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Introduction

Walter Scheidel

Science haS long been making an enormous contribution to our under
standing of the ancient past. Archaeology is simply unthinkable without it, 
and the study of various types of source material from inscriptions and coins 
to papyri and palimpsests has greatly benefited from scientific analysis. In re
cent years, the contribution of science has broadened even further as entirely 
new types of evidence from genetics to climate proxies have been brought to 
bear on historical inquiries. Thanks to this accelerating expansion, the study of  
history in general is now approaching a new stage of interdisciplinarity that 
is firmly grounded in the recognition that human and natural history are inti
mately and inseparably intertwined.

This book shows that the study of the ancient Roman world is no exception 
to this trend.1 Climate is given pride of place (Chapter 1), a powerful influence 
on the development of agrarian societies that often survived on narrow mar
gins. It remains a formidable challenge to reconstruct meaningful patterns 
from local data without obscuring local variation. Yet for the first time, we are 
now able to glimpse the contours of climate change in the long term. Roman 
power expanded and flourished during a period of favorable conditions— 
warm, stable, and moist in the right places. Given that Rome’s imperial reach 
turned out to be a unique outlier in the history of western Eurasia, this may 
well be more than just a coincidence and calls for further inquiry into the inter
action of institutions, geopolitics, and environmental factors that produced 
this outcome.

From the second century CE onwards, growing climatic instability accom
panied the fitful decline of Roman power. While a warming trend in the fourth 
century coincided with temporary imperial recovery in the West, increased 
precipitation aided development in the East. Prolonged droughts may have 
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been implicated in population movements in the Central Asian steppe in the 
fourth century and in Arabia two and three centuries later. Even more omi
nously, the fifth and sixth centuries, a time of upheaval for the Mediterranean,  
experienced secular cooling coupled with a surge in volcanic activity. The histo
rian’s agenda is clear: while the temporal association between trends in macro
social development and climatic conditions is increasingly well documented, 
the complexity of causal relations remains very much in need of detailed anal
ysis. The history of climate change is also the history of  human resilience, and 
we must ask not only how Roman society was affected by environmental forces 
but also how it responded to them. Moreover, other ecological factors such as 
pathogens or deforestation also need to be taken into account.

The study of plant remains is a complementary field of investigation (Chap
ter 2), closely tied up as it is with that of climatic conditions, even though the 
connections between them are yet to be explored in depth. Existing research 
has put emphasis on the spread of cultivable crops under the aegis of Roman 
rule. The dissemination of naked wheats that were suitable for making bread 
is one example; charred remains of oil pressings that point to the expansion 
of oleiculture are another. We can track how particular crops were at first im
ported, sometimes over long distances, and later incorporated into local farm
ing regimes, and also how widely such crops came to be adopted and consumed. 
These observations are germane to big questions about the nature of Roman 
economic development. To what extent were these processes driven by imperial 
rule as such or were merely the by product of ongoing long term growth, just 
as farming itself had once spread from the Middle East? How “Roman” was 
the Roman economy, in the sense of  being shaped by empire? The food supply 
of the Roman army is a case in point: how did plant foods found at military 
sites compare to those present among the local civilian population? Change 
over time in the sources of food and timber required by the military reveal 
how state sponsored demand affected patterns of production. The influence 
of empire is also visible in the fact that the Roman conquest of Britain closely 
coincided with the introduction of grain beetles that thrived in large open gra
naries of the kind set up by the occupiers. Plant remains recovered at Red Sea 
ports shed light on the dynamics of long distance trade that would otherwise 
be irrecoverable, such as the provenance of merchant ships and change over 
time. Evidence of plant production within urban sites is highly relevant to de
bates about population size: if the finding that one sixth of Pompeii’s surface 
area was given over to plant production is anything to go by, Roman cities may 
not have been as densely inhabited as some would like to think.

But above all, plant remains are a key source of information regarding diet. 
The discovery of dozens of different plant species at a whole range of Roman 
era sites speaks to the scale and scope of economic development: that peri
od’s new found diversity of food consumption was not necessarily restricted to 
elite settings but was also present in more modest or rural locales. This has 
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considerable ramifications for ongoing debates about Roman well being and 
the distribution of gains from growth and commercial integration. The inhab
itants of northwestern Europe in particular— a region that felt the transforma
tive power of imperial rule more than many others— enjoyed greatly improved 
access to and diversity of foodstuffs.

Animal remains offer similar insights (Chapter 3). Patterns of meat con
sumption have been studied across time and space, linking it to “Romaniza
tion” and other processes. Just like crops, animal species spread under Roman 
rule. Increases in the size of domestic animals in Roman Italy point to produc
tivity gains. A combination of osteometric and genetic investigations helps clar
ify how much this progress owed to breeding or the introduction of imported 
varieties. The study of animal remains has enlightened us about various kinds 
of transfers, from the export of Nile fish to Asia Minor to the migrations of 
the black rat, which eventually came to be instrumental in the transmission 
of bubonic plague. Skeletal pathologies, for instance those that document the 
use of cows alongside oxen for plowing, add to our knowledge of the efficiency 
of the rural economy. Feeding regimes inferred from dental micro wear tell us 
if animals were sustained by pasture or fodder, and variations in heavy metal 
deposits in goat bones have even been used to track changes in their proximity 
to human settlements.

Yet however much the remains of ancient plants, livestock, and pests may 
have to teach us, it is the human body that takes center stage (Chapter 4). It 
is one thing to observe which crops or animals had spread or were present at 
a particular site; it is another one entirely to examine how such findings cor
relate with the physical well being of people at the time. In the absence of con
temporary statistics on food consumption or public health, human bones and 
teeth are the most important source of information about nutritional status, 
health, and morbidity in the Roman world. Without them, we cannot hope to 
observe change over time, both within a given person’s life and across genera
tions or centuries. Human skeletal remains form the biggest archive of what  
it was like, in the most fundamental terms, to “be Roman.”

Not all lines of inquiry are equally promising. Longevity is a crucial vari
able in assessing overall well being and levels of development, but it is gen
erally poorly or not at all attested outside very narrow settings, most notably 
the papyrological census record of Roman Egypt. Unfortunately, aggregations of  
human remains in ancient cemeteries tend to be an unreliable guide to the age 
structure of past populations. This raises the question whether exceptional 
cases that have produced demographically plausible patterns are capable of 
vindicating paleodemographic reconstructions. After all, even a broken clock 
is sometimes right. But maybe we have been barking up the wrong tree: in
stead of bemoaning the manifold biases that have shaped (and, from a de
mographer’s perspective, spoiled) the funerary record, these very biases are 
likely to reflect cultural practices and preferences that are very much worth 
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investigating. In the end, bones may have to tell us more about culture than 
about demography, a valuable reminder of osteology’s ability to shed light on 
life in the past well beyond the physiological dimension of human existence.

Bones and teeth are of paramount importance in identifying a wide variety 
of ailments that can often be linked to specific infections, occupational haz
ards, and cultural norms. It is important to be aware of the limitations of this 
evidence: the inconclusive debate about the connection between certain types 
of porotic lesions and malaria stands as a warning against overly confident 
identifications of Roman pathogen loads. The most common and deadliest 
diseases of the ancient world, such as gastro intestinal infections, generally 
remain hidden from view, and mummified bodies, which allow a wider range 
of investigations, are confined to just one corner of the Roman world and even 
there have not fully received the attention they deserve. Even so, considerable 
progress has been made. The bodies of infants and children hold out particu
lar promise, as dental enamel analysis has begun to shed light on weaning and 
sanitation practices that would otherwise remain obscure. The early, formative 
years are in some ways also the ones most worth knowing about, and it should 
be remembered that children and adolescents would have accounted for over 
a third of any ancient population. If we ultimately end up with more detailed 
information about children than adults, this will help offset the general scar
city of information about this critical phase of the ancient life cycle.

Much the same is true for diet. Stable isotope analysis of teeth and bones 
provides valuable clues about the types of food people used to consume, even 
though in practice precision remains an elusive goal. Isotopic studies have 
been at their most successful in ascertaining the relative weight of terrestrial 
and marine food sources for different groups of people. Given that a sizeable 
share of the population of the Roman Empire was concentrated in coastal 
areas where access to seafood was at least an option and that processed 
marine based foods were shipped over long distances, this metric is more use
ful than it might seem in illuminating dietary variations rooted in class and 
gender as well as geography. However, the biggest question concerns the over
all importance of cereals as opposed to animal products in Roman era diets, 
and there much work remains to be done.

Last but not least, stable isotope analysis helps us track migration at dif
ferent stages of the life cycle. Because humans acquire oxygen and strontium 
isotopic signatures by consuming local food and water— in their dental enamel 
in childhood and in their bones throughout their lives— comparison of such 
profiles with local patterns allows inferences about mobility. Complications 
abound: short term movement may be hard to track down, imported food and 
water piped in through aqueducts affect the record, and different regions may 
exhibit similar isotopic properties. Systematic compilation of local reference 
data will be the solution to at least some of these problems. Just as previous 
generations compiled huge editions of inscriptions or papyri, the time has 
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come to create comparable collections of scientific evidence that is relevant to 
our understanding of life in the past. This applies to isotope signatures just as 
it does to climate records and genetic information.

The study of body height is yet another branch of osteology (Chapter 5), 
embedded in a rich tradition of scholarship that seeks to relate stature to various 
factors such as health and economic development. In the most general terms, 
height tends to correlate with well being: however, the fact that the former is the 
single cumulative outcome of a wide variety of inputs such as genetics, diet and 
disease greatly complicate causal explanation. In this field, large bodies of data 
and long term comparison across space and time are once again of the essence. 
One key observation that has emerged from the aggregation of local samples is 
that the Roman period in general was associated with lower body heights than 
previous or subsequent centuries.2 The question whether nutrition or pathogen 
loads played a greater role in this is of fundamental importance to our under
standing of the Roman economy. The relationship between imperial rule and 
physical well being was bound to be complex, mediated by factors such as eco
nomic development, urbanization, connectivity, and inequality that produced 
conflicting gains and costs in terms of nutrition, health, and thus stature. Once 
again, as with teeth, the pre adult record may turn out to be of particular value. 
The stature evidence points to late menarche and male puberty, in keeping with 
conditions in current low income countries and other historical populations. And 
given enough and sufficiently fine grained data, class differences in body height— 
which are well attested for early modern and contemporary societies— may also 
become apparent. In general, the study of somatic development will greatly ben
efit from the proper integration of different strands of research, from informa
tion about health and diet derived from teeth and bones, about the availability 
of foodstuffs documented by plant and animal remains, and about geographical  
and ancestral provenance as documented by stable isotopes and ancient DNA.

The last one of these data sources is derived from most of the other types 
of ancient remains surveyed so far, from plants to humans and other animals 
(Chapter 6). Owing to the relatively recent nature of ancient DNA studies and 
especially the rapid pace of innovation in this field, it has only just begun to 
contribute to the study of the Roman world. Genetic analysis holds particu
lar promise in identifying the geographical origin of people, livestock, and 
crops and thus in establishing patterns of  human mobility and the transfer of 
productive resources. Possible genetic discontinuities between ancient Etrus
cans and more recent Tuscans and connections between Etruscans and the 
Eastern Mediterranean are of obvious relevance to our assessment of ancient 
traditions regarding their provenance and to modern models of ethnogene
sis. Individual cases of migration over very large distances may catch the eye, 
but findings of local continuity are equally valuable. Overall, whole genomic 
sequencing of larger samples is the best way forward. For antiquity, the most 
revealing findings made so far concern pathogens rather than humans: the 
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identification of the cause of the sixth century CE “Plague of Justinian” (as 
well as the late medieval “Black Death”) as Yersinia pestis must count as a 
milestone in the annals of historical epidemiology. The agents behind earlier 
pandemics such as the second century CE “Antonine Plague” and the third 
century CE “Plague of Cyprian” still await scientific discovery. Among other 
potent infections, malaria, which is otherwise difficult to infer from skeletal  
evidence, is also becoming visible, although relative to the likely scale of its 
spread in the ancient world the existing genetic evidence remains exiguous 
indeed. All the same, in light of the speed with which this line of research has 
developed and matured in recent years, it is hard to overestimate its potential 
for enriching our knowledge of the ancient world.

Analysis of surviving strands of ancient biomolecules is complemented by 
studies of the genetic makeup of current populations that serves as a giant 
archive of demographic processes in the past (Chapter 7). Measures of affinity 
and admixture throw light on the origins of those alive today. In this field, just 
as with ancient DNA, most existing research has focused on prehistory. A few 
studies, some of them perhaps already superseded by more recent advances, 
have identified patterns suggestive of migration from the Levant to North Af
rica and from the Aegean to Sicily and southern Provence that may be linked 
to Phoenician and Greek settler activity. Roman history, which lacks similarly 
distinctive migration events, may prove less fruitful terrain for such studies. 
One important question that remains to be explored is whether the massive 
inflow of slaves into select parts of the Italian peninsula has left traces in the 
genetic record. Both ancient and modern DNA will need to be marshaled to ad
dress this problem. Elsewhere, solid evidence of genetic continuity over time  
could serve as an important antidote to exaggerated notions of population 
mobility in the Mediterranean environment.

Even this rapid and superficial survey of some of the issues covered in the 
following chapters should leave no doubt that scientific methods provide in
sight at all levels of resolution of historical inquiry, from “micro” to “macro.”  
At one end of the spectrum, the individual. Under ideal circumstances, by in
tegrating various approaches, we are now able to tell where someone was from 
and at what age that person moved to where she died; at which age she was 
weaned and experienced serious physiological stress; whether she subsisted 
more on terrestrial or marine foods; and whether she died of the plague. Her 
somatic data could be compared to those of others at the site and matched 
with local remains of cultivars, weeds, livestock, and pests, as well as the usual 
array of inorganic archaeological remains. Never before has it been possible  
to examine individual Roman lives in such detail.

At the “meso” level, serial analysis of data from a particular locale over the 
long run and comparison with those from other sites steer us toward broader 
questions about the impact of empire, of political and economic integration, 
of urbanization and culture change at the local or regional level and beyond. 
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Just as the archaeoscience of inanimate objects from ceramics to metals and 
stone has done for a long time, climatology and bioscience hand the historian 
additional tools for tackling these questions.

And moving even further to the opposite end of the spectrum, we are now for 
the first time in a position to try our hand at defensible biohistorical narratives of 
the Roman Empire as a whole. Kyle Harper’s new book meshes climate proxies 
and scientific data about pathogens with more conventional sources in eluci
dating the interplay of ecology and human agency over the course of centuries.3 
Much will need to be refined as the scientific evidence expands, but the contours 
of a truly interdisciplinary history of ancient Rome are now finally in view.

Pursuit of questions about big structures and large processes will require 
us to think hard about how to integrate conventional evidence with scien
tific findings. Integration is predicated on the compatibility of observations 
from different domains of inquiry, a compatibility that arises from consilience. 
Coined in the nineteenth century, this term, to quote Michael McCormick’s 
pithy summary,

refers to the quality of investigations that draw conclusions from forms 
of evidence that are epistemologically distinct. The term seems partic
ularly apt for conclusions produced by natural scientific investigations 
on one hand and by historical and archaeological studies on the other. 
Consilience points to areas of underlying unity of humanistic and sci
entific investigation— a unity arising from that of reality itself.4

While this perspective is designed to bridge the gaps between different dis
ciplinary practices and academic precincts of specialized expertise and inquiry, 
it is worth acknowledging that the underlying premise might also reinforce 
existing divisions rather than leveling them. Some of our colleagues in the hu
manities may be skeptical of notions of a “unified reality” or harbor reservations 
about an encroachment of science. And indeed, the premise of consilient unity 
leaves little room for the more esoteric varieties of postmodern engagement 
with the historical record: the very concept is resolutely “modern.” To the ex
tent that it will succeed, it may mark a swing of the pendulum towards a more 
open and, for want of a better word, optimistic perspective on the production of 
knowledge and our understanding of the world. I believe we ought to welcome 
such a shift. It is also worth noting that recourse to insights derived from the 
biosciences readily accommodates historians’ concerns about hegemonic dis
courses and the subaltern: what more immediate way of accessing the history 
of the “99%” than to study what is actually left of them and the organisms that 
both sustained and blighted their lives? Archaeobiology gives a powerful boost 
to history from below, shining a light on those of whom no other record exists.
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Nevertheless, biohistorical interdisciplinarity poses genuine challenges.  
Increasingly sophisticated techniques and falling costs, most dramatically in 
genetics, keep boosting the contribution of science to historical inquiry. But 
this progress frequently entails a fair amount of creative destruction. We are 
faced with perpetual churn in which results made only a few years— never mind 
decades— ago are called into question or downright superseded by the applica
tion of improved methods. This makes for treacherous terrain for the uniniti
ated. Keeping up to date is an imperfect solution: five or ten years ago, it was 
perfectly possible for experts to be both up to date and wrong. Caution is the 
order of the day. Paleodemography and the extrapolation of stature from bone 
length have long been beset by ongoing confusion about norms and standards. 
More recently, we have learned that methods and procedures that once seemed 
state of the art— from trace element analysis in the osteology of ancient nutri
tion to blood allele studies of modern populations and early work on ancient 
DNA— cannot bear the weight they had been granted. The enduring lesson is to 
remain circumspect and resist the ever present temptation to oversell the latest 
findings. The very dynamism of scientific research is at once its most attractive 
feature and a challenge to historians who wish to capitalize on it.

Both the pace of change in the sciences and the professional expertise re
quired to assess and apply its results highlight the need for collaboration across 
established disciplinary boundaries. Outside archaeology, transdisciplinary re
search (not to mention teaching) on the ancient world has been rare, and even 
collaborative work more generally is an exception rather than the norm. Con
tinuing emphasis on individual competence has held back innovation in a vari
ety of areas, from cross cultural comparative history to Digital Humanities. A 
biohistorical approach is if anything even more profoundly incompatible with 
the existing model of training, supporting, and evaluating professional histori
ans as some sort of latter day master crafts(wo)men. It adds new expectations 
in terms of what historians ought to know and how they are to cooperate with 
colleagues from other fields, and draws them deeper into the complex world 
of grant applications that are the life blood of their colleagues in the sciences. 
At the same time, it calls for scientists to partner up with historians in the de
velopment of research designs and interpreting the results: transdisciplinarity 
must not turn into a one way street that casts historians in the passive role of 
consumers. Rather, consilient perspectives on the past allow historians to be
come brokers, by creating ties between discrete communities of scholars that 
unite them in the pursuit of a richer understanding of the past.

The present volume illustrates only some elements of an engagement with the 
Roman world that is informed by scientific knowledge. We focus on the human 
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body and on the surrounding biosphere. In so doing, the seven chapters follow 
an arc from the weather to plants, animals, and humans, and, for humans, from 
large (skeletons) to small (biomolecules), from phenotype to genotype, and 
from ancient to modern. For our purposes, the distinction between climatology 
as part of the Earth Sciences and areas of research that are rooted in biology 
is merely a formality. Although most climate change in the last few millennia 
was caused by variations in solar and volcanic activity and the earth’s orbit, 
climate occupies a central position in biohistorical reconstructions because it 
primarily affected humans indirectly through its impact on flora, fauna, and 
the water supply.

More could be added. A true “biohistory” of ancient Rome would be 
broader still, extending into the scientific study of human cognition and be
havior, an area that is challenging to access for students of the more distant 
past and remains outside the scope of this survey. One day, it may be worth 
pondering how Roman brains and minds were shaped by an environment of 
endemic slavery and organized violence (from mass conscription to the car
nage of the arena), to name just a few prominent features of the historical 
record.5

This volume is meant to offer a guide to different bioscientific approaches 
and their contribution to the study of Roman history: how they have (or have 
not) enriched our understanding, and how they might do so in the future.6 
While our focus is on the ancient Roman world broadly defined, the scope 
of coverage varies from chapter to chapter, and for good reason. Most rele
vant work on ancient and especially modern DNA deals with earlier periods 
of human history. Rather than elucidating specific issues of Roman Studies, it 
gives us a sense of the potential of this research to re shape our understand
ing of ancient societies in the coming years. Conversely, the study of bones 
and teeth presents us with an embarrassment of riches that calls for a degree 
of selectivity. Chapter 4 therefore concentrates on Roman Italy proper while 
Chapter 5 privileges stature data from Roman Britain, which has attracted 
some of the most careful attention. Not every part of the Roman world could 
be covered in equal measure: evidence from Egypt is particularly rich and  
would deserve a separate volume, contextualizing Roman finds in the great  
time depth of Nilotic civilization and making full use of the unique evidence 
of mummified remains.7

One thing is certain. No matter how comprehensive the coverage of a sur
vey of this kind, the rapid progress of scientific research ensures that before 
long it will seem dated. It cannot be more than a snapshot, capturing a partic
ular moment in the growing entanglement of ancient history and the sciences. 
We are pushing against the limits of conventional formats of dissemination: 
the next step may well have to be a continuously updated electronic publica
tion to keep us up to date.
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Notes
1. The seven chapters contain over 1,000 references. I therefore largely refrain from 

adding further bibliography.
2. In addition to the work cited in Chapter 5, this is documented in particular by the 

dissertation project of Geertje Klein Goldewijk at the University of Groningen, which 
draws on a larger amount of data than published studies: see Scheidel 2012: 326.

3. Harper 2017. For other times or places, see now especially White 2011; Broodbank 
2013; Parker 2013; Brooke 2014; Campbell 2016.

4. McCormick 2011: 257. His article inspires much of what follows in this section.
5. AHR Roundtable 2014 calls on historians to engage with biology more generally. 

That forum includes contributions on behavior and emotion by Harper 2014, Roth 2014, 
and Scheidel 2014. See also Harper 2013.

6. Killgrove forthcoming offers a complementary perspective.
7. See Scheidel 2010 for a brief survey of the ancient disease environment.
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