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Chapter 1
The 1800s

As we have seen, Johns Hopkins University was the first American edu-
cational establishment to be founded with an aim of encouraging and 
providing facilities for research, and in the fall of 1875 its first president, 
Daniel Coit Gilman, traveled to Eu rope to headhunt the very best re-
searchers to lead its departments. Mathe matics was the first faculty to 
open, with James Joseph Sylvester appointed as its guiding light. Sylves-
ter published many papers, including some that relate to graph theory.1

The story of Johns Hopkins and its mathe matics during its first few 
years is essentially that of Sylvester, but also involves other notable fig-
ures. Two scholars impor tant to its early history, and to the development 
of mathe matics in Amer i ca,  were William Edward Story, a mathemati-
cian with a talent for organ ization but  little luck, and Charles Sanders 
Peirce, a brilliant but somewhat wayward polymath. Also impor tant to 
our story is Alfred Kempe, a compatriot of Sylvester’s, whose erroneous 
solution of the four color prob lem was to have a profound influence on 
graph theory in Amer i ca over the ensuing years.

JAMES JOSEPH SYLVESTER

J. J. Sylvester was born James Joseph on September 3, 1814, in London. 
His  father, a Jewish merchant, was named Abraham Joseph. In his teen-
age years, James Joseph added the surname Sylvester, as three names 
 were a necessary requirement for pos si ble migration to Amer i ca, a step 
being taken by his  brother at the time.

At the age of 14, Sylvester entered University College, London, where 
he was taught by Augustus De Morgan, the professor of mathe matics, 
but  after five months his  family de cided to withdraw him and send him 
to study at the Royal Institute School in Liverpool. In 1831, he went to 
St John’s College in the University of Cambridge, but suffered from 
an illness that caused him to miss most of the academic years 1833–35. 
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Although a brilliant scholar, coming second in the 1837 Mathematical 
Tripos examinations, he was not permitted to receive his Cambridge 
degree  because he was Jewish and unwilling to sign the Articles of 
the Church of  England. Indeed,  because of his religion, he was un-
able to gain a university position at  either Cambridge or Oxford, even 
though his undoubted ability deserved such an appointment. How-
ever, from 1837 to 1841 he was professor of natu ral philosophy at Univer-
sity College, London, one of the few non- sectarian institutions, and 
in 1841 he was awarded bachelor’s and master’s degrees from Trinity 
College, Dublin.

In the same year, Sylvester was appointed professor of mathe matics 
at the University of  Virginia, but he resigned  after only a few months 
following an unfortunate clash with a student and a lack of support 
from the university. Unable to obtain another post in Amer i ca, he re-
luctantly returned to  England where he gained employment as an ac-
tuary at a life insurance com pany in London; he also gave private les-
sons in mathe matics. In 1846, he de cided to study law, and during his 
training as a barrister he met the mathematician Arthur Cayley, whose 
four- year fellowship at Trinity College, Cambridge, had just ended. 
Unwilling to take Holy  Orders, then a condition of appointment at 
Trinity, Cayley needed a profession and chose law, studying at Lin-
coln’s Inn in London. Despite their very diff er ent personalities, Cayley 
and Sylvester became lifelong friends and collaborated on many math-
ematical prob lems.

In 1855, Sylvester became professor of mathe matics at the Royal Mil-
itary Acad emy at Woolwich, where he remained  until 1870 when War 
Office regulations required him to retire at age 55. So Sylvester was al-
ready retired when in 1876 he received President Gilman’s invitation to 
become the first professor of mathe matics at Johns Hopkins University. 
In September of the previous year, Benjamin Peirce, a friend of Sylves-
ter’s, had already written to Gilman to urge him to engage Sylvester:2

Hearing that you are in  England, I take the liberty to write you concerning 
an appointment in your new university, which I think would be greatly for 
the benefit of our country and of American science if you could make it. It 
is that of one of the two greatest geometers of  England, J. J. Sylvester. If you 
inquire about him, you  will hear his genius universally recognized but his 
power of teaching  will prob ably be said to be quite deficient. Now  there is 
no man living who is more luminary in his language, to  those who have the 
capacity to comprehend him than Sylvester, provided the hearer is in a lucid 
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interval. But as the barn yard fowl cannot understand the flight of the ea gle, 
so it is the ea glet only who  will be nourished by his instruction . . .

Among your pupils, sooner or  later,  there must be one, who has a genius 
for geometry. He  will be Sylvester’s special pupil— the one pupil who  will 
derive from his master, knowledge and enthusiasm— and that one pupil  will 
give more reputation to your institution than ten thousand, who  will com
plain of the obscurity of Sylvester, and for whom you  will provide another 
class of teachers . . .

I hope that you  will find it in your heart to do for Sylvester— what his 
own country has failed to do— place him where he belongs— and the time 
 will come, when all the world  will applaud the wisdom of your se lection.

Even though many considered Sylvester to be the finest mathematician 
in the English- speaking world, he was both surprised and delighted to 
receive Gilman’s invitation to occupy a position from which he would 
derive considerable enjoyment and success.

On taking up his appointment in May of 1876, at a salary of $5000 
per annum (which, at his insistence, was paid in gold),3 Sylvester set 

James Joseph Sylvester (1814–97).
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about realizing Gilman’s objective by initiating research work in the 
mathe matics department. He selected two gradu ate fellows, George 
Bruce Halsted and Thomas Craig, to join the mathe matics faculty, and 
in the fall he recruited William E. Story from Harvard.

Sylvester presented his inaugural lecture on February 22, 1877, the 
first anniversary of the official opening of the university. His pre sen ta tion 
covered many subjects, including how mathe matics should be taught 
and studied, and the role that Johns Hopkins should play in the develop-
ment of mathe matics and of further education in Amer i ca. He also took 
the opportunity to attack  those En glish universities that discriminated 
against all who  were not Protestant Christians. Having encountered 
such prejudice himself, he criticized the damage that had been done to 
higher education by the exclusion of Jews, Catholics, and  others.

In 1861, Yale College became the first American institution to confer 
doctoral degrees. The first mathe matics doctorate  there was in 1862, and 
 later degrees  were awarded for dissertations on “The Daily Motion of a 
Brick Tower Caused by Solar Heat” and “On Three- Bar Motion”. In the 
1870s, doctorates in mathe matics  were awarded four times at Yale, once 
at Cornell and at Dartmouth, and twice at Harvard and at Johns Hop-
kins. Sylvester had been quick to take on postgraduate students, and 
while in Baltimore he supervised eight of them:4

1878: Thomas Craig, The Repre sen ta tion of One Surface upon 
Another, and Some Points in the Theory of the Curvature of 
Surfaces

1879: George Bruce Halsted, Basis for a Dual Logic
1880: Fabian Franklin, Bipunctual Coordinates
1880: Washington Irving Stringham, Regular Figures in  

n- Dimensional Space
1882: Oscar Howard Mitchell, Some Theorems in Numbers
1883: William Pitt Durfee, Symmetric Functions
1883: George Stetson Ely, Bernoulli’s Numbers
1884: Ellery William Davis, Parametric Repre sen ta tions  

of Curves

Another of Sylvester’s preoccupations was the American Journal of 
Mathe matics, the oldest mathe matics journal in continuous publication 
in North Amer i ca, and still being published  today. Sylvester is usually 
credited as its founder, and with the help of William Story he published 
the first issue in 1878. The Journal was intended to be a vehicle for dia-
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log between American mathematicians, although space was also made 
available for foreign contributions. Indeed, the first issue included con-
tributions from the Americans Simon Newcomb, C. S. Peirce, William 
Story, Thomas Craig, George Halsted, and Fabian Franklin, while other 
contributing authors  were the En glishmen Arthur Cayley, William King-
don Clifford, Edward Frankland, and Sylvester himself.

The first six volumes of the Journal, which covered 1878–83 and for 
which Sylvester was responsible, contained nearly two hundred articles. 
Papers by Sylvester featured in each volume, with thirty- two entries in 
total, and Cayley contributed to five of  these volumes. Another early Eu-
ro pean contributor was the Danish mathematician Julius Petersen (see 
Interlude A), while other Americans included Benjamin Peirce and the 
rest of Sylvester’s doctoral students. Moreover, Sylvester had been suc-
cessful in promoting the new publication, with its “List of Subscribers” 
on July 1, 1878, totaling nearly 150; thirty- six of  these  were institutions, 

The first issue of the American Journal of  
Mathe matics, 1878.
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some of which took multiple copies, with three addresses in Paris, six in 
 England, and two in Canada.

Sylvester was happy at Johns Hopkins University. For the first time 
in his life, he was able to teach and carry out research based on his own 
ideas and on chosen topics within a university environment. His Math-
ematical Seminarium, as he called his school of mathe matics, was soon 
recognized in American mathematical circles and in Eu rope, while pa-
pers published by this group, most of which appeared in the American 
Journal of Mathe matics,  were widely read at home and abroad. The Ameri-
can mathematician George Andrews has commented that the collective 
output during  these years amounted to a “monumental” contribution to 
combinatorics,5 and it was widely accepted that Sylvester and his school 
 were succeeding in putting Amer i ca on the mathematical map.

In December of 1879, the university issued the first of its Johns Hop-
kins University Circulars. This publication was initially intended to com-
municate the full scope of the research being undertaken throughout 
the university; indeed, Sylvester published some of his notes, papers, 
and lectures  there. It also included correspondence between (and in-
formation about) members of the vari ous faculties, and in a letter to 
Cayley in 1883, Sylvester observed that the Circulars acted as “a sort of 
rec ord of pro gress in connection with the work and personality of the 
Johns Hopkins”.6

Chemistry and Algebra

William Kingdon Clifford, a gradu ate of Trinity College, Cambridge, 
was one of the major British mathematicians of his time before his un-
timely death at the age of 33. Clifford believed, as did Sylvester, that 
 there  were direct connections between chemistry and the algebra of 
invariants.

Edward Frankland was a British chemist who held appointments in 
Britain and in continental Eu rope, and who for many years was respon-
sible for the continuous analy sis of London  water supplies; he also served 
on a Royal Commission on  water pollution. In 1866, based on the chem-
ical theory of valency that had recently been introduced by August 
Kekulé and  others, Frankland published his introductory Lecture Notes 
for Chemical Students,7 in which he explained how atoms and bonds could 
be depicted graphically with circles and connecting lines. Beginning with 
 water, he also listed the “symbolic formulae” and “graphic notations” 
for several chemical compounds. His symbolic formulae  were expres-
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sions of the atoms and their quantities which combine to form chemical 
compounds, and for his graphic notation he represented each atom by 
a letter enclosed in a circle, with all single and multiple bonds identi-
fied by lines joining the appropriate circles. For example, he gave  water 
the symbolic formula OH2 to indicate an oxygen atom (with valency 2) 
linked to two hydrogen atoms, and his symbolic formula for “ammonic 
chloride” was NH4Cl, with a nitrogen atom (with valency 5) linked to a 
chlorine atom and four hydrogen atoms.

H O H H

H

N Cl

H H

Frankland’s graphic notations for  water (H2O) 
and ammonium chloride (NH4Cl).

Sylvester was already convinced of the connection between chemis-
try and algebra and was much taken with Frankland’s Lecture Notes. In 
1878, while at Johns Hopkins, Sylvester wrote a short note that was 
published in Nature.8 Its opening paragraph shows his enthusiasm 
for the subject, and the extent to which he had been energized by 
Frankland:

It may not be wholly without interest to some of the readers of Nature to 
be made acquainted with an analogy that has recently forcibly impressed 

Edward Frankland (1825–99) and William Kingdon Clifford (1845–79).
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me between branches of  human knowledge apparently so dissimilar as mod
ern chemistry and modern algebra. I have found it of  great utility in explaining 
to non mathematicians the nature of the investigations which algebraists 
are at pre sent busily at work upon to make out the so called Grundformen or 
irreducible forms appurtenant to binary quantics taken singly or in systems, 
and I have also found that it may be used as an instrument of investigation 
in purely algebraical inquiries. So much is this the case that I hardly ever 
take up Dr.  Frankland’s exceedingly valuable Notes for Chemical Students, 
which are drawn up exclusively on the basis of Kekulé’s exquisite concep
tion of valence, without deriving suggestions for new researches in the the
ory of algebraical forms. I  will confine myself to a statement of the grounds 
of the analogy, referring  those who may feel an interest in the subject and 
are desirous for further information about it to a memoir which I have writ
ten upon it for the new American Journal of Pure and Applied Mathe matics, 
the first number of which  will appear early in February.

This note was typical of Sylvester’s writing style— scholarly, but verg-
ing on the flowery. As promised, he then expanded on this note in a 
paper in Volume I of his American Journal of Mathe matics.9

J. J. Sylvester: On an application of the new atomic theory to the 
graphical repre sen ta tion of the invariants and covariants of 

binary quantics,— with three appendices (1878)

In this lengthy paper, Sylvester described in detail his reasons for 
believing in a close connection between the chemistry of organic 
molecules and the algebraic study of invariant theory. Its first two 
paragraphs give a flavor of his prose, in language that one now 
rarely encounters in academic papers:

By the new Atomic Theory I mean that sublime invention of Kekulé 
which stands to the old in a somewhat similar relation as the Astron
omy of Kepler to Ptolemy’s, or the System of Nature of Darwin to 
that of Linnaeus;— like the latter it lies outside of the immediate 
sphere of energetic, basing its laws on pure relations of form, and like 
the former as perfected by Newton,  these laws admit of exact arith
metic definitions.

Casting about, as I lay awake in bed one night, to discover some 
means of conveying an intelligible conception of the objects of modern 
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algebra to a mixed society, mainly composed of physicists, chemists 
and biologists, interspersed only with a few mathematicians, to which 
I stood engaged to give some account of my recent researches in this 
subject of my predilection, and impressed as I had long been with a 
feeling of affinity if not identity of object between the inquiry into 
compound radicals and the search for “Grundformen” or irreduc
ible invariants, I was agreeably surprised to find, of a sudden, dis
tinctly pictured on my  mental ret ina a chemico graphical image 
serving to embody and illustrate the relations of  these derived al
gebraical forms to their primitives and to each other which would 
perfectly accomplish the object I had in view, as I  will now proceed 
to explain.

In this paper he again heaped praise on Frankland’s Lecture Notes:

The more I study Dr Frankland’s wonderfully beautiful  little treatise 
the more deeply I become impressed with the harmony or homology 
(I might call it, rather than analogy) which exists between the chem
ical and algebraical theories.

Some chemical diagrams from Sylvester’s paper.
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 Later in the same work he became even more eloquent, enthus-
ing that “I feel as Aladdin might have done in walking in the garden 
where  every tree was laden with precious stones”, and continuing:

Chemistry has the same quickening and suggestive influence upon the 
algebraist as a visit to the Royal Acad emy, or the old masters may be 
supposed to have on a Browning or a Tennyson. Indeed it seems to 
me that an exact homology exists between painting and poetry on 
the one hand and modern chemistry and modern algebra on the other. 
In poetry and algebra we have the pure idea elaborated and expressed 
through the vehicle of language, in painting and chemistry the idea en
veloped in  matter, depending in part on manual pro cesses and the 
resources of art for its due manifestation.

The analogy that Sylvester was trying to make was between “binary 
quantics” in algebra and atoms in chemistry. A binary quantic is a homo-
geneous expression in two variables, such as

ax 3 +  3 bx 2y +  3 cxy 2 +  dy3,

and an invariant is a function of the coefficients a, b, c, and d that re-
mains essentially unaltered  under linear transformations of the variables 
x and y. Sylvester explained that this analogy evolved from his diagram-
matic repre sen ta tions of chemical compounds, and in his 1878 note in 
Nature, he provided the following explanation of the connections be-
tween atoms and binary quantics. It is  here that the word graph (in our 
modern sense) made its first appearance.

The analogy is between atoms and binary quantics exclusively.
I compare  every binary quantic with a chemical atom. The number of 

 factors (or rays, as they may be regarded by an obvious geometrical inter
pretation) in a binary quantic is the analogue of the number of bonds, or 
the valence, as it is termed, of a chemical atom.

Thus a linear form may be regarded as a monad atom, a quadratic form 
as a duad, a cubic form as a triad, and so on.

An invariant of a system of binary quantics of vari ous degrees is the 
analogue of a chemical substance composed of atoms of corresponding 
valences.
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The order of such [an] invariant in each set of coefficients is the same 
as the number of atoms of the corresponding valence in the chemical 
compound . . .

The weight of an invariant is identical with the number of the bonds in 
the chemicograph of the analogous chemical substance, and the weight of 
the leading term (or basic differentiant) of a co variant is the same as the 
number of bonds in the chemicograph of the analogous compound radical. 
 Every invariant and covariant thus becomes expressible by a graph precisely 
identical with a Kekuléan diagram or chemicograph . . .  I give a rule for the 
geometrical multiplication of graphs, that is, for constructing a graph to the 
product of in  or co variants whose separate graphs are given.

H C C

H H

H H

O H

The graph of a chemical molecule.

In spite of his enthusiasm for his analogy between chemistry and al-
gebra, Sylvester was somewhat apprehensive that it might not meet with 
universal ac cep tance. Perhaps he suspected that it would be rejected, as 
he wrote to Simon Newcomb, a mathematician and astronomer at the 
Naval Observatory in Washington, who in 1884 became professor of 
mathe matics and astronomy at Johns Hopkins:10

I feel anxious as to how it  will be received as it  will be thought by many 
strained and over fanciful. It is more a “reverie” than a regular mathemati
cal paper. I have however added some supplementary mathematical  matter 
which  will I hope serve to rescue the chemical portion from absolute con
tempt. It may at the worst serve to suggest to chemists and Algebraists that 
they may have something to learn from each other.

Although  there was some academic debate on the theory, it soon ran 
its course as it became apparent that the only link between chemistry 
and algebra was “the use of a similar notation”.11 Despite the detailed 
descriptions in Sylvester’s note, the associated paper, and his subsequent 
correspondence with chemists and mathematicians, his ideas  were gen-
erally considered to have only a passing connection between Kekulé’s 
notation for chemical compositions and the theory of trees developed 
by Arthur Cayley.
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Trees

A tree is a connected graph without cycles. In any tree the number of edges 
is one less than the number of vertices, and any connected graph with 
this property is a tree.

The trees with six vertices.

As we have seen, Cayley had met Sylvester during their years in Lon-
don, and they remained lifelong friends and collaborators on mathemat-
ical  matters. Between 1857 and 1889, Cayley produced a number of 
publications on trees. His first paper of 1857 was the earliest to use the 
word “tree” in our sense,12 although both Gustav Kirchhoff (in connec-
tion with his work on electrical networks) and Karl Georg Christian von 
Staudt had used the idea around ten years  earlier. Cayley’s interest in trees 
originally “arose . . .  from the study of operators in the differential calcu-
lus”, being inspired by some of Sylvester’s work on “differential trans-
formation and the reversion of serieses”. His earliest papers dealt with 
rooted trees only, in which one par tic u lar vertex is designated as the “root”, 
usually placed at the top, as follows:

i

d

b

a

c

fe g h

j k l

Isomers are chemical compounds with the same chemical formula but 
diff er ent atomic configurations; the next figure shows two molecules 
with the formula C4H10 (n- butane and 2- methyl propane, formerly called 
butane and isobutane). Cayley wrote several papers in which he related 
work on chemical compositions to his studies of trees, and in 1874 he 
published the short paper “On the mathematical theory of isomers”,13 
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in which his work on trees was used in the recognition and enumera-
tion of chemical isomers. Two further papers, in 1875 and 1877, also dealt 
with the connections between trees and chemical composition.14

H C

H H H H

H H H H

C

H

H H H H

HH

C

H

HC C

C

H

C C H

Two chemical isomers.

Sylvester wrote two short papers on trees while at Johns Hopkins. The 
first of  these, “On the mathematical question, what is a tree?”, was pub-
lished in 1879 in the Mathematical Questions with Their Solutions, from the 
“Educational Times”. The second, on “ramifications” (his name for trees), 
appeared in the same year in the first issue of the Johns Hopkins Univer-
sity Circulars.15

Sylvester undoubtedly felt the lack of mathematical peers at Johns 
Hopkins University and in the United States generally, especially  after 
the death of Benjamin Peirce in 1880, and wished that Cayley could visit 
him. Deprived of their frequent meetings of  earlier days, Sylvester sent 

Arthur Cayley (1821–95).
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him a number of letters in early 1881, inviting him to teach for a period 
at Johns Hopkins. Sylvester painted an encouraging picture of the so-
cial and academic life in Baltimore, and promised that Cayley would be 
rewarded both academically and financially. His letters, and a visit to 
Cayley in Cambridge in August 1881, fi nally persuaded Cayley to visit 
Johns Hopkins for six months during the spring semester of 1882, and 
to pre sent a series of lectures during his visit. While  there, Cayley also 
published papers in the Johns Hopkins University Circulars and the Amer-
ican Journal of Mathe matics.

ALFRED KEMPE

In 1852, Francis Guthrie, a former student of Augustus De Morgan’s 
at University College, London, was coloring the counties of a map of 
 England. Finding that just four colors  were sufficient for this task, he 
asked the following more general question, which would become known 
as the four color prob lem:

Can the countries of  every map be colored with at most four col-
ors so that no two neighboring countries are colored the same?

A map that requires four colors.

De Morgan became intrigued by the prob lem and wrote to the Irish 
mathematician William Rowan Hamilton and  others asking  whether 
four colors always suffice. He also mentioned it in a review of a book by 
William Whewell in The Athenaeum,16 but died in 1871 without knowing 
the answer. The four color theorem, that all maps on the plane or a sphere 
can indeed be so colored, was not proved  until 1976—by Kenneth Appel 
and Wolfgang Haken, two mathematicians at the University of Illinois 
at Urbana– Champaign (see Chapter 6).17
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Arthur Cayley also became interested in the four color prob lem, and 
on June 13, 1878, at a meeting of the London Mathematical Society, he 
asked  whether it had been solved; his query was recorded in the soci-
ety’s Proceedings and in a report of the meeting in Nature.18 In a short note 
in the Proceedings of the Royal Geo graph i cal Society in April 1879,19 he de-
scribed some of the difficulties inherent in tackling the prob lem. He also 
made the useful suggestion that certain restrictions can be imposed on 
the maps  under consideration without any loss of generality; in par tic-
u lar, he proved that when tackling the four color prob lem, we may as-
sume that they are cubic maps, with exactly three countries at each meet-
ing point. From now on, when desirable, we  shall assume that the maps 
we are considering are cubic maps.

Also attending the London Mathematical Society’s meeting was Al-
fred Kempe (pronounced “kemp”), a former student of Cayley’s at Cam-
bridge, and yet another En glish mathematician who then became a bar-
rister. Most of Kempe’s early mathematical work was associated with 
the geometry of mechanical linkages. He  later became trea surer of the 
Royal Society of London and was knighted in 1912.

Kempe was intrigued by Cayley’s query on the four color prob lem 
and believed that he could solve it. On July 17, 1879, he announced a 
“solution” in Nature.20 His attempted proof of the four color theorem 
was “On the geo graph i cal prob lem of the four colours” and— presumably 
at Cayley’s suggestion—he submitted it to the newly founded American 
Journal of Mathe matics, which was seeking papers from Eu ro pean au-
thors. Kempe outlined the inherent challenge as follows:21

Alfred Bray Kempe (1849–1922).



32 CHAPTER 1

Some inkling of the nature of the difficulty of the question,  unless its weak 
point be discovered and attacked, may be derived from the fact that a very 
small alteration in one part of a map may render it necessary to recolour 
it throughout.  After a somewhat arduous search, I have succeeded, suddenly, 
as might be expected, in hitting upon the weak point, which proved an easy 
one to attack. The result is, that the experience of the map makers has not 
deceived them, the maps they had to deal with, viz:  those drawn on simply 
connected surfaces, can, in  every case, be painted with four colours. How 
this can be done I  will endeavour—at the request of the Editor in Chief—
to explain.

As we have seen, the editor in chief was J. J. Sylvester.
Kempe’s paper was published  later in the year in Volume 2 of the 

American Journal of Mathe matics. Unfortunately, it contained a fatal error 
which was not discovered  until eleven years  later, during which time his 
proof had become generally accepted. In 1890 Percy Heawood exposed 
Kempe’s error (see Interlude A).

A. B. Kempe: On the geo graph i cal prob lem  
of the four colours (1879)

In 1750, Leonhard Euler observed that if a polyhedron has F  faces, 
E edges, and V vertices, then F + V = E + 2. Using this result, Kempe 
deduced that if a map has D districts or countries (not counting 
the external region), B bound aries between countries, and P “points 
of concourse” where at least three districts meet, then

P + D − B − 1 = 0.

He then used a counting argument to show that, for a general map,

5d1 + 4 d2 + 3d3 + 2d4 + d5 −  etc. =  0,

where, for each k, dk is the number of districts of the map with k 
bound aries, and the term “ etc.” is a collection of terms whose sum 
is positive. It follows that the sum of the first five terms is also posi-
tive, and so not all of d1 to d5 can be 0— that is:

 Every map drawn on a simply connected surface must have a district 
with less than six bound aries.
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(A surface is simply connected if it is in one piece and has no “holes”, 
so a plane or sphere is simply connected but a torus is not.)

From this remarkable result, Kempe developed an algorithm for 
coloring any map by using a system of what he called “patches”. 
This pro cess involved selecting a district with five or fewer neigh-
bors and covering it with a slightly larger blank piece of paper, or 
patch. He then joined all the bound aries that touch the edge of the 
patch to a single point within the patch; this has the effect of re-
ducing the number of districts by 1, as shown below. The pro cess 
is then repeated  until only one district remains—as Kempe put it, 
“The  whole map is patched out”— and this remaining district is 
then colored with any of the four colors.

Kempe’s patching pro cess.

Kempe then reversed the patching pro cess, removing one patch 
at a time and successively coloring the uncovered districts with any 
available color  until the original map was colored with four colors. 
Unfortunately, his explanation of this final step was incomplete. 
His patching procedure works as long as each restored district has 
at most three bound aries, but if it has four or five bound aries, then 
it may be surrounded by districts that require all four colors.

To overcome this difficulty, Kempe developed a strategy for col-
oring maps that is now called the method of Kempe chains or a 
Kempe- chain argument. In this method, we interchange two colors 
in order to enable the coloring of two neighboring districts that 
could not previously be colored. His argument was based on the 
fact that if we are given a map in which all the districts except 
one are colored, and if the districts that surround the uncolored one 
are assigned all four colors, then such an interchange of colors 
can enable the uncolored district to be colored also. This impor tant 
line of argument was  later to become one of the standard tools in 
the coloring of maps.
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(blue)
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(green)
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As an example of his method, consider the above map in which 
the uncolored district is surrounded by four districts that have been 
assigned diff er ent colors. The districts A and C that have been as-
signed the colors green and red are  either connected by a continu-
ous chain of green and red districts, or are not so connected. In the 
latter case, we may exchange the colors green and red in the chain 
of green– red districts connected to district A without altering the 
color of district C; this exchange of colors results in districts 
A and C both being colored red, so that the uncolored district can 
be colored green. However, if  there is a continuous chain of green– 
red districts that joins A and C, then  there is no advantage to mak-
ing such an interchange of colors. But in this case  there can be 
no continuous chain of yellow and blue districts joining districts 
B and D, and so we can recolor  either of the yellow– blue chains 
connected to B or D. The districts B and D are then  either both yel-
low or both blue, thereby allowing the four surrounding districts 
to be colored with three colors, and leaving the fourth color for 
the central one.

Kempe then considered maps containing an uncolored district 
with five sides, and the incorrect application of his method in this 
case gave rise to his famous error. His  mistake was to attempt two 
color interchanges at the same time;  either interchange by itself 
would have been valid, but to apply them si mul ta neously could 
result in two neighboring districts receiving the same new color.

Kempe then noted the following two special cases of interest:

If  there is an even number of boundary lines at each point, 
two colors suffice to color the map.

If  every district of a cubic map has an even number of bound-
ary lines, three colors suffice.
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Before leaving his paper, we mention that Kempe was the first 
to introduce the idea of duality and to pose the dual formulation 
of the four color prob lem:

If we lay a sheet of tracing paper over a map and mark a point on it 
over each district and connect the points corresponding to districts 
which have a common boundary, we have on the tracing paper a dia
gram of a “linkage,” and we have as the exact analogue of the question 
we have been considering, that of lettering the points in the linkage with 
as few letters as pos si ble, so that no two directly connected points 
 shall be lettered with the same letter.
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Coloring a map and its dual graph.

So the four color prob lem can be equivalently stated in terms of 
coloring the points of a related linkage or graph, as just explained. 
This idea  will reappear in Chapter 4, where we investigate dual-
ity, and Chapter 6, where we describe the eventual resolution of the 
prob lem.

In the subsequent months, Kempe issued two revisions of his proof.22 
The first, an untitled abstract that is “simpler, and is  free from some er-
rors which appeared in the former” was published in the Proceedings of 
the London Mathematical Society in 1879.  There, Kempe mentioned his 
proof in the American Journal of Mathe matics, and provided a streamlined 
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description of his reduction and patching methods, with instructions for 
interchanging colors within chains. His second follow-up paper, “How 
to colour a map with four colours”, published in Nature on February 26, 
1880, was similar in content to the untitled abstract. It was again offered 
as a simplification, and in Kempe’s own words,

I have succeeded in obtaining the following  simple solution in which math
ematical formulae are con spic u ous by their absence.

Neither of  these revised versions indicated any recognition of his fun-
damental error.

On reading  these two papers  today, we cannot help arriving at the 
conclusion that Kempe was not trumpeting his claimed achievement, 
but was modestly confident that he had found the solution to a prob-
lem that had vexed and entertained a considerable number of mathe-
maticians, both professional and amateur.

WILLIAM STORY

William Edward Story was born on April 29, 1850, in Boston, Mas sa-
chu setts. One ancestor, the En glishman Elisha Story, had arrived in 
Amer i ca around 1700 and settled in Boston, while another took part in the 
Boston Tea Party.

William Story entered Harvard University in 1867, and was one of the 
first students to be awarded the newly created honors degree in mathe-
matics. He then became one of the earliest American mathematicians to 
attend a German university, gaining a doctorate from Leipzig University 

William Story 
(1859–1930).
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in 1875 for his dissertation, On the Algebraic Relations Existing Between the 
Polars of a Binary Quantic.

On returning to the United States, Story became a tutor at Harvard 
University. He is known to have impressed Benjamin Peirce while an 
undergraduate at Harvard, and this view increased as Story carried out 
his tutorial duties. Indeed, so convinced was Peirce of Story’s merits, that 
when Sylvester solicited suggestions of suitable mathematicians to join 
the newly founded department of mathe matics at Johns Hopkins Uni-
versity, Peirce recommended Story.

In the hot summer months of 1876, Sylvester de cided to return to 
 England, and it was left to the Johns Hopkins president, Daniel Gilman, 
to interview Story and to make any decision on his employment as Syl-
vester’s assistant. Gilman’s initial terse approach was not enthusiastically 
received by Story, who found it a  little patronizing, and his reply was 
perhaps a trifle sharp. But he did ask for an interview, during which he 
outlined his ideas for the creation of a learned mathematical journal and 
a student society. Story was duly offered the Johns Hopkins position, 
but not before he had tried unsuccessfully to improve his status at Harvard. 
In the autumn, Story moved to Baltimore as an “associate” (equivalent 
to an assistant professor at some other universities).  Later, in 1883, when 
the university introduced the title of associate professor, Story was pro-
moted to that position.

Initially, life at Johns Hopkins went well for Story. He set about help-
ing to develop the mathe matics department, and his preference was to 
model it on the example he had experienced while in Germany. He as-
sisted Sylvester in setting up the American Journal of Mathe matics and was 
intimately involved in the founding of a mathematical society within the 
university. As Roger Cooke and V. Frederick Rickey have observed:23

 There is evidence that Story succeeded in founding his student mathemat
ical society. The Johns Hopkins University Circulars, which are a rich source of 
information about the university, contain titles and reports of the talks given 
at the monthly meeting of the “Mathematical Society.” From one of  these 
we learn that when Lord Kelvin lectured at Hopkins in 1884, he spoke to a 
group of mathematicians who called themselves “the coefficients”.

 Because Sylvester was not good with  either finance or management, 
he appointed Story as associate editor in charge of the Journal, and soon 
praised his second- in- command in a letter to Benjamin Peirce:24

Story is a most careful managing editor and a most valuable man to the Uni
versity in all re spects and an honor to the University and its teachers from 
whom he received his initiation.
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However, the way in which the Journal was run was soon to cause fric-
tion between Story and Sylvester. This was not a personal difference, but 
a dissimilarity in the ways that they believed the journal should be edited. 
During his time at Johns Hopkins, it was Sylvester’s custom to spend 
each summer in  England, leaving Amer i ca in the late spring and return-
ing for the start of the next academic year, while Story was left in charge 
for the duration of Sylvester’s annual leave. The situation came to a head 
during Sylvester’s absence from Amer i ca through the publication of 
Kempe’s paper on the four color prob lem.

Story had reviewed Kempe’s paper, and on November 5, 1879, he pre-
sented the salient points of the “proof ” to an audience of eigh teen at a 
meeting of the Johns Hopkins Scientific Association. He then offered 
“a number of minor improvements”, which he put in the form of a note 
that “was intended to make the proof absolutely rigorous”. Story’s “Note 
on the preceding paper” was then published in the American Journal of 
Mathe matics, immediately following Kempe’s.25 By presenting it, Story 
was to incur the wrath of Sylvester, as we  shall see.

In his note, Story addressed special cases that Kempe had not cov-
ered in his paper. He used both Euler’s formula and the patch method, 
as Kempe had done, but endeavored to be more precise in his use of the 
formulas contained in Kempe’s paper. Story’s opening paragraph set out 
his intention, saying:

it seems desirable, to make the proof absolutely rigorous, that certain cases 
which are liable to occur, and whose occurrence  will render a change in 
the formulae, as well as some modification of the method of proof, neces
sary, should be considered separately.

It is disappointing that Story was not able to identify the major flaw in 
Kempe’s argument in his review of Kempe’s paper and in developing 
his own contribution.

W. E. Story: Note on the preceding paper (1879)

Story concentrated on two parts of Kempe’s paper. The first of 
 these expanded on the patching method, as applied to three of 
Kempe’s figures, and the second dealt with the cases in which more 
than three districts meet at a point.

At each stage of the patching, Kempe had denoted the number 
of districts by D, the number of bound aries by B, and the number 
of points by P, and had used the corresponding symbols D ′, B ′, and 
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P ′  after the next patch was removed. Story took up the argument 
that if the next patch had no point or boundary on it when it was 
removed, then an island would appear. Following Kempe, he con-
cluded that, in this case,

P ′=  P, D ′=  D  + 1, and B ′=  B  + 1.

However, if the patch had no point but only a single boundary, 
so that a peninsula or a district with two bound aries appeared when 
the patch was removed, then for the peninsula,

P ′=  P  + 1, D ′= D  + 1, and B ′=  B  + 2,

and for the district with two bound aries,

P ′=  P  + 2, D ′  =  D  + 1, and B ′=  B  + 3.

In the second case, Story referred to Kempe’s Figure 15.

He went on to assert that

 These formulae hold only if the bound aries joined by the line on the 
patch counted as two (and not one, as in Figs. 16 and 1) before the patch 
was put on.

Story then considered a point where bound aries met, and where 
a district with β bound aries appeared, when the patch was removed. 
Th is gave

P ′=  P  + β  − 1, D ′=  D  + 1, and B ′= B  + β.
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Story deduced that  these equations  were identical to  those of 
Kempe (although Kempe had used σ, rather than β ),

only when three and no more bound aries meet in each point of con
course about the district patched out,

giving

P ′ +  D ′ − B ′ − 1 = P  +  D  − B  − 1.

Story continued by detailing the alternative situation where the 
patch has no point of concourse, but only a single line that formed 
part of the boundary of a district or an island. Removing the patch 
then revealed Kempe’s Figure 16 or Figure 1.

For the district,

P ′ =  P  + 1, D ′ =  D  + 1, and B ′ =  B  + 1,

and for the island,

P ′ =  P  + 2, D ′ =  D  + 1, and B ′ =  B  + 2,

and so in both cases,

P ′ +  D ′ −  B ′ − 1 =  P  +  D  −  B.

Story next defined a contour as an aggregate of bound aries, with 
the contour being  simple or complex, according to  whether it con-
tained one, or more than one, district. He asserted that one could 
improve Kempe’s theorem by including contours in the patching 
procedure. In par tic u lar, where Kempe had stated that:

in  every map drawn on a simply connected surface the number of 
points of concourse and number of districts are together one greater 
than the number of bound aries,

Story’s theorem read:

in  every map drawn on a simply connected surface the number of 
points of concourse and number of districts are together one greater 
than the number of bound aries and number of complex contours 
together.
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As he explained:

If then x of the contours formed by the bound aries of any map are 
complex, for that map

P  +  D  −  B  − 1 =  x.

In the second half of his paper, Story questioned one of Kempe’s 
claims that

if we develop a map so patched out, since each patch, when taken off, 
discloses a district with less than six bound aries, not more than five 
bound aries meet at the point of concourse on the patch.

He asserted that this is valid only when the number of bound aries 
meeting in each point does not exceed 3, and detailed a procedure 
to overcome this restriction. His solution was to use an auxiliary 
patch whenever more than three bound aries met, thereby reducing 
to 3 the number of bound aries at a point; one could then continue 
the method of patching as described by Kempe. On completing 
the patching and arriving at a map with just one district and no 
boundary, coloring could then commence as the map was devel-
oped by removing patches (including auxiliary patches) in reverse 
order. By this method, he maintained, “the map  will be coloured 
with four colours”, as required.

Sylvester versus Story

Sylvester believed that  there had been an undue delay in the publica-
tion of Volume 2 of the American Journal of Mathe matics during his ab-
sence in  England. He also complained that previously agreed editorial 
decisions had been changed, and that Story should not have published 
his note. Sylvester went on to call this “unprofessional”, and the rela-
tionship between the two colleagues became strained.

In 1880, Sylvester wrote to President Gilman, protesting Story’s “con-
duct” and his “disobeying my directions”. In June, he wrote again ask-
ing why Story had not sent him an acknowl edgment regarding a paper 
that Sylvester had sent from  England. Then, still aggrieved, Sylvester 
sent a further letter of eight pages to Gilman on July 22— indeed, such 
was his annoyance that his haste made parts of the letter even more 
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illegible than usual.26 In this letter, Sylvester complained that he was 
not told  whether the Journal had been published and, if so, when. He 
also objected to his treatment by Story and questioned  whether other 
contributors had been dealt with in an equally poor manner. Sylvester 
no longer had confidence in Story and was so incensed that he formally 
requested that Story should have no further involvement with the Jour-
nal. He also made it clear that Story could be made aware of his opin-
ion and the contents of his letter.

Gilman mediated between the two, but Story’s name did not appear 
on  later issues of the Journal. Story resigned from the editorial board 
and began to seek a new position, a task that took him several years to 
accomplish. As with most disagreements, it would be wrong to put all 
of the blame on one party. Sylvester had certainly contributed to the 
delay in publication by making late changes to his own paper and re-
arranging the order of its contents. However, a letter from C. S. Peirce 
to Gilman, dated August 7, 1880, included the following comment:27

I have received from Sylvester an account of his difficulty with Story. I have 
written what I could of a mollifying kind, but it  really seems to me that Syl
vester’s complaint is just. I  don’t think Story appreciates the greatness of 
Sylvester, and I think he has undertaken to get the Journal into his own con
trol in an unjustifiable degree . . .  It is no plea sure to me to intermeddle in 
any dispute but I feel bound to say that Sylvester has done so much for the 
University that no one  ought to dispute his authority in the management of 
his department.

By this time, Sylvester was well past what we now think of as normal 
retirement age. In February 1883, Henry Smith, Oxford University’s 
Savilian Professor of Geometry, died unexpectedly, thereby prompting a 
search for a successor, preferably an Oxford man. News reached Sylves-
ter, and on March 16 he wrote to Cayley indicating that he would prob-
ably offer himself as an applicant, as religious barriers had by then been 
removed. Sylvester submitted his resignation to Johns Hopkins in the 
fall of 1883 and returned to Britain on December 21. In January 1884, 
he wrote to Felix Klein in Germany giving further reasons for leaving 
Amer i ca:28

I resigned my position in Baltimore

1°  Because I was anxious to return to my native country

2°  Because I had reasons of a strictly individual and personal 
nature for wishing to quit Baltimore
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3° (and paramountly)  because I did not consider that my mathematical 
erudition was sufficiently extensive nor the vigor of my  mental 
constitution adequate to keep me abreast of the continually 
advancing tide of mathematical pro gress to that extent which 
 ought to be expected from one on whom practically rests the 
responsibility of directing and moulding the mathematical 
education of 55 millions of one of the most intellectual races 
of men upon the face of the earth.

 There has been some discussion as to who  really founded the Ameri-
can Journal of Mathe matics. From the beginning, Gilman had desired all 
departments of his new university to found research- level journals, and 
the idea of one in mathe matics had in de pen dently occurred to Story. But 
most commentators acknowledge Sylvester as the founder, and at his 
farewell banquet, on December 20, 1883, Gilman indeed gave him the 
credit. However, Sylvester’s response indicated other wise:29

You have spoken about our Mathematical Journal. Who is the founder? 
Mr Gilman is continually telling  people that I founded it. That is one of my 
claims to recognition which I strongly deny. I assert that he is the founder. 
Almost the first day that I landed in Baltimore . . .  he began to plague me 
to found a Mathematical Journal on this side of the  water— something simi
lar to the Quarterly Journal of Pure and Applied Mathe matics [of Oxford] . . .  
Again and again he returned to the charge, and again and again I threw all 
the cold  water I could on the scheme, and nothing but the most obstinate 
per sis tence and perseverance brought his views to prevail. To him and to him 
alone, therefore, is  really due what ever importance attaches to the founda
tion of the American Journal of Mathe matics.

The real ity is that Sylvester had the international standing, with links in 
Eu rope and previous experience of being involved in the creation of 
Oxford’s Quarterly Journal, of which he was editor  until 1878. In de pen-
dently, Story had formulated the idea of a learned mathematical publica-
tion and wanted to be involved in its creation. However, without Gilman’s 
continual encouragement, direction, and belief that such a journal would 
be of  great benefit to mathe matics in Amer i ca, it prob ably could not have 
happened as it did in 1878.

What was Sylvester’s legacy in the United States? Apart from the 
American Journal of Mathe matics, he successfully established at Johns 
Hopkins University a successful gradu ate school that invested time 
and effort into training  future researchers. This in turn had an effect on 
other educational institutions which then established gradu ate schools, 
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and the level of mathematical research throughout Amer i ca gradually 
improved. As a consequence, it was no longer necessary for gradu ates 
to journey abroad for postgraduate study, although some continued 
to do so.

Sylvester was indeed appointed at the age of 69 to the Savilian Chair 
of Geometry at Oxford University, a position that he held for the rest of 
his life. In his late 70s, suffering from partial blindness, he returned to 
London with a deputy appointed to cover his Oxford duties.

An unpredictable, erratic, and flamboyant scholar, Sylvester could be 
brilliant, quick- tempered, and restless, filled with im mense enthusiasm 
and an insatiable appetite for knowledge. Throughout his life, he had 
fought for the underdog in society and supported education for the 
working classes, for  women, and for  people who  were discriminated 
against. He was awarded many honors and prizes, including his elec-
tion as a Fellow of the Royal Society in 1839 at the age of 25, and received 
the Royal Society’s Royal Medal in 1861 and the Copley Gold Medal 
(its highest award) in 1880. The lunar feature Crater Sylvester was named 
in his honor. He died on March 15, 1897, in London.

As for William Story, Sylvester’s departure from Johns Hopkins left 
him with a similar desire to move to new pastures, and in 1887 he was 
offered the position of head of mathe matics at the newly founded Clark 
University in Worcester, Mas sa chu setts. His situation is best summed 
up by Roger Cooke and V. Frederick Rickey:30

 There  were many reasons why Story might have wanted to leave Hopkins. He 
was not a full professor  there, though he had been  there thirteen years. 
He was not the editor of the American Journal of Mathe matics, which had 
been one of his youthful ideas. Fi nally, he had come to feel that Hopkins 
was not the wonderful place intellectually that he thought it might and 
should be . . .  But perhaps most importantly of all, he would have the op
portunity to develop a department that focused on gradu ate education and 
on research. And he could do it the way that he thought best. For all 
 these reasons, it is likely that the opportunity to move to Clark would have 
attracted Story.

Story did indeed develop a mathe matics faculty according to his own 
ideas— and in par tic u lar a doctoral program with twenty- five degrees 
awarded between 1892 and 1921, nineteen  under his direct supervision. 
Indeed, Story was so successful in his new position that for a time Clark 
University was considered by some to have the best mathe matics depart-
ment in Amer i ca. But in spite of all his work, misfortune struck in 1921, 
when financial prob lems forced the university to close its gradu ate 
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program, and he was required to resign. In his  later years, Story became 
interested in the history of mathe matics and compiled a considerable 
bibliography of mathe matics and mathematicians, which is now in the 
care of the American Mathematical Society. He died in Worcester, Mas-
sa chu setts, on April 10, 1930.

C. S . PEIRCE

Charles Sanders Peirce is usually remembered as a phi los o pher, mathe-
matician, and logician, and for his controversial and unconventional life-
style. He was born on September 10, 1839, in Cambridge, Mas sa chu setts. 
As a young boy, he thrived on the intellectual atmosphere prevailing 
at the  family home, where his  father, Benjamin Peirce, entertained aca-
demics, politicians, poets, scientists, and mathematicians. Although this 
provided a scholastic environment, his  father avoided discipline, fear-
ing that it might inhibit in de pen dence of thought. Such an indulgent 
attitude provided a platform where the younger Peirce could show off 

William Story at Clark University.
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his undoubted genius, but it also left him ignorant of how to behave or 
interact with  people. The lack of parental guidance made it difficult for 
him to fit in to society and led to prob lems in  later life.

C. S. Peirce enrolled at Harvard College at age 15, but he did not 
shine in his work, preferring to study on his own with books of his own 
choosing. He graduated with a bachelor’s degree in 1859 and entered 
the Lawrence Scientific School  under the influence of his  father, where 
he met with greater success than in his undergraduate years. He received 
a master’s degree from Harvard in 1862 and a bachelor of science de-
gree from the Lawrence Scientific School in 1863, receiving Harvard’s 
first summa cum laude degree in chemistry. He remained at Harvard 
where he carried out gradu ate research, and in the spring of 1865 he pre-
sented the Harvard Lectures on The Logic of Science.

From 1859, for nearly thirty years and in parallel with his academic 
 career, Peirce held a position as a part- time assistant at the Coast Sur-
vey; some of this time was  under his  father as director. In 1876, he pro-
duced one of his most notable inventions, the Quincuncial Map Projec-
tion, which was published in the American Journal of Mathe matics in 1879; 
this earned him a reputation as one of the  great mapmakers of the time. 
Although his invention was not taken up at the time, it was used in the 
mid-20th  century to display air routes.

Meanwhile, he was producing seminal work in a wide range of sub-
jects, including probability and statistics, psychophysics (or experimen-
tal psy chol ogy), and species classification. In addition, he carried out 
major astronomical research and explored mathematical logic, associative 
algebra, topology, and set theory. But  either through choice or  because 

Charles Sanders Peirce 
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