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Chapter One

Introduction

1.1 FROM THE NASH SYSTEM TO THE

MASTER EQUATION

Game theory formalizes interactions between “rational” decision makers. Its
applications are numerous and range from economics and biology to computer
science. In this monograph we are interested mainly in noncooperative games,
that is, in games in which there is no global planner: each player pursues his or
her own interests, which are partly conflicting with those of others.

In noncooperative game theory, the key concept is that of Nash equilibria,
introduced by Nash in [82]. A Nash equilibrium is a choice of strategies for
the players such that no player can benefit by changing strategies while the
other players keep theirs unchanged. This notion has proved to be particularly
relevant and tractable in games with a small number of players and action sets.
However, as soon as the number of players becomes large, it seems difficult to
implement in practice, because it requires that each player knows the strategies
the other players will use. Besides, for some games, the set of Nash equilibria is
huge and it seems difficult for the players to decide which equilibrium they are
going to play: for instance, in repeated games, the Folk theorem states that the
set of Nash equilibria coincides with the set of feasible and individually rational
payoffs in the one-shot game, which is a large set in general (see [93]).

In view of these difficulties, one can look for configurations in which the
notion of Nash equilibria simplifies. As noticed by Von Neumann and Morgen-
stern [96], one can expect that this is the case when the number of players be-
comes large and each player individually has a negligible influence on the other
players: it “is a well known phenomenon in many branches of the exact and
physical sciences that very great numbers are often easier to handle than those
of medium size [. . . ]. This is of course due to the excellent possibility of applying
the laws of statistics and probabilities in the first case” (p. 14). Such nonatomic
games were analyzed in particular by Aumann [10] in the framework of cooper-
ative games. Schmeidler [91] (see also Mas-Colell [78])) extended the notion of
Nash equilibria to that setting and proved the existence of pure Nash equilibria.

In the book we are interested in games with a continuum of players, in con-
tinuous time and continuous state space. Continuous time, continuous space
games are often called differential games. They appear in optimal control prob-
lems in which the system is controlled by several agents. Such problems (for a
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finite number of players) were introduced at about the same time by Isaacs [59]
and Pontryagin [87]. Pontryagin derived optimality conditions for these games.
Isaacs, working on specific examples of two-player zero-sum differential games,
computed explicitly the solution of these games and established the formal con-
nection with the Hamilton–Jacobi equations. The rigorous justification of Isaacs
ideas for general systems took some time. The main difficulty arose from from
the set of strategies (or from the dependence on the cost of the players with re-
spect to these strategies), which is much more complex than for classical games:
indeed, the players have to observe the actions taken by the other players in
continuous time and choose their instantaneous actions accordingly. For two-
player, zero-sum differential games, the first general existence result of a Nash
equilibrium was established by Fleming [39]: in this case the Nash equilibrium
is unique and is called the value function (it is a function of time and space).
The link between this value function and the Hamilton–Jacobi equations was
made possible by the introduction of viscosity solutions by Crandall and Lions
[32] (see also [33] for a general presentation of viscosity solutions). The ap-
plication to zero-sum differential games are due to Evans and Souganidis [35]
(for determinist problems) and Fleming and Souganidis [40] (for stochastic
ones).

For non-zero-sum differential games, the situation is more complicated. One
can show the existence of general Nash equilibria thanks to an adaptation of
the Folk theorem: see Kononenko [64] (for differential games of first order) and
Buckdahn, Cardaliaguet, and Rainer [23] (for differential games with diffusion).
However, this notion of solution does not allow for dynamic programming: it
lacks time consistency in general. The existence of time-consistent Nash equi-
libria, based on dynamic programming, requires the solvability of a strongly
coupled system of Hamilton–Jacobi equations. This system, which plays a key
role in this book, is here called the Nash system. For problems without diffu-
sions, Bressan and Shen explain in [21, 22] that the Nash system is ill-posed in
general. However, for systems with diffusions, the Nash system becomes a uni-
formly parabolic system of partial differential equations. Typically, for a game
with N players and with uncontrolled diffusions, this backward in time system
takes the form

⎧
⎪⎨

⎪⎩

−∂tvi(t,x)− tr(ai(t,x)D2vN (t,x)) +Hi(t,x, Dv1(t,x), . . . , DvN (t,x)) = 0
in [0, T ]× (Rd)N , i ∈ {1, . . . , N},

vi(T,x) = Gi(x) in (Rd)N . (1.1)

The foregoing system describes the evolution in time of the value function vi

of agent i (i ∈ {1, . . . , N}). This value function depends on the positions of
all the players x = (x1, . . . , xN ), xi being the position of the state of player i.
The second-order terms tr(ai(t,x)D2vN (t,x)) formalize the noises affecting the
dynamics of agent i. The Hamiltonian Hi encodes the cost player i has to pay
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to control her state and reaching some goal. This cost depends on the positions
of the other players and on their strategies.

The relevance of such a system for differential games has been discussed
by Star and Ho [94] and Case [30] (for first-order systems) and by Friedman
[43] (1972) (for second-order systems); see also the monograph by Başar and
Olsder [11] and the references therein. The well-posedness of this system has
been established under some restrictions on the regularity and the growth of
the Hamiltonians: See in particular the monograph by Ladyženskaja, Solonnikov,
and Ural’ceva [70] and the paper by Bensoussan and Frehse [14].

As for classical games, it is natural to investigate the limit of differential
games as the number of players tends to infinity. The hope is that in this limit
configuration the Nash system simplifies. This notion makes sense only for time-
consistent Nash equilibria, because no simplification occurs in the framework of
Folk’s theorem, where the player who deviates is punished by all the other
players.

Games in continuous space with infinitely many players were first introduced
in the economic literature (in discrete time) under the terminology of heteroge-
neous models. The aim was to formalize dynamic general equilibria in macroeco-
nomics by taking into account not only aggregate variables—GDP, employment,
the general price level, for example—but also the distributions of variables, say
the joint distribution of income and wealth or the size distribution of firms, and
to try to understand how these variables interact. We refer in particular to the
pioneering works by Aiyagari [6], Huggett [58], and Krusell and Smith [65], as
well as the presentation of the continuous-time counterpart of these models in [5].

In the mathematical literature, the theory of differential games with infinitely
many players, known as mean field games (MFGs), started with the works of
Lasry and Lions [71, 72, 74]; Huang, Caines, and Malhamé [53–57] presented
similar models under the name of the certainty equivalence principle. Since then
the literature has grown very quickly, not only for the theoretical aspects, but
also for the numerical methods and the applications: we refer to the monographs
[16,48] or the survey paper [49].

This book focuses mainly on the derivation of the MFG models from games
with a finite number of players. In classical game theory, the rigorous link be-
tween the nonatomic games and games with a large but finite number of agents
is quite well-understood: one can show (1) that limits of Nash equilibria as the
number of agents tends to infinity is a Nash equilibrium of the nonatomic game
(Green [50]), and (2) that any optimal strategy in the nonatomic game pro-
vides an ε-Nash equilibrium in the game with finitely many players, provided
the number of players is sufficiently large (Rashid [90]).

For MFGs, the situation is completely different. If the equivalent of question
(2) is pretty well understood, problem (1) turns out to be surprisingly difficult.
Indeed, passing from the MFG equilibria to the differential game with finitely
many problem relies mostly on known techniques in mean field theory: this
has been developed since the beginning of the theory in [54] and well studied
since then (see also, for instance, [25,62]). On the contrary, when one considers
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a sequence of solutions to the Nash systems with N players and one wants
to let N tend to infinity, the problem becomes extremely intricate. The main
reason is that, in classical game theory, this convergence comes from compactness
properties of the problem; this compactness is completely absent for differential
games. This issue is related to the difficulty of building time-consistent solutions
for these games. A less technical way to see this is to note that there is a change
of nature between the Nash system and its conjectured limit, the MFG. In the
Nash system, the players observe each other, and the deviation of a single player
could a priori change entirely the outcome of the game. On the contrary, in the
MFG, players react only to the evolving population density and therefore the
deviation of a single player has no impact at all on the system. The main purpose
of this book is to explain why this limit holds despite this change of nature.

1.1.1 Statement of the Problem

To explain our result further, we first need to specify the Nash system we are
considering. We assume that players control their own state and interact only
through their cost function. Then the Nash system (1.1) takes the more specific
form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tvN,i(t,x)−
N∑

j=1

Δxj
vN,i(t,x)− β

N∑

j,k=1

TrD2
xj ,xk

vN,i(t,x)

+H(xi, Dxi
vN,i(t,x)) +

∑

j �=i

DpH(xj , Dxj
vN,j(t,x)) ·Dxj

vN,i(t,x)

= FN,i(x) in [0, T ]× (Rd)N ,

vN,i(T,x) = GN,i(x) in (Rd)N .

(1.2)

As before, the above system is stated in [0, T ]× (Rd)N , where a typical element
is denoted by (t,x) with x = (x1, . . . , xN ) ∈ (Rd)N . The unknowns are the
N maps (vN,i)i∈{1,...,N} (the value functions). The data are the Hamiltonian

H : R
d×R

d → R, the maps FN,i, GN,i : (Rd)N → R, the nonnegative parameter
β, and the horizon T � 0. In the second line, the symbol · denotes the inner
product in R

d.
System (1.2) describes the Nash equilibria of an N -player differential game

(see Section 1.2 for a short description). In this game, the set of “optimal tra-
jectories” solves a system of N coupled stochastic differential equations (SDEs):

dXi,t = −DpH
(
Xi,t, Dv

N,i(t,Xt)
)
dt+

√
2 dBi

t +
√

2β dWt,

t ∈ [0, T ], i ∈ {1, . . . , N}, (1.3)

where vN,i is the solution to (1.2) and the ((Bi
t)t∈[0,T ])i=1,...,N and (Wt)t∈[0,T ]

are d-dimensional independent Brownian motions. The Brownian motions
((Bi

t)t∈[0,T ])i=1,...,N correspond to the individual noises, while the Brownian
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motion (Wt)t∈[0,T ] is the same for all the equations and, for this reason, is called
the common noise. Under such a probabilistic point of view, the collection of
random processes ((Xi,t)t∈[0,T ])i=1,...,N forms a dynamical system of interacting
particles.

The aim of this book is to understand the behavior, as N tends to infinity,
of the value functions vN,i. Another, but closely related, objective of our book is
to study the mean field limit of the ((Xi,t)t∈[0,T ])i=1,...,N as N tends to infinity.

1.1.2 Link with the Mean Field Theory

Of course, there is no chance to observe a mean field limit for (1.3) under a
general choice of the coefficients in (1.2). Asking for a mean field limit certainly
requires that the system has a specific symmetric structure in such a way that
the players in the differential game are somewhat exchangeable (when in equi-
librium). For this purpose, we suppose that, for each i ∈ {1, . . . , N}, the maps
(Rd)N � x �→ FN,i(x) and (Rd)N � x �→ GN,i(x) depend only on xi and on the
empirical distribution of the variables (xj)j �=i:

FN,i(x) = F (xi,m
N,i
x ) and GN,i(x) = G(xi,m

N,i
x ), (1.4)

where mN,i
x = 1

N−1

∑
j �=i δxj

is the empirical distribution of the (xj)j �=i and

where F,G : R
d ×P(Rd) → R are given functions, P(Rd) being the set of Borel

probability measures on R
d. Under this assumption, the solution of the Nash

system indeed enjoys strong symmetry properties, which imply in particular
the required exchangeability property. Namely, vN,i can be written in a form
similar to (1.4):

vN,i(t,x) = vN (t, xi,m
N,i
x ), t ∈ [0, T ], x ∈ (Rd)N , (1.5)

for a function vN (t, ·, ·) taking as arguments a state in R
d and an empirical

distribution of size N − 1 over R
d.

In any case, even under the foregoing symmetry assumptions, it is by no
means clear whether the system (1.3) can exhibit a mean field limit. The reason
is that the dynamics of the particles (X1,t, . . . , XN,t)t∈[0,T ] are coupled through
the unknown solutions vN,1, . . . , vN,N to the Nash system (1.2), whose symmetry
properties (1.5) may not suffice to apply standard results from the theory of
propagation of chaos. Obviously, the difficulty is that the function vN on the
right-hand side of (1.5) precisely depends on N . Part of the challenge in the
text is thus to show that the interaction terms in (1.3) get closer and closer, as
N tends to the infinity, to some interaction terms with a much more tractable
and much more explicit shape.

To get a picture of the ideal case under which the mean-field limit can be
taken, one can choose for a while β = 0 in (1.3) and then assume that the
function vN in the right-hand side of (1.5) is independent of N . Equivalently, one
can replace in (1.3) the interaction function (Rd)N � x �→ DpH(xi, v

N,i(t,x))
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by (Rd)N � x �→ b(xi,m
N,i
x ), for a map b : R

d × P(Rd) �→ R
d. In such a case,

the coupled system of SDEs (1.3) turns into

dXi,t = b
(
Xi,t,

1

N − 1

∑

j �=i

δXj,t

)
dt+

√
2 dBi

t, t ∈ [0, T ], i ∈ {1, . . . , N}, (1.6)

the second argument in b being nothing but the empirical measure of the par-
ticle system at time t. Under suitable assumptions on b (e.g., if b is bounded
and Lipschitz continuous in both variables, the space of probability measures
being equipped with the Wasserstein distance) and on the initial distribution
of the ((Xi,t)i=1,...,N )t∈[0,T ], both the marginal law of (X1

t )t∈[0,T ] (or of any
other player) and the empirical distribution of the whole system converge to
the solution of the McKean–Vlasov equation:

∂tm−Δm+ div
(
mb(·,m)

)
= 0.

(see, among many other references, McKean [77], Sznitman [92], Méléard [79]).
The standard strategy for establishing the convergence consists in a coupling
argument. Precisely, if one introduces the system of N independent equations

dYi,t = b
(
Yi,t,L(Yi,t)

)
dt+

√
2 dBi

t, t ∈ [0, T ], i ∈ {1, . . . , N},

(where L(Yi,t) is the law of Yi,t) with the same (chaotic) initial condition as that
of the processes ((Xi,t)t∈[0,T ])i=1,...,N , then it is known that (under appropriate
integrability conditions; see Fournier and Guillin [42])

sup
t∈[0,T ]

E [|X1,t − Y1,t|] � CN− 1
max(2,d)

(
1{d �=2} + ln(1 +N)1{d=2}

)
.

In comparison with (1.6), all the equations in (1.3) are subject to the common
noise (Wt)t∈[0,T ], at least when β �= 0. This makes a first difference between our
limit problem and the above McKean–Vlasov example of interacting diffusions,
but, for the time being, it is not clear how deeply this may affect the analysis.
Indeed, the presence of a common noise does not constitute a real challenge
in the study of McKean–Vlasov equations, the foregoing coupling argument
working in that case as well, provided that the distribution of Y is replaced by
its conditional distribution given the realization of the common noise. However,
the key point here is precisely that our problem is not formulated as a McKean–
Vlasov equation, as the drifts in (1.3) are not of the same explicit mean field
structure as they are in (1.6) because of the additional dependence on N in the
right-hand side of (1.5): obviously this is the second main difference between
(1.3) and (1.6). This makes rather difficult any attempt to guess the precise
impact of the common noise on the analysis. Certainly, as we already pointed
out, the major issue in analyzing (1.3) stems from the complex nature of the
underlying interactions. As the equations depend on one another through the
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nonlinear system (1.2), the evolution with N of the coupling between all of
them is indeed much more intricate than in (1.6). And once again, on the top of
that, the common noise adds another layer of difficulty. For these reasons, the
convergence of both (1.2) and (1.3) has been an open question since Lasry and
Lions’ initial papers on MFGs [71,72].

1.1.3 The Mean Field Game System

If one tries, at least in the simpler case β = 0, to describe—in a heuristic
way—the structure of a differential game with infinitely many indistinguishable
players, i.e., a “nonatomic differential game,” one finds a problem in which each
(infinitesimal) player optimizes his payoff, depending on the collective behavior
of the others, and, meanwhile, the resulting optimal state of each of them is
exactly distributed according to the state of the population. This is the “mean
field game system” (MFG system):

⎧
⎪⎨

⎪⎩

−∂tu−Δu+H(x,Dxu) = F (x,m(t)) in [0, T ]× R
d,

∂tm−Δm− div(mDpH(x,Dxu)) = 0 in [0, T ]× R
d,

u(T, x) = G(x,m(T )), m(0, ·) = m(0) in R
d,

(1.7)

where m(0) denotes the initial state of the population. The system consists in
a coupling between a (backward) Hamilton–Jacobi equation, describing the dy-
namics of the value function of any of the players, and a (forward) Kolmogorov
equation, describing the dynamics of the distribution of the population. In that
framework, H reads as a Hamiltonian, F is understood as a running cost, and
G as a terminal cost. Since its simultaneous introduction by Lasry and Lions
[74] and by Huang, Caines, and Malhamé [53], this system has been thor-
oughly investigated: its existence, under various assumptions, can be found in
[15, 25, 54–56, 62, 74, 76]. Concerning uniqueness of the solution, two regimes
were identified in [74]. Uniqueness holds under Lipschitz type conditions when
the time horizon T is short (or, equivalently, when H, F , and G are “small”),
but, as for finite-dimensional two-point boundary value problems, it may fail
when the system is set over a time interval of arbitrary length. Over long time
intervals, uniqueness is guaranteed under the quite fascinating condition that
F and G are monotone; i.e., if, for any measures m,m′, the following holds:

∫

Rd

(F (x,m)− F (x,m′) d(m−m′)(x) � 0

and

∫

Rd

(G(x,m)−G(x,m′) d(m−m′)(x) � 0.

(1.8)

The interpretation of the monotonicity condition is that the players dislike con-
gested areas and favor configurations in which they are more scattered; see
Remark 2.3.1 for an example. Generally speaking, condition (1.8) plays a key
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role throughout the text, as it guarantees not only uniqueness but also stability
of the solutions to (1.7).

As observed, a solution to the MFG system (1.7) can indeed be interpreted as
a Nash equilibrium for a differential game with infinitely many players: in that
framework, it plays the role of the Schmeidler noncooperative equilibrium. A
standard strategy to make the connection between (1.7) and differential games
consists in inserting the optimal strategies from the Hamilton–Jacobi equation
in (1.7) into finitely many player games in order to construct approximate Nash
equilibria: see [54], as well as [25, 55, 56, 62]. However, although it establishes
the interpretation of the system (1.7) as a differential game with infinitely many
players, this says nothing about the convergence of (1.2) and (1.3).

When β is positive, the system describing Nash equilibria within a population
of infinitely many players subject to the same common noise of intensity β
cannot be described by a deterministic system of the same form as (1.7). Owing
to the theory of propagation of chaos for systems of interacting particles (see the
short remark earlier), the unknown m in the forward equation is then expected
to represent the conditional law of the optimal state of any player given the
realization of the common noise. In particular, it must be random. This turns the
forward Kolmogorov equation into a forward stochastic Kolmogorov equation.
As the Hamilton–Jacobi equation depends on m, it renders u random as well. At
any rate, a key fact from the theory of stochastic processes is that the solution
to an SDE must be adapted to the underlying observation, as its values at some
time t cannot anticipate the future of the noise after t. At first sight, it seems
to be very demanding, as u is also required to match, at time T , G(·,m(T )),
which depends on the whole realization of the noise up until T . The correct
formulation to accommodate both constraints is given by the theory of backward
SDEs, which suggests penalizing the backward dynamics by a martingale in
order to guarantee that the solution is indeed adapted. We refer the reader to
the monograph [84] for a complete account on the finite dimensional theory and
to the paper [85] for an insight into the infinite dimensional case. Denoting by
W “the common noise” (here, a d-dimensional Brownian motion) and by m(0)

the initial distribution of the players at time t0, the MFG system with common
noise then takes the form (in which the unknowns are now (ut,mt, vt))

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dtut =
[−(1 + β)Δut +H(x,Dxut)− F (x,mt)−

√
2βdiv(vt)

]
dt

+vt · dWt, in [0, T ]× R
d,

dtmt =
[
(1 + β)Δmt + div

(
mtDpH(x,Dxut)

)]
dt

−div(mt

√
2β dWt

)
, in [0, T ]× R

d,

uT (x) = G(x,mT ), m0 = m(0), in R
d

(1.9)

where we used the standard convention from the theory of stochastic processes
that consists in indicating the time parameter as an index in random functions.
As suggested immediately above, the map vt is a random vector field that forces



INTRODUCTION 9

the solution ut of the backward equation to be adapted to the filtration generated
by (Wt)t∈[0,T ]. As far as we know, the system (1.9) has never been investigated
and part of this book will be dedicated to its analysis (see, however, [27] for
an informal discussion). Below, we call the system (1.9) the MFG system with
common noise.

Note that the aggregate equations (1.7) and (1.9) (see also the master equa-
tion (1.10)) are the continuous-time analogues of equations that appear in the
analysis of dynamic stochastic general equilibria in heterogeneous agent models
(Aiyagari [6], Bewley [19], and Huggett [58]). In this setting, the factor β de-
scribes the intensity of “aggregate shocks,” as discussed by Krusell and Smith
in the seminal paper [65]. In some sense, the limit problem studied in the text
is an attempt to deduce the macroeconomic models, describing the dynamics of
a typical (but heterogeneous) agent in an equilibrium configuration, from the
microeconomic ones (the Nash equilibria).

1.1.4 The Master Equation

Although the MFG system has been widely studied since its introduction in [74]
and [53], it has become increasingly clear that this system was not sufficient to
take into account the entire complexity of dynamic games with infinitely many
players. A case in point is that the original system (1.7) becomes much more
complex in the presence of a common noise (i.e., when β > 0); see the stochastic
version (1.9). In the same spirit, we may notice that the original MFG system
(1.7) does not accommodate MFGs with a major player and infinitely many
small players; see [52]. And, last but not least, the main limitation is that, so
far, the formulation based on the system (1.7) (or (1.9) when β > 0) has not
allowed establishment of a clear connection with the Nash system (1.2).

These issues led Lasry and Lions [76] to introduce an infinite dimensional
equation—the so-called “master equation”—that directly describes, at least for-
mally, the limit of the Nash system (1.2) and encompasses the foregoing com-
plex situations. Before writing down this equation, let us explain its main fea-
tures. One of the key observations has to do with the symmetry properties, to
which we already alluded, that are satisfied by the solution of the Nash system
(1.2). Under the standing symmetry assumptions (1.4) on the (FN,i)i=1,...,N and
(GN,i)i=1,...,N , (1.5) says that the (vN,i)1,...,N can be written into a form simi-
lar to (1.4), namely vN,i(t,x) = vN (t, xi,m

N,i
x ) (where the empirical measures

mN,i
x are defined as in (1.4)), but with the obvious but major restriction that the

function vN that appears on the right-hand side of the equality now depends on
N . With such a formulation, the value function to player i reads as a function
of the private state of player i and of the empirical distribution formed by the
others. Then, one may guess, at least under the additional assumption that such
a structure is preserved as N → +∞, that the unknown in the limit problem
takes the form U = U(t, x,m), where x is the position of the (typical) small
player at time t and m is the distribution of the (infinitely many) other agents.
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The question is then to write down the dynamics of U . Plugging U =
U(t, xi,m

N,i
x ) into the Nash system (1.2), one obtains—at least formally—an

equation stated in the space of measures (see Section 1.2 for a heuristic discus-
sion). This is the so-called master equation. It takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂tU − (1 + β)ΔxU +H(x,DxU)− (1 + β)

∫

Rd

divy [DmU ] dm(y)

+

∫

Rd

DmU ·DpH
(
y,DxU(·, y, ·))dm(y)

−2β

∫

Rd

divx [DmU ] dm(y)− β

∫

R2d

Tr
[
D2

mmU
]
dm⊗2(y, y′)

= F (x,m) in [0, T ]× R
d × P(Rd),

U(T, x,m) = G(x,m) in R
d × P(Rd),

(1.10)

where ∂tU , DxU , and ΔxU are understood as ∂tU(t, x,m), DxU(t, x,m), and
ΔxU(t, x,m); DxU(·, y, ·) is understood as DxU(t, y,m); and DmU and D2

mmU
are understood as Dm(t, x,m, y) and D2

mmU(t, x,m, y, y′).
In Eq. (1.10), ∂tU , DxU , and ΔxU stand for the usual time derivative,

space derivatives, and Laplacian with respect to the local variables (t, x) of the
unknown U , while DmU and D2

mmU are the first- and second-order derivatives
with respect to the measure m. The precise definition of these derivatives is
postponed to Chapter 2. For the time being, let us just note that it is related to
the derivatives in the space of probability measures described, for instance, by
Ambrosio, Gigli, and Savaré in [7] and by Lions in [76]. It is worth mentioning
that the master equation (1.10) is not the first example of an equation studied in
the space of measures—by far: for instance, Otto [83] gave an interpretation of
the porous medium equation as an evolution equation in the space of measures,
and Jordan, Kinderlehrer, and Otto [60] showed that the heat equation was also a
gradient flow in that framework; notice also that the analysis of Hamilton–Jacobi
equations in metric spaces is partly motivated by the specific case in which the
underlying metric space is the space of measures (see in particular [8,36] and the
references therein). The master equation is, however, the first one to combine at
the same time the issue of being nonlocal, nonlinear, and of second order and,
moreover, without maximum principle.

Besides the discussion in [76], the importance of the master equation (1.10)
has been acknowledged by several contributions: see, for instance, the mono-
graph [16] and the companion papers [17] and [18], in which Bensoussan, Frehse,
and Yam generalize this equation to mean field type control problems and refor-
mulate it as a partial differential equation (PDE) set on an L2 space, and [27],
where Carmona and Delarue interpret this equation as a decoupling field of
forward–backward SDE in infinite dimension.

If the master equation has been discussed and manipulated thoroughly in
the aforementioned references, it is mostly at a formal level: the well-posedness
of the master equation has remained, to a large extent, open until now. Besides,



INTRODUCTION 11

even if the master equation has been introduced to explain the convergence
of the Nash system, the rigorous justification of the convergence has not been
understood.

The aim of this book is to provide an answer to both questions.

1.1.5 Well-posedness of the Master Equation

The largest part of this book is devoted to the proof of the existence and unique-
ness of a classical solution to the master equation (1.10), where, by classical, we
mean that all the derivatives in (1.10) exist and are continuous. To avoid issues
related to boundary conditions or conditions at infinity, we work for simplicity
with periodic data: the maps H, F , and G are periodic in the space variable.
The state space is therefore the d-dimensional torus T

d = R
d/Zd and m(0) be-

longs to P(Td), the set of Borel probability measures on T
d. We also assume

that F,G : T
d × P(Td) → R satisfy the monotonicity conditions (1.8) and are

sufficiently “differentiable” with respect to both variables and, of course, pe-
riodic with respect to the state variable. Although the periodicity condition is
rather restrictive, the extension to maps defined on the full space or to Neumann
boundary conditions is probably not a major issue. At any rate, it would cer-
tainly require further technicalities.

So far, the existence of classical solutions to the master equation has been
known in more restricted frameworks. Lions discussed in [76] a finite dimen-
sional analogue of the master equation and derived conditions for this hyperbolic
system to be well posed. These conditions correspond precisely to the mono-
tonicity property (1.8), which we here assume to be satisfied by the coupling
functions F and G. This parallel strongly indicates—but this should not come
as a surprise—that the monotonicity of F and G should play a key role in the
unique strong solvability of (1.10). Lions also explained in [76] how to get the
well-posedness of the master equation without noise (no Laplacian in the equa-
tion) by extending the equation to a (fixed) space of random variables under
a convexity assumption in space of the data. In [24] Buckdahn, Li, Peng, and
Rainer studied equation (1.10), by means of probabilistic arguments, when there
is no coupling or common noise (F = G = 0, β = 0) and proved the existence of
a classical solution in this setting; in a somewhat similar spirit, Kolokoltsov, Li,
and Yang [62] and Kolokoltsov, Troeva, and Yang [63] investigated the tangent
process to a flow of probability measures solving a McKean–Vlasov equation.
Gangbo and Swiech [45] analyzed the first-order master equation in short time
(no Laplacian in the equation) for a particular class of Hamiltonians and of
coupling functions F and G (which are required to derive from a potential in
the measure argument). Chassagneux, Crisan, and Delarue [31] obtained, by a
probabilistic approach similar to that used in [24], the existence and uniqueness
of a solution to (1.10) without common noise (when β = 0) under the mono-
tonicity condition (1.8) in either the nondegenerate case (as we do here) or in
the degenerate setting provided that F , H, and G satisfy additional convexity
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conditions in the variables (x, p). The complete novelty of our result, regarding
the specific question of solvability of the master equation, is the existence and
uniqueness of a classical solution to the problem with common noise.

The technique of proof in [24, 31, 45] consists in finding a suitable repre-
sentation of the solution: indeed a key remark in Lions [76] is that the master
equation is a kind of transport equation in the space of measures and that its
characteristics are, when β = 0, the MFG system (1.7). Using this idea, the
main difficulty is then to prove that the candidate is smooth enough to perform
the computation showing that it is a classical solution of (1.10). In [24, 31] this
is obtained by linearizing systems of forward–backward SDEs, while [45] relies
on a careful analysis of the characteristics of the associated first-order PDE.

Our starting point is the same: we use a representation formula for the
master equation. When β = 0, the characteristics are just the solution to the
MFG system (1.7). When β is positive, these characteristics become random
under the action of the common noise and are then given by the solution of the
MFG system with common noise (1.9).

The construction of a solution U to the master equation then relies on the
method of characteristics. Namely, we define U by letting U(t0, x,m0) := ut0(x),
where the pair (ut,mt)t∈[t0,T ] is the solution to (1.9) when the forward equation

is initialized at m(0) ∈ P(Td) at time t0, that is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dtut =
[−(1 + β)Δut +H(x,Dxut)− F (x,mt)−

√
2βdiv(vt)

]
dt

+vt · dWt in [t0, T ]× T
d,

dtmt =
[
(1 + β)Δmt + div

(
mtDpH(x,Dxut)

)]
dt

−div(mt

√
2β dWt

)
in [t0, T ]× T

d,

uT (x) = G(x,mT ), mt0 = m(0) in T
d.

(1.11)

There are two main difficult steps in the analysis. The first one is to establish
the smoothness of U and the second one is to show that U indeed satisfies the
master equation (1.10). To proceed, the cornerstone is to make a systematic use
of the monotonicity properties of the maps F and G: basically, monotonicity
prevents the emergence of singularities in finite time. Our approach seems to
be very powerful, although the reader might have a different feeling because of
the length of the arguments. As a matter of fact, part of the technicalities in
the proof are caused by the stochastic aspect of the characteristics (1.11). As
a result, we spend much effort to handle the case with a common noise (for
which almost nothing has been known so far), but, in the simpler case β = 0,
our strategy to handle the first-order master equation provides a much shorter
proof than in the earlier works [24,31,45]. For this reason, we decided to display
the proof in this simple context separately (Section 3).

It is worth mentioning that, although our result is the first one to address
the MFG system (1.11) in the case β > 0, the existence and uniqueness of equi-
libria to MFGs with a common noise were already studied in the paper [29] by
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Carmona, Delarue, and Lacker. Therein, the strategy is completely different, as
the existence is investigated first by combining purely probabilistic arguments
together with Kakutani–Fan–Glicksberg’s theorem for set-valued mappings. As
a main feature, existence of equilibria is proved by means of a discretization pro-
cedure of the common noise, which consists in focusing first on the case when
the common noise has a finite number of outcomes. This constraint on the noise
is relaxed in a second step. However, it must be stressed that the limiting solu-
tions that are obtained in this way (for the MFG driven by the original noise)
are weak equilibria only, which means that they may not be adapted with re-
spect to the common source of noise. This fact is completely reminiscent of the
construction of weak solutions to SDEs. Remarkably, Yamada-Watanabe’s prin-
ciple for weak existence and strong uniqueness to SDEs extends to mean field
games with a common noise: provided that a form of strong uniqueness holds
for the MFG, any weak solution is in fact strong. Generally speaking, it is shown
in [29] that strong uniqueness indeed holds true for MFGs with a common noise
whenever the aforementioned monotonicity condition (1.8) is satisfied. In this
regard, the result of [29] is completely consistent with the one we obtain here
for the solvability of (1.11), as we prove that the solutions to (1.11) are indeed
adapted with respect to (Wt)t∈[0,T ]. The main difference with [29] is that we take
a short cut to get the result as we directly benefit from the monotone structure
(1.8) to apply a fixed-point argument with uniqueness (instead of a fixed-point
argument without uniqueness like Kakutani–Fan–Glicksberg’s theorem). As
a result, we here get in the same time existence and uniqueness of a solution
to (1.11).

1.1.6 The Convergence Result

Although most of the book is devoted to the construction of a solution to the
master equation, our main (and primary) motivation remains to justify the mean
field limit. Namely, we show that the solution of the Nash system (1.2) converges
to the solution of the master equation. The main issue here is the complete lack
of estimates on the solutions to this large system of Hamilton–Jacobi equations:
this prevents the use of any compactness method to prove the convergence. So
far, this question has been almost completely open. The convergence has been
known in very few specific situations. For instance, it was proved for the ergodic
MFGs (see Lasry-Lions [71], revisited by Bardi-Feleqi [13]). In this case, the Nash
equilibrium system reduces to a coupled system of N equations in T

d (instead
of N equations in T

Nd as (1.2)) and estimates of the solutions are available.
Convergence is also known in the “linear-quadratic” setting, where the Nash
system has explicit solutions: see Bardi [12]. Let us finally quote the nice results
by Fischer [38] and Lacker [69] on the convergence of open loop Nash equilibria
for the N -player game and the characterization of the possible limits. Therein,
the authors overcome the lack of strong estimates on the solutions to the N -
player game by using the notion of relaxed controls for which weak compactness
criteria are available. The problem addressed here—concerning closed loop Nash
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equilibria—differs in a substantial way from [38, 69]: indeed, we underline the
striking fact that the Nash system (1.2), which concerns equilibria in which
the players observe each other, converges to an equation in which the players
only need to observe the evolution of the distribution of the population. This
is striking because it allows for a drastic gain of complexity: without common
noise, limiting equilibria are deterministic and hence can be precomputed; in
particular, the limiting strategies are distributed in the sense that players just
need to update their own state to compute the equilibrium strategy; this is in
contrast with the equilibrium given by (1.2), as the latter requires updating the
states of all the players in the equilibrium feedback function.

Our main contribution is a general convergence result, in large time, for
MFGs with common noise, as well as an estimate of the rate of convergence.
The convergence holds in the following sense: for any x ∈ (Td)N , let mN

x :=
1
N

∑N
i=1 δxi

; then

sup
i=1,··· ,N

∣
∣vN,i(t0,x)− U(t0, xi,m

N
x )
∣
∣ � CN−1, (1.12)

for a constant C independent of N , t0, and x. We also prove a mean field result
for the optimal solutions (1.3): if the initial conditions of the ((Xi,·))i=1,...,N are
i.i.d. and with the same law m(0) ∈ P(Td), then

E

[
sup

t∈[0,T ]

|Xi,t − Yi,t|
]

� CN− 1
d+8 , (1.13)

where the ((Yi,t)i=1,...,N )t∈[0,T ] are the solutions to the McKean–Vlasov SDE

dYi,t = −DpH
(
Yi,t, DxU

(
t, Yi,t,L(Yi,t|W )

))
dt

+
√
2dBi

t +
√

2β dWt, t ∈ [t0, T ],

with the same initial condition as the ((Xi,t)i=1,...,N )t∈[0,T ]. Here U is the so-
lution of the master equation and L(Yi,t|W ) is the conditional law of Yi,t given
the realization of the whole path W . Since the ((Yi,t)t∈[0,T ])i=1,...,N are condi-
tionally independent given W , (1.13) shows that (conditional) propagation of
chaos holds for the N -Nash equilibria.

The technique of proof consists in testing the solution U of the master equa-
tion (1.10) as nearly a solution to the N -Nash system (1.2). On the model of
(1.4), a natural candidate for being an approximate solution to the N -Nash
system is indeed

uN,i(t,x) = U
(
t, xi,m

N,i
x

)
, t ∈ [0, T ], x ∈ (Td)N .

Taking advantage of the smoothness of U , we then prove that the “proxies”
(uN,i)i=1,...,N almost solve the N -Nash system (1.2) up to a remainder term that
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vanishes as N tends to ∞. As a byproduct, we deduce that the (uN,i)i=1,...,N

get closer and closer to the “true solutions” (vN,i)i=1,...,N when N tends to ∞,
which yields (1.12). As the reader may notice, the convergence property (1.12)
holds in supremum norm, which is a very strong fact.

It is worth mentioning that the monotonicity properties (1.4) play no role in
our proof of the convergence. However, surprisingly, the uniform parabolicity of
the MFG system is a key ingredient of the proof. On the one hand, in the uni-
formly parabolic setting, the convergence holds under the sole assumption that
the master equation has a classical solution (plus structural Lipschitz continuity
conditions on the coefficients). On the other hand, we do not know if one can
dispense with the parabolicity condition.

1.1.7 Conclusion and Further Prospects

The fact that the existence of a classical solution to the master equation suffices
to prove the convergence of the Nash system demonstrates the deep interest of
the master equation, when regarded as a mathematical concept in its own right.
Considering the problem from a more abstract point of view, the master equation
indeed captures the evolution of the time-dependent semigroup generated by the
Markov process formed, on the space of probability measures, by the forward
component of the MFG system (1.11). Such a semigroup is said to be lifted as
the corresponding Markov process has P(Td) as state space. In other words,
the master equation is a nonlinear PDE driven by a Markov generator acting
on functions defined on P(Td). The general contribution of our book is thus to
show that any classical solution to the master equation accommodates a given
perturbation of the lifted semigroup and that the information enclosed in such a
classical solution suffices to determine the distance between the semigroup and
its perturbation. Obviously, as a perturbation of a semigroup on the space of
probability measures, we are here thinking of a system of N interacting particles,
exactly as that formed by the Nash equilibrium of an N -player game.

Identifying the master equation with a nonlinear PDE driven by the Markov
generator of a lifted semigroup is a key observation. As already pointed out,
the Markov generator is precisely the operator, acting on functions from P(Td)
to R, generated by the forward component of the MFG system (1.11). Put
differently, the law of the forward component of the MFG system (1.11), which
resides in P(P(Td)), satisfies a forward Kolmogorov equation, also referred to
as a “master equation” in physics. This says that “our master equation” is
somehow the dual (in the sense that it is driven by the adjoint operator) of the
“master equation” that would describe, according to the terminology used in
physics, the law of the Nash equilibrium for a game with infinitely many players
(in which case the Nash equilibrium itself is a distribution). We stress that
this interpretation is very close to the point of view developed by Mischler and
Mouhot, [80] in order to investigate Kac’s program (except that, differently from
ours, Mischler and Mouhot’s work investigates uniform propagation of chaos
over an infinite time horizon; we refer to the companion paper by Mischler,
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Mouhot, and Wennberg [81] for the analysis, based on the same technology, of
mean field models in finite time). Therein, the authors introduce the evolution
equation satisfied by the (lifted) semigroup, acting on functions from P(Rd)
to R, generated by the d-dimensional Boltzmann equation. According to our
terminology, such an evolution equation is a “master equation” on the space of
probability measures, but it is linear and of the first order while ours is nonlinear
and of the second order (meaning second order on P(Td)).

In this perspective, we also emphasize that our strategy for proving the
convergence of the N -Nash system relies on a similar idea to that used in [80] to
establish the convergence of Kac’s jump process. Whereas our approach consists
in inserting the solution of the master equation into theN -Nash system, Mischler
and Mouhot’s point of view is to compare the semigroup generated by the N -
particle Kac’s jump process, which operates on symmetric functions from (Rd)N

to R (or equivalently on empirical distributions of size N), with the limiting lifted
semigroup, when acting on the same class of symmetric functions from (Rd)N to
R. Clearly, the philosophy is the same, except that, in our setting, the “limiting
master equation” is nonlinear and of second order (which renders the analysis
more difficult) and is set over a finite time horizon only (which does not ask for
uniform in time estimates). It is worth mentioning that similar ideas have been
explored by Kolokoltsov in the monograph [61] and developed, in the McKean–
Vlasov framework, in the subsequent works [62] and [63] in collaboration with
his coauthors.

Of course, these parallels raise interesting questions, but we refrain from
comparing these different works in a more detailed way: this would require to
address more technical questions regarding, for instance, the topology used on
the space of probability measures and the regularity of the various objects in
hand; clearly, this would distract us from our original objective. We thus feel
better to keep the discussion at an informal level and to postpone a more careful
comparison to future works on the subject.

We complete the introduction by pointing out possible generalizations of
our results. For simplicity of notation, we work in the autonomous case, but
the results remain unchanged if H or F is time dependent provided that the
coefficients F , G, and H, and their derivatives (whenever they exist), are con-
tinuous in time and that the various quantitative assumptions we put on F , G,
and H hold uniformly with respect to the time variable. We can also remove the
monotonicity condition (1.8) provided that the time horizon T is assumed to be
small enough. The reason is that the analysis of the smoothness of U relies on
the solvability and stability properties of the forward–backward system (1.11)
and of its linearized version: as for finite-dimensional two-point boundary value
problems, Lipschitz type conditions on the coefficients (and on their derivatives
since we are also dealing with the linearized version) are sufficient whenever
T is small enough.

As already mentioned, we also choose to work in the periodic framework.
We expect similar results under other type boundary conditions, like the entire
space R

d or Neumann boundary conditions.
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Notice also that our results can be generalized without much difficulty to the
stationary setting, corresponding to infinite horizon problems. This framework
is particularly meaningful for economic applications. In this setting the Nash
system takes the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rvN,i(x)−
N∑

j=1

Δxj
vN,i(x)− β

N∑

j,k=1

TrD2
xj ,xk

vN,i(x) +H(xi, Dxi
vN,i(x))

+
∑

j �=i

DpH(xj , Dxj
vN,j(x)) ·Dxj

vN,i(x) = FN,i(x) in (Rd)N ,

where r > 0 is interpreted as a discount factor. The corresponding master equa-
tion is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

rU − (1 + β)ΔxU +H(x,DxU)

−(1 + β)

∫

Rd

divy [DmU ] dm(y) +

∫

Rd

DmU ·DpH
(
y,DxU(y, ·))dm(y)

−2β

∫

Rd

divx [DmU ] dm(y)− β

∫

R2d

Tr
[
D2

mmU
]
dm⊗2(y, y′) = F (x,m)

in R
d × P(Rd),

where the unknown is the map U = U(x,m), and with the same convention
of notation as in (1.10). One can again solve this system by using the method
of (infinite dimensional) characteristics, paying attention to the fact that these
characteristics remain time dependent. The MFG system with common noise
takes the form (in which the unknown are now (ut,mt, vt))

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dtut =
[
rut − (1 + β)Δut +H(x,Dxut)− F (x,mt)− 2βdiv(vt)

]
dt

+vt ·
√
2β dWt in [0,+∞)× R

d

dtmt =
[
(1 + β)Δmt + div

(
mtDpH(mt, Dxut)

)]
dt− div(mt

√
2β dWt

)
,

in [0,+∞)× R
d

m0 = m(0) in R
d, (ut)t bounded a.s.

Lastly, we point out that, even though we do not address this question in
the book, our work could be used later for numerical purposes. Solving numeri-
cally MFGs is indeed a delicate issue and, so far, numerical methods have been
regarded mostly in the case without common noise: We refer to the works of
Achdou and his coauthors; see, for instance [1–3] for discretization schemes of
the MFG system (1.7). Owing to obvious issues of complexity, the case with com-
mon noise seems especially challenging. A case in point is that the system (1.11)
is an infinite-dimensional fully coupled forward–backward system, which could
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be thought, at the discrete level, as an infinite-dimensional equation expand-
ing along all the possible branches of the tree generated by a discrete random
walk. Although our work does not provide any clue for bypassing these complex-
ity issues, we guess that our theoretical results—both the representation of the
equilibria in the form of the MFG system system (1.11) and through the master
equation (1.10) and their regularity—could be useful for a numerical analysis.

1.1.8 Organization of the Text and Reading Guide

We present our main results in Chapter 2, where we also explain the notation,
state the assumption, and rigorously define the notion of derivative on the space
of measures. The well-posedness of the master equation is proved in Chapter 3
when β = 0. Unique solvability of the MFG system with common noise is dis-
cussed in Chapter 4. Results obtained in Chapter 4 are implemented in Chapter
5 to derive the existence of a classical solution to the master equation in the
general case. The last chapter is devoted to the convergence of the Nash system.
In the Appendix, we revisit the notion of derivative on the space of probability
measures and discuss some useful auxiliary properties.

We strongly recommend that the reader starts with Section 1.2 and with
Chapters 2 and 3. Section 1.2 provides heuristic arguments for the construction
of a solution to the master equation; this might be really helpful to understand
the key results of the book. The complete proof of existence for the first-order
case (i.e., without common noise) is the precise aim of Chapter 3; we feel it
really accessible.

The reader who is more interested in the analysis of the convergence problem
than in the study of the case with common noise may directly skip to Chapter
6; to make things easier, she/he may follow the computations of Chapter 6
by letting β = 0 therein (i.e., no common noise). In fact, we suggest that, even
if she/he is interested in the case with common noise, the reader also follow
this plan, especially if she/he is not keen on probability theory and stochastic
calculus; at a second time, she/he can go back to Chapters 4 and 5, which are
more technical. In these latter two chapters, the reader who is really interested
in MFGs with common noise will find new results: The analysis of the MFG
system with common noise is mostly the aim of Chapter 4; if needed, the reader
may return to Section 3.1, Proposition 3.1.1, for a basic existence result in the
case without common noise. The second-order master equation (with common
noise) is investigated in Chapter 5, but requires the well-posedness of the MFG
system with common noise as stated in Theorem 4.3.1.

The reader should be aware of some basics of stochastic calculus (mostly
Itô’s formula) to follow the computations of Chapter 6. Chapters 4 and 5 are
partly inspired from the theory of backward stochastic differential equations;
although this might not be necessary, the reader may have a look at the two
monographs [84,97] for a complete overview of the subject and at the textbook
[88] for an introduction.
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Of course, the manuscript borrows considerably from the PDE literature and
in particular from the theory of Hamilton–Jacobi equations; the reason is that
a solution to an MFG is defined as a fixed point of a mapping taking as inputs
the optimal trajectories of a family of optimal stochastic control problems. As
for the connection between stochastic optimal control problems and Hamilton–
Jacobi equations, we refer the reader to the monographs [41, 66]. Some PDE
regularity estimates are used quite often in the text, especially for linear and
nonlinear second-order parabolic equations; most of them are taken from well-
known books on the subject, among which are [70] and [75].

Lastly, the reader will also find in the book results that may be useful for
other purposes: Derivatives in the space of measures are discussed in Section
2.2 (definition and basic results) and in Section A.1 of the Appendix (link with
Lions’ approach); a chain rule (Itô’s formula) for functions defined on the space
of measures, when taken along the solution of a stochastic Kolmogorov equation,
is derived in Section A.3 of the Appendix.

1.2 INFORMAL DERIVATION OF THE

MASTER EQUATION

Before stating our main results, it is worthwhile explaining the meaning of the
Nash system and the heuristic derivation of the master equation from the Nash
system and its main properties. We hope that this (by no means rigorous) pre-
sentation might help the reader to be acquainted with our notation and the main
ideas of proof. To emphasize the informal aspect of the discussion, we state all
the ideas in R

d, without bothering about the boundary issues (whereas in the
rest of the text we always work with periodic boundary conditions).

1.2.1 The Differential Game

The Nash system (1.2) arises in differential game theory. Differential games
are just optimal control problems with many (here N) players. In this game,
player i (i = 1, . . . , N) controls her/his state (Xi,t)t∈[0,T ] through her/his control
(αi,t)t∈[0,T ]. The state (Xi,t)t∈[0,T ] evolves according to the SDE:

dXi,t = αi,tdt+
√
2 dBi

t +
√

2β dWt, Xt0 = xi,0. (1.14)

Recall that the d-dimensional Brownian motions ((Bi
t)t∈[0,T ])i=1,...,N and

(Wt)t∈[0,T ] are independent, (B
i
t)t∈[0,T ] corresponding to the individual noise (or

idiosyncratic noise) of player i and (Wt)t∈[0,T ] being the common noise, which
affects all the players. Controls ((αi,t)t∈[0,T ])i=1,...,N are required to be progres-
sively measurable with respect to the filtration generated by all the noises. Given
an initial condition x0 = (x1,0, . . . , xN,0) ∈ (Rd)N for the whole system at time
t0, each player aims at minimizing the cost functional:
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JN
i

(
t0,x0, (αj,·)j=1,...,N

)

= E

[∫ T

t0

(
L(Xi,s, αi,s) + FN,i(Xs)

)
ds+GN,i(XT )

]

,

where Xt = (X1,t, . . . , XN,t) and where L : R
d × R

d → R, FN,i : R
Nd → R and

GN,i : R
Nd → R are given Borel maps. For each player i, in order to assume

that the other players are indistinguishable, we shall suppose, as in (1.4), that
FN,i and GN,i are of the form

FN,i(x) = F (xi,m
N,i
x ) and GN,i(x) = G(xi,m

N,i
x ).

In the above expressions, F,G : R
d×P(Rd) → R, where P(Rd) is the set of Borel

measures on R
d. The Hamiltonian of the problem is related to L by the formula

∀(x, p) ∈ R
d × R

d, H(x, p) = sup
α∈Rd

{−α · p− L(x, α)} .

Let now (vN,i)i=1,...,N be the solution to (1.2). By Itô’s formula, it is easy
to check that (vN,i)i=1,...,N corresponds to an optimal solution of the problem
in the sense of Nash, i.e., a Nash equilibrium of the game. Namely, the
feedback strategies

(
α∗
i (t,x) := −DpH(xi, Dxi

vN,i(t,x))
)

i=1,...,N
(1.15)

provide a feedback Nash equilibrium for the game:

vN,i
(
t0,x0

)
= JN

i

(
t0,x0, (α

∗
j,·)j=1,...,N

)
� JN

i (t0,x0, αi,·, (α̂∗
j,·)j �=i)

for any i ∈ {1, . . . , N} and any control αi,·, progressively measurable with re-

spect to the filtration generated by ((Bj
t )j=1,...,N )t∈[0,T ] and (Wt)t∈[0,T ]. In the

left-hand side, α∗
j,· is an abuse of notation for the process (α∗

j (t,Xj,t))t∈[0,T ],
where (X1,t, . . . , XN,t)t∈[0,T ] solves the system of SDEs (1.14) when αj,t is pre-
cisely given under the implicit form αj,t = α∗

j (t,Xj,t). Similarly, in the right-
hand side, α̂∗

j , for j �= i, denotes (α∗
j (t,Xj,t))t∈[0,T ], where (X1,t, . . . , XN,t)t∈[0,T ]

now solves the system of SDEs (1.14) for the given αi,·, the other (αj,t)j �=i’s be-
ing given under the implicit form αj,t = α∗

j (t,Xj,t). In particular, system (1.3),
in which all the players play the optimal feedback (1.15), describes the dynamics
of the optimal trajectories.

1.2.2 Derivatives in the Space of Measures

To describe the limit of the maps (vN,i), let us introduce—in a completely
informal manner—a notion of derivative in the space of measures P(Rd). A
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rigorous description of the notion of derivative used in this book is given in
Section 2.2.

In the following discussion, we argue as if all the measures had a density.
Let U : P(Rd) → R. Restricting the function U to the elements m of P(Rd)
that have a density in L2(Rd) and assuming that U is defined in a neighborhood
O ⊂ L2(Rd) of P(Rd)∩L2(Rd), we can use the Hilbert structure on L2(Rd). We
denote by δU/δm the gradient of U in L2(Rd), namely

δU

δm
(p)(q) = lim

ε→0

1

ε

(
U(p+ εq)− U(p)

)
, p ∈ O, q ∈ L2(Rd).

Of course, we can identify [δU/δm](p) with an element of L2(Rd), which we de-
note by R

d � y �→ [δU/δm](p, y) ∈ R. Then, the duality product [δU/δm](p)(q)
reads as the inner product 〈[δU/δm](p, ·), q(·)〉L2(Rd). Similarly, we denote by

δ2U/δm2(p) the second-order derivative of U at p ∈ L2(Rd) (which can be iden-
tified with a symmetric bilinear form on L2(Rd) and hence with a symmetric
function R

d × R
d � (y, y′) �→ [δ2U/δm2](p, y, y′) ∈ R in L2(Rd × R

d)):

δU

δm
(p)(q, q′) = lim

ε→0

1

ε

( δU

δm
(p+ εq)(q′)− δU

δm
(p)(q′)

)
, p ∈ O, q, q′ ∈ L2(Rd).

We then set, when possible,

DmU(m, y) = Dy
δU

δm
(m, y), D2

mmU(m, y, y′) = D2
y,y′

δ2U

δm2
(m, y, y′). (1.16)

To explain the meaning of DmU , let us compute the action of U onto the push-
forward of a measure m by the flow an ordinary differential equation driven by
a smooth vector field. For a given smooth vector field B : R

d → R
d and an

absolutely continuous probability measure m ∈ P(Rd) with a smooth density,
let (m(t))t≥0 = (Rd � x �→ m(t, x))t≥0 be the solution to

⎧
⎨

⎩

∂m

∂t
+ div(Bm) = 0,

m0 = m.

Provided that [∂m/∂t](t, ·) lives in L2(Rd), this expression directly gives

d

dh
U(m(h))|h=0

= 〈 δU
δm

,−div(Bm)〉L2(Rd)

=

∫

Rd

DmU(m, y) ·B(y) dm(y),
(1.17)

where we used an integration by parts in the last equality.
Another way to understand these derivatives is to project the map U to the

finite dimensional space (Rd)N via the empirical measure: if x = (x1, . . . , xN ) ∈
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(Rd)N , let mN
x := (1/N)

∑N
i=1 δxi

and set uN (x) = U(mN
x ). Then one checks

the following relationships (see Proposition 6.1.1): for any j ∈ {1, . . . , N},

Dxj
uN (x) =

1

N
DmU(mN

x , xj), (1.18)

D2
xj ,xj

uN (x) =
1

N
Dy [DmU ] (mN

x , xj) +
1

N2
D2

mmU(mN
x , xj , xj) (1.19)

while, if j �= k,

D2
xj ,xk

uN (x) =
1

N2
D2

mmU(mN
x , xj , xk). (1.20)

1.2.3 Formal Asymptotic of the (vN,i)

Provided that (1.2) has a unique solution, each vN,i, for i = 1, . . . , N , is sym-
metric with respect to permutations on {1, . . . , N}\{i} and, for i �= j, the role
played by xi in vN,i is the same as the role played by xj in vN,j (see Section
6.2). Therefore, it makes sense to expect, in the limit N → +∞,

vN,i(t,x) � U(t, xi,m
N,i
x )

where U : [0, T ]×R
d×P(Rd) → R. Starting from this ansatz, our aim is now to

provide heuristic arguments explaining why U should satisfy (1.10). The sense
in which the (vN,i)i=1,...,N actually converge to U is stated in Theorem 2.4.8
and the proof given in Chapter 6.

The informal idea is to assume that vN,i is already of the form U(t, xi,m
N,i
x )

and to plug this expression into the equation of the Nash equilibrium (1.2): the
time derivative and the derivative with respect to xi are understood in the usual
sense, while the derivatives with respect to the other variables are computed by
using the relations in the previous section.

The terms ∂tv
N,i and H(xi, Dxi

vN,i) easily become ∂U/∂t and H(x,DxU).
We omit for a while the second-order terms and concentrate on the expression
(see the second line in (1.2)):

∑

j �=i

DpH(xj , Dxj
vN,j) ·Dxj

vN,i .

Note that Dxj
vN,j is just like DxU(t, xj ,m

N,j
x ). In view of (1.18),

Dxj
vN,i � 1

N − 1
DmU(t, xi,m

N,i
x , xj),
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and the sum over j is like an integration with respect to mN,i
x . So we find,

ignoring the difference between mN,i
x and mN,j

x ,

∑

j �=i

DpH(xj , Dxj
vN,j) ·Dxj

vN,i

�
∫

Rd

DpH(y,DxU(t,mN,i
x , y)) ·DmU(t, xi,m

N,i
x , y)dmN,i

x (y).

We now study the term
N∑

j=1

Δxj
vN,i (see the first line in (1.2)). As Δxi

vN,i �

ΔxU , we need to analyze the quantity
∑

j �=i

Δxj
vN,i. In view of (1.19), we expect

∑

j �=i

Δxj
vN,i � 1

N − 1

∑

j �=i

divy [DmU ] (t, xi,m
N,i
x , xj)

+
1

(N − 1)2

∑

j �=i

Tr
[
D2

mmU
]
(t, xi,m

N,i
x , xj , xj)

=

∫

Rd

divy [DmU ] (t, xi,m
N,i
x , y)dmN,i

x (y)

+
1

N − 1

∫

Rd

Tr
[
D2

mmU
]
(t, xi,m

N,i
x , y, y)dmN,i

x (y),

where we can drop the last term, as it is of order 1/N .

Let us finally discuss the limit of the term
N∑

k,l=1

Tr(D2
xj ,xk

vN,i) (see the first

line in (1.2)) that we rewrite

Δxi
vN,i + 2

∑

k �=i

Tr
(
Dxi

Dxk
vN,i

)
+
∑

k,l �=i

Tr
(
D2

xk,xl
vN,i

)
. (1.21)

The first term gives ΔxU . Using (1.18), the second one becomes

2
∑

k �=i

Tr
(
Dxi

Dxk
vN,i

) � 2

N − 1

∑

k �=i

Tr [DxDmU ] (t, xi,m
N,i
x , xk)

= 2

∫

Rd

divx [DmU ] (t, xi,m
N,i
x , y)dmN,i

x (y).
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As for the last term in (1.21), we have by (1.20):

∑

k,l �=i

Tr
(
D2

xk,xl
vN,i

) � 1

(N − 1)2

∑

k,l �=i

Tr
[
D2

mmU
]
(t, xi,m

N,i
x , xj , xk)

=

∫

Rd

∫

Rd

Tr
[
D2

mmU
]
(t, xi,m

N,i
x , y, y′)dmN,i

x (y)dmN,i
x (y′).

Collecting the above relations, we expect that the Nash system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−∂v
N,i

∂t
−

N∑

j=1

Δxj
vN,i − β

N∑

k,l=1

Tr
(
D2

xk,xl
vN,i

)
+H(xi, Dxi

vN,i)

+
∑

j �=i

DpH(xj , Dxj
vN,j) ·Dxj

vN,i = F (xi,m
N,i
x ),

vN,i(T,x) = G(xi,m
N,i
x ),

has for limit

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂U
∂t

−ΔxU −
∫

Rd

divy [DmU ] dm(y) +H(x,DxU)

−β
(

ΔxU + 2

∫

Rd

divx [DmU ] dm(y) +

∫

Rd

divy [DmU ] dm(y)

+

∫

R2d

Tr
[
D2

mmU
]
dm⊗2(y, y′)

)

+

∫

Rd

DmU ·DpH
(
y,DxU(·, y, ·))dm(y) = F (x,m)

U(T, x,m) = G(x,m).

This is the master equation. Note that there are only two genuine approxima-
tions in the foregoing computation. One is where we dropped the term of order
1/N in the computation of the sum

∑
j �=i Δxj

vN,i. The other one was at the

very beginning, when we replaced DxU(t, xj ,m
N,j
x ) by DxU(t, xj ,m

N,i
x ). This is

again of order 1/N .

1.2.4 The Master Equation and the MFG System

We complete this informal discussion by explaining the relationship between
the master equation and the MFG system. This relation plays a central role in
the text. It is indeed the cornerstone for constructing a solution to the master
equation via a method of (infinite dimensional) characteristics.

We proceed as follows. Assuming that the value function of the MFG system
is regular—while it is part of the challenge to prove that it is indeed smooth—we
show that it solves the master equation.
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We start with the first-order case, i.e., β = 0, as it is substantially easier. For
any (t0,m(0)) ∈ [0, T ]× P(Rd), let us define the value function U(t0, ·,m(0)) as

U(t0, x,m(0)) := u(t0, x) ∀x ∈ R
d,

where (u,m) is a solution of the MFG system (1.7) with the initial condition
m(t0) = m(0) at time t0. We claim that U is a solution of the master equation
(1.10) with β = 0. As indicated, we check the claim assuming that U is smooth,
although the main difficulty comes from the fact that this has to be proved. We
note that, by its very definition, U must satisfy

U(t, x,m(t)) = u(t, x) ∀(t, x) ∈ [t0, T ]× R
d.

Using the equation satisfied by m (and provided that ∂tm can be regarded as
an L2(Rd) valued function), the time derivative of the left-hand side at t0 is
given by

∂tu(t0, x) = ∂tU +
〈 δU

δm
, ∂tm

〉

L2(Rd)

= ∂tU +
〈 δU

δm
,Δm+ div

(
mDpH(·, DxU)

)〉

L2(Rd)

= ∂tU

+

∫

Rd

(
divy [DmU ]−DmU ·DpH(y,DxU(·, y, ·))

)
dm(0)(y),

(1.22)

where the function U and its derivatives are evaluated at time t0 and at the
measure argument m(0); with the exception of the last term in the right-hand
side, they are evaluated at point x in space; the auxiliary variable in DmU is
always equal to y. Recalling the equation satisfied by u, we also have

∂tu(t0, x) = −Δu(t0, x) +H
(
x,Dxu(t0, x)

)− F (x,m(0))

= −ΔxU +H(x,DxU)− F (x,m(0)).

This shows that

∂tU +

∫

Rd

(
divy [DmU ]−DmU ·DpH

(
y,DxU(·, y, ·))

)
dm(0)(y)

= −ΔxU +H(x,DxU)− F (x,m(0)).

Rearranging the terms, we deduce that U satisfies the master equation (1.10)
with β = 0 at (t0, ·,m(0)).

For the second-order master equation (β > 0) the same principle applies
except that, now, the MFG system becomes stochastic. Let (t0,m(0)) ∈ [0, T ]×
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P(Rd) and (ut,mt, vt) be a solution of the MFG system with common noise
(1.11). We set as before

U(t0, x,m(0)) := ut0(x) ∀x ∈ R
d,

and notice that

U(t, x,mt) = ut(x) ∀(t, x) ∈ [t0, T ]× R
d.

Assuming that U is smooth enough, we have, by Itô’s formula for Banach-valued
processes and by the equation satisfied by m:

dtut(x) =
{
∂tU +

〈 δU

δm
, (1 + β)Δmt + div

(
mtDpH(·, DxU)

)〉

L2(Rd)

+ β

d∑

i=1

〈 δ2U

δm2
Dxi

mt, Dxi
mt

〉

L2(Rd)

}
dt

−
√
2β

d∑

i=1

〈 δU

δm
,Dxi

mt

〉

L2(Rd)
dW i

t ,

(1.23)

where, as before, the function U and its derivatives are evaluated at time t and
at the measure argument mt; with the exception of DxU in the right-hand side,
they are evaluated at point x in space.

In comparison with the first-order formula (1.22), equation (1.23) involves
two additional terms: The stochastic term on the third line derives directly
from the Brownian part in the forward part of (1.11) while the second-order
term on the second line is reminiscent of the second-order term that appears in
the standard Itô calculus. We provide a rigorous proof of (1.23) in Section 5.

Using (1.16), we obtain

dtut(x)

=
{
∂tU

+

∫

Rd

(
(1 + β)divy [DmU ]−DmU ·DpH(·, DxU(·, y, ·)

)
dmt(y)

+ β

∫

Rd×Rd

Tr
[
D2

mmU
]
dm⊗2

t (y, y′)
}
dt

+
(∫

Rd

DmUdmt(y)
)
·
√

2β dWt.

(1.24)
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On the other hand, by the equation satisfied by u, we have

dtut(x) =
{−(1 + β)Δut +H(x,Dut)− F (x,mt)−

√
2βdiv(vt)

}
dt

+ vt · dWt

=
{−(1 + β)ΔxU +H(x,DxU)− F (x,mt)−

√
2βdiv(vt)

}
dt

+ vt · dWt,

(1.25)

where, on the right-hand side, ut and vt and their derivatives are evaluated at
point x.

Identifying the absolutely continuous part and the martingale part, we find

∂tU +

∫

Rd

(
(1 + β)divy [DmU ]−DmU ·DpH(·, DxU(·, y, ·))

)
dmt(y)

+ β

∫

Rd×Rd

Tr
[
D2

mmU
]
dm⊗2

t (y, y′)

= −(1 + β)ΔxU +H(x,DxU)− F (x,mt)−
√
2βdiv(vt)

(1.26)

and
√

2β

∫

Rd

DmUdmt(y) = vt.

Inserting the latter identity in the former one, we derive the master equation.
Note that, compared with the first-order setting (i.e., β = 0), one faces here the
additional issue that, so far, there has not been any solvability result for (1.9)
and that the regularity of the map U—which is defined through (1.9)—is much
more involved to investigate than in the first-order case.
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