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1
I N T RODUC I NG I T E R AT ED FUNC T I ONS

A dynamical system is any mathematical system that changes in
time according to a well specified rule. We will look at two dif-
ferent types of dynamical systems in this book: iterated functions
and differential equations. We will use these two types of dynam-
ical systems to address a central question: what sorts of behaviors
are possible for different types of dynamical systems?

In this chapter I’ll introduce iterated functions. I’ll say what
iterated functions are, present several ways of visualizing their
behavior, and introduce some key terminology. This chapter may
be a bit abstract. We’ll approach iterated functions as simple math-
ematical systems, without attention to their roles as models of the
physical or biological world. In Chapter 2, where I introduce dif-
ferential equations, we will begin to see how dynamical systems are
used in science. This chapter may also be a bit dry; there’s nothing
too deep in the next few pages. However, it’s essential background
for the more interesting and surprising results that will come later.

1.1 Iterated Functions

Consider a function f of one variable such as f (x) = x2. A func-
tion establishes a relationship between a set of numbers, the inputs
x, and another set of numbers, the outputs f (x). We can think of
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the function f as an action. We start with a number x, apply the
function f to it, and get a new number. This new number is called
f (x): it is x after it has had f applied to it.

Usually we think of the application of a function as a one-
shot deal: Do f to x, get f (x), end of story. For example, if
f (x) = x2, then f (3) = 32 = 9, and f (−0.5)= (−0.5)2 = 0.25.
But if we apply the function repeatedly, using the output at one
step as the input to the next, then we have a dynamical system:
a mathematical entity that changes in time according to a well-
defined rule. For example, we could start with 3, apply f , and
obtain 9. Apply f again, and we get 92 = 81. Apply f yet again,
and we get 812 = 6561. The result is a sequence of numbers:

3, 9, 81, 6561, 43046721, . . . . (1.1)

We see that the numbers quite quickly become very large.
This process is known as iteration. The application of f is

repeated, or iterated, and the output of one step is used as the input
for the next step. Our starting number—in this case 3—is known
as the seed or the initial condition. The sequence of numbers in
Eq. (1.1) is known as the orbit or itinerary of 3. The initial condi-
tion is usually denoted x0.The first value in the itinerary is denoted
x1 and is called the first iterate. This value is obtained by applying
f to x0. That is, x1 = f (x0). The second iterate is denoted x2 and
is obtained by applying f to x1: x2 = f (x1). Equivalently, we may
think of x2 as resulting from twice applying f to x0: x2 = f (f (x0)).
Subsequent iterates are denoted similarly.

Let’s consider another example: g(x) = 1
2x+ 4. I’ll choose an

initial condition of x0 = 1. The first iterate x1 results from g acting
on x0:

x1 = g(x0) = g(1) = 1
2
(1)+ 4 = 4.5 . (1.2)

Subsequent iterates are found in a similar manner; x2 = g(x1), and
so on.The first several iterates of this initial condition are shown in
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t xt
0 1
1 4.5
2 6.25
3 7.125
4 7.5625

Table 1.1 The first several iterates of
the initial condition x0 = 1 for the
function g(x) = 1

2x+ 4.

Table 1.1. (You might want to grab a calculator and take a moment
to verify these numbers.)

It is often useful to display an orbit graphically rather than in a
table or list. The orbit in Table 1.1 is plotted in Fig. 1.1. This type
of graph is known as a time series plot. Such a graph gives a clear
view of the orbit’s behavior. In Fig. 1.1 we can see that the orbit is
approaching 8. Note that a time series plot is not a graph of the
function that is being iterated, g(x) = 1

2x+ 4. Instead, it is a plot
of the orbit or itinerary.

The value of 8 is a fixed point of the function g(x). This means
that 8 does not change if g operates on it: g(8) = 8, as we can
verify:

g(8) = 1
2
8+ 4 = 4+ 4 = 8 . (1.3)

In general, a number x is a fixed point of f (x) if it is a solution to
the equation

f (x) = x . (1.4)

Such an equation is called a fixed-point equation. In words,
Eq. (1.4) says that x, when acted on by f , yields x. A function
can have any number of fixed points, including none at all.

Iterated functions are our first example of a dynamical sys-
tem, a mathematical system that changes in time according to a
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Figure 1.1. The time series plot for the initial condition x0 = 1 iterated
with g(x) = 1

2x+ 4.

well-defined rule. In the example we just considered, the rule is
given by the function g(x) = 1

2x+ 4. The dynamical system that
results from iterating this equation is sometimes written as:

xt+1 = 1
2
xt + 4 . (1.5)

This notation makes the dynamical nature of the equation clearer.
We can see that the next value of x is determined by the current
value of x. That is, xt+1 is a function of xt . Thus, as long as we
know the initial value x0, we can figure out all subsequent values
of x by repeated application of Eq. (1.5).

Note that Eq. (1.5) does not directly tell us xt as a function
of t. If, say, we want to know x13, we can’t just plug in t = 13
somewhere. Rather, we need to start at some known value of x,
usually x0, and iterate forward, one step at a time, using Eq. (1.5).
Doing so might be a bit time consuming, but it is at base a very
simple procedure. There is a rule—namely the function f (x)—
and that rule is applied again and again. For all but the simplest
such functions one almost always turns to a computer to carry
out the iterations. I used a short python program to iterate the
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function g(x) = 1
2x+ 4 and make the time series plot shown in

Fig. 1.1.
Before going on I should mention some additional terminol-

ogy. A function f takes input values and returns output values. So
one sometimes refers to f as amapping from input to output. Iter-
ated functions are also often called maps. In mathematics, a map
is synonymous with function. I will usually refer to functions as
functions, but the term map is very commonly used in dynamical
systems so you will likely see it elsewhere.

1.2 Thinking Globally

In the study of dynamical systems we are often interested not in the
numerical values of a particular orbit, but in its long-term behav-
ior. We want to know about the big picture—the global dynamics
of the function—not the local details of each and every point in
a particular orbit. For example, when describing the itinerary of
x0 = 1 when iterated with g(x) = 1

2x+ 4, we simply say that it
approaches 8, rather than list all the data in Table 1.1.

Let’s consider another example: the square root function
f (x) = √

x. Our goal will be to figure out the long-term behavior
of all initial conditions. (Since the square root of a negative num-
ber results in a complex number—also known as an imaginary
number—we will limit our analysis to non-negative numbers.) To
get us started, let’s choose the seed x0 = 4. Then x1 is the result of
applying the function to x0. Since f (4) = √

4= 2, the first iterate
is 2. The next iterate is approximately 1.414, since

√
2≈ 1.414. We

keep on square rooting and obtain the itinerary shown in Table 1.2.
The orbit for x0 = 4 is shown in Fig. 1.2. Also on this figure are

the time series plots for three other initial conditions: 2, 0.5, and
0.25. You can obtain orbits for these initial conditions by entering
the seed and then repeatedly hitting the

√
key on your calculator.

However, without using a calculator we can understand the shape
of the time series plots qualitatively.
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t xt
0 4
1 2
2 1.414
3 1.189
4 1.091
5 1.044

Table 1.2 The first several iterates of
the initial condition x0 = 4 for the
function f (x) = √

x.

When you take the square root of a number larger than one, the
result is a smaller number. For example,

√
10000= 100,

√
16= 4,

and
√
1.5≈ 1.225. Numbers larger than 1 get closer and closer to

1 when successively square rooted. We can see this in Fig. 1.2. The
seeds 4.0 and 2.0 are both getting smaller and approaching 1.

On the other hand, numbers between 0 and 1 get larger
when square rooted. For example

√
0.25= 0.5. It might be easier

to see this using fractions:
√

1
4

= 1
2
, because

(
1
2

)2

=
(
1
2

) (
1
2

)
= 1

4
. (1.6)

So for this dynamical system—iterated square rooting—any num-
ber between 0 and 1 will increase and approach 1, and any number
larger than 1 will decrease and approach 1. The numbers 0 and 1
are fixed points; they are unchanged when square rooted:

√
0= 0,

and
√
1= 1.

With these observations, we can describe the global dynamics
of the square root function. That is, we can specify the long-term
behavior of all non-negative initial conditions. Any initial condi-
tion larger than 1 will get smaller and move closer and closer to 1.
Any initial condition between 0 and 1 will get larger and get closer
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Figure 1.2. The time series plot for four different initial conditions
iterated with f (x) = √

x.

and closer to 1. The initial conditions 0 and 1 are fixed points.
They do not change when acted upon by the function:

√
0= 0

and
√
1= 1.

1.3 Stability: Attractors and Repellors

The fixed points of f (x) = √
x are 0 and 1, but these two fixed

points have a rather different character.The fixed point at 1 is called
stable or attracting. Nearby orbits are pulled toward it; it attracts
nearby points. It is called stable because if one is at the fixed point
and then a perturbationmoves you a little bit away, you will return
to the fixed point. That is, if you are at 1 and something happens
and you get moved to 1.1, the square-rooting function will move
you back, closer and closer to 1. The first several iterates of 1.1 are:
1.1, 1.049, 1.024, 1.012. The orbit is getting closer to 1.

The fixed point at 0 is different. You will not be surprised to
learn that this fixed point is unstable or repelling. If you are at 0
and something happens and you get bumped to 0.05, you will
not return to 0. Instead, you will get pushed away from 0, never
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(a) (b)

Figure 1.3. A schematic illustration of (a) a stable and (b) an unstable
fixed point.

to return. The first several iterates of 0.05 are: 0.05, 0.224, 0.473,
0.688. The orbit is not getting closer to 0.

Stable and unstable fixed points are illustrated schematically in
Fig. 1.3. On the left is shown a stable fixed point—a ball at the
bottom of a valley. If the ball is moved a small amount it will
return to the bottom of the valley. On the right, the fixed point is
unstable. If the ball is moved a little bit it will roll down one side
of the hill, not to return.

For completeness, I shouldmention that it is possible for a fixed
point to be poised between stability and unstability. In this case,
if one moves away from the fixed point one neither returns to the
fixed point nor is pushed away. Fixed points with these properties
are called neutral. In terms of the schematic representation of fixed
points shown in Fig. 1.3, neutral fixed points look like a ball resting
on a perfectly flat table. If the ball is moved to the left or right, it
will stay there; it won’t return to its original location, but it also
won’t roll further away.

The stability of fixed points—or of other dynamical behavior
that we will encounter later—is an important notion. Typically,
in a mathematical model or the real world, one only expects to
observe stable fixed points. An unstable fixed point is susceptible
to a small perturbation; a tiny external influence will move the
system away from the unstable fixed point. For example, it is pos-
sible to carefully balance a pencil on its eraser. However, it will not
stay this way for long. A small vibration or bit of wind will make
the pencil fall over and lie on its side. Or, returning to Fig. 1.3,
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Figure 1.4. A stable fixed point. A large perturbation and the ball will
not return to the fixed point, but for small perturbations it will return.

we would not expect to observe the situation depicted in part (b).
A rock balanced on the top of a hill will not remain there indef-
initely. A small gust of wind or a little push will cause it to roll
downhill. The upshot is that in dynamical systems one is particu-
larly focused on stable behavior, as usually it is only stable behavior
that is observed.

Before moving on, I should define stable and unstable fixed
points just a bit more carefully. A fixed point x is stable if there is
an open interval around x such that any initial conditions in this
interval get closer and closer to the fixed point x. In terms of the
schematic view of Fig. 1.3, this says that a fixed point is a point in
the bottom of a valley, regardless of how wide or narrow the valley
is. This is illustrated in Fig. 1.4.

1.4 Another Example

Let’s consider another example: the cubing function f (x) = x3.
What are its dynamics? Howmany fixed points are there and what
are their stability? Let’s start by solving for the fixed points. A point
x is fixed if it is unchanged by the function.That is, f (x) = x. Here,
the function is f (x) = x3, so the equation for fixed points is:

x3 = x . (1.7)

This equation has three solutions: −1, 0, and 1. Each of these
numbers, when cubed, does not change. For example, (−1)3 =
(−1)(−1)(−1) = −1.

Are these fixed points stable or unstable? Let’s think about what
happens to different initial conditions. A number larger than 1 will
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get larger when cubed. For example, the itinerary of the initial
condition x0 = 2 is:

2, 8, 512, 134217728, . . . . (1.8)

The orbit grows very rapidly and will keep getting larger. One
describes this situation by saying that the orbit grows without
bound or tends toward infinity. A number less than −1 will get
“bigger and more negative.” (Strictly speaking this means that
the orbit gets smaller; as one moves to the left on a number
line the numbers get smaller. Negative three is less than negative
two.) So we say that the orbit of −1 decreases without bound
or tends toward negative infinity. Lastly, numbers between −1
and 1 will approach zero when cubed. For example, the orbit of
x0 = −0.9 is:

− 0.9,−0.729,−0.38742,−0.058450, . . . . (1.9)

Thus, 0 is a stable, or attracting fixed point; it pulls in all initial
conditions between −1 and 1. The fixed points at ±1 are unstable,
or repelling.

1.5 One More Example

I’ll end this chapter with one more example. We’ll consider the
function f (x) = x2 − 1. Does this function have any fixed points?
Yes—two of them, in fact. The fixed point equation

f (x) = x (1.10)

has two solutions:

x = 1
2
(1+ √

5) ≈ 1.61803 , (1.11)

and
x = 1

2
(1− √

5) ≈ −0.61803 . (1.12)



Introducing Iterated Functions 11

2.0

1.5

1.0

0.5

0.0

–0.5

–1.0

–1.5
0 1 2 3 4 5

Time t

x t

Figure 1.5. The time series plot for four different initial conditions
iterated with f (x) = x2 − 1. The two orbits plotted with gray circles
are the fixed points, 1.618 and −0.618.

Are these fixed points stable? Let’s iterate and see. In Fig. 1.5 I have
plotted the orbits for four different initial conditions. The orbits
shown with gray circles are the two fixed points, x≈ 1.61803 and
x≈ −0.61803. The orbits plotted with squares begin close to the
fixed points; the top orbit has an initial condition of x0 = 1.55, and
the initial condition for the bottom orbit is x0 = −0.8. We see in
the figure that the two square orbits are not pulled in toward the
fixed points, so the fixed points are not stable.

It looks like the two orbits plotted with squares are getting
closer together. By t = 4 or 5 they are almost on top of each other.
What could be going on? To address this question, in Fig 1.6 I
have plotted the two square orbits out to t = 15. The orbits of the
two fixed points are again shown as gray circles. As in the previous
figure, we see that the two square orbits do not get pulled toward
the fixed points. Instead, the two orbits both approach periodic
behavior; they oscillate between −1 and 0. These two points, −1
and 0, form a cycle of period 2.

To see that the orbit of −1 is periodic, first, we let f act on −1:

f (−1) = (−1)2 − 1 = 1− 1 = 0 . (1.13)
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Figure 1.6.The time series plot for the four different initial conditions
iterated with f (x) = x2 − 1. The two orbits plotted with grey circles
are the fixed points, 1.618 and −0.618.

Then, we let f act on 0:

f (0) = 02 − 1 = −1 . (1.14)

Thus, −1 is periodic with period two. The period is two, because
it takes two iterations to return to the initial condition.1 In other
words, f (f (−1))= −1. It thus follows, of course, that 0 is also
periodic with period two.

The period-two cycle is attracting or stable. Nearby orbits are
pulled in to the cycle. Figure 1.7 gives us another way to see this.
In this figure I have made time series plots for 200 different initial
conditions distributed uniformly between −1.6 and 1.6. One can
see in the figure that all initial conditions get pulled quite quickly
into the period-two attractor. Not all of the orbits are in phase.

1. The initial condition −1 is also periodic with period four, because −1 will
return to itself after four iterations.The period of a periodic point is quite sensibly
defined to be the smallest number of iterations needed for the point to return to
itself. (In more formal mathematical settings, it is common to use the term prime
period to refer to the smallest number of iterations needed for a point to return
to itself. Then one would say that −1 is periodic with period two, four, six, and
so on, but that it has a prime period of two.)
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Figure 1.7. The time series plot for 200 initial conditions for the
function f (x) = x2 − 1. All initial conditions are pulled toward the
period-two cycle at −1 and 0.

At, say, t = 35, about half of the orbits will be at (or very near to)
−1 and half at 0. But all initial conditions get pulled in to the cycle.
Said another way, the long-term behavior of all initial conditions
between −1.6 and 1.6 is period two.

Actually, this is not quite right. It is not strictly the case that
all initial conditions become period-two. The two fixed points,
x≈ 1.61803 and x≈ −0.61803 are not period-two; they are fixed
and so remain constant. So I need to amend the statements at
the end of the last paragraph. I should have said: almost all initial
conditions between −1.6 and 1.6 are pulled toward a period-
two attractor. The word “almost” in this sentence has a technical
meaning: it means that there are infinitely many more points
that are pulled toward the period-two attractor than are not.
Another way to say this is that if I choose an initial condition
at random between −1.6 and 1.6, with probability 1 the orbit
will get pulled toward the period-two attractor. This points out
again the importance of stability and instability. The two unsta-
ble fixed points do not appear at all in Fig. 1.7. In order to
observe the unstable behavior I would have to choose an initial
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condition exactly on the fixed point, something that is vanishingly
improbable.2

To summarize, the function f (x) = x2 − 1 has an attracting
cycle of period two: −1 and 0. Equivalently, one says that the
cycle is stable. If an orbit is cycling between −1 and 0 and then
is perturbed slightly, it will return to the cycle. The function has
two fixed points, but they are unstable, and thus do not affect the
long-run behavior of almost all initial conditions.

1.6 Determinism

Before concluding, I have a few initial thoughts on an important
concept and a recurring theme in the study of dynamical systems:
determinism. The iterated functions we have studied in this chapter
are all examples of deterministic dynamical systems. This means
that there is no element of chance in the rule. For such dynamical
systems the current value of x determines the next value, that value
of x then determines the next value, and so on.

Thus, if one knows the function and the initial condition, then
the entire future—that is, the itinerary—follows. Onemight think
that deterministic systems are rather dull; once one writes down
the rule and specifies the initial condition the story is essentially
over. But one of the central lessons of dynamical systems is that
deterministic systems still hold plenty of surprises. In Chapter 3
I will make some more extensive remarks on determinism and

2. There is a bit more mathematical fine print. It could also be the case that I
chose an initial condition that after a finite number of iterations lands exactly on
the unstable fixed point. This is also exceedingly unlikely; it occurs with prob-
ability zero. There are a countably infinite number of initial conditions that
eventually land exactly on one of the unstable fixed points, but there are an
uncountably infinite number of points on the interval between −1.6 and 1.6.
Thus, there is zero probability that an orbit lands exactly on one of the fixed
points after a finite number of iterations. The bottom line is that we do not
expect to observe the unstable fixed points.
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related issues. And then in later chapters we will encounter exam-
ples of deterministic dynamical systems that behave in ways that
are counter-intuitive and produce results that are, in a sense,
random.

1.7 Summary

A dynamical system is a mathematical system that changes in time
according to a well-specified rule. In this chapter I introduced a
simple type of dynamical system: iterated functions. Iterating a
function is a repetitious and simple-minded task, requiring only a
calculator and a bit of patience. One just applies a rule—in this
case a function—to an initial condition over and over and over
again.3 Typically we’re interested in a global view of the dynam-
ics. How many fixed points does the dynamical system have
and what are their stabilities? What is the long-term behavior of
almost all initial conditions? In the examples in this chapter we
have seen several types of long-term behavior. An orbit can tend
toward positive or negative infinity, or get pulled to an attract-
ing fixed point or an attracting cycle. In Chapter 4 we will see
that iterated functions are capable of other, much more complex
behavior.

To be honest, I hope this chapter was almost boring. My
aim was to introduce a very simple type of dynamical system
and to present some key terminology and concepts: initial condi-
tion or seed, orbit or itinerary, fixed points, and stable/unstable

3. I have presented the study of iterated functions as an experimental endeavor:
choose a seed, grab your calculator, iterate, and see what happens. This is the
approach that I’ll take in this book. However, there are analytic and less com-
putational approaches to studying the properties of iterated functions. See, e.g.,
Devaney (1989); Peitgen et al. (1992). These analytic techniques are a lot of fun
and are a useful and important complement to the experimental approach I take
here.
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or attracting/repelling behavior. There is nothing deep or pro-
found in this chapter. We will soon see, however, that simple
iterated functions similar to the ones introduced here are capable
of surprising—and definitely not boring—behavior. Before doing
so, in the next chapter, I will introduce another type of dynamical
system: differential equations.
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emergence, 141–142, 227–229
ensemble prediction, 100
equilibrium, 26
Euler’s method, 27–32
exporting physics terminology,

164–165

Feigenbaum, Mitchell, 145
final-state diagram, 130–134

vs. bifurcation diagram, 137
first-order phase transition, 161
fixed point, 3

neutral, 8
of renormalization, 152
stable, 7, 9
super-stable, 154
unstable, 7

fixed point equation, 3
free will, 48, 103
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Gladwell, Malcolm, 122
goodbye, 230

hippos, 62–67
hysteresis, 123–128

initial condition, 2
iterated function, 1–15

and determinism, 14

relation to differential equation,
42–43, 207

relation to higher-dimensional
systems, 150, 209

Laplace’s demon, 49–50
Levins, Richard, xvi, 60n, 60
logistic equation

aperiodic, 70–74
bifurcation diagram, 129–141
derivation, 62–67
differential, 106–109
standard form, 67

long tails, 161
Lorenz map, 203–207
Lorenz, Edward, 189, 205
Lotka–Volterra model, 172–176
Lyapunov exponent, xvi, 85–89,

136n, 201n

maps, 5
mean field theory, 160
metabolic scaling, 168
models (mathematical), 50–61

agent-based, 58–59
caricature, 51, 167
empirical, 54
fetal pig vs. mannequin, 52–54
first-principles, 54
photographs vs. drawings,

51–52
population, 62–67, 172–174
qualitative, 54

Newton’s law of cooling, 18
Newtonian worldview, 46–47,

102–103
non-dimensionalization, 67n
non-linear time series analysis, 212
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numerical solution, 35–36

orbit, 2
orbit diagrams, 137
order and disorder

relationships between, 103, 194

parameter, 63
path dependence, 127
period doubling

bifurcation, 138, 143–145
route to chaos, 143–145

Peterson, Roger Tory, 52
phase line, 26–27, 176
phase plane, 176–183
phase portrait, 180
phase space, 184–188
phase space reconstruction, 212–219
phase transition, 159–162

continuous vs. discontinuous, 161
first vs. second order, 161

�−1 (renormalization operator),
156–158

Poincaré maps, 210–212
Poincaré section, 211
Poincaré–Bendixson Theorem, 182
power law, 161n, 162–163
prime period, 12n
Principia Mathematica, 46–47

quantum mechanics, 101

reductionism, 167, 230
regime shift, 165

renormalization, 151–159
fixed point of, 152
group, 151
universal curve, 152, 157

Rössler Equations, 183–188
rescaling, 67n
robot, 47
Ruelle, David, 203

Schwarzian derivative, 148n
second-order phase transition, 161
sensitive dependence

in differential equations, 192–194
on initial conditions, 78, 80–83

stability, 7–9, 13
state space, 187
stochastic, 98

dynamical system, 94
strange attractor, 196, 201–203

origin of term, 203
stretching and folding, 207–209
symbolic dynamics, 91–95

Takens, Floris, 203
Thom, René, 120–121
time series plot, 3
tipping point, 122–123, 165
Tresser, Charles, 145

universality, 143–151, 164–169
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168
in maps, 145–148
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