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Chapter One

Introduction

The first part is notes of a course given by Peter Scholze on local Shimura
varieties and contains very recent results of Scholze’s. They are part of the
Langlands program and deal with the local Langlands conjecture.

Local Langlands conjecture predicts a correspondence between representa-
tions of the Weil group of the field of p-adic numbers Qp and (possibly, infinite-
dimensional) representations of p-adic reductive groups. The Weil group WQp

of Qp consists of all elements in the absolute Galois group of Qp whose restric-
tion to the maximal unramified extension of Qp equals an integral power of
Frobenius.

To be more precise, fix a reductive algebraic group G over Qp and a prime
number � different from p. On one side of the local Langlands correspondence,
one considers irreducible smooth representations π over the field Q̄� of the
p-adic group G(Qp). On the other side of the correspondence, one considers
L-parameters of G, which are continuous homomorphisms from WQp

to the
Langlands dual group LG over Q̄� that satisfy certain properties. In particu-
lar, if G is split, then an L-parameter is the same as a continuous homomor-
phism from WQp

to the connected component LG◦ of the Langlands dual group
(up to conjugation). Local Langlands correspondence associates conjecturally
to π its L-parameter LLC(π). This association should satisfy certain special
properties.

First, consider the group G=GLn. In this case, the local Langlands con-
jecture was proven by Harris-Taylor and Henniart. The group GLn is split and
LG◦ =GLn. Thus in this case, an L-parameter is the same as an n-dimensional
representation of WQp

over Q̄�. A linking bridge between representations of
GLn(Qp) and of WQp

is provided by the following general construction: let H
be an (infinite-dimensional) Q̄�-vector space together with commuting actions of
WQp

and GLn(Qp). Then for any π as above, one obtains a WQp
-representation

HomGLn(Qp)(π,H). (Actually, this will not yet be the n-dimensional represen-
tation LLC(π) of WQp

, but it allows one to reconstruct LLC(π) with the help
of the (non-conjectural) Jacquet-Langlands correspondence.)

Of course, one needs to make a very particular choice of H so that it gives the
local Langlands correspondence. According to Harris and Taylor, the neededH is
given by �-adic cohomology of the Lubin-Tate space. This is a (pro-)rigid analytic
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space over the p-adic completion L of the unramified extension of Qp. The
Lubin-Tate space has the following modular sense: it parametrizes deformations
of the one-dimensional formal group law of height n over F̄p considered up to
quasi-isogenies with a p-adic level structure, that is, with a trivialization of the
p-adic Tate module of a deformation.

Now let G be a reductive group over Qp and, for simplicity, assume that G is

split. Then the L-parameter LLC(π) is given by a homomorphism WQp
→ LG

◦
.

Thus it is natural to detect LLC(π) by describing its compositions r ◦LLC(π)
with various (irreducible, finite-dimensional, and algebraic) representations r
of LG◦ over Q̄�. Similarly as above, one constructs the representations r ◦LLC(π)
of WQp

with the help of cohomology of certain p-adic spaces endowed with the
actions of both WQp

and G(Qp).
Already in the case G=GLn, one can search for representations of GLn

other than the tautological one. The case of wedge powers of the tautological
representation is treated with the help of Rapoport-Zink spaces, which generalize
Lubin-Tate spaces. More precisely, for the d-th wedge power of the tautologi-
cal representation of GLn, one takes �-adic cohomology of the Rapoport-Zink
space that has the following modular sense: it parametrizes deformations of the
isoclinic p-divisible group of height n and dimension d over F̄p considered up to
quasi-isogenies with a p-adic level structure on a deformation.

Generalizing this to an arbitrary reductive group G, one replaces a p-divisible
group over F̄p by purely group-theoretic datum called a local Shimura datum,
which consists of a conjugacy class μ̄ of a cocharacter μ : Gm→G (possibly,
defined over an extension of Qp) and a Frobenius-twisted conjugacy class b in
G(L). The cocharacter μ and the conjugacy class b are assumed to be compatible
in a way. Also, one requires μ to be minuscule.

It was predicted by Kottwitz that for each local Shimura datum (G, b, μ̄),
there exists a so-called local Shimura variety, which is a (pro-)rigid analytic
space. This is now an unpublished theorem, by the work of Fargues, Kedlaya-Liu,
and Caraiani-Scholze. Furthermore, �-adic cohomology of the local Shimura vari-
ety conjecturally provides a way to reconstruct the representation rμ ◦LLC(π),
where rμ is the highest weight representation of LG◦ associated naturally with
the cocharacter μ of G.

If the cocharacter μ is not minuscule, then one does not expect the existence
of such local Shimura variety in the category of (pro-)rigid analytic spaces.
Thus the above approach deals only with minuscule representations, which is
a small part of all representations rμ of LG◦. Hence it does not allow one to
reconstruct the conjectural L-parameter LLC(π). To solve this problem, one
needs to introduce new geometric objects instead of rigid analytic spaces.

The new geometric objects live in the world of perfectoid spaces. Namely,
they are diamonds, that is, algebraic spaces with respect to the pro-étale topol-
ogy on perfectoid spaces (in particular, rigid analytic spaces are diamonds).
Even more, perfectoid spaces allow one to interpret local Langlands correspon-
dence as a geometric Langlands correspondence on a perfectoid curve called a
Fargues-Fontaine curve. This opens a new powerful approach to constructing
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the local Langlands correspondence. Though this program is not yet entirely
implemented, substantial progress has been achieved in recent works by Fontaine,
Fargues, Scholze, Weinstein, Caraiani, and V. Lafforgue.

The second part, a course by Umberto Zannier, deals with a rather classical
theme but from a modern point of view. His course is on hyperelliptic contin-
ued fractions and generalized Jacobians. The starting point is the classical Pell
equation which he considers over the ring of polynomials over C.

The classical Pell equation is the Diophantine equation x2− dy2 =1, to be
solved in integers x and y, where d is some fixed integer. The problem reduces
to the case of positive non-square integers d, in which case there are always
infinitely many solutions, each of which can be generated from a minimal one.
As is well-known today, Pell’s equation is strongly related to the theory of con-
tinued fraction expansions of real quadratic numbers, as the solutions appear
as numerators and denominators of convergents of

√
d. It was Lagrange who

proved that indeed there always exists a solution, showing that the sequence
of partial quotients of a real number a is eventually periodic if and only if a is
algebraic of degree two.

Now let D∈C[t] be a complex polynomial of even degree and consider the
“polynomial Pell equation,” x(t)2−D(t)y(t)2 =1. We call D Pellian if there
are nonzero polynomials x, y ∈C[t] which solve the equation. Similarly, as in
the classical setting, one may define the continued fraction expansion of

√
D(t),

viewed as a Laurent series at infinity, proceeding analogously to the classical
algorithm, but now replacing the integer part by its polynomial part.

One may ask whether there is again a correspondence between the solvability
of the polynomial Pell equation and the continued fraction expansion of

√
D(t).

Indeed, it was already known by Abel and Chebyshev that D is Pellian if and
only if the sequence of partial quotients in the continued fraction of

√
D(t)

(which are polynomials now) is eventually periodic. On the other hand, this
turns out to be a quite rare phenomenon and, in contrary to the case of real
numbers, periodic continued fraction expansions are not limited to square roots
of polynomials.

However, Zannier discovered that some periodicity still remains in full gener-
ality: The sequence of the degrees of the partial quotients of

√
D(t) is eventually

periodic. In the case that D is squarefree, the proof relies on certain divisor re-
lations in the associated Jacobian variety of the underlying projective curve
corresponding to u2 =D(t) and the application of a variant of the theorem of
Skolem-Mahler-Lech for algebraic groups. The case of nonsquarefree D, on the
other hand, involves the study of so-called generalized Jacobians.

Among the periodicity of the partial quotients of
√
D(t), the Pellianity

of certain families of polynomials Dλ ∈C(λ)[t] is investigated as well, such as
Dλ(t)= t4 +λt2 + t+1. One may ask for which specializations of the parame-
ter λ∈C the equation in question has a nontrivial solution. Again, the study
relies on a criterion which links the solvability to certain points on the associ-
ated (generalized) Jacobians. Anyhow, there are also various further phenomena
to observe in the context of continued fraction expansions of Laurent series as
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well as connections to other related problems, such as unlikely intersections in
families of Jacobians of hyperelliptic curves or Padé approximations.

The notes are organized as follows. After the topic is motivated and some
historical background is given in the first section, Sections 3.2–3.4 are dedicated
to continued fractions. We recall the method and some related results for the
standard setup in Section 3.2. The third section generalizes continued fractions
to more general settings, giving some illustrative examples, whereas Subsection 4
explains the procedure for Laurent series in detail. Section 3.5 deals with the
continued fraction expansion of

√
D and gives related results, including the

main theorem. In Section 3.6 a criterion for D to be Pellian in terms of a special
point of the Jacobian of the underlying curve in the case of squarefree D is
given, thereupon Section 3.7 treats the case of D not being squarefree. Various
pencils of polynomials, for squarefree and nonsquarefree Dλ, are analyzed as to
their Pellianity in these two subsections. Sections 3.8 and 3.9 are dedicated to
the mentioned version of the Skolem-Mahler-Lech theorem and the proof of the
periodicity of the partial quotients of

√
D(t). In the appendix, the reader shall

find solutions to the exercises given during the lecture.
The theme of the third course by Shou-Wu Zhang originates in the famous

Chowla-Selberg formula which was taken up by Gross and Zagier in 1984 to
relate values of the L-function for elliptic curves with the height of Heegner
points on the curves. Only in recent years has a very significant step been taken
by P. Colmez relating L-values for abelian varieties with complex multiplica-
tion to the Faltings height of the abelian variety. Building on this work, X.
Yuan, Shou-Wu Zhang, and Wei Zhang succeeded in proving the Gross-Zagier
formula on Shimura curves and shortly later they verified the Colmez conjec-
ture on average. In the course Zhang presents new interesting aspects of the
formula.

Let K be a number field and let A be an abelian variety over K of dimen-
sion g≥ 1. In the first part, we will define the stable Faltings height h(A) of
A. It is a real number associated to A which is invariant under base change.
Faltings introduced this invariant in his paper on the Mordell conjecture, Sha-
farevich conjecture, and Tate conjecture in order to study isogenies of abelian
varieties over number fields. The stable Faltings height has since gained mo-
mentum as a tool to answer other questions in arithmetic geometry, and has a
deep connection with the abc-conjecture, which is a consequence of the following
conjecture.

Conjecture 1.1 (Generalized Szpiro Conjecture). Let K be a number field
and let g≥ 1 be an integer. Then any abelian variety A over K of dimension g
satisfies

h(A)≤ α
[K:Q] (logNA+ logΔK)+β, (1.1)

where α, β ∈R are constants depending only on [K :Q] and g. Here ΔK denotes
the absolute discriminant of K/Q and NA denotes the norm of the conductor
ideal of A/K.
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A strong form of this conjecture says that for each real number ε> 0 one can
take here α= g

2 + ε and β depending only on g and ε. The generalized Szpiro
conjecture has many striking consequences. In particular, it implies an effective
version of the Mordell conjecture (assuming α and β are effectively computable),
and “no Landau-Siegel zero” which follows from the strong form of the conjec-
ture for CM elliptic curves. We shall discuss several applications of the general-
ized Szpiro conjecture and we shall also consider a function field analogue: The
so-called “Arakelov inequality” which was proved by Arakelov, Faltings, and
Parshin.

In the second part, we will consider the case of CM abelian varieties. Let E
be a CM field of degree [E :Q] = 2g and assume that A has CM type (OE ,Φ)
where Φ is a CM type of E and OE is the ring of integers of E. Faltings height
computations are especially amenable to these abelian varieties. In particular,
Colmez showed that h(A) only depends on the CM type Φ. We may therefore
write h(Φ) to denote this Faltings height. In the case of CM elliptic curves we
can in fact say more using the following version of the formula of Lerch-Chowla-
Selberg.

Theorem 1.2 (Lerch-Chowla-Selberg). Suppose that E is an imaginary quad-
ratic field of discriminant −d< 0 and let η : (Z/dZ)×→{±1} be its quadratic
character. Then it holds

h(Φ)=− 1
2

L′(η, 0)
L(η, 0)

− 1
4 log d,

where L′(η, s) is the derivative of the Dirichlet L-function L(η, s) of η.

We will discuss several generalizations and reformulations of this formula. In
particular we shall consider the following averaged version of a conjecture of
Colmez.

Theorem 1.3 (Averaged Colmez Conjecture). Let F be the maximal totally
real subfield of E. Denote by ΔE/F the norm of the relative discriminant of
E/F , and write ΔF for the absolute discriminant of F . Then it holds

1
2g

∑

Φ

h(Φ)=− 1
2

L′(η, 0)
L(η, 0)

− 1
4 log(ΔE/FΔF )

with the sum taken over all distinct CM types Φ of E. Here L′(η, s) is the deriva-
tive of the L-function L(η, s) of the quadratic character η of A×

F /F
× defined

by E/F .

The above theorem was proven by Yuan-Zhang and independently by
Andreatta-Goren-Howard-Madapusi Pera. The averaged Colmez conjecture
played a key role in proving the André-Oort conjecture for large classes of
Shimura varieties, including the moduli spacesAg of principally polarized abelian
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varieties of arbitrary positive dimension g. We shall explain the main ideas and
concepts of the proof of the averaged Colmez conjecture given by Yuan-Zhang.
Their proof involves Shimura curves and it uses the method of Yuan-Zhang-
Zhang which they developed to prove generalized Gross-Zagier formulas for
Shimura curves.

In the last part, we will then discuss the work of Yun-W. Zhang which can be
viewed as a simultaneous generalization for function fields of the Chowla-Selberg
formula, the Waldspurger formula, and the Gross-Zagier formula. In particular
they studied higher order derivatives of certain L-functions at the center and
they proved a formula for unramified cuspidal automorphic representation π of
PGL2 over a function field F = k(X), where X is a curve over a finite field k.
In fact they express the r-th central derivative of the L-function (base changed
along a quadratic extension E of F ) in terms of the self-intersection number
of the π-isotypic component of the Heegner-Drinfeld cycle ShtrT on the moduli
stack ShtrG.

Theorem 1.4 (Higher Gross-Zagier formula, Yun-W. Zhang). There is an ex-
plicit positive constant c(π) such that

([ShtrT ]π, [Sht
r
T ]π)= c(π)L(r)(πE , 1/2).

Here the moduli stack ShtrG is closely related to the moduli stack of Drinfeld
shtukas of rank two with r modifications. An important feature of ShtrG is that
it admits a natural fibration ShtrG→Xr where Xr is the r-fold self-product of
X over k. In the number field case, the analogous spaces (currently) only exist
when r≤ 1. In the case r=0, the moduli stack Sht0G is the constant groupoid
over k given by BunG(k)∼=G(F )\G(AF )/H where AF is the ring of adèles of F
and where H is a maximal compact open subgroup of G(AF ). The double coset
G(F )\G(AF )/H has a meaning when F is a number field. In the case when
r=1 and F =Q, the counterpart of Sht1G is the moduli stack of elliptic curves
which is defined over Z.




