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CHAPTER 1

Models of Change

Order is Heav’n’s first law.
—Alexander Pope

Quid sit prius actum respicere aetas
nostra nequit nisi qua ratio vestigia monstrat.1

—Lucretius

A point of departure

In this chapter, we provide the theoretical background for the chapters to
follow. We begin with an overview of models of change—the samemodels
that we apply in later chapters to specific cases. Here our goal is to equip
the reader with a feel for the possibilities. Those possibilities look very
different now than they did a generation ago. In the nineteenth century,
change was the great topic of social theory, but by the mid-twentieth cen-
tury, it had largely ceased to have analytical importance for the social
sciences. Our point of departure is a brief exploration of the reasons why
this occurred. Interestingly, those reasons vary from one field to the next.
What role did change play in social and evolutionary theory circa 1965,
before the discovery of deterministic chaos and the molecular revolution
in genetics?

Anthropology and sociology

In 1962 Claude Lévi-Strauss published a profound challenge to the
received wisdom of anthropology concerning the significance of cultural
change. Nineteenth-century anthropology inherited a view of change
based on stadial models, with roots that extend into classical antiquity.
Between 700 and 300 BC, the ancient Greeks developed a theory of the
evolution of human societies that persisted for more than two millennia.
In these stadial models, societies are propelled from one stage to the next
by innovations such as fire, cereal cultivation, language, metallurgy, and
writing. Roman writers like Lucretius continued this speculative tradi-
tion, and in the seventeenth and eighteenth centuries, philosophers like

1 “What came before, our age cannot look back to, except insofar as reason shows
the traces.” Titus Lucretius Carus, De Rerum Natura, 5.1446–47.
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Condorcet, Hegel, Comte, and others used stadial models to champion
the progress of rational thought. Anthropologists such as Tylor, Morgan,
and Spencer later sought to embed these models within an evolutionary
framework. From this perspective, change is intrinsically purposeful; as
Marx put it, “the five senses are the work of all previous history. . . history
is the true natural history of mankind.”2

Lévi-Strauss’s challenge to this view was a logical extension of his struc-
turalist program in language to encompass other cultural phenomena.
In the influential structural theory of language developed by Ferdinand de
Saussure, knowledge of the prior state of a language tells us nothing about
its present workings. Lévi-Strauss adapted Saussure’s methods to create a
powerful and predictive theory of how culture is organized by symbolic
systems, affecting everything from cooking to cosmology. In culture as in
language, argued Lévi-Strauss, knowledge of the antecedents of symbols
is irrelevant to their current meaning. And more forcefully, the effect of
change is to shatter the internal consistency of these systems of thought.
Traditional societies seek “to make the states of their development which
they consider ‘prior’ as permanent as possible. . . .There is indeed a before
and an after, but their sole significance lies in reflecting each other.”3

Lévi-Strauss’s structuralist challenge subsequently loomed large in
anthropology. As its influence grew, change came to be seen as little more
than a source of disorder. Efforts to improve stadial models of culture and
society were marginalized.

Economics

Economics took a similar path for different reasons. In the 1950s, eco-
nomists proposed that the self-regulating capacity of market-based
economies is founded on a state of general equilibrium. By the 1960s, the
key theoretical questions in economics were the stability of equilibria to
shocks and how the economy transitioned between equilibria. In consid-
ering both questions, economics takes the perspective that economies are
either at equilibrium, returning to equilibrium following a perturbation,
or heading toward a new equilibrium.

Genetics

As in economics, much early evolutionary theory also focused on the
attainment of equilibrium. But the biologist’s concept of equilibrium was
different from that of economists. In 1930, Ronald Fisher introduced

2 K. Marx. Economic and Philosophic Manuscripts of 1844. Penguin, 1974,
p. 136.

3 C. Lévi-Strauss. The Savage Mind. University of Chicago Press, 1966, p. 234.
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Boltzmann’s model of statistical equilibrium into genetics. According
to Fisher’s Fundamental Theorem of Natural Selection, “[t]he rate of
increase in fitness of any organism at any time is equal to its genetic vari-
ance in fitness at that time.”4 In this view, natural selection operates on
populations of organisms with varying fitness, propelling them toward
fitness peaks that are statistical equilibria. These different definitions of
“equilibrium” had analytical consequences: for general equilibrium in
economics, any points lying away from equilibrium are merely transient
states, and thus safely ignored, while in biology, Fisher’s theorem pro-
poses that variation provides the raw material for selection, determining
the rate of change.5

Thus by the 1960s, the old stadial conception of change propelled
by innovation was nearly forgotten across the social and evolutionary
sciences, except by archaeologists andMarxist historians. For the equilib-
rium models that took its place, change was merely a transient state, and
in some readings, a source of disorder. The new equilibrium models came
in two forms. In economics, classical or Newtonian equilibriummeant the
solution to a system of coupled differential equations.6 In genetics, Boltz-
mannian statistical equilibrium described the average state of a collection
of particles. Both concepts of equilibrium—classical and statistical—
required external forces to shift from one equilibrium state to another.7

But this assumption only holds for linear systems. Nonlinear systems
differ from Boltzmannian statistical ensembles in that initial differences
may not average out. Instead, outliers can initiate large-scale spontaneous
reorderings and movement to new attractors. As research on nonlinear
dynamics continued, it became clear that spontaneous self-organization
can achieve many of the outcomes traditionally assigned to impinging
forces.8 The mathematics showed, intriguingly, that self-organization can
cause qualitative change in the behavior of dynamical systems, as Ilya

4 R. A. Fisher. The Genetical Theory of Natural Selection. Clarendon Press, 1930,
p. 35.

5 In this era, geneticists debated the significance of variation: is it a “genetic load”—
that is, a burden imposed by misreadings in our genes—or is it instead the rawmaterial
from which we benefit evolutionarily as our environments change?

6 Later, some economists began to reframe their models as statistical equilibrium,
but “. . . the concept of statistical equilibrium remained unknown to most economists
throughout all the XXth century and up to now.” U. Garibaldi and E. Scalas, 2010
Tolstoy’s dream and the question for statistical equilibrium in economics and the social
sciences. In G. Naldi, L. Pareschi, and G. Toscani, eds. Mathematical Modeling of
Collective Behavior in Socio-Economic and Life Sciences. Springer, p. 116.

7 In genetics, these forces were caused by natural selection; in economics, by changes
in the parameters affecting price.

8 S. Kauffman. TheOrigins of Order: Self-Organization and Selection in Evolution.
Oxford University Press, 1993.
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Prigogine observed in his 1977 Nobel address. By the 1980s, the origins
of order in nonlinear dynamical systems had moved to the forefront of
research on complex systems. Biologist Robert May commented that
“even in vastly complicated interactive networks, a few simple rules can
easily—if amazingly—lead to order and self-organised patterns and pro-
cesses. This represents a major advance in understanding how the living
world works.”9

The origins of order

May’s reference to interactive networks reflects a shift in perspective on
population structure. In economics, the concept of general equilibrium
describes populations of economic actors engaged in buying and selling,
whose actions depend on the state of the market. In genetics, follow-
ing Fisher’s model, chance mutations generate variation in populations
of organisms, which in turn provides the raw material for natural selec-
tion. In both cases, a population is in effect a cloud of points. Clouds
can drift, change shape, and become more or less dense, but they have no
internal organization. In contrast, populations as networks have different
properties than populations as clouds; points (or nodes) connected into
networks can interact in vastly more complex ways. As another leading
biologist, Richard Lewontin, commented, “[t]he facile claim that natu-
ral selection can accomplish every adaptive change fails to grapple with
the problems posed by a highly structured system with its own laws of
assembly and interaction.”10

The image of populations as “vastly complicated interactive net-
works”11 soon became an empirical reality for geneticists, as new tech-
nologies made it possible to decode genes and regulatory systems. In
1965 Jacques Monod received the Nobel Prize for describing the first
example of a gene regulatory network. Five years later, in a book-length
essay, Chance and Necessity, Monod argued that “chance alone is at
the source of all novelty, all creation in the biosphere.”12 But progress
in his own field soon contradicted this view. When it became possible
to directly observe many gene regulatory systems, chance rapidly gave
way to necessity. In time, the methods developed by geneticists to assess
the role of chance began to be applied in other fields, from ecology to

9 Robert M. May, in a 1993 review of Kauffman’s book published in The Observer.
10 Richard C. Lewontin, in a back-cover endorsement of Kauffman’s 1993 book.
11 May, 1993 book review.
12 J. Monod. Chance and Necessity. Vintage, 1972, p. 112 (first published in 1970

as Le Hasard et la Nécessité).
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linguistics to archaeology. The combination of better empirical data and
a greater theoretical understanding of nonlinear dynamics revived interest
in change, and shifted the analytical focus from anonymous individuals
to evolving networks, populations, and communities.
This intellectual pirouette merits careful attention. We will trace it by

analyzing a series of key discoveries that brought unanticipated patterns
of emergent behavior into focus. In the second part of this chapter, these
threads are drawn together into a comprehensive framework that pro-
vides the starting point for the case studies. We begin with the discovery
of molecular clocks, which made it possible to directly measure rates of
change in evolving systems.

A clock that keeps good time

DNA is composed of strings of nucleotides—As, Cs, Ts, and Gs. Only
part of this DNA represents genes and thus contains the blueprints for
making proteins, but all nucleotides, even the ones that have no physi-
cal or behavioral effects, are subject to mutation. These mutations may
change just one letter, or entire strings of letters. For many parts of our
DNA, especially outside the genes, mutations accumulate at a steady rate,
with that rate conceptually mimicking the ticking of a clock.
The possibility that such clocks might exist was anticipated before it

became possible to observe them directly. In 1967, biologist Allan Wilson
and his student Vincent Sarich published a paper in Science, in which they
suggested that the origin of the human species could be dated by means
of the genetic mutations that have accumulated since humans and chim-
panzees last shared a common ancestor. At the time, it was not possible
to actually count those mutations. Instead, Sarich and Wilson compared
diversity in serum albumen (a blood protein) among a large number of
primates, and found that “[l]ineages of equal time depth show very sim-
ilar degrees of change in their albumins. The degrees of change shown
would therefore seem to be a function of time.” Using this “evolution-
ary clock or dating device,” they estimated that humans and chimpanzees
diverged around five million years ago.13

This proposal was met with profound skepticism by most anthropol-
ogists, who favored a date of about 25 million years based on the fossil
record of the time. Donald Johanson’s discovery of the fossil hominin
Lucy in 1974 provided compelling support for this younger chronol-
ogy, but arguments about the validity of the “molecular clock” concept

13 V. M. Sarich and A. C. Wilson. 1967. Immunological time scale for hominid
evolution. Science 158:1200–3.
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continued until the 1980s, when it became possible to sequence DNA
and read off the mutations directly. That made it possible to find as many
molecular clocks as one liked—from regions of the DNA that tick slowly
to regions that tick fast. This discovery conclusively validated the method
of molecular dating, and confirmed Sarich and Wilson’s estimate of a
five-million-year-old origin of our species. Today molecular clocks are no
longer controversial (albeit more sophisticated); they are everyday tools
in population genetics, and play a role in about half of the case studies in
this book. But the very accuracy of molecular clocks triggered a new con-
troversy: if mutations are regular, does this weaken the role of selection
in the evolution of DNA?

Neutral drift

A year after the publication of Sarich and Wilson’s paper on molecular
clocks, geneticist Motoo Kimura predicted that the vast majority of evo-
lutionary changes at the molecular level are caused not by selection, but
by chance: the random drift of selectively neutral mutants. Even in the
absence of selection, Kimura reasoned, evolutionary change will occur as
a result of chance, and this could be analyzed with tools from probability
theory. The idea that selection might have little or no role in shaping por-
tions of the genome was not altogether new: in a famous disagreement
with Ronald Fisher, Sewall Wright emphasized the importance of neutral
processes such as drift as early as the 1930s. But Kimura took this idea
further, offering a probabilistic method that can readily test for selective
effects using data from the genome.
In genetics, the neutral theory was hotly debated for decades. As

Kimura observed in his 1968 paper, the prevalent view in the 1960s held
that almost all mutations are under selection, and this opinion was slow
to change. But as Stephen J. Gould wrote in 1989, “[t]hese equations give
us for the first time a baseline criterion for assessing any kind of genetic
change. If neutralism holds, then actual outcomes will fit the equations.
If selection predominates, then results will depart from [neutral] predic-
tions.”14 This eventually led to a dramatic reversal in the way selection
is viewed in molecular biology: geneticists now infer selection only when
it can be shown that the assumption of neutrality has been violated. The
success of the neutral theory triggered a shift in perspective, from the fit-
ness of individual units of selection to the population-level consequences
of both selection and drift.

14 S. J. Gould. 1989. Through a lens, darkly: Do species change by random
molecular shifts or natural selection? Natural History 98:16–24.
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But is the neutral theory relevant above the molecular level? Theoretical
ecologists began to consider this question in the 1990s. Previously, the
prevalence of species in ecological communities was approached from a
pan-selectionist perspective too: what are the special attributes of each
species that explain its abundance in a given environment? Neutral the-
ory offered an alternative hypothesis. If one assumes that species do not
differ in their competitive abilities, what would the prevalence of species
be if this depended only on the size of the total ecological community and
the chance arrival of new species? In other words, do neutral processes of
drift and replacement largely govern the formation and persistence of eco-
logical communities? This question became one of the most hotly debated
topics in theoretical ecology.15 Mathematically, the neutral theory in ecol-
ogy is faithful to its origins in genetics; both rely on the same underlying
mathematical model.
Although the scope of the neutral theory in ecology is still being tested,

a shift is underway from the assumption of pan-selectionism to the view
that selection can only be inferred by showing departure from a null
model of neutrality.16 As in genetics, this represents a change in the level
of analysis, from the fitness of individuals to the effects of selection at
the community level. As Kimura wrote in 1983, “it is easy to invent a
selectionist explanation for almost any specific observation; proving it is
another story. Such facile explanatory excesses can be avoided by being
more quantitative.”17

Nonlinear systems

Kimura’s linear equations for neutral drift have marvelous predictive
power because there is only one neutral frequency distribution for any
given population, depending solely on the mutation rate and the popu-
lation size. (Thus, if we view genetic types or species of tree as a bag
of marbles, the equilibrium distribution of colors reflects only the num-
ber of marbles in the bag and the rate at which new colors appear.)
This is also true for the adaptations of Kimura’s model in ecology and

15 J. Harte. 2003. Tail of death and resurrection. Nature 424:1006–7; D. Alonso,
R. Etienne, and A. McKane. 2006. The merits of neutral theory. Trends in Ecology
and Evolution 21:451–7.

16 J. Hey. 1999. The neutralist, the fly and the selectionist. Trends in Ecology and
Evolution 14:35–8; X. S. Hu, F. He, and S. P. Hubbell. 2006. Neutral theory inmacroe-
cology and population genetics.Oikos 113:548–56; E. J. Leigh. 2007. Neutral theory:
A historical perspective. Journal of Evolutionary Biology 20:2075–91.

17 M. Kimura. The Neutral Theory of Molecular Evolution. Cambridge University
Press, 1983, p. xiv.
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indeed for any related neutral processes occurring within populations.
Neutral models provide a baseline from which to calculate the effects
of selection: if certain colored marbles have a selective advantage, they
will become more frequent and stand out in the overall distribution of
colors.
But what about discontinuous, nonlinear change? Soon after Kimura

published his neutral theory, biologist Robert May began to investi-
gate the appearance of discontinuous change in ecological models. What
causes a transition from linear growth to nonlinear fluctuations? As May
discovered, such changes can occur with no external forcing. In an article
that quickly became a seminal text in the emerging field of complexity
science, May described the effects of varying the growth parameter in
a simple linear model of population growth.18 In this equation, Pt is the
current population size, Pt+1 is the population size in the next generation,
and r the population’s intrinsic rate of growth:

Pt+1 = rPt(1−Pt) (1.1)

For small values of r, the equation is linear: an increase in the popula-
tion is proportional to an increase in the growth rates. But at r=3.44949,
the population begins to oscillate between two values (Figure 1.1).
Between 3.44949 and 3.54409, it oscillates between four values, after
which slight increases in the growth rate lead to oscillations between 8,
16, 32 values, etc. When r reaches 3.56995, regular oscillations begin
to be replaced by chaotic fluctuations. At these higher growth rates, tiny
differences in the initial population size yield all possible final popula-
tion sizes within a given range. Even more surprisingly, between 3.56995
and 3.82843 several islands of stability appear (the white “stripes” in
Figure 1.1).

Online Resource: The Logistic Map

The logistic mapmodel is available in the online resources for Islands
of Order:

https://www.islandsoforder.com/the-logistic-map.html

Thus, merely varying the growth rate triggers linear, oscillatory, and
chaotic behavior. In the language of complexity, or more specifically of
nonlinear dynamics, each of these features is called a regime, or attractor.

18 R. M.May. 1976. Simple mathematical models with very complicated dynamics.
Nature 261:459–67.
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Figure 1.1. The logistic map. This phase portrait shows linear, cyclical, and
chaotic behavior at different values of the intrinsic growth rate, r. Credit: Ning
Ning Chung.

As long as the growth rate is less than 3.44949, the behavior is linear.
But if the growth rate happens to fall in the chaotic regime, prediction is
impossible, even if everything about the system is known exactly.19

This example allows us to make two observations. First, one need not
seek very far to discover nonlinear processes. Indeed, as Stanisław Ulam
famously quipped, “to speak of ‘nonlinear science’ is like calling zoology
the study of ‘nonelephant animals.’ ”20 Second, simple linear processes
can trigger unexpected nonlinear effects, and if more than one attractor
or regime exists—that is, if the system is not a simple equilibrium—the
resulting variation in dynamical behavior can easily be mistaken for noise
or error. As May observed, “the very simplest nonlinear difference equa-
tions can possess an extraordinarily rich spectrum of dynamical behavior,
from stable points, through cascades of stable cycles, to a regime in
which the behavior (although fully deterministic) is in many respects
‘chaotic,’ or indistinguishable from the sample function of a random
process.”21

19 Ibid.
20 Quoted in D. Campbell, J. Crutchfield, J. Farmer, and E. Jen. 1985. Experimental

mathematics: The role of computation in nonlinear science. Communications of the
Association for Computing Machinery 28:374–84.

21 May, Simple mathematical models.



10 CHAPTER 1

Addition of
sand grains:

slope increases

A B

Avalanche
occurrence:

slope decreases

Avalanche

C

Critical slope

Ava
lanch

e

Figure 1.2. The sand pile experiment, showing critical transitions. Credit: Yves
Descatoire.

Triggers for nonlinear transitions

Among the most interesting nonelephant animals are the ones that exhibit
tendencies to self-organize. Stuart Kauffman, one of their discoverers,
called this order for free. Even in the absence of selection, seemingly ran-
dom local interactions can trigger the emergence of order at a higher
scale.22 An intriguing example is a behavior called self-organized criti-
cality (SOC), for which the canonical example is not an equation, but an
experiment often performed by toddlers at the beach.23

Take a flat surface, dribble grains of sand on it until it becomes a pile,
and observe the occasional avalanches that occur as the sides grow steep
(Figure 1.2). As the grains of sand fall, avalanches continue until the steep-
ness of the sides remain constant. At this point, the sand pile has reached
its attractor; the size of avalanches (the number of grains of sand that
move) is inversely related to their frequency. That is, we see many small
avalanches and few large ones. Having reached its attractor, the shape of
the sandpile does not change, though it can grow larger, as long as sand
flows onto it and there is enough room for the sand pile to spread.
This system has several interesting features, notably that it is self-

organizing and generates a robust pattern of emergent, scale-invariant
behavior (the relationship between the size and frequency of avalanches).
This pattern is seen widely; for instance, the magnitude of earthquakes
is inversely related to their frequency. Many social and cultural phe-
nomena also exhibit this pattern. Self-organized criticality spontaneously
generates scale-free networks, in which the degree distribution of nodes—
how many connections they possess to other nodes—is inversely related

22 In some cases, order emerges from the collective behaviors of large ensembles
of smaller-scale units; in other cases, the pattern is imposed by larger-scale restraints.
S. A. Levin. 1992. The problem of pattern and scale in ecology. Ecology 73:1943–67.

23 P. Bak, C. Tang, and K. Wiesenfeld. 1987. Self-organized criticality: An expla-
nation of 1/f noise. Physical Review Letters 59:381–4.



MODELS OF CHANGE 11

to their frequency. Thus, self-organized criticality is governed by a single
attractor that produces a characteristic signature.
Sand piles have a single attractor. The possibility that real-world com-

plex systemsmight have more than one attractor was demonstrated by the
discovery of alternate stable states in Dutch lakes. For decades after the
Second World War, excess fertilizer flowed into lakes in the Netherlands,
providing free nutrients and triggering algae blooms. Later, the amount
of fertilizer entering the lakes was reduced, but intriguingly, the lakes did
not return to their original clarity. It turned out that alternate stable states
(or attractors) exist in these lakes: one turbid, the other clear. In ecology,
these alternate stable states or attractors are called regimes. The effects
of nutrient flows depended on which regime a given lake happened to
be in, so earlier studies that generalized across all lakes obscured these
differences. But once the existence of alternate regimes was recognized,
a simple intervention was sufficient to restore the lakes to health. Tem-
porarily removing the fish allowed sediment to settle and zooplankton
populations to increase, whereupon water clarity could be improved by
reducing the amount of fertilizer flowing into the lakes.24 The fish were
then re-introduced. A take-home message is that complex systems are not
necessarily symmetrical: here, as is often the case, it was easier to get into
a mess than get out of it.
The comparative study of processes like this produced new theoretical

insights by ecologists into the transitions between attractors. As a dynam-
ical system approaches the boundary between alternate attractors, it will
exhibit certain generic properties. These telltale signs have now been
observed in many natural systems.25 This behavior has yet to be conclu-
sively demonstrated for social phenomena, but has triggered substantial
interest due to its potential relevance for understanding critical transitions
in social systems.

Complex adaptive systems

As we have just seen, complex systems are simply aggregates of interact-
ing elements. If the elements are adaptive agents (in other words, if they
exhibit purposeful or goal-seeking behavior), then they form a complex
adaptive system (CAS). Complex adaptive systems are ubiquitous in the
life sciences, and we are just beginning to notice them in the social world.

24 J. L. Attayde, E. H. Van Nes, A. I. L. Araujo, et al. 2010. Omnivory by plankti-
vores stabilizes plankton dynamics, but may either promote or reduce algal biomass.
Ecosystems 13:410–20.

25 M. Scheffer, J. Bascompte, W.A. Brock, et al. 2009. Early-warning signals for
critical transitions. Nature 461:53–9.
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Is a given system composed of adaptive agents, and does it exhibit emer-
gent features that arise from their aggregate behavior? What might such
emergent features look like? When do quantitative differences turn into
qualitative transformations? Like the logistic equation for populations
described above, even the simplest examples of complex adaptive systems
can contain surprises.
To see this, we can turn the logistic equation from Figure 1.1 into

an evolving complex adaptive system by adding a single environmental
parameter—causing growth to be affected by some feature of the environ-
ment. The resulting model, created in 1992, helped trigger a revolution
in the environmental sciences.
The model is called Daisyworld26 and the environmental variable is

temperature. Daisyworld is an imaginary planet orbiting a star like the
sun and at the same orbital distance as the Earth. The surface of Daisy-
world is fertile earth, sown uniformly with daisy seeds. As is true in our
world, the daisies vary in color, and daisies of similar color grow together
in patches. As sunshine falls on Daisyworld, the model tracks changes in
the growth rate of each variety of daisy and changes in the amount of the
planet’s surface covered by different colored daisies.
The simplest version of this model contains only two varieties of

daisies, white and black. Black daisies absorb more heat than bare earth,
while white daisies reflect sunlight. Consequently, clumps of same-colored
daisies create a local microclimate for themselves, slightly warmer (if they
are black) and slightly cooler (if white) than the mean temperature of
the planet. Both black and white daisies grow fastest, and at the same
rate, when their local effective temperature (the temperature within their
microclimate) is 22.5◦C. They respond identically, with a decline in
growth rate, as the temperature deviates from this ideal. As a result, at a
given average planetary temperature, black and white daisies experience
different microclimates and therefore have different growth rates.
If the daisies cover a sufficiently large area of the surface of Daisyworld,

their color affects not only their own microclimate, but also the albedo
or reflectance of the planet as a whole (Figure 1.3). Like our own sun,
the luminosity of Daisyworld’s star has gradually increased. A simulation
of life on Daisyworld begins in the past with a cooler sun. This enables
the black daisies to spread until they warm the planet. Later on, as the
sun grows hotter, the white daisies grow faster than black ones, cooling
the planet. So over the history of Daisyworld, the warming sun gradually
changes the proportion of white and black daisies, creating the global
phenomenon of temperature regulation: the planet’s temperature is held
near an optimum for—and by—the daisies.

26 J. E. Lovelock. 1992. A numerical model for biodiversity. Philosophical Trans-
actions of the Royal Society B 338:383–91.
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Figure 1.3. Simulated temperature regulation on Daisyworld. As the lumino-
sity of its aging sun increases from 0.75 to 1.5 times the average value, the
temperature of a bare planet would steadily rise (gray line). In contrast, the
temperature of Daisyworld stabilizes close to 22.5◦C when daisies are pre-
sent (black line). Credit: Authors, adapted from James Lovelock’s Daisyworld
model.

Imagine that a team of astronauts and planners is sent to investigate
Daisyworld. They would have plenty of time to study the only living
things on the planet, and they would almost certainly conclude that
the daisies had evolved to grow best at the normal temperature of the
planet, 22.5◦C. But this conclusion would invert the actual state of affairs.
The daisies did not adapt to the temperature of the planet; instead they
adapted the planet to suit themselves.27 A Daisyworld without daisies
would track the increase in the sun’s luminance (gray line), rather than
stabilizing near the ideal temperature for daisies (black line). But the role
of the daisies in keeping the planet at a cozy temperature would not be
obvious to the newcomers. Only when the sun’s luminosity becomes too
hot for the daisies to control—the abrupt transition in the black line
on the right of the graph—would the daisy’s former role in temperature
stabilization become apparent.
Lacking this understanding, planners hoping to exploit Daisyworld’s

economic potential for the interstellar flower trade would fail to
appreciate the possible consequences of different harvesting techniques.
While selective flower harvests would cause small, probably unnoticeable
tremors in planetary temperature, clear-cutting large contiguous patches
of daisies would create momentary changes in the planet’s albedo that

27 P. T. Saunders. 1994. Evolution without natural selection: Further implications
of the Daisyworld parable. Journal of Theoretical Biology 166:365–73.
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could quickly become permanent, causing temperature regulation to fail
and daisy populations to crash. Something quite like this happened dur-
ing the 1970s Green Revolution on the Indonesian island of Bali, as we
will see in chapter 5.
The Daisyworld model soon became a canonical example of a self-

organizing, self-regulating environmental system. As an example of a
complex adaptive system, it has several interesting features. Unlike sand
piles, this model is driven by a process of adaptation. And the biology
of adaptation is as simple as its creator, James Lovelock, could possibly
make it. The model shows how small-scale local adaptations can trig-
ger an emergent global structure (temperature regulation at the planetary
scale). And it also shows why such global structures can easily fade from
view, becoming noticeable only when the system as a whole has been
pushed past its limits.

Online Resource: Daisyworld

The Daisyworld model is available in the online resources for Islands
of Order:

https://www.islandsoforder.com/daisyworld.html

Discovering islands of order

The doomed flower markets of Daisyworld conclude this overview of
models of change, which we build upon in the case studies that follow.
Older models of stadial change and stable equilibria remain of interest,
but we suggest that they are best treated as special cases.
Where do we go from here? A broader conceptual framework is

needed to detect complex emergent phenomena. Such a framework
does not yet exist for the social sciences, but an obvious way forward
is to take advantage of two existing frameworks that are commonly
used in complexity research and offer complementary insights. The first
is attractor basins from physics, the second adaptive landscapes from
evolutionary biology. Because we will use both of these ideas in future
chapters, we offer a brief introduction to them here.

Phase portraits and basins of attraction

Phase portraits offer a simple and intuitive snapshot of the behavior of
dynamical, evolving systems. We have already encountered an example
of a phase portrait in Figure 1.1, the logistic map. For convenience, this
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Figure 1.4. The logistic map, revisited. Credit: Ning Ning Chung.

figure is reprinted above (Figure 1.4). The way to read it as a phase
portrait is to mentally slide along the horizontal axis, tracking increases
in r (the growth rate) and glancing up to see how P (the population size)
changes. At different values of r, the population undergoes stable, oscilla-
tory, complex, and chaotic behavior. Each of these patterns is an attractor.
The span of r values that trigger a particular pattern is the basin of attrac-
tion for that attractor. (The analogy being a geographical drainage basin,
where rain falling on some area inexorably flows into the region’s main
river, here analogous to the attractor.) In Figure 1.4, the largest basin is
for stable (linear) growth, which extends to r=3. Above 3, there is a
new basin of attraction for oscillatory dynamics, where the population
oscillates between two values, which appear as “branches” on the figure.
A third attractor appears around 3.4, where the population oscillates
between four values (the “bubbles”). This basin is smaller, confined to the
interval, 3.44949< r<3.54409, after which another basin appears. Fur-
ther increases in r explore many tiny basins, associated with oscillatory,
complex, and chaotic attractors, and even a (brief) return to stable growth
(the white “stripes”). Thus, in the region r>3.4, this phase portrait is
characterized by an abundance of many tiny attractors.
With this example, we draw your attention to the importance of basins

of attraction. To create a phase portrait, the key question is not only the
nature of the attractors, but the regions of the phase plane that drain
into them: their basins of attraction. In general, it is rare to find systems
that comprise a single basin draining to a point attractor (in other words,
standard social science equilibrium models). But the simplicity of these
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models makes them ideal null or neutral baselines. An interesting example
is Motoo Kimura’s model of neutral equilibrium (described above), which
describes patterns of change driven by chance alone. This system has a
single attractor; the larger the population, the slower the approach to the
attractor. Kimura’s neutral model provides the theoretical framework for
our analysis of male dominance in chapter 3.
Daisyworld is a slightly more complex model. It has three basins of

attraction, which depend on the amount of sunlight reaching the planet.28

This model is the starting point for our analysis of Balinese water temple
networks in chapter 5. The Bali model is based on a simple dynamical
relationship, much like Daisyworld. But what if the data are noisy and
neither the attractors nor their basins are readily apparent? We will pick
up that question in chapter 7, where we consider how to discover basins
of attraction in noisy data from a social survey.

Definitions

Complex systems research uses a number of concepts and terms that
you may not have seen before. Here are some basic explanations of
key ideas we have encountered so far.
Emergent properties are a characteristic of systems in which you

cannot predict outcomes by observing the actions of an individual,
but only when you see many individuals interacting together. This is
the opposite of reductionist science, which aims to reduce a system
to its smallest parts. With an emergent property, seemingly random
local interactions between individuals can often trigger the emer-
gence of order at higher scales. We show some examples in later
chapters.
A phase space is a mathematical construct that represents every

possible state in a system, with each state having a unique point in
the phase space. For a dynamical system with just two variables, like
P and r in the logistic map, you can imagine the phase space as a
two-dimensional plot with P and r on the axes. (Strictly, a phase
space in two dimensions is usually called a phase plane.) If a system
has three variables, the phase space is three-dimensional. If it has ten
variables, the phase space is ten-dimensional. Mathematically, all of

28 Attractor basins can be calculated and plotted for discrete dynamical systems in
1, 2, or 3 dimensions using Discrete Dynamics Lab, http://www.ddlab.com.
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these cases work exactly the same way. It is just harder to visualize
examples with more than three dimensions.
A plot that shows the outcome of some set of initial conditions in a

given phase space is called a phase portrait. For example, Figure 1.4
shows the phase portrait for the two-dimensional dynamical system
of the logistic map.
In many dynamical systems, there is a part of the phase space

where initial conditions inevitably evolve to a particular final state.
That final point is called an attractor and the area around it is called
a basin of attraction. An attractor is a set of states that neighboring
states in a given basin of attraction asymptotically approach dur-
ing the course of dynamic evolution. Think of a water analogy: rain
falling within a watershed inevitably flows into the region’s major
river. The watershed is the basin of attraction and the river is the
attractor.
You are already familiar with attractors, even if you do not know

it. In many cases (but not always), data points that are normally
distributed—like the lengths of leaves on a tree or the volume of a
certain pot type in an archaeological assemblage—actually belong to
a dynamical systemwith just one attractor. The peak of the bell curve
is usually the attractor and the curve around it the basin of attraction.
The dynamical systems in this book are novel in that they usually
have multiple attractors, each with its own basin of attraction. The
presence of—and interaction between—multiple attractors leads to
more complex system dynamics. Describing those behaviors is a key
purpose of this book.

Adaptive landscapes

The concept of adaptive landscapes29 (also called fitness landscapes)
was proposed by biologist Sewall Wright in 1932, and is now probably
the most common metaphor used in evolutionary genetics.30 Unlike

29 S. Wright. 1932. The roles of mutation, inbreeding, crossbreeding and selection
in evolution. Proceedings of the Sixth International Congress of Genetics 1:356–66.

30 “Adaptive landscape is probably the most common metaphor in evolutionary
genetic[s].” D. J. Futuyma. Evolutionary Biology, Sinauer Associates, 1998, p. 403.
For discussion of the limitations of the adaptive landscape concept in biology, see
P.A.P.Moran. 1964. On the non-existence of adaptive topographies. Annals of Human
Genetics 27:383–93; G. Gilchrist and J. Kingsolver. 2001. Is optimality over the hill?
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Figure 1.5. An example of a fitness landscape in two dimensions. The lines repre-
sent alternative mutational paths to reach different peaks in the landscape. Note
that environmental and social change means that the landscape itself is not static,
as might be the initial impression from this figure, but instead changes in dynamic
ways over time. Credit: Randy Olson, Wikimedia Commons, CC BY-SA 3.0.

phase portraits, adaptive landscapes do not lend themselves to rigorous
mathematical analysis. Instead they provide a way to visualize trajecto-
ries of change in evolving complex adaptive systems. We combine the
concept of adaptive landscapes with phase portraits in chapter 7, where
we investigate how social systems can move between basins of attraction.
The idea of an adaptive landscape is intuitively simple: imagine a col-

lection of evolving agents—distinct entities such as organisms, people,
or strategies—on a surface, where their height in this space reflects the
relative fitness of each agent (Figure 1.5). An adaptive process, if one is
present, will move the population from valleys to peaks. The fittest
organisms cluster around the highest peaks, while the lowest fitness is
represented by deep valleys.
These peaks can take different forms. The simplest is the “Mount Fuji”

landscape with a single fitness peak (a Gaussian distribution of fitness).
In contrast, if all the fitnesses are identical, the result is a flat fitness
landscape. Here, there is no variation in fitness, so natural selection
has nothing to work with. Between these extremes, more irregular
distributions of fitness produce a rugged fitness landscape, with peaks of
varying height. Because the rate of reproduction of an organism or agent
is determined by its fitness, selection will cause an evolving population

The fitness landscapes of idealized organisms. In S. Orzack and E. Sober, eds. Adap-
tationism and Optimality. Cambridge University Press, p. 219–41; M. Pigliucci and
J. Kaplan. Making Sense of Evolution: The Conceptual Foundations of Evolutionary
Biology. University of Chicago Press, 2006; B. Calcott. 2008. Assessing the fitness
landscape revolution. Biology and Philosophy 23:639–57.
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to climb uphill in the fitness landscape over time, until it reaches a local
optimum. If more than one fitness peak exists, populations can get stuck
on lower peaks, never reaching the higher ones.
Greater realism can be introduced into fitness landscapes in several

ways. Instead of assigning a permanent fitness to each organism, fitnesses
can be allowed to vary. For example, the fitness of organism (or strategy
or agent) A may depend in part on organisms B and C. The landscape
itself can also change shape as the populations explore it. This concept—
dynamic adaptive landscapes—plays a prominent role in evolutionary
game theory, in which the evolving entities are strategies and their payoffs
(fitness) depend on their relative frequency.
In this book, we will follow the advice of a philosopher of science,

Peter Godfrey-Smith, and use adaptive landscapes to help decide
what kind of model is best suited to a given question. For Godfrey-Smith,
the key question is scale. At very small scales of space and time, where all
agents are visible as points on the landscape, movement on the landscape
may be dominated by neutral drift rather than selection. After all, muta-
tions are rare and most newmutations do not provide a fitness advantage.
Instead, neutral mutations tend to accumulate. At this scale, natural selec-
tion is just one factor among many, and will rarely be dominant. So it
makes sense to begin with a neutral model, and then look carefully for
evidence of selection or other kinds of non-neutral change.
At longer time spans, evolutionary game theory starts to become rele-

vant. Here, as Godfrey-Smith points out, “[t]he fine details of population
movements on the landscape are washed out and replaced by idealized
strategies, whose competition drives a selection process. Paleontologists
often zoom out even further, considering observed forms in contrast to a
broad range of hypothetical (unobserved) alternative types. At this coars-
est grain of analysis, selection again recedes in perceived importance, as
the large set of conceivable alternatives highlights the great importance
of historical contingency in producing observed forms.”31

Our most zoomed-out case study, the colonization of the Pacific, takes
us back over 150 generations, just brushing the Pleistocene. And sure
enough, at this scale there is unmistakable evidence of selection. At the
other extreme, decisions about cooperation are nearly simultaneous and
can appear to be nearly random. We agree with Godfrey-Smith that
the question of scale is relevant to any theory of change in an evolving
population, which makes adaptive landscapes a very useful metaphor. So
we have taken his advice, and begin each of our case studies by posing a
question or questions, and then zooming in to the relevant scale.

31 J. F. Wilkins and P. Godfrey-Smith. 2009. Adaptationism and the adaptive
landscape. Biology and Philosophy 24:199–214.
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Conclusion

In one of the foundational articles that launched complexity studies,
physicist Philip Anderson rephrased Karl Marx’s observation that quan-
titative differences become qualitative differences. “More is Different,”
Anderson observes, because at each new level of complexity entirely new
properties appear.32 The way to discover these emergent properties is by
tracing patterns of interaction among the elements of a given system. The
phenomenon of emergence is common to all of the examples we have
considered in this chapter, and will continue to be relevant in each of
the case studies in this book. But until recently the mathematical toolkit
for analyzing adaptive change was not well suited to discovering emer-
gence or other properties of out-of-equilibrium dynamical systems. As
recently as 1990, philosopher of science Karl Popper argued that social
scientists who wish to take advantage of mathematics have the choice
of only two approaches.33 The first is essentially Newtonian and is best
represented by general equilibrium theories (for example, in economics).
Such theories take the form of systems of differential equations describing
the behavior of homogeneous social actors. Change occurs as a result of
perturbations and leads from one equilibrium state to another. The sec-
ond type of theory is statistical. If one cannot write the equations to define
a dynamical system, it may yet be possible to observe statistical regulari-
ties in social phenomena. Both approaches have obvious weaknesses: the
assumption of equilibrium is forced by the mathematics, not by observa-
tions of social behavior; and sifting for patterns with descriptive statistics
is at best an indirect method for discovering causal or developmental
relationships.
We are hardly the first to comment on these limitations. In fact, they

were the central issue in what is generally reckoned to be the most
influential debate about the methodological foundations of social sci-
ence of the last century, the “Positivismusstreit” or “Positivist Dispute”34

between Popper and the social theorists of the Frankfurt School from
1961 to 1963. Popper argued that progress in the social sciences was
achievable only by the use of mathematics to falsify hypotheses. In
response, Theodor Adorno observed that descriptive statistics provide
no explanation for qualitative change, or what we would now call emer-
gence: “only through what it is not will it disclose itself as it is.”35 This led

32 P. W. Anderson. 1972. More is different. Science 177:393–6.
33 K. Popper. 1990. A World of Propensities. Thoemmes Press, 1990, pp. 18–19.
34 T. W. Adorno, H. Albert, R. Dahrendorf, et al. The Positivist Dispute in German

Sociology, transl. Glyn Adey and David Frisby, Heinemann, 1976.
35 Ibid., 296.
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Adorno to a critique of descriptive statistics as the primary tool for social
inquiry. He observed that “a social science that is both atomistic, and
ascends through classification from the atoms to generalities, is theMedu-
san mirror to a society which is both atomized and organized according
to abstract classificatory principles. . . . ” Adorno’s point was that a purely
descriptive, statistical analysis of society at a given historical moment is
just “scientific mirroring” that “remains a mere duplication.” To break
the seal of reification on the existing social order, it would be necessary to
go beyond descriptive statistics or equilibrium models to explore histori-
cal contingency. However, the mathematical tools that might enable this
kind of investigation did not yet exist, and the Positivist Dispute ended in
a stalemate.
Still, the question of historical contingency would not go away. In the

1980s, sociologist Anthony Giddens developed an influential theory
of structuration, arguing that human social activities, like some self-
reproducing items in nature, are recursive. That is to say, they are not
brought into being by social actors, but continually recreated by them
via the very means whereby they express themselves as actors. In and
through their activities, agents reproduce the conditions that make these
activities possible.36 But Gidden’s theory was pitched at a very general
level, a description of the human condition rather than a methodology
for investigating specific processes of change.
The theoretical landscape looks very different today. One important

change since the 1980s has been the flourishing of computational model-
ing. But the availability of more powerful tools for statistical analysis is
only part of the story. Our subject in this chapter has been the implications
of the discovery of Ulam’s nonelephant animals: attractors in nonlinear
systems. As Robert May showed with his logistic map, they are not hard
to find, once we learn to recognize them, and their discovery has opened
up new vistas in physics and biology. As relative latecomers to this per-
spective, social scientists are in a position to benefit from several decades
of theoretical work, including a substantial body of elegant mathematical
tools.
But how to make use of these ideas? In the chapters that follow, we

offer some suggestions.

36 A. Giddens. The Constitution of Society: Outline of the Theory of Structuration.
University of California Press, 1984.
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