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3

1.1  Introduction, Motivation, and Objectives

Why is it important to learn how to build and use agent-based models (ABMs) or “individual-
based” models, as they are called in some fields? The short answer to this question is that we 
need ABMs to solve problems that traditional models and methods are too simple for. For 
example, An (2001) showed that a simple ABM could explain the previously misunderstood 
dynamics of a medical syndrome that kills many people. Ecologists have learned that tradi­
tional models of the basic relations between predator and prey populations are unrealistic 
because they ignore individual behaviors that ABMs can represent (Abrams 1993; Railsback 
and Harvey 2013). In perhaps the most prominent example, the 2008 global financial crisis 
has been attributed in part to policy models that simplify away the essential complexities that 
ABMs can address (Buchanan 2009).

Let’s now look closely at one real model and the difference it has made.

1.1.1  A Motivational Example: Rabies Control in Europe

Rabies is a viral disease that kills great numbers of wild mammals and can spread to domestic 
animals and people. In Europe, rabies is transmitted mainly by red foxes. When an outbreak 
starts in a previously rabies-free region, it spreads in “traveling waves”: alternating areas of 
high and low infection rates.

Rabies can be eradicated from large areas, and new outbreaks can be controlled, by im­
munizing foxes: European governments have eradicated rabies from central Europe by manu­
facturing rabies vaccine, injecting it into baits, and spreading the baits from aircraft. However, 
this program is extremely expensive and works only if new outbreaks are detected and con­
tained. Key to its cost-effectiveness are these questions: What percentage of wild foxes need to 
be vaccinated to eliminate rabies from an area, and what is the best strategy for responding to 
outbreaks?

Models have long been applied to such epidemiological problems, for wildlife as well as 
people. Classical differential equation models of the European rabies problem predicted that 
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4	 Chapter 1

70% of the fox population must be vaccinated to eliminate rabies. Managers planned to re­
spond to new outbreaks using a “belt vaccination” strategy (which has worked well for other 
epidemics, including smallpox): not vaccinating the outbreak location itself but a belt around 
it, the width of which was usually determined by the limited emergency supply of vaccine. 
The 70% vaccination strategy did succeed, but the rabies problem has several characteristics 
suggesting that an agent-based modeling approach could make important contributions: the 
spread of rabies has important patterns in space as well as time, and is driven by individual 
behavior (in this case, the use of stationary territories by most foxes but long-distance mi­
gration by young foxes). Hence, Florian Jeltsch and colleagues developed a simple ABM that 
represented fox families in stationary home ranges and migration of young foxes (Jeltsch et al. 
1997). This model accurately simulated the spread of rabies over both space and time.

Dirk Eisinger and Hans-Hermann Thulke then modified the ABM specifically to evaluate 
how the distribution of vaccination baits over space affects rabies control (Thulke and Eisinger 
2008, Eisinger and Thulke 2008, Eisinger et al. 2005). Their ABM indicated that eradication 
could be achieved with a vaccination rate much lower than 70%, a result that could save mil­
lions of euros and was confirmed by the few case studies where actual vaccination coverage 
was monitored. The reason for the lower vaccination rate predicted by the ABM is that the 
“wave” spread of rabies emerges from local infectious contacts that actually facilitate eradica­
tion. The ABM of Eisinger and Thulke also indicated that the belt vaccination strategy for 
outbreaks would fail more often than an alternative: compact treatment of a circle around 
the initial outbreak. Because the ABM had reproduced many characteristics of real outbreaks 
and its predictions were easy to understand, rabies managers accepted this result and began—
successfully—to apply the compact vaccination strategy.

The rabies example shows that agent-based modeling can find new, better solutions to many 
problems important to our environment, health, and economy—and has already done so. The 
common feature of these problems is that they occur in systems composed of autonomous 
“agents” that interact with each other and their environment, differ from each other and over 
space and time, and have behaviors that are often very important to how the system works.

1.1.2  Objectives of Chapter 1

This chapter is your introduction to modeling and agent-based modeling. We get started by 
clarifying some basic ideas about modeling. These lessons may seem trivial at first, but they 
are in fact the very foundation for everything else in this course. Learning objectives for this 
chapter are to develop a firm understanding of

What models are, and what modeling is—why do we build models anyway?
What the modeling cycle involves—what is the iterative process of designing, implement­
ing, and analyzing models and using them to solve scientific problems?
What agent-based models are—how are ABMs different from other kinds of models, and 
why would you use them?

1.2  What Is a Model?

A model is a purposeful representation of some real system (Starfield et al. 1990). We build 
and use models to solve problems or answer questions about a system or a class of systems. 
In science, we usually want to understand how things work, explain patterns that we have 
observed, and predict a system’s behavior in response to some change. Real systems often are 
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Models, Agent-Based Models, and the Modeling Cycle	 5

too complex or develop too slowly to be analyzed using experiments. For example, it would 
be extremely difficult and slow to understand how cities grow and land uses change just with 
experiments. Therefore, we try to formulate a simplified representation of the system using 
equations or a computer program that we can then manipulate and experiment on. (To formu­
late a model means to design its assumptions and algorithms.)

But there are many ways of representing a real system (a city or landscape, for example) in 
a simplified way. How can we know which aspects of the real system to include in the model 
and which to ignore? To answer this question, the model’s purpose is decisive. The question we 
want to answer with the model serves as a filter: all those aspects of the real system considered 
irrelevant or insufficiently important for answering this question are filtered out. They are ig­
nored in the model, or represented only in a very simplified way.

Let us consider a simple, but not trivial, example: Did you ever search for mushrooms in 
a forest? Did you ask yourself what the best search strategy might be? If you are a mushroom 
expert, you would know how to recognize good mushroom habitat, but let us assume you are 
a neophyte. And even the mushroom expert needs a smaller-scale search strategy because 
mushrooms are so hard to see—you often almost step on them before seeing them.

You might think of several intuitive strategies, such as scanning an area in wide sweeps 
but, upon finding a mushroom, turning to smaller-scale sweeps because you know that mush­
rooms occur in clusters. But what does “large” and “small” and “sweeps” mean, and how long 
should you search in smaller sweeps until you turn back to larger ones?

Many animal species face similar problems, so it is likely that evolution has equipped them 
with good adaptive search strategies. (The same is likely true of human organizations searching 
for prizes such as profit and peace with neighbors.) Albatross, for example, behave like mush­
room hunters: they alternate more or less linear long-distance movements with small-scale 
searching (figure 1.1).

The common feature of the mushroom hunter and the albatross is that their sensing radius 
is limited—they can only detect what they seek when they are close to it—so they must move. 
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Figure 1.1   
Flight path of a female wandering 
albatross (Diomedea exulans) feeding 
in the southern Indian ocean. The flight 
begins and ends at a breeding colony 
(indicated by the star) in the Crozet 
Islands. Data recorded by H. Weimer-
skirch and colleagues for studies of 
adaptive search behavior in albatross 
(e.g., Weimerskirch et al. 2007).
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6	 Chapter 1

And often the items searched for are not distributed randomly or regularly but in clusters, so 
search behavior should be adaptive: it should change once an item is found.

Why would we want to develop a model of this problem? Because even for this simple 
problem we are not able to develop quantitative mental models. Intuitively, we find a search 
strategy that works quite well, but then we see others who use different strategies and find more 
mushrooms. Are they just luckier, or are their strategies better?

Now we understand that we need a clearly defined purpose before we can formulate a 
model. Imagine that someone simply said to you, “Please, model mushroom hunting in the 
forest.” What should you focus on? On different mushroom species, different forests, identifi­
cation of good and bad habitats, effects of hunting on mushroom populations, etc.? However, 
with the purpose “What search strategy maximizes the number of mushrooms found in a 
certain time?” we know that

We can ignore trees and vegetation; we only need to take into account that mushrooms are 
distributed in clusters. Also, we can ignore any other heterogeneity in the forest, such as 
topography or soil type—they might affect searching a little, but not enough to change the 
general answer to our question.
It will be sufficient to represent the mushroom hunter in a very simplified way: just a mov­
ing “point” that has a certain sensing radius and keeps track of how many mushrooms it 
has found and perhaps how long it has been since it found the last one.

So now we can formulate a model that includes clusters of items and an individual “agent” 
that searches for the items in the model world. If it finds a search item, it switches to smaller-
scale movement, but if the time since it found the last item exceeds a threshold, it switches 
back to more straight movement to increase its chances of detecting another cluster of items. If 
we assume that the ability to detect items does not change with movement speed, we can even 
ignore speed.

Figure 1.2 shows an example run of such a model, our simple Mushroom Hunt model. In 
chapter 2 you will start learning NetLogo, the software platform we use in this book, by pro­
gramming this little model.

This searching problem is so simple that we have good idea of what processes and behav­
iors are important for modeling it. But how in general can we know whether certain factors 

Figure 1.2   
Path of a model agent searching for items that 
are distributed in clusters.
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Models, Agent-Based Models, and the Modeling Cycle	 7

are important with regard to the question addressed with a model? The answer is we can’t! 
That is exactly why we have to formulate, implement (program in the computer), and analyze 
a model, because then we can use mathematics and computer logic to rigorously explore the 
consequences of our simplifying assumptions.

Our first formulation of a model must be based on our preliminary understanding of how 
the system works, what the important elements and processes are, and so on. These prelimi­
nary ideas might be based on empirical knowledge of the system’s behavior, on earlier models 
addressing similar questions, on theory, or just on . . . imagination (as in the mushroom hunt­
ing example). However, if we have no idea whatsoever how the system works, we cannot for­
mulate a model! For example, even though scientists are happy to model almost everything, so 
far there seems to be no explicit model of human consciousness, simply because we have no 
clue what consciousness really is and how it emerges.

Because the assumptions in the first version of a model are experimental, we have to test 
whether they are appropriate and useful. For this, we need criteria for whether the model can be 
considered a good representation of the real system. These criteria are based on patterns or regu­
larities that let us identify and characterize the real system in the first place. Stock market models, 
for example, should produce the kinds of volatility and trends in prices we see in real markets. 
Often we find that the first version of a model is too simple, lacks important processes and struc­
tures, or is simply inconsistent. We thus go back and revise our simplifying assumptions.

1.3  What Does the Modeling Cycle Involve?

When thinking about a model of a mushroom hunter (or albatross), we intuitively went 
through a series of tasks. Scientific modeling means going through these tasks in a system­
atic way and using mathematics and computer algorithms to rigorously determine the conse­
quences of the simplifying assumptions that make up our models.

Being scientific always means iterating through the tasks of modeling several times, because 
our first models can always be improved in some way: they are too simple or too complex, 
or they make us realize that we are asking the wrong questions. It is therefore useful to view 
modeling as iterating through the “modeling cycle” (figure 1.3). Iterating does not mean that 
we always go through the full cycle; rather, we often go through smaller loops, for example, be­
tween problem formulation and verbal formulation of the model. The modeling cycle consists 
of the following tasks:

	 1.	 Formulate the question. We need to start with a very clear research question because this 
question then serves as the primary compass and filter for designing a model. Often, 
formulating a clear and productive question is by itself a major task because a clear 
question requires a clear focus. For complex systems, getting focused can be difficult. 
Very often, even our questions are only experimental and later we might need to refor­
mulate the question, perhaps because it turns out not to be clear enough, or too simple, 
or too complex.

The question in our Mushroom Hunt model is, What search strategy maximizes the 
rate of finding items if they are distributed in clusters?

	 2.	 Assemble hypotheses for essential processes and structures. Agent-based modeling is “naive” 
(DeAngelis et al. 1994) in the sense that we are not trying to aggregate agents and what 
they are doing in some abstract variables like abundance, biomass, overall wealth, demo­
graphic rates, or nutrient fluxes. Instead, we naively and directly represent the agents 
and their behavior. We create these agents, put them in a virtual environment, and then 
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8	 Chapter 1

let the virtual world run and see what we can learn from it. (It is important, though, to 
ask ourselves: Is it possible to answer our question using a more aggregated and thus 
simpler model?)

Usually, we have to formulate many hypotheses for what processes and structures are 
essential to the question or problem we address. We can start top-down and ask ourselves 
questions such as, What factors have a strong influence on the phenomena of interest? 
Are these factors independent or interacting? Are they affected by other important fac­
tors? We might draw so-called influence diagrams, or flow charts, or just caricatures of 
our system and question. But whatever technique we prefer, this task has to combine our 
existing knowledge and understanding with a brainstorming phase in which we wildly 
hypothesize, followed by, most importantly, a simplification phase.

We have to force ourselves to simplify as much as we can, or even more. The modeling 
cycle must be started with the most simple model possible, because we want to develop 
understanding gradually, while iterating through the cycle. A common mistake of begin­
ners is to throw too much into the first model version—usually arguing that all these 
factors are well known and can’t possibly be ignored. The modeling expert’s answer to this 
is, yes, you might be right, but—let us focus on the absolute minimum number of factors 
first. Put all the other elements that you think might need to be in the model on your 
“wish list” and check their importance later.

The reason for this advice is this: just our preliminary understanding of a system is 
not sufficient for deciding whether things are more or less important for a model. It is 
the very purpose of the model to teach us what is important. So it is wise to have a model 
implemented as soon as possible, even if it is ridiculously simple. The simpler the model 
is, the easier it is to implement and analyze, and the sooner we are productive. The real 
productive phase in a modeling project starts when we get the modeling cycle running: 
assumptions—implementation—model output—analyses—interpretation—revised as­
sumptions, and so on.

Figure 1.3   
The modeling cycle (from 
Grimm and Railsback 2005).

Formulate the
question 

Assemble
hypotheses

Choose model
structure

Implement the
model

Analyze the
model

Communicate
the model

Patterns

Patterns
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It is difficult to formalize this task of the modeling cycle. One important help is 
heuristics for modeling: rules of thumb that are often, but not always, useful for designing 
models. We point out these heuristics throughout this book; use the index to find them. 
Compilations of modeling heuristics can be found in Starfield et al. (1990) and Grimm 
and Railsback (2005, chapter 2). And—in part III of this book we present pattern-oriented 
modeling, a very important strategy for formalizing both this and the next step in the 
modeling cycle.

For the Mushroom Hunt model, we assume that the essential process is switching 
between relatively straight large-scale “scanning” movement and small-scale searching, 
depending on how long it has been since the hunter last found an item.

	 3.	 Choose scales, entities, state variables, processes, and parameters. Once we choose some 
simplifying assumptions and hypotheses to represent our system of interest, it is time to 
sit down and think through our model in detail. We thus produce a written formulation 
of the model. Producing and updating this formulation is essential for the entire model­
ing process, including delivery to our “clients” (our thesis committee, journal reviewers, 
research sponsors, etc.). In chapter 3, we will start using a very helpful protocol for 
doing this.

This step, for the Mushroom Hunt model, includes specifying how the space that 
hunters move through is represented (as square grids with size equal to the area the 
hunter can search in one time step), what kinds of objects are in the model (one hunter 
and the items it searches for), the state variables or characteristics of the hunter (the time 
it has hunted and the number of items it has found, and the time since last finding an 
item), and exactly how the hunter searches. (Full details are provided when we imple­
ment the model in chapter 2.)

	 4.	 Implement the model. This is the most technical part of the modeling cycle, where we 
use mathematics and computer programs to translate our verbal model description into 
an “animated” object (Lotka 1925). Why animated? Because, in a way, the implemented 
model has its own independent dynamics (or “life”), driven by the internal logic of the 
model. Our assumptions may be wrong or incomplete, but the implementation itself is—
barring software mistakes—always right: it allows us to explore, in a logical and rigorous 
way, the consequences of our assumptions and see whether our initial model looks useful.

This task is often the most daunting one for neophytes in modeling, because they usu­
ally have no training in how to build software. Thus, our claim that the implementation is 
always “right” might sound ironic to beginners. They might struggle for months to get the 
implementation right—but only if they don’t take advantage of existing software plat­
forms for agent-based modeling. With the platform that we use in this book, NetLogo, 
you can often implement simple ABMs within a day or two, including the time to test 
your code and show that it is accurate. So please don’t panic!

	 5.	 Analyze, test, and revise the model. While new modelers might think that designing a 
model and implementing it on the computer takes the most work, this task—analyzing 
a model and learning from it—is the most time-consuming and demanding one. With 
tools like NetLogo, you will learn to quickly implement your own ABMs. But doing 
science with ABMs requires much more. Much of this book will be devoted to this task: 
How can we learn from our models? In particular, we will try to put forward the research 
program of “individual-based ecology” (Grimm and Railsback 2005) and apply it to other 
sciences. This program is dedicated to learning about the real world: we do not just want 
to see what happens when we create some agents and make up their behaviors—we want 
to see what agent behaviors can explain and predict important characteristics of real sys­
tems. To answer the mushroom hunting question, we could analyze the model by trying 

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



10	 Chapter 1

a variety of search algorithms and parameter values to see which produce the highest rate 
of finding items.

	 6.	 Communicate the model. Here, “communicate” means to publish or otherwise transfer the 
knowledge produced so far to clients, other scientists, and perhaps even the public. Of 
course, many other kinds of communication take place throughout the modeling cycle. 
One very important benefit of this task is that it enforces discipline on the modeling cycle 
by making us stop the other tasks long enough to thoroughly document what we have 
done and learned so far, and to think and get feedback on what we should do next.

1.4  What Is Agent-Based Modeling? How Is It Different?

Historically, the complexity of scientific models was often limited by mathematical tractability: 
when differential calculus was the only approach we had for modeling, we had to keep models 
simple enough to “solve” mathematically and so, unfortunately, we were often limited to mod­
eling quite simple problems—or forced to address complex problems with models that were 
too simple.

With computer simulation, the limitation of mathematical tractability is removed so we 
can start addressing problems that require models that are less simplified and include more 
characteristics of the real systems. ABMs are less simplified in one specific and important way: 
they represent a system’s individual components and their behaviors. Instead of describing a 
system only with variables representing the state of the whole system, we model its individual 
agents. ABMs are thus models where individuals or agents are described as unique and au­
tonomous entities that usually interact with each other and their environment locally. Agents 
may be organisms, humans, businesses, institutions, and any other entity that pursues a certain 
goal. Being unique implies that agents usually are different from each other in characteristics 
such as size, location, resource reserves, and history. Interacting locally means that agents usu­
ally do not interact with all other agents but only with their neighbors—in geographic space 
or in some other kind of “space” such as a network. Being autonomous implies that agents 
act independently of each other and pursue their own objectives. Organisms strive to survive 
and reproduce; traders in the stock market try to make money; businesses have goals such as 
meeting profit targets and staying in business; regulatory authorities want to enforce laws and 
provide public well-being. Agents therefore use adaptive behavior: they adjust their behavior to 
the current states of themselves, of other agents, and of their environment.

Using ABMs lets us address problems that concern emergence: system dynamics that arise 
from how the system’s individual components interact with and respond to each other and 
their environment. Hence, with ABMs we can study questions of how a system’s behavior 
arises from, and is linked to, the characteristics and behaviors of its individual components.

ABMs are useful for problems of emergence because they are across-level models. Tradi­
tionally, some scientists have studied only systems, modeling them using approaches such as 
differential equations that represent how the whole system changes. Other scientists have stud­
ied only what we call agents: how plants and animals, people, organizations, etc. change and 
adapt to external conditions. ABMs are different because they are concerned with two (and 
sometimes more) levels and their interactions: we use them to both look at what happens to 
the system because of what its individuals do and what happens to the individuals because of 
what the system does. So throughout this course there will be a focus on modeling the behavior 
of agents and, at the same time, observing and understanding the behavior of the system made 
up by the agents.
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ABMs are also often different from traditional models by being “unsimplified” in other 
ways, such as representing how individuals, and the environmental variables that affect them, 
vary over space, time, or other dimensions. ABMs often include processes that we know to be 
important but that are too complex to include in simpler models.

What kinds of problems can we address with ABMs? Every year more and more important 
problems are addressed with ABMs because they demand across-level approaches and are too 
complex to address without models or with only simple models. Here are some examples:

What factors caused the housing market collapse of 2008, and what policy changes could 
prevent a recurrence (Gilbert et al. 2009, Geanakoplos 2012)?
What causes the complex and seemingly unpredictable dynamics of a stock market? Are 
market fluctuations caused by dynamic behavior of traders, variation in stock value, or 
simply the market’s trading rules (LeBaron 2001, Duffy 2006)?
How can we manage tropical forests in a sustainable way, maintaining both economic uses 
and biodiversity levels critical for forests’ stability properties (Huth et al. 2004, Bohn and 
Huth 2017)?
How do shorebird populations respond to loss or alteration of the mudflats they feed in, 
and how can the effects be mitigated cost-effectively (Goss-Custard et al. 2006, Garcia 
et al. 2016)?
How is development and maintenance of human tissue regulated by signals from the 
genome and the extracellular environment and by cellular behaviors such as migration, 
proliferation, differentiation, and cell death? How do diseases result from abnormalities in 
this system (Peirce et al. 2004, An 2015, Martin et al. 2015)?
How do pharmaceuticals interact with human organs and within-organ processes to pro­
duce both benefits (Hunt et al. 2013) and undesirable side effects (Smith et al. 2016)?
What drives patterns of land use change during urban sprawl, and how are they affected 
by the physical environment and by management policies (Parker et al. 2003, Brown et al. 
2004, Groeneveld et al. 2017)?

The ability of ABMs to address complex, multilevel problems comes at a cost, of course. 
Traditional modeling requires mathematical skills, especially differential calculus and statis­
tics. But to use simulation modeling we need additional skills. This course is designed to give 
you three very important skills for using ABMs:

A new “language” for thinking about and describing models. Because we cannot define 
ABMs concisely or accurately in the languages of differential equations or statistics, we 
need a standard set of concepts (e.g., emergence, adaptive behavior, interaction, sensing) 
that describe the important elements of ABMs.
The software skills to implement models on computers and to observe, test, control, and 
analyze the models. Producing useful software is more complex for ABMs than for most 
other kinds of models.
Strategies for designing and analyzing models. There is almost no limit to how complex 
a computer simulation model can be, but if a model is too complex it quickly becomes 
too hard to parameterize, validate, or analyze. We need a way to determine what entities, 
variables, and processes should and should not be in a model, and we need methods for 
analyzing a model, after it is built, to learn about the real system.

Full-fledged ABMs assume that agents are different from each other; that they interact with 
only some, not all, other agents; that they change over time; that they can have different “life 
cycles” or stages they progress through, possibly including birth and death; and that they make 
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autonomous adaptive decisions to pursue their objectives. However, as with any model as­
sumption, assuming that these individual-level characteristics are important is experimen­
tal. It might turn out that for many questions we do not explicitly need all, or even any, of 
these characteristics. And in fact full-fledged ABMs are quite rare. In ecology, for example, 
many useful ABMs include only one individual-level characteristic: local interactions. Thus, 
although ABMs are defined by the assumption that agents are represented in some way, we still 
have to make many choices about what type of agents to represent and in what detail.

Because most model assumptions are experimental, we need to test our model: we must 
implement the model and analyze its assumptions. For the complex systems we usually deal 
with in science, just thinking is not sufficient to rigorously deduce the consequences of our 
simplifying assumptions: we have to let the computer show us what happens. We thus have to 
iterate through the modeling cycle.

1.5  Summary and Conclusions

Agent-based modeling is no longer a completely new approach, but it still offers many excit­
ing new ways to look at old problems and lets us study many new problems. In fact, the use of 
ABMs is even more exciting now that the approach has matured: the worst mistakes have been 
made and corrected, agent-based approaches are no longer considered radical and suspicious, 
and we have convenient tools for building models. People like you are positioned to take ad­
vantage of what the pioneers have learned and the tools they have built, and to get directly to 
work on interesting problems.

In this first chapter our goal is to provide some extremely fundamental and important ideas 
about modeling and agent-based modeling. Whenever you find yourself frustrated with either 
your own model or someone else’s, in “big-picture” ways (What exactly does this model do? Is 
it a good model or not? Should I add this or that process to my model? Is my model “done”?), 
it could be useful to review these fundamental ideas. They are, in summary:

A model is a purposeful simplification of a system for solving a particular problem (or 
category of problems).
We use ABMs when we think it is important for a model to include the system’s 
individuals and what they do.
Modeling is a cycle of formulating a precise question; assembling hypotheses for key 
processes and structures; formulating the model by choosing appropriate scales, entities, 
state variables, processes, and parameters; implementing the model in a computer pro­
gram; and analyzing, testing, and revising.

Understanding this modeling cycle is so important that a review of modeling practice 
(Schmolke et al. 2010) concluded that explicitly thinking about and documenting each step in 
the cycle is the primary way we can improve how models are developed and used. Schmolke et 
al. proposed a very useful format (“TRACE”) for documenting the entire cycle of developing, 
implementing, and analyzing a model. TRACE has been further developed by Augusiak et al. 
(2014) and Grimm et al. (2014).

It is very important that you have a basic understanding of these ideas from the start, but for 
the rest of part I we focus on obtaining a fundamental knowledge of how to implement models 
on the computer. In the rest of this course, however, we will come back to modeling ideas. As 
soon as you have some ability to program and analyze your own models and some understand­
ing of how to use these modeling concepts, you will rapidly become a real modeler.
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1.6  Exercises

	 1.	 One famous example of how different models must be used to solve different problems in 
the same system is grocery store checkout queues. If you are a customer deciding which 
queue to enter, how would you model the problem? What exact question would your 
model address? What entities and processes would be in the model? Now, if instead you 
are a store manager deciding how to operate the queues for the next hour or so, what 
questions would your model address and what would it look like? Finally, if you are a 
store designer and the question is how to design the checkout area so that 100 customers 
can check out per hour with the fewest employees, what things would you model? (Hint: 
Think about queues in places other than stores.)

	 2.	 For the following questions, what should be in a model? What kinds of things should be 
represented, what variables should those things have to represent their essential char­
acteristics, and what processes that change things should be in the model? Should the 
model be agent-based? If the question is not clear enough to decide, then reformulate the 
question to produce one that is sufficiently clear.

	a)	 How closely together should a farmer plant the trees in a fruit orchard?
	b)	 How much of her savings should an employee put in each of the five investment 

funds in her retirement program?
	c)	 Should a new road have one, two, or three lanes in each direction?
	d)	 Is it acceptable to allow a small legal harvest of whales?
	e)	 To complete a bachelor’s degree in physics as soon as possible, what classes should a 

student register for this semester?
	f)	 How many trees per year should a timber company harvest?
	g)	 Banks make money by investing the money that their customers deposit, but they 

must also keep some money available as cash. A bank can fail if its customers with­
draw more cash than the bank has available, or if their investments do not make 
enough money to meet expenses. Government regulators require banks to keep 
a minimum percentage of total deposits as cash that is not invested. To minimize 
bank failures, what should this minimum percentage be?

	h)	To maximize profit, how many flights per day should Saxon Airlines schedule be­
tween Frankfurt (their international hub) and Leipzig?

	i)	 To minimize system-wide delays and risk of accidents, how many flights per 
day should the European Aviation Administration allow between Frankfurt and 
Leipzig?

	j)	 Two new movies will open in theaters next weekend. One is based on a comic book 
series and features a superhero, special effects, car chases, and violence. The other is 
a romantic comedy starring a beautiful actress and a goofy but lovable actor. Which 
movie will make the most money next weekend? Over the next four weeks? Over 
the next five years?

	k)	 Using your own studies, research, or experience in general, what other problems or 
questions might be the basis of a model or agent-based model?
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non-optimizing approaches and satisficing, 
155–56; prediction in, 161–64, 169; opti­
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approaches, 210; stay-or-leave decisions, 256; 
stochastic approaches, 210–11; theory for, 
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agent-based models: across-level nature of, 10; 

and theory, 249–55, 319–20; criticisms of, 91, 
275; definition of, 10–12; difference between 
individual-based models and, xii; full-fledged, 
11–12; typical questions of, 11

agents: decision alternatives as, 150–52; definition 
of, 10; NetLogo terminology for, 16–17

agentsets: built-in, 31, 150–51; differences between 
lists and, 183; initialization of, 112; local, 151; 
merging of, 140–41; for modeling collec­
tives, 216, 218, 223; removing agents from, 
141; sensing of, 135, 139–40; sorting, 192–93; 
subsetting (filtering) of, 150–52

alternatives analysis and model uncertainty, 310–12
and, 93, 152
anonymous procedures, 184, 193
arithmetic operators, 26

ask: and changes in code context, 18, 53; ran­
domization by, 183, 190; used to make agents 
execute code, 21; used to set variables of other 
agents, 135–36

attributes. See state variables

basic principles (element of ODD model description 
protocol), 42

Bayesian updating theory to model prediction, 169
beech forest model BEFORE, 241–45
beginners’ mistakes and difficulties, 8, 9, 22, 39, 66, 

68, 319
behavior. See adaptation and adaptive behavior 
BehaviorSpace, 105–11, 154; in calibration experi­

ments, 271, 273–74; on computer clusters, 
322; global variables for, 133; and the go 
procedure’s organization, 192; random number 
control and, 209, 299–301; for sensitivity and 
uncertainty analysis, 302, 309–10; using with­
out putting variables on the interface, 302; for 
writing output, 128

Bernoulli distribution, 206–7
boolean conditions, reporters, and variables, 25, 66, 

185, 212; generated by a Bernoulli distribution, 
200–201; in if and ifelse statements, 25, 
185; in looping, 196; controlled by switches on 
Interface tab, 66, 93

brainteasers, 54, 114, 152
Breeding Synchrony model, 194; robustness analysis 

of, 313
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breeds, breed, and breeds-own, 215, 217–18, 
222–25

Business Investor model: adaptive behavior in, 
154–55; empirical model of behavior in,  
210–11; with links for sensing a network, 
144–45; objective function in, 158–59, 164–
68; ODD description of, 137–39; prediction 
in, 162–64

Butterfly Hilltopping model: analysis of, 69; 
emergence in, 103–4; implementation in 
NetLogo of, 50–59, 64–68, 69–74; observation 
of, 121–22; ODD description of, 43–46; real 
landscape data imported for, 71–74; testing 
software of, 87–91

buttons: context of, 18; creation of on Interface, 
19–20, 53, 55; Forever button, 20, 55; selecting 
and modifying, 55; step button, 83; for test 
and display procedures, 85, 122. See also syntax 
errors and checker 

calibration and parameterization: automated, 321; 
categorical vs. best-fit, 267; criteria for, 269–70; 
definition and purposes of, 263–64; and dif­
ferences between traditional modeling and 
ABMs, 264–65; documentation of, 276; litera­
ture on, 266; measures of model fit for, 268–70; 
overfitting in, 266, 272; parameters for, 266–67, 
294; purposes of, 264; statistics for, 295–96; 
strategies for, 266–64; with stochastic results, 
271; of submodels, 43, 265–66; and theory test­
ing, 263–64; time-series, 268–69

carefully, 126–27
checklist: of design concepts, 41–42; of NetLogo 

elements, 30–31
clear-all, 22; and BehaviorSpace, 109, 302; 

variables on Interface not set to zero by, 66
Code Examples in NetLogo Models Library, 16, 69, 

125–26, 208
collectives (model design concept), 41–42; defini­

tion of, 215; as emergent properties vs. explicit 
entities, 215; represented via breeds, 217–18; 
represented via patches or links, 216–17; Wild 
Dog Model example, 219–227; Woodhoopoe 
Model example, 257

comma-separated values (.csv) files, 71, 125–28; 
CSV extension to write, 125; and European 
computers, 71, 126; produced by export 
primitives, 70, 128

Command Center, 26–27, 83, 85
comments in code, 57–59, 60; for temporarily de­

activating code, 58, 66, 92, 293, 302; in version 
control, 64

communication of models and science, 10, 35, 260, 
300

competition, 139, 173, 174; in the BEFORE forest 
model, 241, 243–44; and scheduling model 
actions, 186, 192–94, in the Telemarketer 
Model, 176–77, 180, 194; in the Wild Dog 
Model, 218, 221

conceptual framework for agent-based modeling, 
41–42, 99–100

contexts in NetLogo programming, 17–18, 53, 
57–58, 79, 81, 134, 136, 142; and breeds, 217; 
and foreach, 193; using local variables in 
multiple contexts, 74

continuous time simulation. See discrete event 
simulation

contour plots: in calibration, 273; using Excel, 
164–66; of parameter interactions in sensitivity 
analysis, 304–6; in submodel analysis, 164–68; 
using R, 166–67

Cooperation model, 174
copying of code: benefits and ethics of, 125–26; as 

cause of errors, 78–79
count, 27, 67, 196
create-link(s)-to, 144, 182, 224, 227
create-turtles (crt), 23, 54; and breeds, 217; 

context started by, 18; and initialization of 
turtle variables, 23, 144; order of creation vs. 
initialization in, 144

csv files. See comma-separated values files
currencies of model results, 292–93; in sensitivity 

analysis, 301, 306

debugging of code. See under software
decision-making traits. See adaptation and adaptive 

behavior
deduced variables, 39, 245
defensive programming, 205–7, 224, 309
design concepts: as a conceptual framework, 99–100; 

in ODD protocol, 41–42
detective work in modeling, 78, 95, 246, 295, 296, 

312–13
dictionary of NetLogo primitives, 17, 22; F1 key to 

access, 21–22
discrete event simulation, 189, 194–98, 322
display, 121
display. See Interface tab in NetLogo; View
distance, 114
distance to nearest other agent set by, 114–15, 153
documentation: of analyses, 171, 238, 282; of soft­

ware tests, 58, 91–92. See also ODD protocol 
for model description; TRACE format for 
describing a modeling cycle
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emergence (model design concept), 10, 42, 103–4, 
116; of collectives, 216; criteria for, 103; in 
Flocking model, 111–12

entities: collectives as, 215–18; in ODD protocol, 
38–39; selection of, 9, 239–40

environment: emergence from, 103–4, 116, 173; 
modeling of, 17, 38–39, 40, 43, 133, 194, 321

epidemic models, 315–16; for rabies 3–4
error-message, 126–27
evolutionary modeling of behavior, 320
Excel spreadsheet software, 126, 164–66, 273
execution speed, 109, 321–22. See also speed 

controller
export- primitives, 70–71, 128
extensions to NetLogo, 208–9, 320–21; CSV, 125; 

GIS, 71, 320; Networks, 173; R, 209, 321
extinction: risk of in Wild Dog model, 218, 228, 

296, 302–5, 310–12; in the Simple Birth Rates 
model, 105–10

false. See boolean conditions, reporters, and 
variables

file- primitives, 72, 87–88, 125–28
files: input, 43, 72; output, 88, 124–28; problems 

with due to multiple processors and Behav­
iorSpace, 109–10; for software testing, 87–88, 
89–90. See also BehaviorSpace; comma-sepa­
rated values files; export- primitives

filter, 184
filtering agentsets, 151
fitness, 41, 42, 45, 149–50, 256, 258. See also 

objectives
Flocking model: analysis of using BehaviorSpace, 

112–15; calibration exercise with, 278; collec­
tives in, 216; emergence in, 111, 116; related 
scientific models, 112, 216, 253

foreach, 86, 139, 193
forest model. See beech forest model BEFORE
forward (fd), 25–26
fput, 86, 184

Geographical Information Systems (GIS) extension 
for NetLogo, 320, 322

global variables, 17, 18, 132–33; and clear-all, 
22; controlling in BehaviorSpace, 107, 109; 
defining of, 23, 50; initialization of, 56, 67; 
movement to Interface of, 66; and the observer, 
17; risks of using, 133; typical uses of, 17, 133

globals, 23, 50, 132; and variables on Interface, 
66

go procedure, 18, 19, 21, 23–24, 190–92; and Be­
haviorSpace, 109, 192; as the model schedule, 

23–24, 50, 190–92; number of times executed, 
27, 55, 109; value of keeping simple, 24, 48, 124

hatch, 18, 27, 134, 217, 224
header information in output files, 125–27 
help sources, 29, 33, 64. See also instructors’ 

guidance
heuristic models of behavior, 258, 319, 320
heuristics for developing and analyzing models, 9, 

286–95, 296
—analyze simplified versions of your model, 293
—analyze from the bottom up, 294
—at an interesting point in parameter space, keep 

the controlling parameter constant and vary 
other parameters, 290

—explore unrealistic scenarios, 294
—find “tipping points” in model behavior, 288
—look for striking or strange patterns in the 

model output, 290
—run the model step by step, 289
—try different visual representations of the 

model entities, 289
—try extreme values of parameters, 288
—use several “currencies” for evaluating your 

simulation experiments, 292
hierarchies among agents, representing via schedul­

ing, 192
Hilltopping Butterfly model. See Butterfly Hilltop­

ping model 
histogram and histograms, 123–24, 178, 257, 

311
hypothesis testing: in model analysis, 282, 285, 

286–95; in software testing, 87; for theory 
development, 237, 250–55

ifelse and ifelse-value, 24–25, 55–56, 82, 
134–35, 185

in-cone, 151
in-radius, 21–22, 79–80, 142–43, 151–53
individual-based ecology, xii, 9
individual-based models. See agent-based models 
initialization, 18–19, 22, 43; and BehaviorSpace, 

109, 302; of an empty agentset using no-
turtles, 112; via the Interface, 66; of lists, 
183–84; using nobody to designate a turtle, 
181; via the setup procedure, 19, 50, 52; 
stochastic, 202, 209; of variables, 56, 67

input data, 43, 50, 320–21. See also files
instructors’ guidance, xiv–xvi
interaction: between agent and environment, 42, 59, 

61; among agents, 42, 173–74; direct vs. medi­
ated, 173; local vs. global, 12, 173, 174–75, 294; 
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interaction (continued) 
among model processes, 290, 295; parameter, 
303–5, 306–7; programming of long-term, 
181–82; among system levels, 10

Interface tab in NetLogo: addition and modifica­
tion of elements in, 19–20, 53, 55, 123–24; 
and clear-all, 22, 66; hiding code in, 70, 
107–8, 122; input, 129; monitor, 119; move­
ment of variables to, 66; observer context of, 
18, 132–33; output, 68, 119. See also Agent 
Monitors; Command Center; Model Settings 
dialog; plots; speed controller on NetLogo 
Interface; View

internal organization of systems, 233–35, 242–45

label and plabel, 61, 83, 120–22
landscapes. See spaces and landscapes 
learning (model design concept), 42, 98, 259
length, 184
let. See local variables
link-neighbors primitives, 144–45, 151, 182, 

223–26
links in NetLogo, 17, 134, 144–45, 173, 181–82; for 

associating collectives with their members, 
223–27; for representing collectives, 216–17

links-own, 134
lists: arrays and tables as alternatives to, 208; defini­

tion and initialization of, 85, 183–84; in cal­
culating statistics, 135; for modeling memory, 
85–86, 183–84; produced from an agentset by 
of, 135; sorting of, 193

local randomness, 209–10, 309–10
local variables: containing agentsets, 93, 151; cre­

ated by let, 67; defined, 134–35; and inputs 
to reporters, 141; reasons for using, 73–74, 
134–35, 136

log-normal distribution, 206, 214
logistic functions, 220, 221–22
logistic regression, 203, 212
loop, 196–97
loops: in NetLogo, 196–97, 205–6, 309; vs. Net­

Logo’s style, 29, 139–40

management accounting and collusion models, 
245–46

management applications of models, 3–4, 38, 
218–19, 227–28; and model uncertainty and 
robustness, 310–12, 314

market models, 11, 40, 253–54
Mathematica, 162, 321
max and min, 73, 124, 135
max-n-of and min-n-of, 151

max-one-of and min-one-of, 114–15, 141, 
152, 153

max-pxcor and max-pycor, 16, 18, 51, 80
mean, 17, 68, 123, 128, 135, 217
memory, models of, 85–86, 182–85
model, definition of, 4–7 
model fit measures, 265, 266, 267–69, 271
Model Settings dialog, 18, 51–52, 72; errors caused 

by, 80
modeling cycle, 7–12, 37, 63, 119, 238, 250–51, 281, 

318–19; TRACE format for documenting, 12, 
43, 91, 238, 282

Models Library of NetLogo, 16, 63, 125–26, 208, 
318; limitations of, 63, 318

modular code, 141
monitors. See Agent Monitors 
Mousetrap model, 194–98
move-to, 17, 26, 54–56
multiagent systems, xii
multicriteria assessment of models, 234
Mushroom Hunt model: as calibration exercise, 

278; as example modeling problem, 5–10; as 
introductory programming example, 18–28; 
as modeling cycle example, 7–9; as searching 
behavior example, 157

myself, 93, 114–15, 136, 141–42, 152–53, 175

n-of, 21–22
nearest other agent, 114–15, 152–53
neighbors, 17, 80, 87, 90, 93, 140, 143
NetLogo: checklist and mini-reference, 30–31; 

extensions, 73, 125, 173, 195, 208–9, 320–21; 
influence of on model and research design, 
30; installation, 16; introduction to, 16–18; 
ODD protocol correspondence with, 49–50; 
personality and style of, 29; suitability for large 
models and alternatives to, xiii–xiv, 313–15; 
terminology, 17–18; Users Group, 33; versions, 
xvi, 16; why to use, xiii–xiv

networks: in the Business Investor model, 144–45; 
in the Models Library, 173; representing in 
NetLogo, 144–45, 208, 217

neural network models of behavior, 320 
nonspatial models, 110, 180, 220, 229, 294
null submodels and theory, 252, 254, 255, 319

objectives (model design concept), 41–42, 149–50; 
in the Business Investor model, 154; in the 
Woodhoopoe model, 258–59

objectives of this book, xii–xiii
observation (model design concept), 42, 119–20; 

of the Butterfly model, 64–68; to facilitate 
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pattern-oriented modeling, 240; of NetLogo 
models, 120–28

observer and observer context in NetLogo, 17–18, 
50, 132–33

ODD protocol for model description, 35–43; and 
standardization of terminology, xii; and cor­
responding elements in NetLogo, 49–50; and 
design of models, 36, 99–100; template docu­
ment for, 37

—of the BEFORE beech forest model, 242–44
—of the Breeding Synchrony model, 74–75
—of the Business Investor model, 137–39
—of the Butterfly Hilltopping model, 43–45
—of the Culture Dissemination model, 90–91
—of the Harvester model, 96
—of the Segregation model, 286–87
—of the Telemarketer model, 175–79
—of the Wild Dog model, 219–21
—of the Woodhoopoe model, 257–59

of, 18, 135–36, 175
one-of, 54; agentset converted to an individual 

agent by, 182
or, 152
other, 113–15, 144, 151–53
output. See files; Interface tab in NetLogo; 

observation
overfitting in calibration, 266, 272, 276

panic, when not to, 9, 18, 275. See also worry
parameters: definition of, 23, 39; documentation of, 

43; estimating values of, 263–72; as global vari­
ables and on the Interface, 23, 66, 133; inter­
action among, 304–7; for logistic functions, 
221–22; model sensitivity to, 104, 299–300, 
301–7; model uncertainty due to, 264, 307–12; 
parameter space, 271; of random number 
distributions, 202, 205–9, 212, 219; reference 
(standard) values of, 301, 302; World settings 
as, 18, 51–52, 80, 146; See also calibration and 
parameterization

patch, 72–73
patch-here, 67, 85–86, 140–41, 152–53
patch-set, 140–41
patches-own, 50, 51, 133
pattern-oriented modeling, 233–35, 239–41, 

249–52, 263–64
patterns: characterization of system and problem 

by, 234–36; criteria for matching, 236, 260–61, 
269–70; in software testing, 82–83

pen-down and pen-mode, 27
plabel, 83, 121–22
plot, 70, 123

plots, 69–70, 123–24; export of, 70–71, 128. See also 
contour plots

Poisson distribution, 169, 207–8, 212, 221
positive feedbacks, 192
precision, 83, 121, 124
prediction (model design concept), 42, 161–64, 

169–70
predictions from models: absolute vs. relative, 

311–12; independent or secondary, 244–45
primitives, 17; errors due to misunderstanding of, 

79–80; provided by extensions, 320
probability: Bayesian updating of, 169–70; logistic 

model of, 220–22; in objectives for adaptive 
behavior, 159, 168, 252; observed frequencies 
as, 202–3, 210–11; and parameters in sensitiv­
ity analysis, 301–2, 304; in prediction, 169–70, 
171; random distributions and theory of, 
204–8; in software testing, 87

problem addressed by a model. See question 
addressed by a model

processes in a model: description of, 40–41, 43; de­
sign of, 7–9, 39, 233–34, 239, 240–41, 249–252, 
existing models of, 320–21

programming practices, 57–59, 60, 64–65, 67, 68–69, 
77–78, 81–82, 86, 91–92, 94–95, 125–26, 205

pseudocode, 41
pseudorandom numbers, 204

question (problem, purpose) addressed by a model, 
4–7, 11, 38, 233–34, 318–19

R statistical software, 89, 162, 166, 209, 306, 321
rabies control models, 3–4
random, 24–25, 207
random-float, 55–56, 205
random-normal, 204, 205–6; converted to log-

normal distribution, 214
random number distributions, 202–8
random number generation and seeds, 209–10; and 

BehaviorSpace, 209–10; use of in uncertainty 
analysis, 309–10

random-poisson, 207–8
random-seed. See random number generation 

and seeds
regimes of control, 288
reimplementation: of existing models, 318–19; of 

submodels to test software, 89–91
repeat, 196
replication and repetitions, 105–7, 115, 203; in 

calibration, 271; and random-seed, 209; in 
sensitivity analysis, 302; in statistical analysis 
of results, 295

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



338	 Index

reporters, 17, 67, 141–42, 175; in BehaviorSpace and 
Interface elements, 107, 128, 273; as boolean 
logical conditions, 185

reset-ticks, 27, 191–92
resize-world, 72, 80
right, 25
robustness analysis, 299–300, 312–13
run-time errors, 80, 322. See also defensive 

programming

satisficing decision traits, 155–58
scale selection, xiii, 9, 39–40, 174, 191, 233, 265. See 

also pattern-oriented modeling; scheduling
scale-color, 52–53, 83, 120, 122–23
scenarios in simulation experiments, 106–7; contrast 

of, 115, 295; and uncertainty analysis, 310–12; 
usefulness of unrealistic, 59, 294–95, 313

scheduling, 23, 40–41, 189–92; discrete event, 
194–98; and the go procedure, 50; to represent 
hierarchies, 192–93; using time steps, 190–92; 
of View and observer actions, 121

science and agent-based modeling, xii–xiii, 9–10, 
36, 63, 77, 86, 99, 112, 149, 234, 250, 319–20

scientific method. See strong inference and scientific 
method

scope of variables, 132–35
Segregation model, 286–91, 314
sensing (model design concept), 42, 131–32, 

136–37; of an agentset, 139–40; in networks of 
links, 144–45

sensitivity analysis, 267, 300, 314, 321, 322; global, 
306–7; parameter interactions in, 304–6; 
single-parameter, 301–4

sensitivity experiments, 106, 116, 227–28, 288, 313
set, 21
set-current-plot, 124
Settings, Model. See Model Settings dialog
setup procedure, 19–24, 52–54, 71–74, 126; inter­

action of BehaviorSpace with, 109, 112, 302; 
and initialization element of ODD, 50, 52; and 
variables on Interface, 66. See also initialization

show, 26–27, 58, 69, 83, 153
Simple Birth Rates model, 104–11
simulation experiments, 65, 251, 285, 296, 318; 

examples of, 65–69, 104–11, 112–15, 142–43, 
154–55, 162–64, 179, 227–28; replication of, 
203. See also calibration and parameterization; 
robustness analysis; sensitivity analysis; theory; 
uncertainty analysis

skeletons of procedures, 21, 52, 60, 81–82
sliders, 55, 66, 133; and BehaviorSpace, 107, 109
software: alternatives to NetLogo, xiii–xiv, 

321–22; common errors in, 78–81; testing and 

verification of, 81–91. See also programming 
practices

sort-on, 193
spaces and landscapes, 38–40; benefits of simpli­

fying, 59, 293, 313; in the Business Investor 
model, 137; in the Butterfly model, 44, 51–53, 
71–74; from imported data, 72–73, 320; of ir­
regular polygons, 322; non-geographic, 10, 74, 
137, 173; scales of, 39–40; wrapping, 22, 80

spatial extent, 40, 51–52
speed controller (slider) on NetLogo Interface, 26, 

83, 121, 192
spreadsheets: for preparing input and analyzing 

results, 71, 72, 109–10, 273; for reimplement­
ing submodels, 87–91; to test and explore 
submodels, 162, 164–67, 170

stability properties, 293
standardization of agent-based modeling, xiii, 36 
state variables, 9, 38–39, 43. See also variables
statistical analysis: for software testing, 87–88, 95; of 

model results, 203, 295–96, 306, 321
stochasticity (model design concept), 42, 201–3; 

analysis of via replication, 203; in calibration, 
271; in models of behavior, 210–11, 219; and 
sensitivity analysis, 301–3; in uncertainty 
analysis, 307; uses of, 202–3

stop, 55, 68, 109; in looping, 196
Stopping rules and stopping models, 55, 198; in 

BehaviorSpace, 107–8, 109
strong inference and scientific method, 234, 250
structure and structural realism of models, 7–9, 

38–40, 233–34, 239–40, 264
stylized facts, 234
submodels: behavior submodels, 149; and cor­

responding procedures in NetLogo, 50; defini­
tion of, 40, 43; description of in ODD protocol, 
43; implementation and analysis of, 164–70, 
171, 294; independent reimplementation of, 
89–91; parameterization of, 265–66

syntax errors and checker, 20, 78, 79, 81–82

Telemarketer model: analysis of, 179; addition of 
mergers to, 180–82; collectives in, 216; with 
customers remembering callers, 182–85; ODD 
description of, 175–79; potential bias in due to 
execution order, 186, 192, 194

temporal extent, 39–40, 55, 198 
testing software. See under software
theory in agent-based models: definition of, 249–50; 

development and testing of, 250–52, 319–20; 
examples of, 252–55

theory potentially useful in adaptive traits: 
Bayesian updating of probabilities, 169–70; 
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evolutionary modeling, 320; game theory, 
245–46; objective optimization in deci­
sion analysis and behavioral ecology, 154, 
251–52; probability, 169, 204; satisficing, 
155–58; simple heuristics, 319–20; state- and 
prediction-based theory, 252

tick and ticks, 27, 55, 107, 121, 191–92; and 
BehaviorSpace, 107

tick-advance and non-integer ticks, 195–96
time in models. See scheduling
time steps, 39–40, 190; consequences of using, 

191–92. See also scheduling; tick
topology of NetLogo’s world, 22. See also Model 

Settings dialog
to-report, 67, 141–42
TRACE format for describing a modeling cycle, 12, 

43, 91, 171, 238, 276
trade-off decisions, 150, 154–55, 162–64, 251–52
troubleshooting tips, 68–69
true. See boolean conditions, reporters, and 

variables
turtles-here, 121–22, 134, 140, 143, 151; to 

identify members of a patch collective, 216
turtles-on, 79–80, 151
turtles-own, 25, 50, 134, 217

uncertainty: in calibration data, 270; not quantified 
by replication, 203; reduction of via calibra­
tion, 260, 266; in sensing information, 131; 
structural vs. parameter, 264; and theory 
development, 260

uncertainty analysis: definition of, 300; methods for, 
307–312; of relative vs. absolute predictions, 
310–12

underdetermined models, 239
uphill, 17, 56, 91
User Manual for NetLogo, 15–17, 26
user-file, 72

utility (economic objective), 41; and Business Inves­
tor model, 138, 149–50, 154–59, 164–68

validation of models, 244–45. See also pattern-
oriented modeling; theory in agent-based models

variables: of breeds, 217; built-in, 17, 23, 51, 120; 
choosing (see structure and structural realism 
of models); that contain agents and agentsets, 
67; discrete vs. continuous, 26; local, 67, 73–74; 
names of, 58, 86; of other objects, 135–36; scope 
of, 132–35; types of, 17, 51. See also state variables

version control, 64–65
View, 120–23; changing size of, 52; in continuous-

time models, 197–98; updating of, 121, 
191–92. See also Interface tab in NetLogo

wait, 121
website for this book, xvi
while, 72, 196–97; to catch normal distribution 

outliers, 205–6, 309
Wild Dog model, 218–28; ODD description of, 

219–21; sensitivity analysis of, 302–4, 304–6; 
uncertainty analysis of, 307–11

with, 67, 141, 151–52
with-local-randomness, 209–10, 212, 

309–100
with-max and with-min, 114–15, 151, 152–53
Woodhoopoe model: calibration of, 272–75; ODD 

description of, 257–59; as theory development 
exercise, 256–59, 260–61

word, 70, 83; example uses of in error statements, 
207, 225; to produce .csv output files, 127; 
to produce output files from BehaviorSpace 
experiments, 110

world and wrapping, 22, 80. See also Model Settings 
dialog

worry, why not to yet, 41, 47, 64, 94, 112, 145, 270. 
See also panic

Index of Programming Notes

A simple way to import spatial data, 72–73
A very brief introduction to output files, 88
Ask-concurrent, 193–94
BehaviorSpace, multiple processors, and output 

files, 109–10
Clear-all, 22
Copying code, 125–26
CSV files, 71
How BehaviorSpace works, 109
Logical conditions are reporters, 185
Modifying Interface elements, 55 

Moving variables to the Interface, 66
Numerical recipes and NetLogo extensions—don’t 

reinvent the wheel again!, 208–9
Parameterizing and programming logistic function, 

221–22
Shortcut keys for editing, 20
Sensing the members of an agentset, 139–40
Tracking relationships and long-term  

interactions via variables and via links, 
181–82

Troubleshooting tips, 68–69
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Updating display variables to represent agent states, 
122–23

Using repeat, loop, and while to execute code 
repeatedly, 196–97

Using -set to merge agentsets, 140–41
Version control, 64–65
When is the View updated?, 121
Writing reporters, 141–42
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