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Introduction

Alice laughed. “There’s no use trying,” she said:
“one can’t believe impossible things.”

“I daresay you haven’t had much practice,” said
the Queen. “When I was your age, I always did it

for half-an-hour a day. Why, sometimes I believed as many as
six impossible things before breakfast.”

—Lewis Carroll, Through the Looking-Glass1

“NOTHING IS IMPOSSIBLE.” This platitude is used as inspiration
by parents, athletic coaches, motivational speakers, and politicians.
The hyperbolic news media is constantly alerting us to individu-
als who have achieved the impossible. It is one of the tenets of the
American dream.

In his valedictory high-school commencement speech of June 24,
1904, Robert Goddard, who would later invent the liquid-fueled
rocket, said,2

Just as in the sciences we have learned that we are too ignorant
safely to pronounce anything impossible, so for the individual,
since we cannot know just what are his limitations, we can hardly
say with certainty that anything is necessarily within or beyond
his grasp. . . . It has often proved true that the dream of yesterday
is the hope of today and the reality of tomorrow.

However, some things are impossible, and mathematics can prove
that they are. Some tasks cannot be accomplished, regardless of one’s
intellect, one’s perseverance, or the time available. This book tells
the story of four impossible problems, the so-called “problems of
antiquity”: trisecting an angle, doubling the cube, constructing every
regular polygon, and squaring the circle. They are arguably the most
famous problems in the history of mathematics.

In a geometry course, students are introduced to the Euclidean
tools: a compass to draw circles and a straightedge to draw lines
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FIGURE I.1. A compass and straightedge.

FIGURE I.2. It is possible to bisect a 120◦ angle using a compass and
straightedge, but not to trisect it. Hence, it is impossible to construct a
regular nonagon.

(see figure I.1). They learn a variety of basic constructions, such as how
to bisect an angle, construct an equilateral triangle, and draw a perpen-
dicular bisector. The problems of antiquity seem—at a glance—just as
elementary as those exercises. But they are not. It takes three quick
swipes of a compass and a trace along a straightedge to bisect an angle;
figure I.2 shows a 120◦ angle split into two 60◦ angles. But it is impos-
sible to use these same tools to draw the two rays that trisect a 120◦
angle; no matter how clever the geometer, it is impossible to construct
a 40◦ angle. Thus, (1) it is impossible to trisect every angle. Moreover,
the angle between the center of a regular 9-sided polygon, called a
nonagon, and two adjacent vertices is 360◦/9 = 40◦, so it is impossible
to construct the polygon. Hence, (2) it is impossible to construct every
regular polygon.

Likewise, (3) given a line segment AB, it is impossible to construct a
line segment CD so that a cube with side length CD is twice the volume
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of a cube with side length AB; that is, it is impossible to double the
cube. And finally, (4) it is impossible to square the circle: if we begin
with any circle, it is impossible to construct a square with the same
area.

It is important to point out that these four problems are not practical
problems. The world is not waiting for a method of constructing a
40◦ angle or a regular nonagon. The same geometry students could
use the protractors in their backpacks to draw a 40◦ angle. There are
other tools that will allow a draftsman or a mathematician to solve
each of these problems exactly, and there are numerous techniques that
clever craftsmen have devised to get approximations as accurate as
desired.

In fact, not only are these problems not practical problems, they
are not physical problems at all. They are theoretical problems. More
important than the constructions themselves are the proofs that they
accomplish what they say they accomplish. How do we know that
the angle bisection technique truly bisects the angle? For this we need
theoretical mathematics. The primary text on geometry in the Greek
era and for many centuries afterward is Euclid’s 300 BCE masterwork,
Elements. Euclid began Elements with five postulates, and from these he
built up all of geometry. The first three postulates are the compass-and-
straightedge postulates. The first postulate states that we can draw a
line segment between any two points, and the second says that we can
extend this line segment beyond its endpoints. The third says that we
can draw a circle with a given center and a point on the circle. Euclid
wrote,3

Let the following be postulated:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight

line.
3. To describe a circle with any center and any distance.

Thus his geometry was built from lines and circles, and to carry out
the geometric techniques, one would use a compass and straight-
edge.

The problems of antiquity were known to be extremely challenging
to the ancient Greeks. They were the subject of intense research by
the leading mathematicians of the day. The historian of mathematics
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Sir Thomas Heath called these problems “rallying points for [Greek]
mathematicians during three centuries at least.”4

The ancient Greeks knew that it was possible to solve the problems
if they were allowed to change the rules. What if we have a compass,
a straightedge, and a parabola? Or a hyperbola? Or a new mechanical
drawing tool? And so on. For instance, Archimedes (ca. 287–212 BCE)
proved that if the straightedge had two marks on it, he could tri-
sect any angle. We will present many ingenious ways to solve these
problems with an extended toolkit.

The problems were irresistible to mathematicians. For 2000 years,
many of the major mathematical developments were directly or indi-
rectly related to these problems. And the list of mathematicians who
made contributions to the understanding of these problems is a who’s
who of the field. In 1913 Ernest Hobson wrote the following about the
problem of squaring the circle, although the same could be said about
all four problems:5

When we look back, in the light of the completed history of the
problem, we are able to appreciate the difficulties which in each
age restricted the progress which could be made within limits
which could not be surpassed by the means then available; we
see how, when new weapons became available, a new race of
thinkers turned to the further consideration of the problem with
a new outlook.

Although these problems were actively studied for centuries, they
were not proved impossible until the nineteenth century. There are
several reasons it took over 2000 years for the proofs. First, mathe-
maticians had to realize that the problems were impossible and not just
very difficult. Second, they had to realize that it was possible to prove
that a problem is impossible. This task is somewhat surprising—that
we can use mathematics to prove that something is mathematically
impossible. And lastly, the mathematicians had to invent the math-
ematical tools required to prove the impossibility. All four problems
are geometric. The proofs of impossibility did not come from geom-
etry, but from algebra and a deep understanding of the properties
of numbers—not just the integers, but rational, irrational, algebraic,
transcendental, and complex numbers. Algebra and a sufficient under-
standing of the real and complex numbers came long after the Greek
period ended.
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As algebra developed, mathematicians applied it to these prob-
lems. François Viète (1540–1603), René Descartes (1596–1650), and
Carl Friedrich Gauss (1777–1855) made some headway toward under-
standing them. But the proofs of impossibility for three of the four—
trisecting an angle, doubling the cube, and constructing regular
polygons—were due to one man, a man who died young and, sadly,
is not nearly as well known as these others: the French mathemati-
cian Pierre Wantzel (1814–1848). In his seven-page 1837 article he
proved some preliminary results, applied them to the problems, and,
in what may be the greatest single page in mathematics, proved all
three problems impossible.

The fourth problem—squaring the circle—is somewhat unique
among these problems. It is the most famous one, and it was the last
to be proved impossible. While geometry and algebra are sufficient to
prove that the other three are impossible, squaring the circle has one
other wrinkle—it requires an understanding of the nature of π . If a
circle has radius 1 cm, for instance, its area is π · 12 = π cm2. Then to
square the circle the geometer must construct a square with area π .
Thus, much of our tale involves the history of this famous, enigmatic
number. The problem of squaring the circle was eventually proved
impossible by Ferdinand von Lindemann (1852–1939) in 1882; he used
Wantzel’s results and the fact—proved using calculus and complex
analysis—that π is a transcendental number.

Because these four problems have been so famous for so long, a
full treatment of their history would require multiple volumes. More-
over, even after the problems were proved impossible, their study
continued, and they became subsumed into advanced fields such
as abstract algebra and Galois theory. We chose to downplay this
generalization—both because the mathematics required to understand
it is too advanced for our intended audience and to keep the length of
the book reasonable.

The book is organized as follows. The chapters follow the history
of these fascinating problems—from the introduction of the problems
by the Greeks through to the eventual solutions two millennia later.
The chapters are roughly chronological. We give the colorful his-
tory of the problems, the history of other methods of solving them,
and the histories of the fields that were created to finally resolve
them.
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There are also many interesting and entertaining side stories
connected to these problems. So we inserted mini-chapters called
Tangents in between each of the proper chapters. For instance, we dis-
cuss a bill passed by the Indiana legislature setting an incorrect value
for π ; we present a variety of unique methods of solving the problems,
such as using origami, a drawing tool called a tomahawk, toothpicks,
and a clock; we discuss Leonardo da Vinci’s elegant contributions; and
we present the two sides of the τ vs. π debate.
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