell el ‘Ajjul (Egypt), 113
Tell el-Dab’a (Egypt): Canaanite Jar from, 108, 109f; excavations at, 110; harbor of, 117. See also Avaris
Tell el-Fukhar (Jordan), 227
Tell esh-Shuna (Jordan), grape seeds from, 213, 218
Tell Ibrahim Awad (Egypt), 96
Temizsőy, Ilhan, 82
Tepe Gawra (Iraq), sealing from, 155–56
Tepe Malyan (Anshan) (Iran), 165
Tepecik (Turkey), grape seeds from, 78
terebinth tree (Pistacia atlantica Desf.), 69; geographic distribution of, 70, 79, 212

terebinth tree resin: in Hajji Firuz Tepe jars, 69–70; in Malkata jars, 130; popularity as wine additive, 262; in Scorpion I (Abydos) jars, 94; in Uluburun amphoras, 130; and wine preservation, 71, 309

terpenoids, 69; bactericidal properties of, 71

Tertiary period, grapevine during, 7, 11

textiles: from Çatal Höyük (Turkey), 79; from Midas Mound (Gordion), 281; purple dyeing of, 5–6, 50

texts, ancient: vs. archaeological evidence, 4–5; vs. historical reality, 241–42; and Noah Hypothesis, 16–19

Thais mollusks, as source of indigoid compounds, 5

Thebes (Egypt): administrative and registration facility at, hypothesized, 128; Intef tomb at, 144f–145f; Kenanum tomb at, 127–28; Kynebu tomb at, 132; pottery-producing center at, hypothesized, 128; Ramesses II's mortuary temple at, 143; Sety II's mortuary temple at, 146; Tutankhamun's tomb at, 138, 139f, 140–41; vintage scenes from tombs at, 132; yeast from New Kingdom tomb at, 103. See also Malkata

Thera (Greece). See Akrotiri

Theseus (mythological Greek hero), 247

Thrace: flood story of, 243; maenads of, 246; wine of, 243

Thutmose IV (Egyptian pharaoh), mortuary temple of, 128

thyiads, 245

Tierra del Fuego, 306

Tiglath-Pileser III (Assyrian king), 193

Tigris and Euphrates Rivers: Neolithic settlements along, 78; terebinth tree shell fragments at sites along, 79; wine trade on, 167–71, 173

Timothy, Brother, 232

Titriş Höyük (Turkey), 182

Tjaru (Egypt), 123

“To Dionysos” (Homeric Hymn), 242

toasting, in Georgian culture, 21

Tokay (Hungary), noble rot discovery in, 9

tolls, on Mesopotamian rivers, 171

tomb(s). See burials

Tomb U-j. See Scorpion I tomb

Topkapi palace (Istanbul), 199

trade: between Armenia and Babylon, 167–68; between Egypt and Crete, 255, 259; between Egypt and Levant, 101–2, 114, 213, 221; between Hyksos and Palestine, 116–18; Mediterranean, 110, 277–78, 304–5; Mesopotamian, 44, 149, 150, 151–52, 160, 162–63, 167–73; routes of, molecular archaeology and determination of, 101. See also maritime trade training, grapevine: in Assyria, 200, 200f; in Egypt, 86, 89, 144f; in Greece, 258; in Judah, 234

Transcausasia, 19; diversity of plants in, 20; as homeland of viniculture, theory of, 19–21, 39, 301 (see also Noah Hypothesis); languages of, 31; Neolithic settlements in, 15, 23; as proto-Indo-European homeland, hypothesis regarding, 32–33; spread of viniculture from, 33–34; wild Eurasian grapevine in, 20, 23. See also Armenia; Azerbaijan; Georgia

Transjordan. See Jordan

treading vats, 59; in Anatolia, 182; in Egypt, 89–90, 120, 144f; in Greece, 251–52, 252f–253f, 254; in Palestine, 215, 217, 227

tree resins: addition to wine, innovation of, 71–72, 309; in Hajji Firuz Tepe jars, 69, 70; in Hittite mixed beverages, 186; medicinal properties of, 71, 133, 309; in Monastraki
tree resins (cont.)
cooking pot, 260; preservative properties of, 70–71, 296, 309; and sensory properties of wine, 72; use in Egypt, 130–31. See also resinated wine; terebinth tree resin
Trialeti culture (Transcaucasia), 78; silver goblet from, 77f, 78
Trichterbecher (funnel beakers), 297
triglycerides, in Midas Tomb (Gordion) remains, 289
tripod cooking pot: from Apodoulou (Crete), 261f; from Monastiraki (Crete), organic analysis of, 260–61
triterpenoids, 69; bactericidal properties of, 71
Troy, grape seeds from, 257
Tsoungiza (Greece), 271
Tzedakis, Yannis, 239, 262, 267
Ugarit (Ras Shamra) (Canaanite city), 204–5; marzeah feast at, 204–5, 228–30
Ukraine, as hypothetical proto-Indo-European homeland, 33
Ulhu (Urartian city), 191
Uluburun (Turkey), ancient shipwreck at, 110, 111f; amphoras from, 130, 276
underground wine storage: in Georgia, 21; in Greece, 252, 252f, 254
underwater archaeology, 110, 111f, 130, 276
University of Ankara, experimental station at Kalecik, 30
University of Missouri Research Reactor (Columbia), 100
University of Pennsylvania, linguistic study at, 33
University of Pennsylvania Museum: artifact collection of, 64; “Canaan and Ancient Israel” exhibit at, 233–34; excavations at Anshan, 165; excavations at Ur, 156–57; Gordion Archives of, 280; Hajji Firuz Tepe jars at, 73; molecular archaeology laboratory at (see Molecular Archaeology Laboratory); re-creation of “King Midas funerary feast” at, 293–95
unstoppering, methods of, 45, 125
Ur (Iraq), 43; Royal Cemetery at, 156–58; Royal Standard from, 159–60; tomb of Queen Puabi at, 156, 157f; wine culture of, textual evidence for, 150
Urartu, 25, 191; Sargon II’s foray into, 194; wine-related vessels of, 195f, 196
urban life: of Canaanites and Hyksos, 112; in proto-Sumerian city-states, 43, 148–49
Uruk (Iraq), 43; Eanna temple complex at, 154, 162; serving and drinking
vessels from, 201; “White Temple” at, 152
U.S. Department of Agriculture, Eastern Regional Center of, 289
Utnapishtim (Mesopotamian hero), 17, 150
Uzbekistan, wine culture of, 2–3, 208

varietals. See cultivars
Varro (Roman author), 299
Vassar College, laboratory at, 289. See also Beck, Curt
Vathýpetro (Crete), winemaking facility at, 252–54, 253f
vats. See cauldrons; treading vats
Vavilov, Nikolai, 19, 33
vessels: types and uses of, assessment of, 57. See also pottery; specific vessel types
Vikings, in New World, 1

Vilana grape, 253
vinegar: conversion of wine into, 55, 57–58; distinguishing from wine, 55–58; preventing wine from turning into, 70–71, 309

vocabulary, winemaking, cultural transfer and, 258
Voigt, Mary, 64, 65f

Vitis amurensis (East Asian grape species), 3
Vitis labrusca (New World grape species), 3
Vitis rotundifolia (New World grape species), 3
Vitis sylvestris ramishvilis (Transcaucasian wild grape species), 23
Vitis vinifera sylvestris (wild Eurasian grape species): ancient geographic distribution of, 8, 85, 212, 256; botanical classification of, 20; color of, 12; difficulty of distinguishing, 20–21; dioecism in, 12; disappearance of, 11; domestication of (see domestication of grapevine); first human encounter with, 7–8; genetic plasticity of, 37; hermaphrodism in, 11; importance of studies of, 11; modern, genetic structure and morphology of, 12–13, 26; modern geographic distribution of, 2m, 7, 11, 14, 30, 59, 205; morphology of seeds, 23–24; predominance for world’s wines, 1, 3, 315; in Transcaucasia, 20
Vitis vinifera vinifera (domesticated Eurasian grape species): in ancient Egypt, 86, 102–3; botanical classification of, 20; cultivation leading to domestication, 11–13, 16; genetic structure and morphology of, 12–13, 26; Greeks and spread of, 203; in Levant, 213; in Mesopotamia, 148, 152, 165, 173; morphology of seeds, 23–24; transplantation of, 74, 241, 300, 301. See also Noah Hypothesis; viticulture

viniculture

Vinland, 1
Virginia (U.S.), grape species of, 3
Vitaceae: botanical evolution of, 7, 11; genetic structure of, 12
viticulture: ancient methods of, 86; definition of, 4. See also training, grapevine

Wag-festival (Egypt), 134–35
Warpalawa (Hittite king), 188
Warren, Peter, 247, 250, 259, 265
Warrow, Tandy, 33

wasps, as carriers of yeast, 104, 307–8
water, diluting wine with, 235, 296, 308–9
“the Ways of Horus” (Sinai trade route), 101, 213
wet-chemical tests, 54, 285
wheat: domesticated einkorn, wild precursor of, 29; as wine additive, 191
whiskey lactone, 260–61
White, Raymond, 130
white wine, rarity in Near East and Egypt, 151–52
wild Eurasian grapevine. See Vitis vinifera sylvestris
Winckler, Hugo, 180
Windover man, 28
wine: advantages over other fermented beverages, 308; ageing of, 21, 138, 208, 252, 252f, 261–62, 312; chemical composition of, 51–52, 286–87; color of, 73, 90, 135–36, 151–52, 172, 191, 236, 303; discovery of, Paleolithic hypothesis, 7–11; distinguishing from vinegar, 55–58; Egyptian words for, 34, 87, 123; and history of civilization, 299; Indo-European root for, 33–34, 259; medicinal properties of, 69, 133, 305–6; mixing with beer, in Hittite and Mesopotamian cultures, 186; physiological effects of, 303, 305; preservation of, 55, 58, 70–71, 296, 309; spoilage of, 55, 106. See also “Greek grog”; mixed fermented beverages; “Phrygian grog”
Wine Aroma Wheel, 12
wine cellars: in Assyrian capitals, 193, 195–96; in Egyptian tombs, 92, 145f; in Hittite capital, 183; in Upper Mesopotamian palace, 172
wine culture, 302; earliest, 33, 310–11; elite and, 68, 102, 151–52, 221, 300, 303; elite emulation and spread of, 102, 152, 278, 304; in Georgia, 21; in Neolithic period, 303–4
wine disease. See vinegar
wine labels. See ostraca
wine offerings. See libation(s)
wine sets: Anatolian, 83, 174; classical Greek, 262; Greek, 262, 271, 271f
wine tasting, 12
wine yeast. See Saccharomyces cerevisiae
winemaking: homeland of, search for, 4, 301, 315; origins in Neolithic period, 15–16; preconditions for, in Neolithic period, 65–66; techniques required for, 14; traditional process of, 59
winepress: biblical images of, 135, 236; in Palestine, 214–15, 232. See also treading vats
wineskins: churns as, 220; use in Mesopotamia, 148, 190
Winlock, H. E., 103
Wnuk, Christopher, 99
women: in Dionysiac orgies, 240; role in origin and promulgation of fermented beverages, 255–56; tavern owners, in Mesopotamia, 18, 153
Woolley, Sir Leonard, 156, 158, 159
wormwood (Artemisia absinthum), 312; as wine additive, 309
X-ray photoelectron spectrometry, 50
Xenophon: on “barley-wine,” 186–87; on Cyrus the Great, wine consumption by, 207; on Mesopotamian culture, 151; on Mesopotamian vineyards, 190
Xerxes I (Persian king), 207
Yaa, land of, 210, 212
Yadin, Yigael, 231
Yahweh (Israelite god), 231; as vintner, 236
yeast: and alcohol production, 9; DNA mapping of, 103–4; essential for fermentation, 307–8; isolated from Scorpion I jars, 103; spoilage, 106. See also under Saccharomyces
Yerevan (Armenia): derivation of name of, 25; excavations in and around, 19
Young, Rodney, 280–81
Young, T. Cuyler, Jr., 40
Zagreus (Greek god), 246
Zagros Mountains: Assyrian destructiveness in, 191; Late Uruk site in (see Godin Tepe); Mesopotamian flood story and, 19; Neolithic settlements in, 15, 39, 64 (see also Hajji Firuz Tepe); rich resources of, 43; transplantation of domesticated grapevine to, 164–66; viniculture in, earliest evidence for, 59; wild grapevine in, 59; wine exports from, 150, 163

Zamuan wine, 190
zeolites, 66
Zeus (Greek god), 242–43
Zhang Qian, 2–3, 208
Zhao, Zhijun, 315
ziggurats, 152; precursor of, 164
Zimri-Lim (king of Mari), 171–72
Ziusudra (Mesopotamian hero), 17
Zoroastrianism, Central Asian ceremonial precedent for, 209