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Ecological Scaling in Space and Time

a new tool in Plain sight?

Elizabeth T. Borer

Rapid changes in climate and nutrient deposition in regions around Earth 
are inducing equally rapid changes in the biosphere (Schimel et al. 1997, 
Ellis et al. 2010,  Running 2012).  These abiotic  factors are not changing at 
the same rate or in the same direction in all locations, so organisms are 
increasingly experiencing novel combinations of precipitation, tempera-
ture, and nutrient deposition (Williams et al. 2007, Rockström et al. 2009). 
The reliance of  humans on pro cesses provided by organisms and their 
interactions within the local biotic and abiotic environment, such as car-
bon fixation, nutrient cycling, disease transmission, and the quantity, qual-
ity, and per sis tence of freshwater, provides a pressing reason for ecologists 
to develop a mechanistic understanding of the links between organisms, 
ecosystem pro cesses, and regional and global cycles (Worm et al. 2006, 
Kareiva 2011, Cardinale et al. 2012). Yet, the combination of climate and 
nutrient supply experienced by organisms also results from feedbacks 
between the physiology of individual organisms and global biogeochemi-
cal cycles (Ehleringer and Field 1993, Vitousek et al. 1997, Arrigo 2005, 
Hooper et  al. 2005), making clear our need to better understand pro-
cesses that span temporal scales from minutes to millennia and spatial 
scales from suborganismal to Earth’s atmosphere to predict  future effects 
of the changing environments on Earth.

The prob lem of scaling in ecol ogy is not new. Three de cades ago, 
scaling occupied the minds of many ecologists. For example, three de-
cades ago John Wiens wrote an essay calling for a shift to multiscale 
thinking, development of new theory, and greater focus on collecting 
data to resolve discontinuities in pro cesses across spatial scales (Wiens 
1989). A few years  later, Simon Levin published another excellent syn-
thesis of the state of ecological knowledge of scaling (Levin 1992), ar-
guing that knowledge of both large- scale constraints and the aggregate 
be hav ior of organisms  will be necessary for achieving a predictive, mech-
anistic understanding of the feedbacks between organisms and ecosystem 
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fluxes. A key topic raised by both Wiens and Levin also was addressed 
in a book published at nearly the same time (Ehleringer and Field 1993) 
in which many authors tackled the issue of scaling and cross- scale feed-
backs from organismal physiology to global climate and back again.

In the de cades since  these papers  were written, ecologists have con-
tinued to develop an understanding of long- term feedbacks, heteroge-
neity, and links across spatial scales. For example, the effects of forest 
warming over the short term have been demonstrated to stimulate soil 
respiration, whereas turnover in microbial composition can increase the 
carbon use efficiency of the community, leading to attenuation of soil 
respiration  under continuous long- term warming (Melillo et  al. 2002, 
Frey et al. 2013). The effects of diversity on productivity also function 
via long- term feedbacks. For example, long- term, chronic nutrient addi-
tion  causes productivity to increase initially, but  these effects attenuate 
over multiple de cades  because of ongoing loss of species diversity (Isbell 
et al. 2013). In a diff er ent subfield of ecol ogy, research using metage-
nomic tools is highlighting the links and feedbacks among spatial scales 
that determine the resident microbial composition, or microbiome, of a 
host. For example, the identity and relative abundance of microbial spe-
cies inhabiting an individual is determined at the regional scale by the 
composition and relative transmission ability of microbial species and at 
the local scale by the relative abundance of hosts and microbial competi-
tive ability and fitness within individual host species (reviewed in Borer 
et al. 2013). Many  factors, including the abiotic environment (Fenchel 
and Finlay 2004), host quality (Smith et al. 2005), and host be hav ior (Lom-
bardo 2008), can play a role in  these interactions and feedbacks across 
spatial scales.

In spite of the forward pro gress of this field, the fundamental issue 
of effectively using information about pro cesses at one scale in predic-
tions about outcomes at another scale remains unsolved. In 2011, the 
Macrosystems Biology program at the National Science Foundation (NSF) 
was launched to stimulate research and advance greater mechanistic 
understanding of pro cesses spanning spatial scales (Dybas 2011). Al-
though the availability of funding is certainly a key constraint on in-
tellectual pro gress, identifying and collecting the types of data that 
 will be useful for making predictions that span scales also represents a 
major challenge (Levin 1992, Ehleringer and Field 1993, Leibold et al. 
2004, Elser et al. 2010, Nash et al. 2014). Perhaps most importantly, ecol-
ogists studying feedbacks and linkages across spatial scales are faced 
with tradeoffs in our capacity to gather data about the biosphere at any 
scale: the spatial extent versus the temporal extent of a study, the local 
replication versus the spatial extent of a study, or site- based experimen-
tal work versus large- scale observation (Soranno and Schimel 2014).
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A New Tool Hiding in Plain Sight

Over the past several de cades, a fairly continuous stream of publications 
has identified conceptual areas of spatial scaling where our ignorance re-
mains vast (e.g., Wiens 1989, Levin 1992, Ehleringer and Field 1993, Pe-
ters et al. 2007, Borer et al. 2013). However, ecological science has changed 
a  great deal during this time, giving us a range of new tools and more 
highly resolved data to study ecological scaling relationships. Meta- 
analysis has become an accepted tool for quantitative synthesis of the 
ecological lit er a ture and has been used, for example, to examine support 
for a range of hypotheses about the key determinants of species diversity 
across spatial scales (Field et al. 2009). Sequencing technology and metage-
nomics is rapidly extending the conceptual realm and spatial scales being 
actively considered by ecologists (Borer et al. 2013). Electronic technol-
ogy also has changed our ability to tackle questions about scaling in myr-
iad ways, including computerization of data acquisition and access, satel-
lite imagery, remote sensing, drone technology, and interpolation of a wide 
array of environmental data (Campbell et al. 2013). One example of the 
exciting cutting- edge of technology to examine scaling in ecol ogy is re-
search that is advancing our ability to use remotely sensed spectral vari-
ation as a tool for estimating local and regional biodiversity, and concur-
rently documenting leaf- level traits and functional differences among taxa 
(Cavender- Bares et al. 2016).

However, the change in the past 30 years that is perhaps most under-
appreciated for its potential to advance this field is neither statistical nor 
technological; it is the shift in the culture of ecological science from a field 
dominated by single investigator proj ects to one of collaboration (Hamp-
ton and Parker 2011, Goring et al. 2014).

Distributed Experimental Networks

Most ecological research is conducted by one or a few scientists over 
relatively short time scales and small spatial scales (Heidorn 2008), and 
whereas large- scale, multi- investigator collaborations have become in-
creasingly common in ecol ogy over the past several de cades (Nabout 
et al. 2015), the vast majority of  these collaborations generate, share, and 
analyze observational data (e.g. Baldocchi et al. 2001, Weathers et al. 2013). 
Although observations of ecological systems represent an exceptionally 
impor tant tool for characterizing and comparing among systems, manipu-
lative experiments are a far more power ful tool for forecasting a system’s 
be hav ior  under novel environmental conditions. Given the pressing need to 
effectively forecast ecological responses in a changing global environment, 
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multifactorial experiments mea sur ing responses and feedbacks spanning 
spatial and temporal scales  will be a key tool to complement meta- analyses, 
large- scale observations, and models.

Although most experiments in ecol ogy are conceived of and performed 
by single investigators, large- scale, grassroots distributed experimental 
collaborations are rethinking ecological experimentation and are over-
coming the historical tradeoffs in our capacity to gather long- term ex-
perimental data across multiple spatial scales (Borer et al. 2014a). By 
replicating the same experimental treatments and sampling protocols 
and openly sharing data with each other, ecologists collaborating in dis-
tributed experimental networks are able to replicate experiments and 
directly compare biological and abiotic responses across spatial scales 
ranging from centimeters to continents. Depending on the question, sam-
pling can occur at multiple scales within sites (e.g., within individual, 
within plot, plot, block, site) to quantify a plethora of responses to ex-
perimental treatments that map onto  future scenarios (e.g., multiple 
nutrients, herbivory, high- latitude warming, drought, and loss of biodi-
versity; see Arft et al. 1999, Borer et al. 2014b, Duffy et al. 2015, Fay 
et al. 2015).

This emerging approach to network science is requiring a rethinking 
of collaboration and a change in scientific culture (Guimerà et al. 2005, 
Hampton and Parker 2011, Borer et al. 2014a). By using common experi-
mental treatment and sampling protocols and sharing data openly among 
collaborators,  every site improves the dataset through contribution and 
each investigator benefits from the opportunity to contribute data and 
ideas as a result of their efforts (Borer et al. 2014a). As with any effective 
collaboration, careful fostering of a culture of trust and sharing means 
that contributors have confidence that their efforts  will be included and 
rewarded (Hampton and Parker 2011). In this model, participation is vol-
untary, and for most distributed experiments or ga nized as grassroots ef-
forts, investigators at each site shoulder the cost of implementing the 
treatments and collecting the data rather than funding such efforts 
through a single centralized grant. This pay- to- play funding model means 
that participation, particularly by international collaborators in under-
studied regions of the world, is increased when costs are low. And, for a 
field that seems to perpetually strug gle with physics envy, this model of 
egalitarian collaboration was once called “the dream” by the Director 
General of the Eu ro pean Center for Particle Research (CERN), Dr. Robert 
Aymar (Ford 2008).

To forecast  future scenarios for ecological responses and feedbacks in 
nonanalog environmental conditions (Williams and Jackson 2007, Rock-
ström et al. 2009), we need experiments that manipulate multiple global 
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change  factors over long periods of time, and we need to understand how 
novel conditions influence the resulting spatial patterns and pro cesses 
across multiple scales. Without multifactorial experiments replicated across 
many sites, it remains difficult to effectively estimate interactions among 
 factors and contingencies in responses associated with, for instance, cli-
mate, evolutionary, or geological history. Distributed experimental net-
works provide such an opportunity.

The benefits of a distributed experiment for tackling questions about 
pro cesses spanning and feeding back across spatial scales are enormous. 
This widespread collaboration among scientists dramatically expands the 
spatial extent of observation while retaining resolution (grain) at the scale 
of individuals, but also generating data that can be aggregated to capture 
patterns at larger grain such as block or site. The spatial replication gen-
erated by a network with many collaborators allows clear quantification 
of responses that are shared among sites as well as responses that are con-
tingent on site characteristics (e.g., climate, soils, or evolutionary history). 
The replication of experimental treatments across many sites and condi-
tions also allows investigation into the patterns and feedbacks resulting 
from multiple interacting  factors by breaking up the colinear and con-
founded variables that plague single- site studies. By working as a wide-
spread collaborative team to establish multiple treatments and sample at 
locations spanning regions and continents, distributed experiments over-
come the tradeoff between the spatial and temporal scales of sampling 
that has caused ecologists to rely so heavi ly on models and meta- analysis 
for which interactions among treatments and site variables are difficult 
(and usually impossible) to disentangle.

We provide a few case studies to develop how we envision that this type 
of approach, harnessing the intellectual and data collection power of sci-
entists spanning regions and continents, could interlink with existing ap-
proaches (e.g., modeling, streaming data) to generate a predictive under-
standing of how biological pro cesses  will change and feed back across 
scales in response to changing environments on Earth.

Case Study 1: Plant Productivity

As we move across spatial and temporal scales of observation, the key con-
trols on the pro cesses and resulting patterns in primary productivity shift 
(Wiens 1989, Ehleringer and Field 1993, Polis 1999, Peters et al. 2007). For 
example, roots foraging for soil resources may occur at the scale of mil-
limeters, inducing organismal constraints on productivity (Tian and 
Doerner 2013). At the scale of meters, intraspecific and interspecific in-
teractions among organisms seeking the same resources may generate 
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webs of direct and indirect interactions that may determine the net car-
bon fixation and annual productivity of a plant community. For example, 
concurrent changes and feedbacks in plant quality and composition in 
response to grazing (Zheng et al. 2012) or chronic nutrient addition (Is-
bell et  al. 2013) can lead to long- term declines in productivity within 
fields. At regional scales, solar radiation, precipitation, nutrients, or 
other physical  factors may impose the most impor tant constraints on 
productivity (Polis 1999, Del Grosso et al. 2008). Although local, long- 
term patterns of evapotranspiration can predict the dominant flora, and 
thus biome, of a region, direct mea sure ments of leaf- scale transpiration 
or small- scale mea sure ments of local plant communities may fail to pre-
dict the larger- scale pattern (Wang and Dickinson 2012). Thus, we re-
main  limited in our ability to use observed responses at the scale of roots 
and stomata to interpret satellite information or predict regional climate, 
although we believe that  these changes are impor tant pieces of the 
puzzle.

The use of meta- analysis has advanced our understanding of the role 
and interactions among climate, plant chemistry, and vegetation type on 
regional- scale patterns of plant productivity (Del Grosso et al. 2008). How-
ever, in spite of the impor tant insights arising from synthesis across stud-
ies, such studies have relied on interpolation and derived metrics of pro-
duction that may underestimate the role of local- scale pro cesses and 
overestimate the role of regional climatic  drivers (Shoo and Ramirez 2010). 
They also fail to provide a strong estimation of trajectories of productiv-
ity  under  future scenarios of climate and nutrient deposition. Thus, our 
ability to predict productivity responses to multiple interacting  factors 
(e.g., concurrent changes in the supply rates of multiple nutrients or cli-
mate  factors) and feedbacks from plant productivity to climate and nutri-
ent cycles remains  limited by the lack of simultaneous, direct manipula-
tions of the environment and mea sure ments of the rates of primary 
productivity within and among sites.

A coordinated, long- term experiment spanning a wide range of climate 
and nutrient supply could produce data to test the multiscale hypotheses 
generated with meta- analysis. By concurrently manipulating  factors most 
likely to determine productivity within sites, regions, and across conti-
nents (e.g., climate, local nutrient supply, herbivory; Milchunas and Lauen-
roth 1993, Del Grosso et al. 2008, Fay et al. 2015), such a study could 
generate data to clarify the likely trajectories of change in productivity 
in  future, nonanalog environments.  These direct estimates of primary pro-
ductivity,  under a wide variety of natu ral and manipulated environments, 
produced through large- scale collaboration among scientists, would gener-
ate data to clarify the interactions among  factors, spatial and temporal 
feedbacks, and spatial scales at which each  factor most strongly constrains 
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primary productivity. Far from supplanting other approaches to studying 
ecological systems (e.g. observations, meta- analysis, models), this is a com-
plementary approach that takes advantage of the collective power of the 
research community to generate directly comparable data spanning unpre-
ce dented spatial scales.

Case Study 2: The Microbiome

Developments in metagenomics over the past de cade have shown that 
most of the genes and approximately half of the carbon in a  human is of 
microbial origin (Shively et al. 2001, Nelson et al. 2010, Brüls and Weis-
senbach 2011), leading to a fundamental reassessment, among other 
 things, of what it means to be an individual. Metagenomic studies have 
demonstrated that an individual’s microbiome, the identity and relative 
abundance of microbial species inhabiting an individual, plays many 
impor tant functional roles for animal and plant hosts, including digestion 
and nutrient acquisition, production of anti- inflammatory compounds, 
and re sis tance to pathogens (van der Heijden et al. 1998, Gill et al. 2006, 
DiBaise et al. 2008, Rodriguez et al. 2009, Fraune and Bosch 2010). Thus, 
the accumulation of microbes and turnover of species within the micro-
bial community of a host are fundamentally impor tant pro cesses that de-
fine the composition and function of each host’s microbiome. Although 
what we do know suggests that  these pro cesses span and feed back across 
spatial scales from biotic interactions at microscopic scales within hosts to 
regional  drivers of the abiotic environment, our understanding of the spa-
tial scaling and feedbacks across scales that control host– microbe interac-
tions remains poorly developed (Medina and Sachs 2010).

Recent syntheses of this body of empirical work demonstrate that  there 
are many links and feedbacks from local microbial interactions within a 
host to larger- scale distributions of microbes (Borer et al. 2013, Borer et al. 
2016). Studies of microbes have demonstrated that some taxa are capable 
of extremely long- distance dispersal, leading to the increasingly debated 
hypothesis that microbes lack dispersal limitation, and local microbial 
communities are determined solely through environmental tolerance and 
se lection (Baas- Becking 1934, Cho and Tiedje 2000, Fenchel and Finlay 
2004, Antony- Babu et al. 2008, Peay et al. 2010). In addition to regional- 
scale se lection, the abiotic environment also can determine the outcome 
of competition among microbes within a host (Yatsunenko et al. 2012, La-
croix et al. 2014) and alter the composition of a host’s microbiome through 
feedbacks that alter the nutritional quality of host tissues, from a microbe’s 
perspective, as well as the relative abundance of conspecific hosts (Smith 
et al. 2005, Keesing et al. 2006, Clasen and Elser 2007, Borer et al. 2010). 
Another key finding is that hosts are not vessels, but rather play a role in 
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sanctioning and turnover of microbes to  favor more beneficial species or 
strains (Kiers and Denison 2008), thereby feeding back to alter the local 
and regional composition of microbial taxa. Related to this, recent work 
has revealed that the composition and relative abundance of the microbes 
that make up a host’s microbiome is constantly changing, likely deter-
mined by pro cesses such as host sanctioning, competition, and succession 
of microbial taxa that feed back across spatial scales (Yatsunenko et al. 
2012, Copeland et al. 2015).

However, most studies of the microbiome within hosts are observa-
tional, not experimental, and are performed at single sites, focused on 
single microbial species, examine only a single host species, and do not 
characterize the regional microbial pool (but see U’Ren et al. 2010, U’Ren 
et al. 2012). Thus, our knowledge of the relative importance of pro cesses 
operating at diff er ent scales is lacking.  Because of this, our ability to pre-
dict the response of within- host microbial community diversity and func-
tion in a changing biotic and abiotic world is  limited by the lack of simul-
taneous, direct manipulations of the environment and mea sure ments of 
within- host microbial communities across sites.

Sampling the microbiome of hosts within a distributed experimental 
network could lay the foundation for predicting how global changes  will 
alter the function of microbial communities inhabiting hosts and feed back 
to determine the relative abundance of hosts, themselves. For example, 
by quantifying the effects of experimentally manipulated global change 
 factors on the identity, diversity, and relative abundance of microbes 
among host plant tissues (scale of millimeters), individual host plants (cen-
timeters to meters), among plots (meters), among species and treatments 
within a site, among sites (kilo meters or greater), and as a function of re-
gional and experimentally imposed environmental gradients, we could 
better characterize dispersal distances and the role of environmental fil-
tering and, importantly, understand the conditions and scales at which 
this community filtering is a dominant pro cess controlling the microbi-
ome of individual hosts.

The microbiome is a community of species and interacting individuals; 
ecological metacommunity paradigms (Leibold et al. 2004, Borer et al. 
2016) can help us sort through patterns and responses by the microbiome 
to experimental treatments spanning spatial scales. For example, a dis-
tributed experiment would allow us to determine  whether within- host mi-
crobial richness increases as a saturating function with increasing micro-
bial taxon pool size (Fukami 2004) and  whether this consistently differs 
by experimental treatment among sites. If niche- based pro cesses (e.g., host 
chemistry, environmental nutrients) primarily determine microbial com-
position at the local scale, we expect a strong correlation between host 
microbial composition and the local environment (Cottenie et al. 2003, 
Leibold et al. 2004, Chase 2007). Thus, by directly mea sur ing the response 
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of host- associated microbes to multiple concurrent global change  factors 
across a globally relevant range of conditions, a distributed experimental 
network could generate critical empirical data about the interactions and 
feedbacks among  factors controlling the microbiome. By harnessing the 
capacity of the research community deeply invested in  these questions, 
 these data could effectively complement insights from metagenomic ob-
servations, single- site (or lab) studies, and models, providing insights about 
generality and contingencies determining a host’s microbiome at an unpre-
ce dented range of spatial scales.

Conclusions

Perhaps this  will simply be another essay pointing out our need for pro-
gress in understanding the mechanisms under lying ecological relation-
ships spanning spatial and temporal scales. If so, it  will be an essay in 
venerable com pany. However, as a discipline, we have an ever richer and 
more diverse set of young scientists spanning the globe. This growth and 
diversity of ecologists can become a direct asset that can position our field 
to rethink how we work as a society of scientists. We can harness the col-
lective skills and knowledge of our amazing colleagues to create the new-
est tool in our own toolbox for generating previously unattainable experi-
mental data documenting pro cesses and feedbacks across scales. More 
generally, innovation and pro gress can come in many forms, including re-
thinking our approach to science. By rethinking how we study the world, 
redefining how we collect data, and pursuing ave nues outside the range 
of conventional approaches, ecologists may be able to push this field fur-
ther in the coming de cades than we have in the preceding ones.
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