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1
introduction
TILMAN SAUER

The first direct observational detection of gravitational waves by the 
Laser Interferometer Gravitational- Wave Observatory (LIGO) consor-
tium on September 14, 2015, was a momentous event in the history of 
science. It shares a number of features with another decisive event of the 
previous century, the first direct observational detection of gravitational 
light bending during the solar eclipse of May 25, 1919. This, too, was a 
tiny effect predicted by a bold theory but was barely detectable given 
the day’s technology. Its observational confirmation, like that of LIGO, 
took many years of preparation and involved failed attempts, its case 
made more difficult by the adversities of war and international hostility. 
Yet both investigations provided strong support for Einstein’s theory of 
general relativity, a theory grounded on a willingness to question and 
seriously modify deeply entrenched notions of space and time.

Soon after the historic event took place, a meeting of leading scien-
tists, historians, and philosophers was held at the California Institute 
of Technology to reflect on Einstein’s legacy and to discuss its enduring 
validity. The meeting, which had been planned before the LIGO obser-
vation took place, reflected a centenary of Einstein’s general theory. As 
it turned out, the detection occurred almost exactly a hundred years 
after Einstein published his foundational field equations. The meet-
ing at Caltech, and the present volume, bring together leaders of the 
LIGO project with historians and sociologists of science to reflect on the 
event and its implications. The accounts in this volume offer a virtual 
participation in the process of science in the making, accompanied by 
informed historical, sociological, and philosophical reflection.

Barry Barish was principal investigator and director of the LIGO lab-
oratory in its crucial period between the mid- 1990s and 2005, when the 
project transitioned from a local endeavor at the two founding insti-
tutions Caltech and MIT to a multinational, multi- institutional large- 
scale science project involving eighteen nations, more than one hundred 
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 institutions, and in excess of a thousand individuals. His contribution 
opens the volume to remind us of the rapid pace of science, so rapid 
indeed that the detection overtook the initial planning of the anniver-
sary conference at Caltech. Barish, one of the recipients of the 2017 
Nobel Prize awarded for the discovery of gravitational waves, provides 
a concise account of the LIGO collaboration. His contribution conveys 
the sense of a rapidly expanding field that exploded into a spectrum 
of activities after a long period of preparation and gestation. Further 
observations of wave events followed the initial one on September 14, 
2015. His words evoke a field in which one sensational, new event is 
hardly processed and prepared for public announcement when the next 
renders the first old news. Barish’s contribution itself reflects the rapidly 
increasing success: he added a note in proof to announce that a second 
gravitational event (GW151226) had been detected during the first run 
(O1) of advanced LIGO, which took data between September 12, 2015, and 
January 19, 2016. That was followed by several more detections during 
the second observation run (O2) from November 30, 2016, to August 25, 
2017. During that period, LIGO not only produced further evidence for 
binary black hole mergers but also yielded evidence for the merger of a 
binary neutron star as a first observation of a gravitational- wave event in 
conjunction with its electromagnetic counterpart. More new data can be 
expected from the third observation run (O3), which is projected to begin 
taking data in February 2019. This run will include, in addition to the 
two LIGO interferometers, data taken from the European observatory 
VIRGO, which should allow more accurate localization as well as give, 
for the first time, information about the polarization of gravitational 
radiation.

Kip Thorne, who with Barish and Rainer (“Rai”) Weiss was awarded 
the 2017 Nobel Prize, was for many years a principal mover of the proj-
ect directly to detect gravitational radiation, having begun theoretical 
investigations into the subject in the late 1960s. His contribution to this 
volume provides a broad perspective on the significance of the endeavor, 
emphasizing its importance for our understanding of the observable 
universe’s curved space- time. Thorne’s reflections beautifully convey 
his long- standing fascination with general relativity’s counter- intuitive 
implications as he describes the development of the LIGO project from 
its first ideas to the large- scale international discovery machine. No one 
can tell this story better and with more authority than Kip Thorne, the 
institutional father of LIGO. Indeed, he has gone further in conveying 
the wonder of gravitational physics, serving as scientific adviser to the 
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film Interstellar, which trades on the possibilities suggested by some of 
the field’s implications.

Alessandra Buonanno, director at the Albert Einstein Institute for 
Gravitational Physics in Berlin and Professor of Physics at the Univer-
sity of Maryland, provides insight concerning what may begin to be 
detected with new gravitational- wave “telescopes.” A principal aim of 
the extraordinary technology developed for the LIGO interferometer 
was and remains to provide qualitatively new information in the fields 
of astrophysics and cosmology. Buonanno sketches the possibilities now 
opened by gravitational- wave astronomy. She explains the intricate and 
fascinating astrophysical processes that take place when black holes or 
neutron stars collide, inspiral, merge, and settle down, and explains 
what gravitational and electromagnetic signals we can expect from those 
violent processes.

Dan Kennefick, professor of physics at the University of Arkansas 
and a longtime collaborator of the Einstein Papers Project at Caltech, 
provides an intimate, historical account of the LIGO project. In addi-
tion to training as a historian, while a graduate student Kennefick was 
early involved in the efforts led by Kip Thorne to prepare the theoretical 
grounds underlying the empirical search for gravitational waves that 
eventuated in LIGO’s success. Drawing on his own experience and direct 
involvement, Kennefick points to the role of theorists and theoretical 
controversies in shaping the successful outcome of the quest, empha-
sizing in particular the importance of detailed numerical modeling. The 
large- scale simulations of such astrophysical catastrophes as black hole 
collisions through the explicit numerical solution of Einstein’s equations 
provided the filters by which the raw interferometric data was inter-
preted. In 2005, a breakthrough became possible when it was realized 
that special coordinate conditions allowed the uninterrupted simulation 
of the full cycle of the inspiral, merger, and ring down of a binary black 
hole. That breakthrough allowed LIGO researchers to interpret the in-
terferometric signals in terms of specific astrophysical causes, including 
estimates of distance as well as of initial and final masses.

Jürgen Renn, director at the Max Planck Institute for the History of 
Science, lays out a long- term history of research into the theory of rel-
ativity and gravitation that culminated in LIGO’s successful detection 
of waves. He reaches back to the preconditions that underpinned the 
theory of general relativity and the details of the heuristics deployed 
by Einstein in his search for the field equations. That almost exactly a 
century passed between Einstein’s publication of the equations and the 
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first direct observation of ripples in space- time is, of course, a numerical 
contingency. But it is a contingency that appeals to the historical mind. 
Renn takes it as a challenge for the historian to account for the longue 
durée of a historical process that began with a theoretical conjecture, 
that underwent ups and downs in the structure’s appeal and deployment 
by the physics community, settling at long last into a multimillion- dollar, 
large- scale endeavor that lasts for decades until delivering what had 
until then been a long- sought and discussed possibility. Renn focuses 
on the interplay between theoretical premises and experimental design, 
describing the transformation of the field from its origin in the imagina-
tion of a single mind to a collaborative enterprise involving thousands 
of scientists.

Harry Collins, professor of sociology at the University of Cardiff, 
has been interested in, and indeed associated with, the LIGO project 
for decades as a sociologist. Large- scale scientific projects, involving 
hundreds or thousands of researchers, technicians, and other person-
nel and enjoying levels of funding that surpass the means of individual 
groups or institutions, represent, Collins points out, a social reality of 
their own. This is particularly the case with LIGO, which was funded 
by the National Science Foundation at an unusually high level for more 
than two decades before achieving success. LIGO’s efforts put ever more 
stringent constraints on the observability of gravitational- wave events 
as its instruments became steadily and impressively more accurate. 
Collins has observed the ongoing research with the eye of a critical and 
skeptical sociologist since the early seventies. He tells an intriguing story 
concerning an attempt by a LIGO predecessor, Joe Weber, to detect the 
effect. Given the technology available in the 1970s, Weber employed 
resonant bars. These large aluminum cylinders, Weber argued, would 
be set into vibration by passing gravitational waves. Despite the near 
unanimous rejection by the community of his early claims of detection, 
Weber, Collins argues, should be seen as a pioneer of the field because 
his experimental work created the community interest that made fur-
ther work possible— most immediately the indirect observation of waves 
in 1975 by Hulse and Taylor due to energy loss by a neutron star binary.

Diana Buchwald, professor of history at Caltech and director of the 
Einstein Papers Project, focuses on Einstein’s relationship with the Cal-
ifornia Institute of Technology. Not only is Caltech a founding institute 
and core partner of the LIGO endeavor, since 2000 it has been host to the 
long- term, multi- volume editorial project of the Collected Papers of Albert 
Einstein. Under Buchwald’s aegis, to date eight volumes of writings and 
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correspondence from the years 1918 to 1927 have been published. This 
is particularly apposite since Caltech’s relationship with the founder of 
general relativity and the originator of the idea of gravitational waves 
goes back to the very beginnings of the theory, when Einstein corre-
sponded in 1913 with the Caltech astronomer George Hale about the 
possibility of observing gravitational light deflection. Had historical 
circumstances been slightly different, Caltech might have become Ein-
stein’s home after he was forced to leave Germany and emigrate to the 
United States following the acquisition of power by the Nazis. He spent 
three winters in the early 1930s at Caltech, before finally accepting an 
offer at the Institute for Advanced Study in Princeton, which became his 
home for more than twenty years until his death in 1955.

Don Howard, professor of philosophy at the University of Notre 
Dame, focuses on the impact that Einstein’s theory had for our modern 
understanding and philosophy of science. Philosophical reflection of 
science in the twentieth century underwent profound transformations 
with the advent of general relativity. Indeed, philosophy of science in a 
modern sense was created, Howard suggests, in its present form not the 
least by Einstein himself in a debate with philosophical interlocutors 
such as Moritz Schlick, Hans Reichenbach, Rudolf Carnap, Ernst Cas-
sirer, and others. Howard goes back to the early years of the radically 
new understanding of space and time when it was first explored by 
philosophers. Howard describes how, in response, they reconsidered 
long- standing problems in the relationship between empirical and con-
ceptual content, discussing in so doing the principal aspects of theory 
verification, the distinction between the a priori and convention, and 
the ontological structure of physical theory. Philosophy of science in the 
1920s, Howard argues, reacted primarily and importantly to Einstein’s 
theory of general relativity. In light of LIGO’s first direct observation of 
gravitational waves, predicted by Einstein one hundred years before, 
this debate has lost nothing of its relevance.
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