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Introduction

There are three broad branches of decision analysis: normative, descriptive, 
and prescriptive. Normative analysis seeks to establish ideal properties of 
decision making, often aiming to give meaning to the terms “optimal” and 
“rational.” Descriptive analysis seeks to understand and predict how actual 
decision makers behave. Prescriptive analysis seeks to improve the perfor-
mance of actual decision making.

One might view normative and descriptive analysis as entirely distinct 
subjects. It is not possible, however, to cleanly separate prescriptive analy-
sis from the other branches of study. Prescriptive analysis aims to improve 
actual decisions, so it must draw on normative thinking to define “improve” 
and on descriptive research to characterize actual decisions.

This book offers prescriptive analysis that seeks to improve patient care. 
My focus is decision making under uncertainty regarding patient health 
status and response to treatment. By “uncertainty,” I do not just mean that 
clinicians and health planners may make probabilistic rather than definite 
predictions of patient outcomes. My main concern is decision making when 
the available evidence and medical knowledge do not suffice to yield precise 
probabilistic predictions.

For example, an educated patient who is comfortable with probabilistic 
thinking may ask her clinician a seemingly straightforward question such as 
“What is the chance that I will develop disease X in the next five years?” or 
“What is the chance that treatment Y will cure me?” Yet the clinician may not 
be able to provide precise answers to these questions. A credible response 
may be a range, say “20 to 40 percent” or “at least 50 percent.”
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Decision theorists use the terms “deep uncertainty” and “ambiguity” 
to describe the decision settings I address, but I shall encompass them 
within the broader term “uncertainty” for now. Uncertainty in patient 
care is common and has sometimes been acknowledged verbally. For 
example, the Evidence- Based Medicine Working Group asserts that (Insti-
tute of Medicine, 2011, p. 33): “clinicians must accept uncertainty and the 
notion that clinical decisions are often made with scant knowledge of their 
true impact.” However, uncertainty has generally not been addressed in 
research on evidence- based medicine, which has been grounded in classi-
cal statistical theory. I think this a huge omission, which this book strives 
to correct.

Surveillance or Aggressive Treatment

I pay considerable attention to the large class of decisions that choose 
between surveillance and aggressive treatment of patients at risk of poten-
tial disease. Consider, for example, women at risk of breast cancer. In this 
instance, surveillance typically means undergoing periodic mammograms 
and clinical exams, while aggressive treatment may mean preventive drug 
treatment or mastectomy.

Other familiar examples are choice between surveillance and drug treat-
ment for patients at risk of heart disease or diabetes. Yet others are choice 
between surveillance and aggressive treatment of patients who have been 
treated for localized cancer and are at risk of metastasis. A semantically dis-
tinct but logically equivalent decision is choice between diagnosis of patients 
as healthy or ill. With diagnosis, the concern is not to judge whether a patient 
will develop a disease in the future but whether the patient is currently ill 
and requires treatment.

These decisions are common, important to health, and familiar to clini-
cians and patients alike. Indeed, patients make their own choices related to 
surveillance and aggressive treatment. They perform self- surveillance by 
monitoring their own health status. They choose how faithfully to adhere 
to surveillance schedules and treatment regimens prescribed by clinicians.

Uncertainty often looms large when a clinician contemplates choice 
between surveillance and aggressive treatment. The effectiveness of sur-
veillance in mitigating the risk of disease may depend on the degree to 
which a patient will adhere to the schedule of clinic visits prescribed in a 
surveillance plan. Aggressive treatment may be more beneficial than sur-
veillance to the extent that it reduces the risk of disease development or 
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the severity of disease that does develop. It may be more harmful to the 
extent that it generates health side effects and financial costs beyond those 
associated with surveillance. There often is substantial uncertainty about 
all these matters.

Evolution of the Book

I am an economist with specialization in econometrics. I have no formal 
training in medicine. One may naturally ask how I developed an interest in 
patient care under uncertainty and feel able to contribute to the subject. It 
would be arrogant and foolhardy for me to dispense medical advice regard-
ing specific aspects of patient care. I will not do so. The contributions that 
I feel able to make concern the methodology of evidence- based medicine. 
This matter lies within the expertise of econometricians, statisticians, and 
decision analysts.

Research on treatment response and risk assessment shares a common 
objective: probabilistic prediction of patient outcomes given knowledge 
of observed patient attributes. Development of methodology for predic-
tion of outcomes conditional on observed attributes has long been a core 
concern of many academic disciplines.

Econometricians and statisticians commonly refer to conditional pre-
diction as regression, a term in use since the nineteenth century. Some 
psychologists have used the terms actuarial prediction and statistical pre-
diction. Computer scientists may refer to machine learning and artificial 
intelligence. Researchers in business schools may speak of predictive analytics. 
All these terms are used to describe methods that have been developed to 
enable conditional prediction.

As an econometrician, I have studied how statistical imprecision and 
identification problems affect empirical (or evidence- based) research that 
uses sample data to predict population outcomes. Statistical theory char-
acterizes the imprecise inferences that can be drawn about the outcome 
distribution in a study population by observing the outcomes of a finite 
sample of its members. Identification problems are inferential difficulties 
that persist even when sample size grows without bound.

A classic example of statistical imprecision occurs when one draws a 
random sample of a population and uses the sample average of an outcome 
to estimate the population mean outcome. Statisticians typically measure 
imprecision of the estimate by its variance, which decreases to zero as sample 
size increases. Whether imprecision is measured by variance or another 
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way, the famous “Laws of Large Numbers” imply that imprecision vanishes 
as sample size increases.

Identification problems encompass the spectrum of issues that are some-
times called non- sampling errors or data- quality problems. These issues can-
not be resolved by amassing so- called big data. They may be mitigated by 
collecting better data, but not by merely collecting more data.

A classic example of an identification problem is generated by missing 
data. Suppose that one draws a random sample of a population, but one 
observes only some sample outcomes. Increasing sample size adds new 
observations, but it also yields further missing data. Unless one learns the 
values of the missing data or knows the process that generates missing data, 
one cannot precisely learn the population mean outcome as sample size 
increases.

My research has focused mainly on identification problems, which often 
are the dominant difficulty in empirical research. I have studied probabilistic 
prediction of outcomes when available data are combined with relatively 
weak assumptions that have some claim to credibility. While much of this 
work has necessarily been technical, I have persistently stressed the simple 
truth that research cannot yield decision- relevant findings based on evi-
dence alone.

In Manski (2013a) I observed that the logic of empirical inference is 
summarized by the relationship:

assumptions + data ⇒ conclusions.

Data (or evidence) alone do not suffice to draw useful conclusions. Inference 
also requires assumptions (or theories, hypotheses, premises, suppositions) 
that relate the data to the population of interest. Holding fixed the available 
data, and presuming avoidance of errors in logic, stronger assumptions yield 
stronger conclusions. At the extreme, one may achieve certitude by pos-
ing sufficiently strong assumptions. A fundamental difficulty of empirical 
research is to decide what assumptions to maintain.

Strong conclusions are desirable, so one may be tempted to maintain 
strong assumptions. I have emphasized that there is a tension between 
the strength of assumptions and their credibility, calling this (Manski, 
2003, p. 1):

The Law of Decreasing Credibility: The credibility of inference 
decreases with the strength of the assumptions maintained.
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This “Law” implies that analysts face a dilemma as they decide what assump-
tions to maintain: Stronger assumptions yield conclusions that are more 
powerful but less credible.

I have argued against making precise probabilistic predictions with 
incredible certitude. It has been common for experts to assert that some event 
will occur with a precisely stated probability. However, such predictions 
often are fragile, resting on unsupported assumptions and limited data. Thus, 
the expressed certitude is not credible.

Motivated by these broad ideas, I have studied many prediction problems 
and have repeatedly found that empirical research may be able to credibly 
bound the probability that an event will occur but not make credible precise 
probabilistic predictions, even with large data samples. In econometrics 
jargon, probabilities of future events may be partially identified rather than 
point identified. This work, which began in the late 1980s, has been published 
in numerous journal articles and synthesized in multiple books, written at 
successive stages of my research program and at technical levels suitable for 
different audiences (Manski, 1995, 2003, 2005, 2007a, 2013a).

Whereas my early research focused on probabilistic prediction per se, 
I have over time extended its scope to study decision making under uncer-
tainty; that is, decisions when credible precise probabilistic predictions are 
not available. Thus, my research has expanded from econometrics to pre-
scriptive decision analysis.

Elementary decision theory suggests a two- step process for choice under 
uncertainty. Considering the feasible alternatives, the first step is to eliminate 
dominated actions— an action is dominated if one knows for sure that some 
other action is superior. The second step is to choose an undominated action. 
This is subtle because there is no consensus regarding the optimal way to 
choose among undominated alternatives. There are only various reasonable 
ways. I will later give content to the word “reasonable.”

Decision theory is mathematically rigorous, but it can appear sterile 
when presented in abstraction. The subject comes alive when applied to 
important actual decision problems. I have studied various public and pri-
vate decisions under uncertainty. This work has yielded technical research 
articles and a book on public policy under uncertainty written for a broad 
audience (Manski, 2013a).

I have increasingly felt that patient care is ripe for study as a problem 
of decision making under uncertainty. I therefore have sought to learn 
enough about research on evidence- based medicine to make original con-
tributions that build on my methodological background in econometrics 
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and decision analysis. The results include studies of diagnostic testing and 
treatment under uncertainty (Manski, 2009, 2013b), personalized care with 
partial assessment of health risks (Manski, 2018a), analysis and design of 
randomized clinical trials (Manski, 2004a; Manski and Tetenov, 2016, 2019), 
drug approval (Manski, 2009), and vaccination policy with partial knowl-
edge of disease transmission (Manski, 2010, 2017). I have also written a 
review article (Manski, 2018b).

The idea of writing a book evolved as I have accumulated background in 
evidence- based medicine and have developed an enlarging set of original 
research findings. A book provides the space to present major themes and 
to show how they become manifest in various contexts. A book enables an 
author to speak to a broader audience than is possible when writing research 
articles on particular topics.

I hope that this book will prove useful to a spectrum of readers. I would 
like it to help clinicians and public health planners recognize and cope with 
uncertainty as they make decisions about patient care. It may help patients 
to become informed about and participate in their own care. I anticipate 
that the book will help medical researchers design randomized trials and 
interpret the evidence they obtain from trials and observational studies. I 
will be pleased if the book encourages the biostatisticians who assist medical 
researchers to make constructive use of modern methodological advances 
in econometrics and statistical decision theory.

Some readers with certain types of expertise will correctly view the 
book as critical of the methodologies they have advocated. These include 
biostatisticians who have used the statistical theory of hypothesis testing to 
advise medical researchers on the design and analysis of randomized trials. 
They include personnel at the US Food and Drug Administration and other 
governmental agencies who regulate approval of new drugs, biologics, and 
medical devices. They include developers of clinical practice guidelines who 
have argued that evidence- based medicine should rest either solely or pre-
dominately on evidence from randomized trials, disregarding or downplaying 
evidence from observational studies. I hope that these readers will make the 
effort to understand the bases for my criticisms and that they will view the 
prescriptive decision analysis presented here as constructive suggestions.

Summary

Aiming to make the book accessible to a wide readership, the exposition in 
the main text is almost entirely verbal rather than mathematical. For readers 
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who want to dig deeper, I include a set of complements that formalize or 
elaborate on key parts of the discussion in the main text. I also provide refer-
ences to the technical articles that present the full analysis.

The eight chapters of the book move from review and critique in chapters 
1 and 2 to prescription in chapters 3 through 7 and conclusion. Chapter 1 
reviews the continuing discourse in medicine regarding the circumstances 
in which clinicians should adhere to evidence- based practice guidelines or 
exercise their own judgment, sometimes called “expert opinion.” Chapter 
2 critiques how evidence from randomized trials has been used to inform 
medical decision making.

Chapter 3 describes research on identification, whose aim is credible use 
of evidence to inform patient care. Chapter 4 develops decision- theoretic 
principles for reasonable care under uncertainty. Chapter 5 considers rea-
sonable decision making with sample data from randomized trials. Moving 
away from consideration of a clinician treating an individual patient, chapter 
6 views patient care from a population health perspective. Chapter 7 consid-
ers management of uncertainty in drug approval. The final chapter provides 
concluding suggestions that encourage putting the themes of the book into 
practice.
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