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1 About the Book and Supporting Material

“Even the longest journey starts with the first step.” (Lao-Tzu, paraphrased)

This chapter introduces terminology and nomenclature, reviews a few relevant
contemporary books, briefly describes the Python programming language and the

Git code management tool, and provides details about data sets used in examples
throughout the book.

1.1. What Do Data Mining, Machine Learning, and Knowledge
Discovery Mean?

Data mining,machine learning, and knowledge discovery refer to research areas which
can all be thought of as outgrowths of multivariate statistics. Their common themes
are analysis and interpretation of data, often involving large quantities of data, and
even more often resorting to numerical methods. The rapid development of these
fields over the last few decades was led by computer scientists, often in collabora-
tion with statisticians. To an outsider, comparing data mining, machine learning, and
knowledge discovery with statistics is akin to comparing engineeringwith fundamen-
tal physics and chemistry: applied fields that “make things work.” The techniques in
all of these areas are well studied, and rest upon the same firm statistical foundations.
In this book we will consider those techniques which are most often applied in the
analysis of astronomical data.

While there are many varying definitions in the literature and on the web, we
adopt and are happy with the following:

. Data mining is a set of techniques for analyzing and describing structured
data; for example, finding patterns in large data sets. Common methods include
density estimation, unsupervised classification, clustering, principal compo-
nent analysis, locally linear embedding, and projection pursuit. Often, the term
knowledge discovery is used interchangeablywith the term datamining. Although
there are many books written with “knowledge discovery” in their title, we shall
uniformly adopt “data mining” in this book. The data mining techniques result
in the understanding of data set properties, such as “mymeasurements of the size
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and temperature of stars form a well-defined sequence in the size–temperature
diagram, though I find some stars in three clusters far away from this sequence.”
From the data mining point of view, it is not important to immediately con-
trast these data with a model (of stellar structure in this case), but rather to
quantitatively describe the “sequence,” as well as the behavior of measurements
falling “far away” from it. In short, data mining is about what the data them-
selves are telling us. Chapters 6 and 7 in this book primarily discuss data mining
techniques.

. Machine learning is an umbrella term for a set of techniques for interpreting
data by comparing them to models for data behavior (including the so-called
nonparametric models), such as various regression methods, supervised clas-
sification methods, maximum likelihood estimators, and the Bayesian method.
They are often called inference techniques, data-based statistical inferences, or
just plain old “fitting.” Following the above example, a physical stellar struc-
ture model can predict the position and shape of the so-called main sequence
in the size–temperature diagram for stars, and when combined with galaxy
formation and evolution models, the model can even predict the distribution
of stars away from that sequence. Then, there could be more than one com-
peting model and the data might tell us whether (at least) one of them can
be rejected. Chapters 8–10 in this book primarily discuss machine learning
techniques.

Historically, the emphasis in data mining and knowledge discovery has been on what
statisticians call exploratory data analysis: that is, learning qualitative features of the
data that were not previously known. Much of this is captured under the heading
of unsupervised learning techniques. The emphasis in machine learning has been on
prediction of one variable based on the other variables—muchof this is captured under
the heading of supervised learning. For further discussion of datamining andmachine
learning in astronomy, see recent informative reviews [3, 7, 8, 10].

Here are a few concrete examples of astronomical problems that can be solved
with data mining and machine learning techniques, and which provide an illustra-
tion of the scope and aim of this book. For each example, we list the most relevant
chapter(s) in this book:
. Given a set of luminosity measurements for a sample of sources, quantify their

luminosity distribution (the number of sources per unit volume and luminosity
interval). Chapter 3

. Determine the luminosity distribution if the sample selection function is con-
trolled by another measured variable (e.g., sources are detected only if brighter
than some flux sensitivity limit). Chapters 3 and 4

. Determine whether a luminosity distribution determined from data is statisti-
cally consistent with a model-based luminosity distribution. Chapters 3–5

. Given a signal in the presence of background, determine its strength. Chapter 5

. For a set of brightness measurements with suspected outliers, estimate the best
value of the intrinsic brightness. Chapter 5

. Given measurements of sky coordinates and redshifts for a sample of galaxies,
find clusters of galaxies. Chapter 6



1.2. What Is This Book About? . 5

. Given several brightness measurements per object for a large number of objects,
identify and quantitatively describe clusters of sources in the multidimensional
color space. Given color measurements for an additional set of sources, assign to
each source the probabilities that it belongs to each of the clusters, making use
of both measurements and errors. Chapters 6 and 9

. Given a large number of spectra, find self-similar classes. Chapter 7

. Given several color and other measurements (e.g., brightness) for a galaxy,
determine its most probable redshift using (i) a set of galaxies with both these
measurements and their redshift known or (ii) a set of models predicting color
distribution (and the distribution of other relevant parameters). Chapters 6–8

. Given a training sample of stars with both photometric (color) measurements
and spectroscopic temperature measurements, develop a method for estimat-
ing temperature using only photometric measurements (including their errors).
Chapter 8

. Given a set of redshift and brightness measurements for a cosmological super-
nova sample, estimate the cosmological parameters and their uncertainties.
Chapter 8

. Given a set of position (astrometric) measurements as a function of time, deter-
mine the best-fit parameters for a model including proper motion and parallax
motion. Chapters 8 and 10

. Given colors for a sample of spectroscopically confirmed quasars, use analogous
color measurements to separate quasars from stars in a larger sample. Chapter 9

. Given light curves for a large number of sources, find variable objects, identify
periodic light curves, and classify sources into self-similar classes. Chapter 10

. Given unevenly sampled low signal-to-noise time series, estimate the underlying
power spectrum. Chapter 10

. Given detection times for individual photons, estimate model parameters for a
suspected exponentially decaying burst. Chapter 10

1.2. What Is This Book About?

This book is about extracting knowledge from data, where knowledgemeans a quan-
titative summary of data behavior, and data essentially means the results of measure-
ments. Let us start with the simple case of a scalar quantity, x, that is measured N
times, and use the notation xi for a single measurement, with i= 1, . . . ,N. We will
use {xi} to refer to the set of all N measurements. In statistics, the data x are viewed
as realizations of a random variable X (random variables are functions on the sample
space, or the set of all outcomes of an experiment). In most cases, x is a real number
(e.g., stellar brightness measurement) but it can also take discrete values (e.g., stellar
spectral type); missing data (often indicated by the special IEEE floating-point value
NaN—Not a Number) can sometimes be found in real-life data sets.

Possibly the most important single problem in data mining is how to estimate
the distribution h(x) from which values of x are drawn (or which “generates” x).
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The function h(x) quantifies the probability that a value lies between x and x+ dx,
equal to h(x) dx, and is called a probability density function (pdf). Astronomers
sometimes use the terms “differential distribution function” or simply “probability
distribution.” When x is discrete, statisticians use the term “probability mass func-
tion” (note that “density” and “mass” are already reserved words in physical sciences,
but the confusion should be minimal due to contextual information). The integral of
the pdf,

H(x)=
∫ x

−∞
h(x′) dx′, (1.1)

is called the “cumulative distribution function” (cdf). The inverse of the cumulative
distribution function is called the “quantile function.”

To distinguish the true pdf h(x) (called the population pdf) from a data-derived
estimate (called the empirical pdf), we shall call the latter f (x) (and its cumulative
counterpart F(x)).1 Hereafter, we will assume for convenience that both h(x) and f (x)
are properly normalized probability density functions (though this is not a necessary
assumption), that is,

H(∞)=
∫ +∞
−∞

h(x′) dx′ = 1 (1.2)

and analogously for F(∞). Given that data sets are never infinitely large, f (x) can
never be exactly equal to h(x). Furthermore, we shall also consider cases when mea-
surement errors for x are not negligible and thus f (x) will not tend to h(x) even for
an infinitely large sample (in this case f (x) will be a “broadened” or “blurred” version
of h(x)).

f (x) is amodel of the true distribution h(x). Only samples from h(x) are observed
(i.e., data points); the functional form of h(x), used to constrain the model f (x), must
be guessed. Such forms can range from relatively simple parametricmodels, such as a
single Gaussian, to much more complicated and flexible nonparametricmodels, such
as the superposition of many small Gaussians. Once the functional form of the model
is chosen, the best-fittingmember of that model family, corresponding to the best set-
ting of the model’s parameters (such as the Gaussian’s mean and standard deviation)
must be chosen.

Amodel can be as simple as an analytic function (e.g., a straight line), or it can be
the result of complex simulations and other computations. Irrespective of the model’s
origin, it is important to remember that we can never prove that a model is correct;
we can only test it against the data, and sometimes reject it. Furthermore, within the
Bayesian logical framework, we cannot even reject a model if it is the only one we
have at our disposal—we can only compare models against each other and rank them
by their success.

These analysis steps are often not trivial and can be quite complex. The simplest
nonparametric method to determine f (x) is to use a histogram; bin the x data and
count howmanymeasurements fall into each bin. Very quickly several complications
arise: First, what is the optimal choice of bin size? Does it depend on the sample size,
or other measurement properties? How does one determine the count error in each
bin, and can we treat them as Gaussian errors?

1Note that in this bookwe depart from a common notation in the statistical literature in which the true distribution
is called f (x) (here we use h(x)), and the data-derived estimate of the distribution is called f̂ (x) (here we use f (x)).
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An additional frequent complication is that the quantity x is measured with some
uncertainty or error distribution, e(x), defined as the probability of measuring value x
if the true value is μ,

e(x)= p(x|μ, I), (1.3)

where I stands for all other information that specifies the details of the error distri-
bution, and “|” is read as “given.” Eq. 1.3 should be interpreted as giving a probability
e(x) dx that the measurement will be between x and x+ dx.

For the commonly used Gaussian (or normal) error distribution, the probabil-
ity is given by

p(x|μ, σ)= 1
σ
√
2π

exp
(−(x−μ)2

2σ 2

)
, (1.4)

where in this case I is simply σ , the standard deviation (it is related to the uncertainty
estimate popularly known as the “error bar”; for further discussion of distribution
functions, see §3.3). The error distribution function could also include a bias b, and
(x−μ) in the above expression would become (x− b−μ). That is, the bias b is a sys-
tematic offset of all measurements from the true value μ, and σ controls their scatter
(bias is introduced formally in §3.2.2). How exactly the measurements are “scattered
around” is described by the shape of e(x). In astronomy, error distributions are often
non-Gaussian or, even when they are Gaussian, σ might not be the same for all mea-
surements, and often depends on the signal strength (i.e., on x; each measured xi
is accompanied by a different σi). These types of errors are called heteroscedastic, as
opposed to homoscedastic errors in which the error distribution is the same for each
point.

Quantities described by f (x) (e.g., astronomical measurements) can have differ-
ent meanings in practice. A special case often encountered in practice is when the
“intrinsic” or “true” (population pdf) h(x) is a delta function, δ(x); that is, we aremea-
suring some specific single-valued quantity (e.g., the length of a rod; let us ignore
quantum effects here and postulate that there is no uncertainty associated with its true
value) and the “observed” (empirical pdf) f (x), sampled by ourmeasurements xi, sim-
ply reflects their error distribution e(x). Another special case involves measurements
with negligiblemeasurement errors, but the underlying intrinsic or true pdf h(x) has a
finite width (as opposed to a delta function). Hence, in addition to the obvious effects
of finite sample size, the difference between f (x) and h(x) can have two very differ-
ent origins and this distinction is often not sufficiently emphasized in the literature: at
one extreme it can reflect our measurement error distribution (we measure the same
rod over and over again to improve our knowledge of its length), and at the other
extreme it can represent measurements of a number of different rods (or the same
rod at different times, if we suspect its length may vary with time) with measurement
errors much smaller than expected and/or observed length variation. Despite being
extremes, these two limiting cases are often found in practice, and may sometimes be
treated with the same techniques because of their mathematical similarity (e.g., when
fitting a Gaussian to f (x), we do not distinguish the case where its width is due to
measurement errors from the case when we measure a population property using a
finite sample).

The next level of complication when analyzing f (x) comes from the sample size
and dimensionality. There can be a large number of different scalar quantities, such
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as x, that we measure for each object, and each of these quantities can have a differ-
ent error distribution (and sometimes even different selection function). In addition,
some of these quantities may not be statistically independent. When there is more
than one dimension, analysis can get complicated and is prone to pitfalls; when there
are many dimensions, analysis is always complicated. If the sample size is measured
in hundreds of millions, even the most battle-tested algorithms and tools can choke
and become too slow.

Classification of a set of measurements is another important data analysis task.
We can often “tag” each xmeasurement by some “class descriptor” (such quantities are
called “categorical” in the statistics literature). For example, we could be comparing
the velocity of stars, x, around the Galaxy center with subsamples of stars classified by
other means as “halo” and “disk” stars (the latter information could be assigned codes
H and D, or 0/1, or any other discrete attribute). In such cases, we would determine
two independent distributions f (x)—one for each of these two subsamples. Any new
measurement of x could then be classified as a “halo” or “disk” star. This simple exam-
ple can become nontrivial when x is heteroscedastic or multidimensional, and also
raises the question of completeness vs. purity trade-offs (e.g., do we care more about
never ever misclassifying a halo star, or do we want to minimize the total number of
misclassifications for both disk and halo stars?). Even in the case of discrete variables,
such as “halo” or “disk” stars, or “star” vs. “galaxy” in astronomical images (which
should be called more precisely “unresolved” and “resolved” objects when referring
to morphological separation), we can assign them a continuous variable, which often
is interpreted as the probability of belonging to a class. At first it may be confusing to
talk about the probability that an object is a star vs. being a galaxy because it cannot
be both at the same time. However, in this context we are talking about our current
state of knowledge about a given object and its classification, which can be elegantly
expressed using the framework of probability.

In summary, this book is mostly about how to estimate the empirical pdf f (x)
from data (includingmultidimensional cases), how to statistically describe the result-
ing estimate and its uncertainty, how to compare it to models specified via h(x)
(including estimates of model parameters that describe h(x)), and how to use this
knowledge to interpret additional and/or new measurements (including best-fit
model reassessment and classification).

1.3. An Incomplete Survey of the Relevant Literature

The applications of data mining and machine learning techniques are not limited to
the sciences. A large number of books discuss applications such as data mining for
marketing, music data mining, and machine learning for the purposes of countert-
errorism and law enforcement. We shall limit our survey to books that cover topics
similar to those from this book but from a different point of view, and can thus be
used as supplemental literature. In many cases, we reference specific sections in the
following books.

Numerical Recipes: The Art of Scientific Computing by Press, Teukolsky, Vetter-
ling, and Flannery [27] is famous for its engaging text and concise mathematical and
algorithmic explanations (its Fortran version has been cited over 8000 times at the
time of writing this book, according to the SAO/NASA Astrophysics Data System).
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While the whole book is of great value for the topics covered here, several of its
22 chapters are particularly relevant (“Random Numbers,” “Sorting and Selection,”
“Fourier and Spectral Applications,” “Statistical Description of Data,” “Modeling of
Data,” “Classification and Inference”). The book includes commented full listings of
more than 400 numerical routines in several computer languages that can be pur-
chased in machine-readable form. This supplemental code support for the material
covered in the book served as amodel for our book.We refer to this book as NumRec.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction by
Hastie, Tibshirani, and Friedman [16] is a classic book on these topics, and highly
recommended for further reading. With 18 chapters and about 700 pages, it is more
comprehensive than this book, andmanymethods are discussed in greater detail. The
writing style is not heavy on theorems and the book should be easily comprehensi-
ble to astronomers and other physical scientists. It comes without computer code. We
refer to this book as HTF09.

Two books byWasserman,All of Nonparametric Statistics [39] andAll of Statistics:
A Concise Course in Statistical Inference [40] are closer to the statistician’s heart, and
do not shy away from theorems and advanced statistics. Although “All” may imply
very long books, together they are under 700 pages. They are good books to look into
for deeper andmore formal expositions of statistical foundations for data mining and
machine learning techniques. We refer to these books as Wass10.

Statistics in Theory and Practice by Lupton [23] is a concise (under 200 pages)
summary of themost important concepts in statistics written for practicing scientists,
and with close to 100 excellent exercises (with answers). For those who took statistics
in college, but need to refresh and extend their knowledge, this book is a great choice.
We refer to this book as Lup93.

Practical Statistics for Astronomers by Wall and Jenkins [38] is a fairly con-
cise (under 300 pages) summary of the most relevant contemporary statistical and
probabilistic technology in observational astronomy. This excellent book covers clas-
sical parametric and nonparametric methods with a strong emphasis on Bayesian
solutions. We refer to this book as WJ03.

Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences by Bar-
low [4] is an excellent introductory text written by a physicist (200 pages). We highly
recommend it as a starting point if you feel that the books by Lupton and byWall and
Jenkins are too advanced. We refer to this book as Bar89.

Data Analysis: A Bayesian Tutorial by Sivia [31] is an excellent short book (under
200 pages) to quickly learn about basic Bayesian ideas and methods. Its examples are
illuminating and the style is easy to read and does not presume any prior knowledge
of statistics. We highly recommend it! We refer to this book as Siv06.

Bayesian Logical Data Analysis for the Physical Sciences by Gregory [13] is more
comprehensive (over 400 pages) than Sivia’s book, and covers many topics discussed
here. It is a good book to look into for deeper understanding and implementation
details for most frequently used Bayesian methods. It also provides code support (for
Mathematica). We refer to this book as Greg05.

Probability Theory: The Logic of Science by Jaynes [20], an early and strong pro-
ponent of Bayesian methods, describes probability theory as extended logic. This
monumental treatise compares Bayesian analysis with other techniques, including a
large number of examples from the physical sciences. The book is aimed at readers
with a knowledge of mathematics at a graduate or an advanced undergraduate level.
We refer to this book as Jay03.
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Bayesian Methods in Cosmology provides an introduction to the use of Bayesian
methods in cosmological studies [17]. Contributions from 24 cosmologists and
statisticians (edited by M. P. Hobson, A. H. Jaffe, A. R. Liddle, P. Mukherjee, and
D. Parkinson) range from the basic foundations to detailed descriptions of state-
of-the-art techniques. The book is aimed at graduate students and researchers in
cosmology, astrophysics, and applied statistics. We refer to this book as BayesCosmo.

Advances in Machine Learning and Data Mining for Astronomy is a recent book
by over 20 coauthors from mostly astronomical backgrounds (edited by M. J. Way,
J. D. Scargle, K. Ali, and A. N. Srivastava) [41]. This book provides a comprehensive
overview (700 pages) of various datamining tools and techniques that are increasingly
being used by astronomers, and discusses how current problems could lead to the
development of entirely new algorithms. We refer to this book as WSAS.

Modern Statistical Methods for Astronomy With R Applications by Feigelson and
Babu [9] is very akin in spirit to this book. It provides a comprehensive (just under
500 pages) coverage of similar topics, andprovides exampleswritten in theR statistical
software environment. Its first chapter includes a very informative summary of the
history of statistics in astronomy, and the number of references to statistics literature
is larger than here. We refer to this book as FB2012.

Although not referenced further in this book, we highly recommend the follow-
ing books as supplemental resources.

Pattern Recognition and Machine Learning by Bishop [6] provides a comprehen-
sive introduction to the fields of pattern recognition and machine learning, and is
aimed at advanced undergraduates and graduate students, as well as researchers and
practitioners. The book is supported by a great deal of additional material, including
lecture slides as well as the complete set of figures used in the book. It is of partic-
ular interest to those interested in Bayesian versions of standard machine learning
methods.

Information Theory, Inference, and Learning Algorithms by MacKay [25] is an
excellent and comprehensive book (over 600 pages) that unites information theory
and statistical inference. In addition to including a large fraction of the material
covered in this book, it also discusses other relevant topics, such as arithmetic cod-
ing for data compression and sparse-graph codes for error correction. Throughout,
it addresses a wide range of topics—from evolution to sex to crossword puzzles—
from the viewpoint of information theory. The book level and style should be easily
comprehensible to astronomers and other physical scientists.

In addition to books, several other excellent resources are readily available.
The R language is familiar to statisticians and is widely used for statistical soft-

ware development and data analysis. R is available as a free software environment2 for
statistical computing and graphics, and compiles and runs on a wide variety of UNIX
platforms, Windows and macOS. The capabilities of R are extended through user-
created packages, which allow specialized statistical techniques, graphical devices,
import/export capabilities, reporting tools, etc.

The Auton Lab at the School of Computer Science at CarnegieMellon University
pioneers statistical data mining methods. The Lab is “interested in the underlying
computer science, mathematics, statistics and AI of detection and exploitation of

2http://www.R-project.org/
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patterns in data.”3 A large collection of software, papers, and other resources are
available from the Lab’s homepage.

The IVOA (International Virtual Observatory Alliance) Knowledge Discovery
in Databases group4 provides support to the IVOA by developing and testing scalable
data mining algorithms and the accompanying new standards for virtual observatory
(VO) interfaces and protocols. Their web pages contain tutorials and other materials
to support the VO users (e.g., “A user guide for Data Mining in Astronomy”).

The Center for Astrostatistics at Penn State University organizes annual sum-
mer schools in statistics designed for graduate students and researchers in astronomy.
The school is an intensive week covering basic statistical inference, applied statistics,
and the R computing environment. The courses are taught by a team of statistics and
astronomy professors with opportunity for discussion of methodological issues. For
more details, please see their website.5

The COsmostatistics INitiative (COIN6), a working group built within the
International Astrostatistics Association, aims to create a friendly environment
where hands-on collaboration between astronomers, cosmologists, statisticians and
machine learning experts can flourish. COIN is designed to promote the development
of a new family of tools for data exploration in cosmology, and it already delivered a
number of excellent tools mentioned later in this book.

The burgeoning of work in what has been called “astrostatistics” or “astroin-
formatics,” along with the slow but steady recognition of its importance within
astronomy, has given rise to recent activity to define and organize more cohesive
communities around these topics, as reflected in manifestos by Loredo et al. [22] and
Borne et al. [8]. Recent community organizations include the American Astronomi-
cal Society Working Group in Astroinformatics and Astrostatistics, the International
Astronomical UnionWorking Group in Astrostatistics and Astroinformatics, and the
International Astrostatistics Association (affiliated with the International Statistical
Institute). These organizations promote the use of known advanced statistical and
computational methods for astronomical research, encourage the development of
new procedures and algorithms, organize multidisciplinary meetings, and provide
educational and professional resources to the wider community. Information about
these organizations can be found at the Astrostatistics and Astroinformatics Portal.7

With all these excellent references and resources already available, it is fair to
ask why we should add yet another book to the mix. There are two main reasons that
motivate this book: First, it is convenient to have the basic statistical, datamining, and
machine learning techniques collected and described in a single book, and at a math-
ematical level aimed at researchers entering into astronomy and the physical sciences.
This book grew out of materials developed for several graduate classes. These classes
had to rely on a large number of textbooks with strongly varying styles and difficulty
level, which often caused practical problems. Second, when bringing a new student
up to speed, one difficulty with the current array of texts on data mining andmachine
learning is that the implementation of the discussedmethods is typically left up to the

3http://www.autonlab.org/
4http://www.ivoa.net/cgi-bin/twiki/bin/view/IVOA/IvoaKDD
5http://astrostatistics.psu.edu
6http://cointoolbox.github.io
7http://asaip.psu.edu
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reader (with some exceptions noted above). The lack of ready-to-use tools has led to a
situation where many groups have independently implemented desired methods and
techniques in a variety of languages. This reinventing of the wheel not only takes up
valuable time, but the diverse approaches make it difficult to share data and compare
results between different groups. With this book and the associated online resources,
we hope to encourage, and to contribute to, a common implementation of the basic
statistical tools.

1.4. Introduction to the Python Language and the Git Code
Management Tool

Thematerial in this book is supported by publicly available code, available fromhttp://
www.astroML.org. The site includes the Python code needed to reproduce all the
figures from the book, as well as some additional examples and user documentation
for AstroML. We do not refer by name to code used to produce the figures because
the code listing on the website is enumerated by the figure number in the book and
thus is easy to locate. We believe and hope that these code examples, with minor
modifications, will provide useful templates for your own projects. In this section,
we first introduce the Python programming language and then briefly describe the
code management tool Git.

1.4.1. Python

Python is an open-source, object-oriented interpreted languagewith awell-developed
set of libraries, packages, and tools for scientific computation. In appendix A, we offer
a short introduction to the key features of the language and its use in scientific comput-
ing. In this section, we will briefly list some of the scientific computing packages and
tools available in the language, as well as the requirements for running the examples
in this text.

The examples and figures in this text were created with the Python package
AstroML, whichwas designed as a community resource for fast, well-tested statistical,
data mining, and machine learning tools implemented in Python (see appendix B).
Rather than reimplementing common algorithms, AstroML draws from the wide
range of efficient open-source computational tools available in Python. We briefly list
these here; for more detailed discussion see appendix A.

The core packages for scientific computing in Python are NumPy,8 SciPy,9 and
Matplotlib.10 Together, these three packages allow users to efficiently read, store,
manipulate, and visualize scientific data. Many of the examples and figures in this text
require only these three dependencies, and they are discussed at length in appendix A.

There are a large number of other packages built upon this foundation, and
AstroMLmakes use of several of them. An important one is Scikit-learn,11 a large and
very well-documented collection of machine learning algorithms in Python. Scikit-
learn is used extensively in the examples and figures within this text, especially those

8Numerical Python; http://www.numpy.org
9Scientific Python; http://www.scipy.org
10http://matplotlib.org
11http://scikit-learn.org



1.5. Description of Surveys and Data Sets Used in Examples . 13

in the second half of the book. We also make use of Astropy12, a core library for
astronomy in Python. Several figures from this book rely also on PyMC313 forMarkov
chain Monte Carlo methods, and HealPy14 for spherical coordinates and spherical
harmonic transformations.

There are numerous useful Python packages that are not used in this book;
a growing number of them are affiliated packages in the Astropy ecosystem and listed
at http://www.astropy.org/affiliated.

1.4.2. Code Management with Git

Complex analyses of large data sets typically produce substantial amounts of special-
purpose code. It is often easy to end up with an unmanageable collection of different
software versions, or lose code due to computer failures. Additional management
difficulties are present when multiple developers are working on the same code. Pro-
fessional programmers address these and similar problems using code management
tools. There are various freely available tools such as CVS, SVN, Bazaar, Mercurial,
and Git. While they all differ a bit, their basic functionality is similar: they support
collaborative development of software and the tracking of changes to software source
code over time.

This book and the associated code are managed using Git. Installing15 Git, using
it for code management, and for distributing code, are all very user friendly and easy
to learn.16 Unlike CVS, Git canmanage not only changes to files, but new files, deleted
files, merged files, and entire file structures.17 One of the most useful features of Git
is its ability to set up a remote repository, so that code can be checked in and out from
multiple computers. Even when a computer is not connected to a repository (e.g., in
the event of a server outage, or when no internet connection is available), the local
copy can still be modified and changes reported to the repository later. In the event
of a disk failure, the remote repository can even be rebuilt from the local copy.

Because of these features, Git has become the de facto standard code manage-
ment tool in the Python community: most of the core Python packages listed above
are managed with Git, using the website http://github.com to aid in collaboration.
We strongly encourage you to consider using Git in your projects. You will not regret
the time spent learning how to use it.

1.5. Description of Surveys and Data Sets Used in Examples

Many of the examples and applications in this book require realistic data sets in order
to test their performance. There is an increasing amount of high-quality astronomical
data freely available online. However, unless a person knows exactly where to look,
and is familiar with database tools such as SQL (Structured Query Language,18 for

12https://astropy.org
13http://pymc-devs.github.com/pymc3
14http://healpy.readthedocs.org
15http://git-scm.com/
16For example, see http://www.github.com/
17For a Git manual, see https://git-scm.com/doc
18See, for example, http://en.wikipedia.org/wiki/SQL
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searching databases), finding suitable data sets can be very hard.19 For this reason, we
have created a suite of data set loaders within the package AstroML. These loaders use
an intuitive interface to download and manage large sets of astronomical data, which
are used for the examples and plots throughout this text. In this section, we describe
these data loading tools, list the data sets available through this interface, and show
some examples of how to work with these data in Python.

1.5.1. AstroML Data Set Tools

Because of the size of these data sets, bundling them with the source code distribu-
tion would not be very practical. Instead, the data sets are maintained on a web page
with http access via the data-set scripts in astroML.datasets. Each data set will be
downloaded to your machine only when you first call the associated function. Once
it is downloaded, the cached version will be used in all subsequent function calls.

For example, to work with the Sloan Digital Sky Survey (SDSS) imaging photom-
etry (see below), use the function fetch_imaging_sample. The function takes an
optional string argument, data_home. When the function is called, it first checks
the data_home directory to see if the data file has already been saved to disk (if
data_home is not specified, then the default directory is $HOME/astroML_data/;
alternatively, the $ASTROML_DATA environment variable can be set to specify the
default location). If the data file is not present in the specified directory, it is
automatically downloaded from the web and cached in this location.

The nice part about this interface is that the user does not need to remember
whether the data have been downloaded and where it has been stored. Once the func-
tion is called, the data are returned whether they are already on disk or yet to be
downloaded.

For a complete list of data set fetching functions, make sure AstroML is properly
installed in your Python path, and open an IPython terminal and type

In [1]: from astroML.datasets import<TAB>

The tab-completion feature of IPython will display the available data download-
ers (see appendix A for more details on IPython).

1.5.2. Overview of Available Data Sets

Most of the astronomical data that we make available were obtained by the SDSS,20
which operated in three phases starting in 1998. The SDSS used a dedicated
2.5-m telescope at the Apache Point Observatory, New Mexico, equipped with two
special-purpose instruments, to obtain a large volume of imaging and spectroscopic
data. For more details see [15]. The 120 Mpix camera (for details see [14]) imaged
the sky in five photometric bands (u, g, r, i, and z; see appendix C for more details
about astronomical flux measurements, and for a figure with the SDSS passbands).
As a result of the first two phases of SDSS, Data Release 7 (DR7) has publicly released
photometry for 357million unique sources detected in∼12,000 deg2 of sky21 (the full

19We note that this situation is rapidly improving thanks to the development of tools such as astroquery (see http://
voxeu.org/article/doha-round-failure).
20http://www.sdss.org
21http://www.sdss.org/dr7/
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sky is equivalent to ∼40,000 deg2). For bright sources, the photometric precision is
0.01–0.02 mag (1%–2% flux measurement errors), and the faint limit is r∼ 22.5. For
more technical details about SDSS, see [1, 34, 42].

The SDSS imaging data were used to select a subset of sources for spectro-
scopic follow-up. A pair of spectrographs fed by optical fibers measured spectra for
more than 600 galaxies, quasars and stars in each single observation. These spec-
tra have wavelength coverage of 3800–9200 Å and a spectral resolving power of
R∼ 2000. Data Release 7 includes about 1.6million spectra, with about 900,000 galax-
ies, 120,000 quasars, and 460,000 stars. The total volume of imaging and spectroscopic
data products in the SDSS Data Release 7 is about 60 TB.

The second phase of the SDSS included many observations of the same patch of
sky, dubbed “Stripe 82.” This opens up a new dimension of astronomical data: the
time domain. The Stripe 82 data have led to advances in the understanding of many
time-varying phenomena, from asteroid orbits to variable stars to quasars and super-
novas. The multiple observations have also been combined to provide a catalog of
nonvarying stars with excellent photometric precision.

In addition to providing an unprecedented data set, the SDSS has revolutionized
the public dissemination of astronomical data by providing exquisite portals for easy
data access, search, analysis, and download. For professional purposes, the Catalog
Archive Server (CAS22) and its SQL-based search engine is the most efficient way to
get SDSS data. While detailed discussion of SQL is beyond the scope of this book,23
we note that the SDSS site provides a very useful set of example queries24 which can
be quickly adapted to other problems.

Alongside the SDSS data, we also provide the Two Micron All Sky Survey
(2MASS) photometry for stars from the SDSS Standard Star Catalog, described
in [19]. 2MASS [32] used two 1.3-m telescopes to survey the entire sky in near-
infrared light. The three 2MASS bands, spanning the wavelength range 1.2–2.2 µm
(adjacent to the SDSS wavelength range on the red side), are called J,H, andKs (“s” in
Ks stands for “short”).

We provide several other data sets in addition to SDSS and 2MASS: the LINEAR
database features time-domain observations of thousands of variable stars; the LIGO
“Big Dog” data25 is a simulated data set from a gravitational wave observatory; and
the asteroid data file includes orbital data that come from a large variety of sources.
For more details about these samples, see the detailed sections below.

We first describe tools and data sets for accessing SDSS imaging data for an arbi-
trary patch of sky, and for downloading an arbitrary SDSS spectrum. Several data sets
specialized for the purposes of this book are described next and include galaxies with
SDSS spectra, quasars with SDSS spectra, stars with SDSS spectra, a high-precision
photometric catalog of SDSS standard stars, and a catalog of asteroids with known
orbits and SDSS measurements.

22http://cas.sdss.org/astrodr7/en/tools/search/sql.asp
23There aremany available books about SQL since it is heavily used in industry and commerce. Sams Teach Yourself
SQL in 10 Minutes by Forta (Sams Publishing) is a good start, although it took us more than 10 minutes to learn
SQL; a more complete reference is SQL in a Nutshell by Kline, Kline, and Hunt (O’Reilly), and The Art of SQL by
Faroult and Robson (O’Reilly) is a good choice for those already familiar with SQL.
24http://cas.sdss.org/astrodr7/en/help/docs/realquery.asp
25See http://www.ligo.org/science/GW100916/



16 . Chapter 1 About the Book

Throughout the book, these data are supplemented by simulated data ranging
from simple one-dimensional toy models to more accurate multidimensional repre-
sentations of real data sets. The example code for each figure can be used to quickly
reproduce these simulated data sets.

1.5.3. SDSS Imaging Data

The total volume of SDSS imaging data is measured in tens of terabytes and thus we
will limit our example to a small (20 deg2, or 0.05% of the sky) patch of sky. Data for a
different patch size, or a different direction on the sky, can be easily obtained byminor
modifications of the SQL query listed below.

We used the following SQL query (fully reprinted here to illustrate SDSS SQL
queries) to assemble a catalog of ∼330,000 sources detected in SDSS images in
the region bounded by 0◦<α < 10◦ and −1◦<δ < 1◦ (α and δ are equatorial sky
coordinates called right ascension and declination, respectively)

SELECT
round(p.ra,6) as ra, round(p.dec,6) as dec,
p.run, --- comments are preceded by ---
round(p.extinction_r,3) as rExtSFD, --- r band extinction from SFD
round(p.modelMag_u,3) as uRaw, --- ISM-uncorrected model mags
round(p.modelMag_g,3) as gRaw, --- rounding up model magnitudes
round(p.modelMag_r,3) as rRaw,
round(p.modelMag_i,3) as iRaw,
round(p.modelMag_z,3) as zRaw,
round(p.modelMagErr_u,3) as uErr, --- errors are important!
round(p.modelMagErr_g,3) as gErr,
round(p.modelMagErr_r,3) as rErr,
round(p.modelMagErr_i,3) as iErr,
round(p.modelMagErr_z,3) as zErr,
round(p.psfMag_u,3) as uRawPSF, --- psf magnitudes
round(p.psfMag_g,3) as gRawPSF,
round(p.psfMag_r,3) as rRawPSF,
round(p.psfMag_i,3) as iRawPSF,
round(p.psfMag_z,3) as zRawPSF,
round(p.psfMagErr_u,3) as upsfErr,
round(p.psfMagErr_g,3) as gpsfErr,
round(p.psfMagErr_r,3) as rpsfErr,
round(p.psfMagErr_i,3) as ipsfErr,
round(p.psfMagErr_z,3) as zpsfErr,
p.type, --- tells if a source is resolved or not
(case when (p.flags & ’16’) = 0 then 1 else 0 end) as ISOLATED --- useful

INTO mydb.SDSSimagingSample
FROM PhotoTag p
WHERE

p.ra > 0.0 and p.ra < 10.0 and p.dec > -1 and p.dec < 1 --- 10x2 sq.deg.
and (p.type = 3 OR p.type = 6) and --- resolved and unresolved sources
(p.flags & ’4295229440’) = 0 and --- ’4295229440’ is magic code for no

--- DEBLENDED_AS_MOVING or SATURATED objects
p.mode = 1 and --- PRIMARY objects only, which implies

--- !BRIGHT && (!BLENDED || NODEBLEND || nchild == 0)]
p.modelMag_r < 22.5 --- adopted faint limit (same as about SDSS limit)

--- the end of query

This query can be copied verbatim into the SQL window at the CasJobs site26
(the CasJobs tool is designed for jobs that can require long execution time and

26http://casjobs.sdss.org/CasJobs/
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requires registration). After running it, you should have your own database called
SDSSimagingSample available for download.

The above query selects objects from the PhotoTag table (which includes a sub-
set of the most popular data columns from the main table PhotoObjAll). Detailed
descriptions of all listed parameters in all the available tables can be found at
the CAS site.27 The subset of PhotoTag parameters returned by the above query
includes positions, interstellar dust extinction in the r band (from [28]), and the
five SDSS magnitudes with errors in two flavors. There are several types of mag-
nitudes measured by SDSS (using different aperture weighting schemes) and the
so-called model magnitudes work well for both unresolved (type= 6, mostly stars
and quasars) and resolved (type= 3, mostly galaxies) sources. Nevertheless, the
query also downloads the so-called psf (point spread function) magnitudes. For
unresolved sources, the model and psf magnitudes are calibrated to be, on aver-
age, equal, while for resolved sources, model magnitudes are brighter (because the
weighting profile is fit to the observed profile of a source and thus can be much
wider than the psf, resulting in more contribution to the total flux than in the
case of psf-based weights from the outer parts of the source). Therefore, the differ-
ence between psf and model magnitudes can be used to recognize resolved sources
(indeed, this is the gist of the standard SDSS “star/galaxy” separator whose classifica-
tion is reported as type in the above query). More details about various magnitude
types, as well as other algorithmic and processing details, can be found at the SDSS
site.28

The WHERE clause first limits the returned data to a 20 deg2 patch of sky, and then
uses several conditions to select unique stationary and well-measured sources above
the chosen faint limit. The most mysterious part of this query is the use of process-
ing flags. These 64-bit flags29 are set by the SDSS photometric processing pipeline
photo [24] and indicate the status of each object, warn of possible problems with the
image itself, and warn of possible problems in the measurement of various quantities
associated with the object. The use of these flags is unavoidable when selecting a data
set with reliable measurements.

To facilitate use of this data set, we have provided code in astroML.datasets
to download and parse this data. To do this, you must import the function fetch
_imaging_sample:30

In [1]: from astroML.datasets import fetch_imaging_sample
In [2]: data = fetch_imaging_sample ()

The first time this is called, the code will send an http request and download the
data from the web. On subsequent calls, it will be loaded from local disk. The object
returned is a record array, which is a data structurewithinNumPydesigned for labeled
data. Let us explore these data a bit:

27See Schema Browser at http://skyserver.sdss3.org/dr8/en/help/browser/browser.asp
28http://www.sdss.org/dr7/algorithms/index.html
29http://www.sdss.org/dr7/products/catalogs/flags.html
30Here and throughout we will assume the reader is using the IPython interface, which enables clean interactive
plotting with Matplotlib. For more information, refer to appendix A.
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Figure 1.1. The r vs. g− r color–magnitude diagrams and the r− i vs. g− r color–color dia-
grams for galaxies (left column) and stars (right column) from the SDSS imaging catalog. Only
the first 5000 entries for each subset are shown in order to minimize the blending of points
(various more sophisticated visualization methods are discussed in §1.6). This figure, and all
the others in this book, can be easily reproduced using the astroML code freely downloadable
from the supporting website.

In [3]: data.shape
Out [3]: (330753 ,)

We see that there are just over 330,000 objects in the data set. The names for each
of the attributes of these objects are stored within the NumPy array object, which
can be accessed via the dtype attribute of data. The names of the columns can be
accessed as follows:

In [4]: data.dtype.names [:5]
Out [4]: ('ra', 'dec', 'run', 'rExtSFD', 'uRaw')

We have printed only the first five names here using the array slice syntax [:5].
The data within each column can be accessed via the column name:

In [5]: data['ra'][:5]
Out [5]: array ([0.358174 , 0.358382 , 0.357898 , 0.35791 , 0.358881])

In [6]: data['dec'][:5]
Out [6]: array ([ -0.508718 , -0.551157 , -0.570892 , -0.426526 , -0.505625])
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Here we have printed the right ascension and declination (i.e., angular position
on the sky) of the first five objects in the catalog. Utilizing Python’s plotting package
Matplotlib, we show a simple scatter plot of the colors andmagnitudes of the first 5000
galaxies and the first 5000 stars from this sample. The result can be seen in figure 1.1.
Note that as with all figures in this text, the Python code used to generate the figure
can be viewed and downloaded on the book website.

Figure 1.1 suffers from a significant shortcoming: even with only 5000 points
shown, the points blend together and obscure the details of the underlying structure.
This blending becomes even worse when the full sample of 330,753 points is shown.
Various visualization methods for alleviating this problem are discussed in §1.6. For
the remainder of this section, we simply use relatively small samples to demonstrate
how to access and plot data in the provided data sets.

1.5.4. Fetching and Displaying SDSS Spectra

While the above imaging data set has been downloaded in advance due to its
size, it is also possible to access the SDSS Data Archive Server directly and in real
time. In astroML.datasets, the function fetch_sdss_spectrum provides an
interface to the FITS (Flexible Image Transport System; a standard file format in
astronomy for manipulating images and tables31) files located on the SDSS spec-
tral server. This operation is done in the background using the built-in Python
module urllib2. For details on how this is accomplished, see the source code of
fetch_sdss_spectrum.

The interface is very similar to those from other examples discussed in this chap-
ter, except that in this case the function call must specify the parameters that uniquely
identify an SDSS spectrum: the spectroscopic plate number, the fiber number on
a given plate, and the date of observation (modified Julian date, abbreviated mjd).
The returned object is a custom class which wraps the pyfits interface to the FITS
data file.

In [1]: %pylab
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib

In [2]: from astroML.datasets import fetch_sdss_spectrum
In [3]: plate = 1615 # plate number of the spectrum
In [4]: mjd = 53166 # modified Julian date
In [5]: fiber = 513 # fiber ID on a given plate
In [6]: data = fetch_sdss_spectrum (plate , mjd , fiber)
In [7]: ax = plt.axes()
In [8]: ax.plot(data.wavelength(), data.spectrum , '-k')
In [9]: ax.set_xlabel(r'$\lambda (\AA)$')
In [10]: ax.set_ylabel('Flux')

The resulting figure is shown in figure 1.2. Once the spectral data are loaded into
Python, any desired postprocessing can be performed locally.

31See http://fits.gsfc.nasa.gov/iaufwg/iaufwg.html
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Figure 1.2. An example of an SDSS spectrum (the specific flux plotted as a function of wave-
length) fetched from the SDSS Data Archive Server in real time using Python tools provided
here (this spectrum is uniquely described by SDSS parameters plate=1615, fiber=513, and
mjd=53166).

There is also a tool for determining the plate, mjd, and fiber numbers of spectra in
a basic query. Here is an example, based on the spectroscopic galaxy data set described
below.

In [1]: from astroML.datasets import tools
In [2]: target = tools.TARGET_GALAXY # main galaxy sample
In [3]: plt , mjd , fib = tools.query_plate_mjd_fiber(5, primtarget=target)
In [4]: plt
Out [4]: array ([266, 266, 266, 266, 266])

In [5]: mjd
Out [5]: array ([51630 , 51630, 51630, 51630, 51630])

In [6]: fib
Out [6]: array([1, 2, 4, 6, 7])

Here we have asked for five objects, and received a list of five IDs. These could
then be passed to the fetch_sdss_spectrum function to download and work with
the spectral data directly. This function works by constructing a fairly simple SQL
query and using urllib to send this query to the SDSS database, parsing the results
into a NumPy array. It is provided as a simple example of the way SQL queries can be
used with the SDSS database.

The plate and fiber numbers and mjd are listed in the next three data sets that
are based on various SDSS spectroscopic samples. The corresponding spectra can be
downloaded using fetch_sdss_spectrum, and processed as desired. An example
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of this can be found in the script examples/datasets/compute_sdss_ pca.py
within the astroML source code tree, which uses spectra to construct the spectral
data set used in chapter 7.

1.5.5. Galaxies with SDSS Spectroscopic Data

During themain phase of the SDSS survey, the imaging data were used to select about
amillion galaxies for spectroscopic follow-up, including themain flux-limited sample
(approximately r< 18; see the top-left panel in figure 1.1) and a smaller color-selected
sample designed to include very luminous and distant galaxies (the so-called giant
elliptical galaxies). Details about the selection of the galaxies for the spectroscopic
follow-up can be found in [36].

In addition to parameters computed by the SDSS processing pipeline, such as red-
shift and emission-line strengths, a number of groups have developed postprocessing
algorithms and produced so-called “value-added” catalogs with additional scientifi-
cally interesting parameters, such as star-formation rate and stellarmass estimates.We
have downloaded a catalogwith someof themost interesting parameters for∼660,000
galaxies using the query listed in appendix D submitted to the SDSS Data Release 8
database.

To facilitate use of this data set, in the AstroML package we have included a data
set loading routine, which can be used as follows:

In [1]: from astroML.datasets import fetch_sdss_specgals
In [2]: data = fetch_sdss_specgals ()
In [3]: data.shape
Out [3]: (661598 ,)

In [4]: data.dtype.names [:5]
Out [4]: ('ra', 'dec', 'mjd', 'plate', 'fiberID')

As above, the resulting data is stored in a NumPy record array. We can use the
data for the first 10,000 entries to create an example color–magnitude diagram, shown
in figure 1.3.

In [5]: data = data [:10000] # truncate data
In [6]: u = data['modelMag_u']
In [7]: r = data['modelMag_r']
In [8]: rPetro = data['petroMag_r']
In [9]: %pylab
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib

In [10]: ax = plt.axes()
In [11]: ax.scatter(u-r, rPetro , s=4, lw=0, c='k')
In [12]: ax.set_xlim(1, 4.5)
In [13]: ax.set_ylim (18.1, 13.5)
In [14]: ax.set_xlabel('$u - r$')
In [15]: ax.set_ylabel('$r_{petrosian}$')

Note that we used the Petrosian magnitudes for the magnitude axis and model
magnitudes to construct the u− r color; see [36] for details. Through squinted eyes,
onecan justmakeoutadivisionatu− r≈ 2.3betweentwoclassesofobjects (see [2, 35]
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Figure 1.3. The r vs. u− r color–magnitude diagram for the first 10,000 entries in the catalog
of spectroscopically observed galaxies from the Sloan Digital Sky Survey (SDSS). Note two
“clouds” of points with different morphologies separated by u− r≈ 2.3. The abrupt decrease of
the point density for r> 17.7 (the bottom of the diagram) is due to the selection function for
the spectroscopic galaxy sample from SDSS.

for an astrophysical discussion). Using the methods discussed in later chapters, we
will be able to automate and quantify this sort of rough by-eye binary classification.

1.5.6. SDSS DR7 Quasar Catalog

The SDSS Data Release 7 (DR7) Quasar Catalog contains 105,783 spectroscopically
confirmed quasars with highly reliable redshifts, and represents the largest available
data set of its type. The construction and content of this catalog are described in detail
in [29].

The function astroML.datasets.fetch_dr7_quasar() can be used to fetch
these data as follows:

In [1]: from astroML.datasets import fetch_dr7_quasar
In [2]: data = fetch_dr7_quasar ()
In [3]: data.shape
Out [3]: (105783 ,)

In [4]: data.dtype.names [:5]
Out [4]: ('sdssID', 'RA', 'dec', 'redshift', 'mag_u')

One interesting feature of quasars is the redshift dependence of their photometric
colors. We can visualize this for the first 10,000 points in the data set as follows:
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Figure 1.4. The r− i color vs. redshift diagram for the first 10,000 entries from the SDSS Data
Release 7 Quasar Catalog. The color variation is due to emission lines entering and exiting the
r and i band wavelength windows.

In [5]: data = data [:10000]
In [6]: r = data['mag_r']
In [7]: i = data['mag_i']
In [8]: z = data['redshift']
In [9]: %pylab
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib

In [10]: ax = plt.axes()
In [11]: ax.scatter(z, r - i, s=4, c='black', linewidth =0)
In [12]: ax.set_xlim(0, 5)
In [13]: ax.set_ylim (-0.5, 1.0)
In [14]: ax.set_xlabel('redshift')
In [15]: ax.set_ylabel('r-i')

Figure 1.4 shows the resulting plot. The very clear structure in this diagram (and
analogous diagrams for other colors) enables various algorithms for the photometric
estimation of quasar redshifts, a type of problem discussed in detail in chapters 8–9.

1.5.7. SEGUE Stellar Parameters Pipeline Parameters

SDSS stellar spectra are of sufficient quality to provide robust and accurate values of
the main stellar parameters, such as effective temperature, surface gravity, and metal-
licity (parametrized as [Fe/H]; this is the base 10 logarithm of the ratio of abundance
of Fe atoms relative to H atoms, itself normalized by the corresponding ratio mea-
sured for the Sun, which is∼0.02; i.e., [Fe/H]= 0 for the Sun). These parameters are
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estimated using a variety of methods implemented in an automated pipeline called
SSPP (SEGUE Stellar Parameters Pipeline); a detailed discussion of these methods
and their performance can be found in [5] and references therein.

We have selected a subset of stars for which, in addition to [Fe/H], another mea-
sure of chemical composition, [α/Fe] (for details see [21]), is also available from SDSS
Data Release 9. Note that Data Release 9 is the first release with publicly available
[α/Fe] data. These measurements meaningfully increase the dimensionality of the
available parameter space; together with the three spatial coordinates and the three
velocity components (the radial component is measured from spectra, and the two
tangential components from angular displacements on the sky called proper motion),
the resulting space has eight dimensions. To ensure a clean sample, we have selected
∼330,000 stars from this catalog by applying various selection criteria that can be
found in the documentation for function fetch_sdss_sspp.

The data set loader fetch_sdss_sspp for this catalog can be used as follows:

In [1]: from astroML.datasets import fetch_sdss_sspp
In [2]: data = fetch_sdss_sspp ()
In [3]: data.shape
Out [3]: (327260 ,)
In [4]: data.dtype.names [:5]
Out [4]: ('ra', 'dec', 'Ar', 'upsf', 'uErr')

As above, we use a simple example plot to show how to work with the data.
Astronomers often look at a plot of surface gravity vs. effective temperature because
it is related to the famous luminosity vs. temperature Hertzsprung–Russell diagram,
which summarizes well the theories of stellar structure. The surface gravity is typically
expressed in the cgs system (in units of cm/s2), and its logarithm is used in analysis
(for orientation, log g for the Sun is ∼4.44). As before, we plot only the first 10,000
entries, shown in figure 1.5.

In [5]: data = data [:10000]
In [6]: rpsf = data['rpsf'] # make some reasonable cuts
In [7]: data = data[(rpsf > 15) & (rpsf < 19)]
In [8]: logg = data['logg']
In [9]: Teff = data['Teff']
In [10]: %pylab
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib

In [11]: ax = plt.axes()
In [12]: ax.scatter(Teff , logg , s=4, lw=0, c='k')
In [13]: ax.set_xlim (8000, 4500)
In [14]: ax.set_ylim (5.1, 1)
In [15]: ax.set_xlabel(r'$\mathrm{T_{eff}\ (K)}$')
In [16]: ax.set_ylabel(r'$\mathrm{log_{10}[g / (cm/s^2)]}$')

1.5.8. SDSS Standard Star Catalog from Stripe 82

In a much smaller area of ∼300 deg2, SDSS has obtained repeated imaging that
enabled the construction of amore precise photometric catalog containing∼1million
stars (the precision comes from the averaging of typically over ten observations).
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Figure 1.5. The surface gravity vs. effective temperature plot for the first 10,000 entries from
the catalog of stars with SDSS spectra. The rich substructure reflects both stellar physics
and the SDSS selection criteria for spectroscopic follow-up. The plume of points centered
on Teff ∼ 5300 K and log g∼ 3 is dominated by red giant stars, and the locus of points with
Teff < 6500 K and log g > 4.5 is dominated by main sequence stars. Stars to the left from the
main sequence locus are dominated by the so-called blue horizontal branch stars. The axes are
plotted backward for ease of comparison with the classical Hertzsprung–Russell diagram: the
luminosity of a star approximately increases upward in this diagram.

These starswere selected as nonvariable point sources and have photometric precision
better than 0.01 mag at the bright end (or about twice as good as single measure-
ments). The size and photometric precision of this catalog make it a good choice for
exploring various methods described in this book, such as stellar locus parametriza-
tion in the four-dimensional color space, and search for outliers. Further details about
the construction of this catalog and its contents can be found in [19].

There are two versions of this catalog available from astroML.datasets. Both
are accessed with the function fetch_sdss_S82standards. The first contains just
the attributes measured by SDSS, while the second version includes a subset of stars
cross-matched to 2MASS. This second version can be obtained by calling

fetch_sdss_S82standards(crossmatch_2mass = True).

The following shows how to fetch and plot the data:

In [1]: from astroML.datasets import fetch_sdss_S82standards
In [2]: data = fetch_sdss_S82standards ()
In [3]: data.shape
Out [3]: (1006849 ,)
In [4]: data.dtype.names [:5]
Out [4]: ('RA', 'DEC', 'RArms', 'DECrms', 'Ntot')
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Figure 1.6. The g− r vs. r− i color–color diagram for the first 10,000 entries in the Stripe
82 Standard Star Catalog. The region with the highest point density is dominated by main
sequence stars. The thin extension toward the lower-left corner is dominated by the so-called
blue horizontal branch stars and white dwarf stars.

Again, we will create a simple color–color scatter plot of the first 10,000 entries,
shown in figure 1.6.

In [5]: data = data [:10000]
In [6]: g = data['mmu_g'] # g-band mean magnitude
In [7]: r = data['mmu_r'] # r-band mean magnitude
In [8]: i = data['mmu_i'] # i-band mean magnitude
In [9]: %pylab
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib

In [10]: ax = plt.axes()
In [11]: ax.scatter(g - r, r - i, s=4, c='black', linewidth =0)
In [12]: ax.set_xlabel('g - r')
In [13]: ax.set_ylabel('r - i')

1.5.9. LINEAR Stellar Light Curves

The LINEAR project has been operated by the Massachusetts Institute of Technol-
ogy (MIT) Lincoln Laboratory since 1998 to discover and track near-Earth asteroids
(the so-called “killer asteroids”). Its archive now contains approximately 6 million
images of the sky, most of which are 5-MP images, each covering 2 deg2. The LIN-
EAR image archive contains a unique combination of sensitivity, sky coverage, and
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observational cadence (several hundred observations per object). A shortcoming of
original reductions of LINEAR data is that its photometric calibration is fairly inac-
curate because the effort was focused on astrometric observations of asteroids. Here
we use recalibrated LINEAR data from the sky region covered by SDSS, which aided
recalibration [30]. We focus on 7000 likely periodic variable stars. The full data set
with 20 million light curves is publicly available.

The loader for the LINEAR data set is fetch_LINEAR_sample. This data set
contains light curves and associated catalog data for over 7000 objects:

In [1]: from astroML.datasets import fetch_LINEAR_sample
In [2]: data = fetch_LINEAR_sample ()
In [3]: gr = data.targets['gr'] # g-r color
In [4]: ri = data.targets['ri'] # r-i color
In [5]: logP = data.targets['LP1'] # log_10(period) in days
In [6]: gr.shape
Out [6]: (7010 ,)

In [7]: id = data.ids [2756] # choose one id from the sample
In [8]: id
Out [8]: 18527462

In [9]: t, mag , dmag = data[id].T # access light curve data
In [10]: logP = data.get_target_parameter(id , 'LP1')

The somewhat cumbersome interface is due to the size of the data set: to avoid
the overhead of loading all of the data when only a portion will be needed in any given
script, the data is accessed through a class interface which loads the needed data on
demand. Figure 1.7 shows a visualization of the data loaded in the example above.

1.5.10. SDSS Moving Object Catalog

SDSS, although primarily designed for observations of extragalactic objects, con-
tributed significantly to studies of Solar system objects. It increased the number of
asteroids with accurate five-color photometry by more than a factor of one hundred,
and to a flux limit about one hundred times fainter than previous multicolor sur-
veys. SDSS data for asteroids is collated and available as the Moving Object Catalog32
(MOC). The 4th MOC lists astrometric and photometric data for ∼472,000 Solar
system objects. Of those, ∼100,000 are unique objects with known orbital elements
obtained by other surveys.

We can use the provided Python utilities to access the MOC data. The loader is
called fetch_moving_objects.

In [1]: from astroML.datasets import fetch_moving_objects
In [2]: data = fetch_moving_objects(Parker2008_cuts =True)
In [3]: data.shape
Out [3]: (33160 ,)

In [4]: data.dtype.names [:5]
Out [4]: ('moID', 'sdss_run', 'sdss_col', 'sdss_field', 'sdss_obj')

32http://faculty.washington.edu/ivezic/sdssmoc/sdssmoc.html
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Figure 1.7. An example of the type of data available in the LINEAR data set. The scatter plots
show the g− r and r− i colors, and the variability period determined using a Lomb–Scargle
periodogram (for details see chapter 10). The upper-right panel shows a phased light curve for
one of the over 7000 objects.

As an example, we make a scatter plot of the orbital semimajor axis vs. the orbital
inclination angle for the first 10,000 catalog entries (figure 1.8). Note that we have set a
flag tomake the data quality cuts used in [26] to increase themeasurement quality for
the resulting subsample. Additional details about this plot can be found in the same
reference, and references therein.

In [5]: data = data [:10000]
In [6]: a = data['aprime']
In [7]: sini = data['sin_iprime']
In [8]: %pylab
Using matplotlib backend: TkAgg
Populating the interactive namespace from numpy and matplotlib

In [9]: ax = plt.axes()
In [10]: ax.scatter(a, sini , s=4, c='black', linewidth =0)
In [11]: ax.set_xlabel('Semi -major Axis (AU)')
In [12]: ax.set_ylabel('Sine of Inclination Angle')
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Figure 1.8. The orbital semimajor axis vs. the orbital inclination angle diagram for the first
10,000 catalog entries from the SDSS Moving Object Catalog (after applying several quality
cuts). The gaps at approximately 2.5, 2.8, and 3.3 AU are called the Kirkwood gaps and are due
to orbital resonances with Jupiter. The several distinct clumps are called asteroid families and
represent remnants from collisions of larger asteroids.

1.6. Plotting and Visualizing the Data in This Book

Data visualization is an important part of scientific data analysis, both during
exploratory analysis (e.g., to look for problems in data, searching for patterns, and
informing quantitative hypotheses) and for the presentation of results. There are a
number of books of varying quality written on this topic. An exceptional book is The
Visual Display of Quantitative Information by Tufte [37], with excellent examples of
both good and bad graphics, as well as clearly exposed design principles. Four of his
principles that directly pertain to large data sets are (i) present many numbers in a
small space, (ii) make large data sets coherent, (iii) reveal the data at several levels
of detail, and (iv) encourage the eye to compare different pieces of data. For a recent
review of high-dimensional data visualization in astronomy see [11].

1.6.1. Plotting Two-Dimensional Representations of Large Data Sets

The most fundamental quantity we typically want to visualize and understand is the
distribution or density of the data. The simplest way to do this is via a scatter plot.
When there are too many points to plot, individual points tend to blend together in
dense regions of the plot. We must find an effective way to model the density. Note
that, as we will see in the case of the histogram (§5.7.2), visualization of the density
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Figure 1.9. Scatter plot with contours over dense regions. This is a color–color diagram of the
entire set of SDSS Stripe 82 standard stars; cf. figure 1.6.

cannot be done ad hoc; that is, estimating the density is a statistical problem in itself—
choices in simple visualizations of the density may undersmooth or oversmooth the
data, misleading the analyst about its properties (density estimation methods are
discussed in chapter 6).

A visualization method which addresses this blending limitation is the contour
plot. Here the contours successfully show the distribution of dense regions, but at
the cost of losing information in regions with only a few points. An elegant solution
is to use contours for the high-density regions, and show individual points in low-
density regions (due to Michael Strauss from Princeton University, who pioneered
this approach with SDSS data). An example is shown in figure 1.9 (compare to the
scatter plot of a subset of this data in figure 1.6).

Another method is to pixelize the plotted diagram and display the counts of
points in each pixel (this two-dimensional histogram is known as a Hess diagram in
astronomy, though this term is often used to refer specifically to color–magnitude
plots visualized in this way). The counts can be displayed with different “stretch” (or
mapping functions) in order to improve dynamic range (e.g., a logarithmic stretch).
A Hess diagram for the color–color plot of the SDSS Stripe 82 standard stars is shown
in figure 1.10.

Hess diagrams can be useful in other ways as well. Rather than simply display-
ing the count or density of points as a function of two parameters, one often desires
to show the variation of a separate statistic or measurement. An example of this is
shown in figure 1.11. The left panel shows the Hess diagram of the density of points as
a function of temperature and surface gravity. The center panel shows aHess diagram,



1.6. Plotting and Visualizing the Data in This Book . 31

−0.5 0.0 0.5 1.0 1.5 2.0 2.5
g − r

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

r
−

i

Figure 1.10. A Hess diagram of the r− i vs. g− r colors for the entire set of SDSS Stripe 82
standard stars. The pixels are colored with a logarithmic scaling; cf. figures 1.6 and 1.9.

except here the value in each pixel is the mean metallicity ([Fe/H]). The number
density contours are overplotted for comparison. The grayscale color scheme in the
middle panel can lead to the viewer missing fine changes in scale: for this reason, the
right panel shows the same plot with a multicolor scale. This is one situation in which
a multicolored scale allows better representation of information than does a simple
grayscale. Combining the counts and mean metallicity into a single plot provides
much more information than the individual plots themselves.

Sometimes the quantity of interest is the density variation traced by a sample
of points. If the number of points per required resolution element is very large, the
simplestmethod is to use aHess diagram. However, when points are sparsely sampled,
or the density variation is large, it can happen that many pixels have low or vanishing
counts. In such cases there are better methods than the Hess diagram where, in low-
density regions, we might display a model for the density distribution as discussed,
for example, in §6.1.1.

1.6.2. Plotting in Higher Dimensions

In the case of three-dimensional data sets (i.e., three vectors of length N, where N is
the number of points), we have already seen examples of using color to encode a third
component in a two-dimensional diagram. Sometimes we have four data vectors and
would like to find out whether the position in one two-dimensional diagram is cor-
related with the position in another two-dimensional diagram. For example, we can
ask whether two-dimensional color information for asteroids is correlated with their
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Figure 1.11.AHess diagramof the number per pixel (left) and [Fe/H]metallicity (center, right)
of SEGUE Stellar Parameters Pipeline stars. In the center and right panels, contours represent-
ing the number density are overplotted for comparison. These two panels show identical data,
but compare a grayscale and multicolor plotting scheme. This is an example of a situation in
whichmultiple colors are very helpful in distinguishing closemetallicity levels. This is the same
data as shown in figure 1.5.
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Figure 1.12. A multicolor scatter plot of the properties of asteroids from the SDSS Moving
Object Catalog (cf. figure 1.8). The left panel shows observational markers of the chemical
properties of the asteroids: two colors a∗ and i− z. The right panel shows the orbital param-
eters: semimajor axis a vs. the sine of the inclination. The color of points in the right panel
reflects their position in the left panel.

orbital semimajor axis and inclination [18], or whether the color and luminosity of
galaxies are correlated with their position in a spectral emission-line diagram [33].

Let us assume that the four data vectors are called (x, y, z,w). It is possible to
define a continuous two-dimensional color palette that assigns a unique color to each
data pair from, say, (z,w). Then we can plot the x− y diagram with each symbol, or
pixel, color-coded according to this palette (of course, one would want to show the
z−w diagram, too). An example of this visualizationmethod, based on [18], is shown
in figure 1.12.

For higher-dimensional data, visualization can be very challenging. One possibil-
ity is to seek various low-dimensional projectionswhich preserve certain “interesting”

(continued...)
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SDSS moving objects, 27,

29, 32
SDSS photometric redshift

data, 381
SDSS quasar data, 22, 23, 354,

392
SDSS spectroscopic data, 19,

20, 283, 284, 290, 291,
294, 296, 421, 422

SDSS stars, 23, 25, 30, 32, 420
SDSS stellar data, 255, 265,

267, 354, 392
SDSS Stripe 82, 24

standard stars, 24, 26, 30,
31, 262, 353

simulated supernovas, 5, 315,
318

data smoothing, 243
data structures

kd-tree, 56, 57
B-tree, 49, 51
ball-tree, 58
cosine trees, 59
maximum margin trees, 58
multidimensional tree, 51
oct-tree, 54
orthogonal search trees, 58
partition, 56
quad-tree, 54–56
trees, 45, 49, 373

data types, 41
categorical, 8, 42
circular variables, 41
continuous, 41
nominal, 41
ordinal, 41
ranked variables, 41

data whitening, 289
decision boundary, 358, 367,

373, 393
decision tree, 373, 375, 376, 393,

395
declination, 16, 19
deconvolution, 403

of noisy data, 406
degree of freedom, 91

δ Scu, 441
density estimation, 3, 243, 355,

359
Bayesian blocks, 252
comparison of methods, 273
deconvolution KDE, 250
extreme deconvolution, 259
Gaussian mixtures, 253
kernel (KDE), 47, 245
kernel cross-validation, 248
nearest-neighbor, 251
nonparametric, 244
number of components, 257
parametric, 253

descriptive statistics, 73, 74
DFT, see Fourier analysis,

discrete Fourier
transform

Dickey–Fuller statistic, 458
differential distribution

function, 6
digital filtering, 417
Dijkstra algorithm, 303
dimensionality, 7
dimensionality reduction, 281

comparison of methods, 306
discriminant function, 357, 362,

371, 391
discrete wavelet transform

(DWT), 413
discriminative classification, see

classification
distance metrics, 58
distribution functions, 80

χ2, 91
Bernoulli, 84, 368
beta, 94
binomial, 84
bivariate, 100

Gaussian, 102
Cauchy, 87, 454
exponential, 89
Fisher’s F, 94
gamma, 95
Gauss error, 83
Gaussian, 81

convolution, 83
Fourier transform, 83

Hinkley, 88
Laplace, 89
Lilliefors, 149
Lorentzian, 87
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distribution functions (cont.)
multinomial, 84
multivariate, 100

Gaussian, 361
normal, 81
Poisson, 85
Student’s t, 92
uniform, 80
Weibull, 96

DR7 Quasar Catalog, 354
DWT, see discrete wavelet

transform
dynamic programming, 45,

216

Eddington–Malmquist bias,
180

Edgeworth series, 151
efficiency, 391
eigenspectra, 289
eigenvalue decomposition, 286
empirical Bayes, see Bayesian

inference
empirical pdf, 6–8
ensemble learning, 377, 394
entropy, 376
Epanechnikov kernel, 248, 266
error bar, 7
error distribution, 7, 8
error rate, 355
estimator, 77

asymptotically normal, 78
bias of, 77
consistent, 78
efficiency, 78
Huber, 334
Landy–Szalay, 272
luminosity function, 157
Lynden-Bell’s C− method,

159
maximum a posteriori

(MAP), 169
maximum likelihood, 116,

117
censored data, 121
confidence interval, 120
heteroscedastic Gaussian,

121
homoscedastic Gaussian,

118
properties, 119
truncated data, 121

minimum variance unbiased,
78

robust, 78
Schmidt’s 1/Vmax, 158
unbiased, 78
uncertainty, 78
variance of, 77

Euler’s formula, 404
expectation maximization

(EM), 44, 128, 193, 211,
254, 362

expectation value, 74
exploratory data analysis, 4, 243
extreme deconvolution, 259

f2py, see Python/wrapping
compiled code

false alarm probability, 432
false discovery rate, 138
false negative, 136, 355
false positive, 136, 355
false-positive rate, 401
FastICA, 306
FB2012, see Modern Statistical

Methods for Astronomy
With R Applications

FFT, see Fourier analysis, fast
Fourier transform

fftpack, 404
fingerprint database, 413
finite sample size, 7
Fisher’s linear discriminant

(FLD), 363
fitting, 4
flicker noise, 454
Floyd–Warshall, 303
flux measurements,

astronomical, 14
Fourier analysis, 402

band limit, 515
Bayesian viewpoint, 428
discrete analog of PSD, 408
discrete Fourier transform

(DFT), 407, 515
fast Fourier transform (FFT),

404, 410, 515
aliasing, 516
in Python, 494, 516
ordering of frequencies,

516
Fourier integrals, 407
Fourier terms, 459

Fourier transform, 454
approximation via FFT,

515
inverse discrete Fourier

transform , 407
inverse Fourier transform,

417
irregular sampling window,

410
regularly spaced Fourier

transform, 408
RR Lyrae light curves, 402
transform of a pdf, 404
truncated Fourier series, 436
window function, 408

Freedman–Diaconis rule, 155
frequentist paradigm, 115
function transforms, 46
functions

beta, 94
characteristic, 98
correlation, see correlation

functions
gamma, 91, 95
Gauss error, 83
Huber loss, 334
kernel, 245
likelihood, 117
marginal probability, 68
probability density, 67
regression, 323
selection, 157

GalaxyZoo, 355
Galton, Francis, 311
Gardner, Martin, 69
Gauss–Markov theorem, 321
Gaussian mixtures, 395
Gaussian distribution, see

distribution functions
Gaussian mixture model

(GMM), 44, 253, 363
Gaussian mixtures, 126, 362,

440, 441
Gaussian process regression, 47,

337
generative classification, 355,

356, 393
geometric random walk, 456
Gini coefficient, 145, 376
GMM Bayes classification, see

classification
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goodness of fit, 124
Gram–Charlier series, 75, 151
graphical models, 44
Greg05, see Bayesian Logical

Data Analysis for the
Physical Sciences

Guttman–Kaiser criterion, 292

Hadoop, 42
Hanning window, 413
hashing and hash functions, 49
Hertzsprung–Russell diagram,

24
Hess diagram, 30
heteroscedastic errors, 455, 459
hidden variables, 127
high-pass filtering, 419
histograms, 6, 154

Bayesian blocks, 216
comparison of methods, 214
errors, 156
Freedman–Diaconis rule, 155
Knuth’s method, 213
optimal choice of bin size, 6
Scott’s rule, 155

homoscedastic errors, 7, 455
Gaussian, 401, 422

HTF09, see The Elements of
Statistical Learning:
Data Mining, Inference,
and Prediction

Hubble, Edwin, 353
hypersphere, 282
hypothesis testing, 72, 115, 135,

358, 400
multiple, 137

independent component
analysis (ICA), 304

inference, 4
Bayesian, see Bayesian

inference
classical, 67
statistical, 115

types of, 115
information content, 376
information gain, 376
Information Theory, Inference,

and Learning
Algorithms, 10

installing AstroML, 35
interpolation, 407, 496

interquartile range, 75
intrinsic dimension, 60
IsoMap, 300
isometric mapping, 300
IVOA (International Virtual

Observatory Alliance),
11

jackknife, 132
Jay03, see Probability Theory:

The Logic of Science
Jeffreys, Harold, 165

K nearest-neighbors, see
clustering

Kaiser’s rule, 292
Kalman filters, 460
Karhunen–Loéve transform,

284
Karpathia, 122
kernel density estimation

(KDE), see density
estimation

kernel discriminant analysis,
365, 366, 393, 395

kernel regression, 47, 327, 366
knowledge discovery, 3
Kullback–Leibler divergence,

173, 233, 376
kurtosis, 74

Lagrangian multipliers, 172,
286

Landy–Szalay estimator, 272
Laplace smoothing, 359
Laplace, Pierre-Simon, 165
Laser Interferometric

Gravitational
Observatory (LIGO), 15,
399, 412

LASSO regression, 46, 324
learning curves, 345
leptokurtic, 75
LEV diagram, 292
Levenberg–Marquardt

algorithm, 329
light curves, 5, 400
LIGO, see Laser Interferometric

Gravitational
Observatory

likelihood, 117
LINEAR, 15

linear algebraic problems, 44
LINEAR data set, see data sets
linear discriminant analysis

(LDA), 362, 363, 368,
393

locality, 46
locally linear embedding (LLE),

3, 298
locally linear regression, 328
location parameter, 74
loess method, 329
logistic regression, see

classification
Lomb–Scargle, see

periodograms
loss function, 334, 355
lossy compression, 294
low signal-to-noise ratio, 459
low-pass filters, 417
lowess method, 329
luminosity distribution, 4
luminosity functions

1/Vmax method, 158
C− method, 158
Bayesian approach, 162
estimation, 157

Lup93, see Statistics in Theory
and Practice

Lutz–Kelker bias, 180
Lynden-Bell’s C− method, 159

machine learning, 3, 4, 8
magic functions, 49
magnitudes, 509

astronomical, 73
standard systems, 510

Mahalanobis distance, 362,
366

Malmquist bias, 180
manifold learning, 45, 297

weaknesses, 303
MAP, 169, 424, 434
MapReduce, 47
Markov chain Monte Carlo

(MCMC), 44, 219, 446,
448

detailed balance condition,
219

emcee package, 222
Metropolis–Hastings

algorithm, 219, 329
PyMC3 package, 221
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Markov chains, 460
matched filters, 414, 447,

448, 459
maximum likelihood, see

estimator
maximum likelihood

estimation, 359
McGrayne, Sharon Bertsch, 165
mean, 44
mean deviation, 75
mean integrated square error

(MISE), 123
median, 75

standard error, 80
memoization, 45
Miller, George, 353
minimum component filtering,

420
minimum string length (MSL),

436
minimum detectable amplitude,

401
minimum variance bound, 78
misclassification rate, 355
mixtures of Gaussians, see

Gaussian mixture model
(GMM)

mode, 74
model comparison, 125
model parameters, 8
model selection, 72, 394, 447
models

Bayesian, 44
Gaussian mixtures, see

Gaussian mixture model
(GMM)

hieararchical Bayesian, 174,
228

non-Gaussian mixtures, 132
state-space, 460

Modern Statistical Methods for
Astronomy With R
Applications (FB2012),
10, 432, 453, 457

Monte Carlo, 217
samples, 112

Monty Hall problem, 69
morphological classification of

galaxies, 353
multidimensional color space, 5
multidimensional scaling

framework (MDS), 300

multiple harmonic model, 433
MythBusters, 70

N-body problems, 44, 51
Nadaraya–Watson regression,

327
naive Bayes, see Bayesian

inference
nearest neighbor, 45, 47

all-nearest-neighbor
search, 52

approximate methods, 60
bichromatic case, 52
monochromatic case, 52
nearest-neighbor distance,

55
nearest-neighbor search, 51

neural networks, 393–395
no free lunch theorem, 393
nonlinear regression, 329
nonnegative matrix

factorization (NMF),
295

nonparametric bootstrap
resampling, 432

nonparametric method, 6
nonparametric models, 4, 6
nonuniformly sampled data,

409
null hypothesis, 136
number of neighbors, 366
Numerical Recipes: The Art of

Scientific Computing
(NumRec), 8, 48, 112,
113, 127, 133, 143, 147,
152, 404, 410, 413, 417,
419, 430, 431

NumRec, see Numerical Recipes:
The Art of Scientific
Computing

Nyquist
frequency, 411, 431, 516
limit, 417
Nyquist–Shannon theorem,

407
sampling theorem, 407, 515

O(N), 43
Occam’s razor, 178
online learning, 46
optical curve, 442
optimization, 44, 495

Ornstein–Uhlenbeck process,
458

outliers, 75, 78
overfitting, 367, 378

p value, 136
parallel computing, 47
parallelism, 47
parameter estimation, 401,

447
deterministic models, 402

parametric methods, 6, 394
Pareto distribution, 454
Parseval’s theorem, 405
Pattern Recognition and

Machine Learning, 10
pdf, 6
periodic models, 401
periodic time series, 420
periodic variability, 459
periodicity, 429
periodograms, 425, 436, 439,

443
definition of, 425
generalized Lomb–Scargle,

433
Lomb–Scargle periodogram,

421, 425, 429–431, 433,
437, 438, 444, 459

noise, 426
phase dispersion minimization

(PDM), 436
phased light curves, 436
photometric redshifts, 354, 377,

383
pink noise, 405, 454
platykurtic, 75
point estimation, 115
population pdf, 6, 7
population statistics, 74
power spectrum, 403, 405, 425,

448
estimation, 411

Practical Statistics for
Astronomers (WJ03), 9,
65, 420

precision, see efficiency
prediction, 4
principal axes, 104
principal component analysis

(PCA), 3, 47, 284, 439
missing data, 293
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principal component
regression, 326

probability, 66
axioms, 66

Cox, 67
Kolmogorov, 66

conditional, 67, 68
density function, 67
law of total, 67, 68
notation, 65
random variable, 5
sum rule, 66

probability density, 356
probability density functions, 6
probability distribution, 6, 41
probability mass function, 6
Probability Theory: The Logic

of Science (Jay03), 9, 67,
171

programming languages
Python, 467
C, 501
C++, 501
Fortran, 35, 501
IDL, 35
Python, 12
R, 10
SQL (Structured Query

Language), 14–16, 42,
49, 51, 513

where, 17
projection pursuit, 3, 305
PSD, see power spectrum, 453
Python

AstroML, see AstroML
further references, 502
installation, 470
introduction, 467
IPython, 469, 482

documentation, 483
magic functions, 483

Matplotlib, 469, 489
NumPy, 468, 484, 492

efficient coding, 497
scientific computing, 468
SciPy, 468, 492
tutorial, 470
wrapping compiled code, 501

quadratic discriminant analysis
(QDA), 363, 393

quadratic programming, 370

quantile, 75
function, 6
standard error, 79

quartile, 75
quasar, 5
quasar variability, 453, 455, 458,

459
quicksort, 49

random forests, 377, 378, 393,
395

random number generation,
112

random walk, 444, 454, 456, 457
rank error, 60
Rayleigh test, 443
RDBMS, see relational database

management system
recall, see completeness, 356
recall rate, 138
receiver operating characteristic

(ROC) curve, 138, 391
red noise, 405, 454
regression, 4, 311

Bayesian outlier methods,
335

comparison of methods, 349
cross-validation, 343

K-fold, 348
leave-one-out, 348
random subset, 348
twofold, 348

design matrix, 317
formulation, 312
Gaussian basis functions, 321
Gaussian process, 337
Gaussian vs. Poissonian

likelihood, 202
Kendall method, 333
kernel, 327
LASSO, 324
learning curves, 345
least absolute value, 333
least angle, 325
linear models, 315
local polynomial, 329
locally linear, 328
M estimators, 333
maximum likelihood

solution, 317
method of least squares, 316
multivariate, 319

nonlinear, 329
overfitting, 341
polynomial, 320
principal component, 326
regularization, 321
ridge, 322
robust to outliers, 332
sigma clipping, 333
Theil–Sen method, 333
toward the mean, 142
uncertainties in the data, 331
underfitting, 341

regression function, 357
regularization, 321

LASSO regression, 324
ridge regression, 322
Tikhonov, 322

relational database management
system (RDBMS), 42

relative error, 60
resolution, 407
responsibility, 128
ridge regression, 322
ridge regularization, 371
right ascension, 16, 19
risk, 355
robustness, 75
runtime, 43

sample contamination, 401
sample selection, 4
sample size, 7
sample statistics, 74, 77
sampling, 47

window, 409
window function, 408

Savitzky–Golay filter, 419
scale parameter, 74
scatter, 7
SciDB, 42
Scott’s rule, 155
scree plot, 289
SDSS Great Wall, 244, 249, 268
searching and sorting, 48, 49
SEGUE Stellar Parameters

Catalog, 354
selection effects, 157
selection function, 8
self-similar classes, 5
sensitivity, see completeness
Shannon interpolation formula,

408
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shape parameter, 74
significance level, 136
Simon, Herbert, 353
sinc-shifting, 408
sine wave, 411
single harmonic model, 401,

421, 428, 430, 433,
459

single-valued quantity, 7
singular value decomposition,

286, 326
singular vectors, 287
Siv06, see Data Analysis:

A Bayesian Tutorial
skewness, 74
Sloan Digital Sky Survey

(SDSS), 14, 244
Catalog Archive Server

(CAS), 15
CasJobs, 17
PhotoObjAll, 17
PhotoTag, 17
Schema Browser, 17

Data Release 7, 14
Data Release 8, 21
Data Release 9, 24
flags, 17
magnitudes

model magnitudes, 17
Petrosian magnitudes, 21
PSF magnitudes, 17

object types, 17
SEGUE Stellar Parameters

Pipeline, 24
spectroscopic follow-up,

15
Stripe 82, 15, 30, 361

Sobolev space, 154
software packages

Altair, 470
AstroML, 12, 505
Astropy, 13
Bokeh, 470
HealPy, 13
IPython, 14, 50, 469
Markov chain Monte Carlo,

13
Matplotlib, 12, 469
MayaVi, 470
NetworkX, 470
Numerical Python, 12,

17, 468

Pandas, 470
PyMC3, 13
Python, 12, 503
Scientific Python, 12, 468
scikit-image, 470
Scikit-learn, 12, 470
statsmodels, 470
SymPy, 470

sorting, 49
specific flux, 509
spectral window function, 409
spherical coordinate

systems, 33
spherical harmonics, 35
standard deviation, 7, 74
state-space models, 460
stationary signal, 447
statistically independent, 8
Statistics in Theory and Practice

(Lup93), 9, 35, 65, 75,
79, 80, 98, 109, 110,
119, 132, 134, 166,
197

Statistics: A Guide to the Use of
Statistical Methods in the
Physical Sciences
(Bar89), 9, 65

stochastic programming, 46
stochastic time series, 453
stochastic variability, 449
streaming, 46
structure function, 452, 454,

455
sufficient statistics, 187
sum of sinusoids, 402
supervised classification, see

classification
supervised learning, 4
support vector machines, 46,

370, 371, 393, 395
support vectors, 370
SWIG, see Python/wrapping

compiled code
SX Phe, 441

telescope diffraction pattern,
405

temporal correlation, 400
tests

Anderson–Darling, 145, 148
F, 153
Fasano and Franceschini, 147

Kolmogorov–Smirnov, 142
Kuiper, 144
Mann–Whitney–Wilcoxon,

146
non-Gaussianity, 148
nonparametric, 142
parametric, 151
power, 136
Shapiro–Wilk, 149
t, 151
U, 146
Welch’s t, 152
Wilcoxon rank-sum, 146
Wilcoxon signed-rank, 146

The Elements of Statistical
Learning: Data Mining,
Inference, and Prediction
(HTF09), 9, 126, 128,
129, 132, 138, 171

“The magical number 7±2”,
353

The Visual Display of
Quantitative
Information, 29

time series, 399, 402, 452,
453

comparison of methods,
459

top-hat, 413
total least squares, 332
training sample, 5
tree traversal patterns, 366
tricubic kernel, 328
trigonometric basis functions,

413
Two Micron All Sky Survey

(2MASS), 15
type I and II errors, 136, 356

uncertainty distribution, 7
uneven sampling, 459
unevenly sampled data, 455
uniformly sampled data, 407
unsupervised classification, see

classification
unsupervised clustering, see

clustering
unsupervised learning, 4
Utopia, 122

variability, 400
variable



Index . 537

categorical, 359
continuous, 359
random, 67

continuous, 67
discrete, 67
independent, 67
independent identically

distributed, 67
transformation, 72

variance, 44, 74
of a well-sampled time series,

401
variogram, 453
vectorized, 53
Voronoi tessellation,

366
vos Savant, Marilyn, 70

Wass10, see All of
Nonparametric Statistics
and All of Statistics: A
Concise Course in
Statistical Inference

wavelets, 413, 449
Daubechies, 413
discrete wavelet transform

(DWT), 413
Haar, 413
Mexican hat, 413
Morlet, 414
PyWavelets, 413
wavelet PSD, 413, 415,

416
weave, see Python/wrapping

compiled code

Welch’s method, 412
whitening, 289
Whittaker–Shannon, 408
width parameter, 74
Wiener filter, 417, 419
Wiener–Khinchin theorem,

455, 457
Wiener-Khinchin theorem,

452
WJ03, see Practical Statistics for

Astronomers
WMAP cosmology, 161
WSAS, see Advances in Machine

Learning and Data
Mining for Astronomy

zero-one loss, 355




