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1

Healthcare is an enormously complex part of the global economy.1 It consists of 
multiple stakeholders, many distinct industries, highly sophisticated tech­
nologies, and critical products and services that affect the lives of virtually 

everyone in the world. To fully appreciate the complexity of this field, consider the 
pharmaceutical or drug you took this morning for allergies or the medical device 
you used while exercising to measure your heart rate. How did those products come 
about?

Most likely, the process began decades ago, with scientists in academia making 
discoveries about biology and the specific mechanisms of a given disease or condition. 
These discoveries were then used by a different set of scientists and clinicians—most 
likely in a biotechnology company—to develop potential methods for disrupting those 
mechanisms, typically using chemical or biological agents. These agents were first 
tested in animals such as mice, dogs, and primates, and if the results showed promise, 
they progressed to human clinical trials. Because of the potential for toxic side effects, 
when clinical trials go wrong, people can die. Therefore, the highly methodical pro­
cess by which clinical trials are designed and conducted requires extraordinary skill, 
patience, and regulatory oversight by government agencies such as the U.S. Food and 
Drug Administration (FDA) or the European Medicines Agency (EMA). From 
start to finish, this process can take a decade or longer, and biotechnology companies 
will often partner with or be acquired by larger pharmaceutical companies to com­
plete the trials. And at the end of this lengthy process, there’s no guarantee that the 
drug or device candidate will turn out to be safe and effective. In fact, historically, the 
overall probability of success of clinical trials is about 8%, which translates to a failure 
rate of about 92%.

In the unlikely event that clinical trials do show safety and effectiveness, the company 
sponsoring the trial can submit an application to the FDA for a license to produce, 

1Disclaimer: Potential side effects from reading this book may include confusion, drowsiness, irritability, 
and disorientation, but these symptoms should pass in about 15 chapters 🙂.
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market, and distribute the therapeutic. After a detailed review of the company’s manu­
facturing processes, marketing and distribution practices, and patient safety mea­
sures, regulators will decide whether to award such a license. If a license is granted, 
the company can introduce the therapeutic into the healthcare delivery system, 
which involves an entirely different set of stakeholders that includes pharmaceutical 
sales representatives, doctors, hospitals, academic medical centers, public and 
private health insurance companies, pharmacies, pharmacy benefit managers, and 
patients. It’s through this administrative labyrinth that an approved drug or device 
finally reaches you, the patient. This complex process (see Figure 1.1), including the 
role that money and financing plays, is the main focus of this text.

1 .1   F I N A N C I N G :  T H E  L I F E B L O O D  O F  B I O M E D I C A L  I N N O V A T I O N

Despite the many different parties and processes involved in drug development and 
delivery, there’s one common denominator: the need for financing. Financing is 
needed to cover the cost of laboratory equipment, space, and supplies, patient volun­
teers, the salaries of scientists, engineers, and clinicians, and filing fees for regulatory 
approval, and the cost of manufacturing, marketing, distributing, and monitoring 
the approved drug. Because financial capital is the lifeblood of this entire value chain 
from the laboratory to the patient, issues such as business models, investor behavior, 
risk and reward trade-offs, and other financial considerations play a critical role in 
biomedical innovation.

In some instances, financial considerations dominate decision making and end up 
driving the scientific and medical agendas of biotechnology and pharmaceutical 

FIGURE 1.1

Key stakeholder 
groups 
for healthcare 
finance. The drug 
development 
process involves 
multiple stake­
holders including 
scientists and 
clinicians; biotech 
and pharmaceuti­
cal companies; 
healthcare 
delivery, payment, 
and insurance 
systems; and 
patients.

Academia

CH3O2–NH4C

Biotech start-up Big pharma

Healthcare delivery systemPatients
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(biopharma) companies.2 In one sense, this shouldn’t be too surprising. The process of 
developing a new drug or medical device typically requires hundreds of millions of 
dollars paid out over a decade or more, with a probability of success that’s often less 
than 10%. With these challenges, it’s no surprise that financing opportunities and con­
straints can drive the priorities of the biopharma industry.

We believe this state of affairs is backward. Shouldn’t the science be driving the 
financing decisions?

In a surprising number of cases, however, we’ve found that biopharma decision 
makers aren’t familiar with the basic principles of financial analysis. As a result, these 
decision makers sometimes delegate important financial decisions to others who may 
not have an appreciation of the time frames and risk of biomedical research and 
development (R&D). The decision makers are then shocked when their work is inter­
rupted because their funding has run out at the worst possible moment in their scien­
tific and clinical agendas. If this happens at a time when raising additional capital is 
difficult, if not impossible (e.g., during an economic recession), years of hard work and 
millions of dollars of valuable research—research that could have helped many des­
perate patients—may be abandoned and, ultimately, destroyed.

Our goal in writing this textbook is to help remedy this situation by providing life 
scientists and clinicians, biotechnology entrepreneurs, pharmaceutical company exec­
utives, regulators, patients, philanthropists, and other stakeholders of the vast bio­
medical ecosystem with the key financial principles and tools most relevant to the 
biopharma industry. The tools we cover include discounted cash flow analysis, port­
folio theory, real options analysis, decision trees, Monte Carlo simulation, securitiza­
tion, and other techniques broadly known among investment professionals as financial 
engineering. If these terms are unfamiliar to you, good! You’re the reason we wrote 
this book. Better financing and business decisions can lower the cost of capital for 
drug development, increase the amount of funding devoted to biomedicine, and get 
new and better therapies to patients faster.

One caveat about what this textbook does not cover: the economics of healthcare 
delivery. Because there are already several excellent textbooks on hospital administra­
tion, health insurance coverage, healthcare policy, and cost–benefit analysis and other 
health technology assessment tools, there’s no need for us to cover these topics here. 
Instead, our focus is on how new drugs, devices, diagnostics, and other healthcare in­
novations get financed from start to finish and what can be done from the financial 
engineering perspective to make this process more efficient.

Our motivation isn’t just academic. Both of us have had close friends and family 
members affected by cancer and other illnesses. As financial engineers, we felt power­
less to help them in any meaningful way. Ironically, our line of work regularly exposes 
us to the many scientific and medical breakthroughs that seem to be occurring almost 

2Traditionally, biotechnology referred to medicines derived from living organisms, such as enzymes for 
enzyme replacement therapy, and pharmaceuticals related to medicines that were chemically synthesized. 
However, it has become common for companies to use both biological and chemical sources in their R&D ef­
forts (hence the coining of the term biopharma), and so the distinction we make is based on a company’s size 
and stage in its life cycle.
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daily. By helping you—a member of the healthcare ecosystem—learn how to effectively 
harness financial tools to fund these biomedical innovations, we believe that together 
we can make a difference in patients’ lives. There’s no better time to be investing in 
the future of our health than now.

1 .2   B E I N G  H A R V E Y  L O D I S H

The potential impact of such investments became apparent to us through the remark­
able story of Harvey Lodish, a world-renowned cellular biologist at the Whitehead 
Institute for Biomedical Research at MIT.

In 1983, Dr. Lodish was approached by a biotech venture capitalist to join an effort 
to develop a new treatment for Gaucher disease, a rare inherited disorder that causes 
a deficiency in an important “housekeeping” enzyme. When this enzyme is absent or 
nonfunctional, microscopic fat droplets build up in white blood cells, the liver, the 
spleen, and bone marrow. As a result, the size of the liver and spleen increase dramati­
cally; blood cells are destroyed prematurely, leading to anemia and a tendency to bruise 
easily; and the structure of bone tissue is disrupted, leading to severe joint pain and 
osteoporosis. For a subset of Gaucher patients, this disease is usually terminal by the 
time they reach their late teens, and in 1983 no treatments were available.

Thanks to Dr. Lodish and other scientists working with him at a biotech start-up, 
an effective drug was developed—the first enzyme replacement therapy to reach 
patients—and in 1991, the FDA approved the new treatment, Ceredase (alglucerase).3 
This drug, and its subsequent improvements, has turned this deadly disease into a 
chronic but medically manageable condition. Their little start-up, Genzyme, eventu­
ally grew into a highly successful company that was acquired in 2011 by the French 
pharmaceutical company Sanofi for a little more than $20 billion.

But the most remarkable part of this story occurred in 2002. In that year, Dr. Lodish’s 
daughter became pregnant with her second child and discovered via prenatal screen­
ing that her son had the mutation for Gaucher disease. Ten years later, when the child 
began showing the symptoms of the disease, he was treated with the drug his grand­
father had helped develop decades before he was born. Thanks to this drug, Dr. Lodish’s 

3One of the most puzzling things about the pharmaceutical industry is that drugs always seem to have two 
names, one capitalized (known as “brand” names) and the other lowercase (known as “generic” names). Why? 
The lowercase name is assigned according to a standardized nonproprietary scientific naming convention 
that identifies the drug type, so that the same drug has the same name everywhere. For example, the cancer 
drug imatinib refers to the specific chemical compound C29H31N7O regardless of what hospital or country 
you’re in, and the suffix “-inib” indicates that it’s an angiogenesis inhibitor, meaning that it works by slowing or 
stopping the growth of blood vessels in cancerous tumors. Two organizations are responsible for assigning 
these names that communicate the specific medical properties of the drug: the United States Adopted Names 
(USAN) Council and the World Health Organization (WHO) International Nonproprietary Names (INN) 
Programme. The drug’s capitalized name is assigned by the biopharma company that owns and develops the 
compound, and this name is chosen primarily with branding and marketing considerations in mind. The 
brand name for imatinib is Gleevec, which is trademarked by and proprietary to its owner, the pharmaceutical 
company Novartis. In this text, we’ll follow the convention of providing both names when a drug is first cited, 
after which we’ll use only the brand name.
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grandson as well as tens of thousands of other Gaucher patients now live completely 
normal lives.

What an extraordinary twist of fate. When he undertook this project to treat 
Gaucher disease, Dr. Lodish had no idea he would be participating in something that 
would one day save the life of his as-yet-unborn grandson. We would all love to be 
Harvey Lodish, but for most of us without a biomedical background, this is an impos­
sibility. However, it became clear to us after studying the business of biomedicine that 
we can all be Harvey Lodish if we help finance the therapies that could one day save 
the lives of our future grandchildren.

1 .3   C O N V E R G E N C E

Another reason for studying healthcare finance is the growing need for financing 
due to the unprecedented pace of discovery and innovation that biomedicine is cur­
rently experiencing, something that MIT scientists Phillip Sharp, Tyler Jacks, and 
Susan Hockfield (2016) call “convergence.” Over the last two decades, a convergence 
of knowledge in the life sciences, the physical sciences, and engineering has brought 
biomedicine—and, consequently, human evolution—to an inflection point. A signifi­
cant milestone in the process of convergence was reached in 1998, during the first clin­
ical trial of the drug Gleevec (imatinib),4 a chemical compound used to treat chronic 
myelogenous leukemia, a specific type of blood cancer. Gleevec was discovered by 
a team led by Dr. Nicholas Lydon, a biochemist working at the pharmaceutical com­
pany Ciba-Geigy (now Novartis), and the oncologist Dr. Brian Druker of the Oregon 
Health & Science University.

The team developed Gleevec using rational drug design, the process of engineer­
ing new treatments based on specific knowledge of a biological target such as a pro­
tein. As part of their research, the scientists used high-throughput screening, an 
automated process involving a combination of specialized machines, computational 
algorithms, and biochemistry that allows researchers to quickly conduct millions of 
biochemical tests. Through this process, the team was able to identify a compound that 
could selectively inhibit the hyperactive Bcr-Abl tyrosine kinase protein, which had 
been implicated in the biological development, or pathogenesis, of the cancer. This 
process illustrates what we mean by convergence.

In 1998, the team began clinical trials to test the effectiveness and safety of the 
drug in humans. Of the 31 patients treated, all 31 experienced complete remission of 
the disease. As a result of this astonishing outcome, the FDA approved the drug only 
3 years later in 2001, the fastest time to approval by the FDA of any drug up to that 
point. Since then, Gleevec has saved the lives of thousands of leukemia patients each 
year and has also generated tremendous revenues for Novartis: In 2015, Novartis 
reported $4.7 billion in annual sales just from this one drug. Figure 1.2 summarizes 
Gleevec’s development time line.

4See footnote 3.
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The rate at which breakthroughs such as Gleevec are being made is accelerating. In 
2004, the anti-cancer drug Avastin (bevacizumab), also developed using rational drug 
design, was approved. In 2008, Sutent (sunitinib) was approved for the treatment of 
two cancers: renal cell carcinoma and gastrointestinal stromal tumors. In fact, since 
the success of the Gleevec model, more than 50 new drugs created via rational drug 
design have been approved.

More recently, an entirely new set of treatments called immunotherapies, treat­
ments that use the body’s own immune system to fight cancer, has emerged. For ex­
ample, in 2014, Keytruda (pembrolizumab) was approved to treat the deadly form of 
skin cancer known as melanoma. This drug received national attention in 2015 when 
it was used to treat former president Jimmy Carter’s Stage IV metastatic melanoma 
(which had spread to his liver and brain) and apparently cured him.

At the same time that biomedicine has reached an inflection point, however, fund­
ing innovation remains a challenge that’s becoming more complex. This is particularly 
true during the initial stages of therapeutic development (preclinical development; 
i.e., before a therapeutic is ready for human clinical trials) as well as during the subse­
quent stage when therapeutics are first tested in human subjects (early-stage clinical 
development). But how can funding be a challenge when a single drug like Gleevec 
can generate $4.7 billion in just one year?

FIGURE 1.2

The remarkable story of the chronic myelogenous leukemia drug Gleevec from 
discovery by Lydon and Druker in 1998 to FDA approval in 2001. Novartis reported  
$4.7 billion in annual sales in 2015. The thousands of patients cured after receiving this drug 
include Katie Knudson, Judy Orem, Doug Jenson, and Rob Shick (upper right).

C29H31N7O

1998 discovery

Nicholas Lydon Brian Druker

2001 FDA approval
(Gleevec™)

Thousands of
cancer patients

treated

Annual sales
($4.7 billion in 2015)

Gleevec
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1 .4   B I O M E D I C I N E  F R O M  A  F I N A N C I A L  P E R S P E C T I V E

Before delving into the financial challenges facing the biopharma industry, we should 
clarify some terms we’ll be using throughout this text and agree on certain conven­
tions. The term drug typically refers to a chemical or biological agent that’s admin­
istered to a patient, but there are other broad classes of therapeutics that are part of 
the biopharma industry. These include medical devices (e.g., magnetic resonance 
imaging equipment, dialysis machines, artificial hearts), diagnostics (e.g., blood tests, 
cancer diagnostics, genetic sequencing), and bioinformatics (e.g., computational 
analysis of genetic profiles and their associations with specific diseases, mathemati­
cal and numerical simulations of the properties of chemical and biological com­
pounds, and machine-learning predictions of drug efficacy, toxicity, and clinical trial 
outcomes). For most of this textbook, the financial methods and tools covered are so 
broadly applicable to all of these industry segments that we’ll use the more compact 
phrase drug development as shorthand to mean “drug, device, diagnostics, and bio­
informatics development.” In some cases, we’ll use the more generic term, therapeu-
tic, to mean any treatment or study that can benefit a patient with a given illness. In 
other cases, when we refer to a specific class of therapeutic such as devices or diagnos­
tics, it should be clear from the context whether the term is being used in the specific 
or broader sense.

The drug development industry can be divided roughly into two components: large 
pharmaceutical companies (sometimes called big pharma) like Johnson & Johnson, 
Merck, Novartis, Pfizer, and Roche, and smaller biotechnology companies, often 
founded by scientist-entrepreneurs, that bring the very newest ideas from the labora­
tory into the clinic.

A typical big pharma company has multiple approved drugs in the market that treat 
many different diseases and many more drug candidates under development in its 
pipeline, has billions of dollars in annual sales, employs many thousands of profession­
als all over the world, and is profitable (meaning its annual revenues exceed its annual 
costs, hence it has positive annual earnings). In contrast, a typical biotech company is 
much smaller in every dimension and usually has no approved drugs and no revenues. 
Biotech companies are often said to be burning cash. As odd as it may seem, in some 
cases, the greater the biotech’s cash burn rate (the dollars spent per month), the greater 
its value, because more cash spent often (but not always) implies more progress. Biotech 
companies are focused on conducting scientific and clinical investigations to develop a 
specific therapeutic that may eventually become an approved drug or device.

In recent years, a third category of companies known as small pharma or specialty 
pharma has emerged. These are much larger than the typical biotech start-up but may 
be generating revenues and even profits, usually with only one or two approved drugs 
in a relatively narrow therapeutic area (like Gaucher disease).

Figure 1.3 illustrates the performance of the U.S. biotech and pharma stock market 
indexes from December 5, 1994, to May 12, 2021. Their performance is plotted on a 
logarithmic scale on the vertical axis, so that equal vertical distances represent equal 
rates of return. The slope of each line therefore tells us how quickly each index is 
growing.
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Pharmaceutical companies grew at a steady rate from the mid- to late 1990s, after 
which their performance flatlined and then began a slow, decade-long decline that in­
dustry insiders refer to as big pharma’s “lost decade.” By 2009, their performance 
started to improve, for reasons that we’ll consider further in Chapter 2 (Section 2.6).

A much different narrative emerges for the smaller, more dynamic biotechnology 
companies. From the mid- to late 1990s, biotech also had a positive growth rate, but 
one with much more risk relative to the steady growth rate of the pharmaceutical 
index, as reflected in its comparatively large swings in value. However, starting in 
2003—interestingly enough, around the same time that the human genome was com­
pletely sequenced—the growth rate of biotechnology accelerated and has remained 
high throughout much of the following decades.

From a financial perspective, it appears that biomedicine has reached a turning 
point. So why is funding still so hard to come by at the early stages of drug and device 
development? We can break down biomedical funding into private and public com­
ponents. Public funding for early-stage biomedical research from sources such as the 
National Institutes of Health (NIH) has declined (Figure 1.4) for a variety of rea­
sons, many of them political rather than economic or business-related. However, this 
decline may be reversed as political perspectives shift in response to the growing 
healthcare needs of an aging population in the United States and abroad, and in the 
aftermath of the COVID-19 pandemic.

Global funding from the private venture capital (VC) sector has been more cycli­
cal, going through a long period of declining funding followed by a reversal in recent 

FIGURE 1.3

NYSE/ARCA Pharma and Biotech indexes from December 5, 1994, to May 12, 2021. The 
green line indicates April 15, 2003, the date the U.S. government announced the successful 
completion of the sequencing of the human genome.

0.1

1

1994
1996

1998
2000

2002
2004

2006
2008

2010
2012

2014
2016

2018
2020

10

$100
NYSE/ARCA
Biotech Index

–44.4% Return

Completion of
human genome
sequencing

NYSE/ARCA
Pharma Index

Cu
m

ul
at

iv
e 

re
tu

rn
 ($

)



FIGURE 1.4

Funding for the National Institutes of Health. U.S. government funding for biomedical 
research from 1950 to 2020, adjusted for inflation using the Biomedical Research and Develop­
ment Price Index (BRDPI).
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Profile of a Leading Healthcare Institution: National Institutes  
of Health (NIH)

The National Institutes of Health (NIH) is the primary agency of the 
U.S. federal government for biomedical and public health research. 
It’s part of the Department of Health and Human Services and is com­
posed of 27 separate institutes and centers. With an annual budget of 

$42 billion as of 2020, the NIH encompasses 0.9% of the current operating budget of the 
United States.

The NIH as an institution traces its origin to 1887, when the Hygienic Laboratory was estab­
lished at the Marine Hospital on Staten Island, New York, using the new field of bacteriology 
in a clinical setting. As a scientific institution, the NIH has been involved in both basic and ap­
plied research, including the development of new vaccines, new laboratory techniques and 
methods, and the first approved gene therapy in the United States. Six thousand scientists are 
employed in this intramural research, within the metaphorical walls of NIH, whose facilities are 
primarily located in Bethesda, Maryland.

The NIH has been even more influential in its extramural activities. Only 10% of the NIH’s 
federal funding goes to its own research, whereas more than 80% is disbursed through nearly 
50,000 competitive grants to more than 300,000 researchers at more than 2,500 research insti­
tutions throughout the world. Approximately 17% of current biomedical R&D funding in the 
United States comes from NIH grants.
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years. Between 2008 and 2015, the number of active biotech VCs in the United States 
decreased by about a quarter, from 201 to 153 (Table 1.1), and the global number of VC 
financings of private biotech companies in 2012 was the lowest it had been in nearly a de­
cade (Figure 1.5). The decline in funding for translating research ideas to early-stage drug 
discovery and clinical development often prevents potentially lifesaving therapies from 
completing the journey from bench to patient bedside. In the field of translational re-
search, this notoriously difficult funding challenge has been labeled the Valley of Death.

TABLE 1.1 ​ Number of active biotech venture capital firms in the world, by year and region.

Region 2008 2009 2010 2011 2012 2013 2014 2015

Canada 10 5 10 19 8 10 7 14

China 2 4 3 7 3 6 14 18

Europe 105 106 111 75 80 80 89 78

India 1 3 3 1 0 6 0 2

Israel 12 6 6 6 8 3 5 1

USA 201 163 140 131 151 153 156 153

Global total* 309 256 247 212 214 222 238 229

*The global total is not the sum of all regions, as an investor involved in many regions counts only once in the  
global total. 

Source: Huggett (2013, 2014, 2016).

FIGURE 1.5

Global venture funding of private biotech companies 2000–2016. 
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Although biotech VC funding has been rising between 2015 and 2021—spurred in 
no small part by the COVID-19 pandemic and the success of mRNA technology—
there’s still a Valley of Death between the preclinical stages of R&D and clinical devel­
opment. Why does the Valley of Death exist? Why would capital be scarce at the very 
moment humanity should be redoubling its efforts to cure diseases now that we have 
the means to do so? Part of the reason is the increasing risk, uncertainty, and com­
plexity of drug development.

1 .5   T H E  C H A L L E N G E S  O F  D R U G  D E V E L O P M E N T

The typical drug development process is outlined in Figure 1.6. It begins in the labora­
tory where research ideas are born, developed, refined, and tested on animals such as 
mice. Once a new therapy has matured to the point where it’s ready to be tested in 
humans, it enters clinical trials, which traditionally have three phases. Phase 1 trials 
usually consist of a small number of healthy volunteers or patients with the targeted 
disease/condition (typically 20–100). In Phase 1, the primary objective is to test for 
safety and appropriate dosage of the therapeutic. If successful (i.e., the therapy can be 
given safely to patients without serious side effects), the testing moves on to a Phase 2 
trial, in which both safety and efficacy are evaluated in a larger group of volunteers 
(up to several hundred people with the targeted disease/condition). Assuming all has 
gone well in Phase 2, the therapy is then tested in a Phase 3 trial, in which safety and 
efficacy are evaluated in an even larger sample of patients (typically 1,000–5,000). In 
total, these clinical trials can take about 6–7 years to complete. With early-stage re­
search and the FDA review process factored in, however, the entire process for a new 
drug to be approved can take as long as 10–15 years.

Three issues make funding these projects difficult. First, they’re expensive, costing 
hundreds of millions of dollars or more to take a potential therapy from preclinical 
animal models all the way through Phases 1–3 and FDA approval. Second, it takes years 
of testing before they generate revenue. Third, and perhaps most important, the prob­
ability of success at the end of this 10- to 15-year process is very low. For example, the 
historical odds of successfully developing an anti-cancer compound from Phase 1 to 
FDA approval are about 1 in 20. The combination of these three features of cost, dura­
tion, and long odds presents a nightmare scenario for the typical investor. Moreover, 
the efficiency of the process seems to be getting worse, as illustrated through an 
empirical relationship that has facetiously been called Eroom’s Law, which is Moore’s 
Law spelled backward (Figure 1.7).

Moore’s Law (first proposed in 1965) predicted that the computing power of a com­
puter chip would double for the same cost every few years, a rising trend. The illus­
tration of Eroom’s Law in Figure 1.7, however, shows that the number of new drugs 
approved by the FDA per billion dollars spent on R&D has halved roughly every 
9 years (after adjusting for inflation).5 Because this is a logarithmic plot, we see that the 
downward efficiency of the industry has been getting exponentially worse for decades. 

5In 2020, Ringel et  al. (2020) reported some promising new evidence that we may finally be reversing 
Eroom’s Law.



FIGURE 1.6

The drug development process. The path by which a drug is developed from preclinical drug discov­
ery through clinical trials and FDA approval is a lengthy, complex, and financially risky process that 
involves multiple stakeholders and several discrete phases of R&D and clinical testing.
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One reason for this trend is that drug development is apparently becoming more 
difficult.

Example 1.1: To understand why drug development is becoming more difficult 
despite (and perhaps because of ) improvements in science and technology, con­
sider the following example. Combination therapies, which treat a single dis­
ease using multiple medications, have been shown to work remarkably well for 
certain diseases. The best-known example of a combination therapy is the so-
called AIDS “cocktail” of five anti-retroviral drugs, known collectively as highly 
active anti-retroviral therapy (HAART). Individually, these drugs aren’t 
particularly effective against HIV. But when used together, they turn a death 
sentence into a chronic but manageable condition for millions of people around 
the world. It would be hard to overstate the impact that HAART has had on 
humankind.

Now that we’re armed with the scientific knowledge that combination thera­
pies can work much better than single drugs or monotherapies, shouldn’t we try 
treating other diseases with combinations as well? In fact, certain biomedical ex­
perts have argued that we don’t need more new drugs; they claim that we should 
be able to deal with all human diseases with the drugs we already have, if we can 
find just the right combination. How hard could that be?

Suppose we could treat each human disease using a unique combination of 
just two drugs, and we had at our disposal all the existing drugs that have already 
been approved. As of 2019, there are about 3,700 drugs in total.6 How many unique 
pairs of 3,700 drugs are there? The precise mathematical answer is 6,843,150. To 
search through all possible pairs to find just the right combination would require 
nearly 7 million clinical trials, each costing hundreds of millions of dollars, tak­
ing a decade or longer to complete, and requiring thousands of patients which, 
across all 3,700 drugs, would involve more subjects than the total population on 
the planet.

This example should give you some sense of the complexity of the problem. 
Continuing with the calculation, we find that we can form approximately 8.4 bil­
lion unique triplets if three drugs were needed, 7.8 trillion unique quadruplets, 
and 5.8 quadrillion unique quintuplets of drugs for possible combination thera­
pies. In addition, we would need to consider dosage regimens, biomarkers 
(i.e., traceable substances whose detection can be used to monitor health), side 
effects, and other variables in counting the different types of trials we would 
need to conduct. Very quickly, the search space becomes immensely large—let’s 
just call it gazillions 🙂!

This simple thought experiment shows that as biomedical research becomes 
more complex, drug development can become less efficient, making the odds of 
success even lower. This increased risk makes funding translational biomedical 
projects less attractive to investors.

6See https://www​.drugbank​.ca​/stats.
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1 .6   W H A T  D O  I N V E S T O R S  W A N T ?

We saw in the previous section that drug development projects are costly, lengthy, and 
have a low probability of success. To understand why these features are so unattract­
ive to investors, consider the following two observations.

Observation 1: There’s a trade-off between risk and reward.
Figure 1.8 displays the cumulative returns of a $1 investment in four different un­

named financial securities over an unspecified investment period. To gauge your own 
behavior toward risk and reward, choose one—and only one—of these four securities 
in which to invest all your retirement assets. The green investment turns $1 into $2; 
not very rewarding, but not particularly risky. The red investment turns $1 into $4.50, 
way more rewarding but also quite a bit riskier given its ups and downs over time. The 
blue investment is the most rewarding of all at nearly $8, but also the most risky. And 
finally, the black investment is somewhere in the middle, with a return of $6.75 and 
less risk than the red and blue investments. Before reading on, please make a choice so 
that you’re invested in this example! Which one would you prefer if you had to choose 
only one of these investments to put your life savings in?

When typical investors are confronted with this choice, most of them select the black 
investment because it seems to have the best trade-off between risk and return—not 
as risky as the other investments but still reasonably rewarding.

Profile of a Leading Healthcare Institution: National Center for 
Advancing Translational Sciences (NCATS)

The National Center for Advancing Translational Sciences (NCATS) at 
the NIH was specifically established to accelerate the translation of basic 
science into new treatments. Founded in 2012, NCATS is one of the 27 in­
stitutes and centers at the NIH, and it is the only one whose specific 
focus is on the translation process itself.

Rather than focusing on specific diseases, NCATS studies system-wide 
bottlenecks and other operational problems in the translational research pipeline and involves 
itself in the development of new methods to reduce, bypass, or eliminate these obstacles 
to the therapeutic development process. These obstacles are not necessarily scientific or 
technological: they can include a shortage of investigators, poorly organized research 
structures, inadequately designed clinical trials, and difficulties navigating the compli­
cated regulatory framework toward approval. NCATS demonstrates new models and ap­
proaches to institutions to overcome these obstacles, working as a catalyst in their further 
development.

NCATS emphasizes the dissemination of improvements in translational science and specifi­
cally looks for collaborative approaches to translation that include academia, government, indus­
try, and nonprofit organizations. The scientific guidance provided by NCATS includes resources 
for biomedical data sources; early-stage drug discovery assays; human tissue microchip 
platforms; Investigational New Drug (IND) applications; repurposing existing molecules; 
toxicity testing; and data and clinical support for genetic, rare, and neglected diseases.
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To see how you fared, take a look at Figure 1.14 at the end of this chapter, which 
reveals the identities of these four investments and the time period (from October 1990 
to October 2008), as well as their performance since 2008. The green investment is 
U.S. Treasury bills, the safest asset in the world, but not particularly rewarding, yield­
ing virtually nothing since 2008, as Figure 1.14 shows. The red investment is the S&P 
500 U.S. stock market index which, at $21.15 in December 2020, does considerably bet­
ter than Treasury bills, so congratulations if you chose this asset. The blue investment 
is the big pharma company Pfizer, the best performer of all at $27.50. Finally, the black 
line—the most popular choice by far—is the Fairfield Sentry fund, the feeder fund for 
the Bernie Madoff criminal Ponzi scheme, which collapsed after October 2008, so if 
you chose this asset, condolences for getting wiped out!

Like a moth to a flame, most of us are drawn to investments that have high return 
and low risk. Financial analysts have a measure of this tendency, and it’s known as the 
Sharpe ratio (which we’ll study in more detail in Chapter 7), defined as the ratio of an 
asset’s excess expected return (E[R]) above the U.S. Treasury bill return (Rf) to a measure 
of its riskiness, which is usually the standard deviation of the asset’s returns (SD[R]):

Sharpe Ratio = Reward
Risk

=
E[R]− Rf

SD[R]
  (1.1)

It’s human nature that investors are drawn to high Sharpe-ratio investments. The 
Sharpe ratios of the three risky assets in Figure 1.8 are 0.39 for the S&P 500, 0.44 for 

FIGURE 1.8

Cumulative returns of four unspecified financial securities over an unspecified investment period. 
Which would you choose as an investment for your entire retirement portfolio? (See Figure 1.14 at the end 
of this chapter, which reveals the identities of the four investments and their subsequent performance.)
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Pfizer, and 2.89 for Fairfield Sentry (at least on paper, before it blew up). Based on your 
own choice, it should now be clear how the Madoff Ponzi scheme grew to approximately 
$50 billion, the largest fraud in the history of financial investment funds. One of the 
challenges to the biomedical ecosystem is that as we develop more sophisticated ways of 
treating diseases, medicine becomes more complex, which increases the financial risk of 
biopharma investments and reduces their Sharpe ratios. As a result, investors decide to 
put their money in higher Sharpe-ratio assets. This leads us to our second observation 
about investor behavior.

Observation 2: There’s a difference between risk and uncertainty.
Consider an urn that contains 100 balls, 50 red and 50 black (Figure 1.9). Now sup­

pose you pick a color, red or black, after which a ball is randomly selected from the 
urn. If the randomly selected ball matches the color that you chose, then you get $10,000; 
otherwise, you get nothing.

In this situation, it doesn’t matter which of the two colors you select, because you’ll 
always have a 50% chance of winning. How much would you be willing to pay to play 
a single round of this game? When finance students are asked this question, the high­
est bid is often a little less than $5,000, which is the expected value from playing the 
game (50% × $10,000 + 50% × $0 = $5,000).

Now consider Urn B, which also has 100 balls, but now you don’t know the proportion 
of red to black. In fact, your opponent gets to choose the proportion in the turn before­
hand. Other than that single difference, the rest of the game is played in exactly the same 
way. How much would you be willing to pay to play a single round of this game? Despite 
that the odds of winning or losing are precisely the same in this game as in the previous 
case in which you know the proportion of red and black balls (50/50 odds of choosing the 
winning color from both Urn A and Urn B), most people will offer much less to play a 
single round of this game. How much less? Typically, as much as 40% to 80% less. Why?

When subjects are asked why, they explain that in the first case, they know the odds. 
In the second case, the odds are unknown and the fact that their opponent gets to 
choose the proportion is particularly troubling. Despite the fact that there exists a strat­
egy whereby the subject can guarantee that the odds are fair—simply flip your own 
fair coin and pick red if the coin comes up tails and pick black otherwise—subjects 

FIGURE 1.9

Risk versus uncertainty as illustrated 
through the Ellsberg Paradox. Pick a 
color, red or black, and if a ball drawn 
from Urn A, which contains 50 red balls 
and 50 black balls is your color, you 
receive $10,000, and if it isn’t your color, 
you receive nothing. How much would 
you pay to play this game just once? 
Suppose the same game is played with 
Urn B, which contains an unknown mix 
of red and black balls. How much would 
you pay to play this game just once?

Urn A:
Known 50/50 mix of balls

Urn B:
Unknown mix of balls
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still won’t pay as before because they say that they just don’t “feel as comfortable” when 
there’s uncertainty about the risk.

This example is the famous Ellsberg Paradox from psychology, and it underscores a key 
aspect of human behavior: there are two kinds of randomness, and we treat them very dif­
ferently. Risk is defined as the kind of randomness that can be quantified, as in the case of 
the 50/50 urn. Uncertainty is defined as the kind of randomness that can’t be quantified, 
that is, the unknown unknowns. Humans view risk and uncertainty as tangibly different. 
From a financial perspective, uncertainty can have a substantial impact on how people 
value an investment that goes well beyond the standard statistical models used to evaluate 
investments—investors dislike uncertainty even more than they dislike risk.

Example 1.2: Consider the investment opportunity in an anti-cancer drug proj­
ect depicted in Figure 1.10:

•	 $200 million up-front investment
•	 10-year time horizon
•	 5% probability of success
•	 If successful, $2 billion per year for 10 years until the drug’s patent ex­

pires, which, as we’ll see in Chapter 4, is equivalent to a single payment of 
$12.3 billion in Year 10

FIGURE 1.10

Payout time line for a hypothetical investment project. Requires a $200 million up-front 
investment and has no cash flows until Year 10, a 95% chance of total failure, and a 5% chance 
of receiving $2 billion a year from Years 11 to 20 (which is equivalent to a single payout of $12.3 
billion in Year 10).

–$200MCash Flows

11 120 20

$2B $2B $2B

Drug Discovery & Clinical TrialsYear

Total Pro�ts if Approved = $20BTotal Cost

5% chance of 100x on investment over 20 years
95% chance of 100% loss on investment

Expected 5x return on investment over 20 years 

+

Would you be willing to invest in this project? For most people, this project 
is simply too risky. When you calculate the statistics, the project has a positive 
expected rate of return, but it also has a large standard deviation, implying a 
Sharpe ratio close to 0. Moreover, any model that forecasts 20 years into the future 
has a great amount of uncertainty.
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Example 1.2 highlights the issues that affect biomedical R&D projects. They’re 
simply too risky, and as the risk and uncertainty increase, the behavior of the stake­
holders responsible for new medicines changes. For example, biotech venture capi­
talists will respond by investing in fewer start-ups, focusing instead on scientists and 
entrepreneurs with proven track records, well-established therapeutic areas, and as­
sets in later stages of development. Pharma companies will respond by de-emphasizing 
in-house drug discovery efforts in favor of partnering with or acquiring smaller bio­
tech companies that have reached certain milestones of demonstrated success. Entre­
preneurs will respond by avoiding more speculative technologies in favor of areas that 
are currently “hot,” and may decide to forgo entrepreneurial ventures altogether in 
favor of safer positions within large corporations. And even government agencies such 
as the FDA or the NIH will respond to increased risk and their own funding shortages 
by favoring safer, albeit less transformative, medicines and research agendas.

Table 1.2 summarizes the drivers of increasing risk and uncertainty among these stake­
holders and their predicted responses, a number of which have already been observed in 
practice. These trends and tendencies explain how the efficiency of the biopharma eco­
system is so closely tied to issues related to funding. In fact, more often than not, financ­
ing ends up driving scientific research agendas, as illustrated by the next example.

Example 1.3: Consider a $200 million investment opportunity in the following 
two projects:

•	 A “me-too” cancer drug that offers only incremental benefits relative to the 
current standard of care. It’s already in Phase 3 clinical trials and is likely to 
be approved. Moreover, it will immediately begin generating revenues once 
launched, because the law currently states that a substantial portion of the 
treatment costs of any cancer therapy must be reimbursed, regardless of 

TABLE 1.2 ​� Likely responses to increasing risk and uncertainty by stakeholders in the biomedical 
ecosystem.

Stakeholder Challenge Response

National 
Institutes of 
Health

Declining funding, increasing real cost of research, 
increasing risk of government dysfunction and 
oversight

Award grants to researchers with “proven” 
track records, shorter time-to-delivery, less 
speculative research

Academia Less grant money, fewer job opportunities, 
uncertain career paths

Take finance at MIT’s Sloan School of 
Management and go to Wall Street

Biotech 
Entrepreneurs

Scarcer start-up capital, more onerous terms, 
fewer “home runs”

Focus on “hot” areas, propose less 
challenging targets with clearer market value

Biotech Venture 
Capital

Higher start-up costs, longer time to milestones, 
increasing complexity, lower risk tolerance of 
investors, uncertainty of second-round financing, 
competition

Re-allocate investments away from biotech 
toward better-performing lower-cost 
sectors such as software, energy, 
infrastructure, etc.

Big Pharma Decreasing productivity of R&D, increasing 
complexity of drug discovery and clinical trials, 
greater competition, patent cliffs, regulatory and 
political uncertainty

Sell mature drugs, raise cash, reduce R&D, 
acquire new technologies via in-licensing, 
mergers, and acquisitions
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whether it offers real transformational improvements or incremental bene­
fits, as long as a physician prescribes it to a patient.

•	 A combination therapy that consists of a newly developed drug that treats 
acute lymphoblastic leukemia and a second chemical compound. This com­
bination has the potential to be a transformational therapy, one that could 
possibly cure the disease, but you haven’t yet identified the second drug.

In which of these two projects would you choose to invest your retirement as­
sets? Most people select the “me-too” drug because it’s safer, and thus more 
likely to be profitable. This type of decision has been happening across the in­
dustry and is another contributing factor to the Valley of Death.

As risk and uncertainty increase, investors will demand higher rates of return. A 
study conducted by Cockburn and Lerner (2006) found that investors expect about a 
20% per year rate of return from smaller biotech companies to compensate them for 
the risks of these early-stage projects. Figure 1.11 shows that biotech has sometimes 
performed extraordinarily well relative to this 20% hurdle rate (i.e., the minimum rate 
of return on an investment required by investors to compensate them for the level of 
risk), but in more recent periods, has generally underperformed.

In contrast, a similar study conducted by Giaccotto et al. (2011) found that inves­
tors expect a 10–15% per year rate of return from pharmaceutical companies. These 

FIGURE 1.11

Biotech VC pooled internal rate of return (IRR) from 1996 to 2018.
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companies are larger, more established, and more diversified than the smaller biotech 
firms, which helps to explain their lower hurdle rate (and subsequently allows them to 
raise funds from investors at more favorable rates, also known as their cost of capi-
tal). However, across all sectors in the economy, only 10% of U.S. companies have 
hurdle rates above 10% per year (Figure 1.12), so we see that funding for pharmaceuti­
cal companies is still expensive relative to other industries. We say that their funding 
is expensive, and the cost of capital is high because, when these companies go out to 
raise money, investors will demand a higher interest rate on their debt or greater con­
cessions on the price of their equity to compensate them for the higher level of risk. 
As an analogy, consumers with higher credit scores tend to pay back their debts on 
time more consistently, so they typically get charged lower borrowing rates (we would 
say they have a lower cost of capital).

Is there a way we can reduce the risk of early-stage biomedical projects and, conse­
quently, the cost of capital for these projects?

C o n c e p t  C h e c k  1 . Which of the following does NOT characterize a typical in­
vestment in a biopharma project?

a.	 Investments can be very large.
b.	 Investments are illiquid (i.e., they can’t easily be sold or converted into cash).
c.	 Investments have a short time horizon.
d.	 Investments involve both risk and uncertainty.

FIGURE 1.12

Distribution of costs of capital for U.S. companies as of January 2021.
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1 .7   F I N A N C I A L  E N G I N E E R I N G  C A N  H E L P  B R I D G E  T H E  V A L L E Y  O F  D E A T H

Because the cost of capital is linked to an investment’s degree of risk—greater risks 
require higher rates of return so as to compensate investors for taking on such risks—
the way to reduce the cost of capital is simple: reduce the risk. This is one of the pri­
mary objectives of the field of financial engineering, a collection of mathematical, 
statistical, and computational models and tools focused on measuring and managing 
the risks and rewards of all types of investments, including drug development projects. 
You may have come across some of these models and tools if you’ve ever taken an eco­
nomics or finance class, ideas such as portfolio theory, mean-variance optimization, 
and securitization. We’ll discuss these ideas in more depth in the chapters to come. 
But for now, let’s consider a simple illustration of the power of financial engineering to 
reduce the cost of capital for drug development.

Consider combining 150 anti-cancer drug projects like the one outlined in Fig­
ure 1.10 ($200 million cost, 10-year horizon, and a 5% success rate) into a single finan­
cial investment, called a portfolio. This portfolio is similar to a mutual fund, which 
is a single legal entity that owns a collection of investments on behalf of its share-
holders. As a shareholder of the mutual fund, you own a fraction of each and every 
security in that fund. So, in our example, a single legal entity owns 150 anti-cancer 
drug projects, and investors can then buy shares of that entity.

But if investors aren’t interested in investing in one of these projects, why would they 
want to invest in a fund that owns 150 of them? The answer to this question is critical 
because we’re going to need $200 million × 150 = $30 billion to fund our cancer fund. 
Given this large sum of capital required, our fund will need to be highly attractive to 
investors. It turns out that if these 150 projects are statistically independent—meaning 
that the success or failure of one project has nothing to do with the outcomes of any 
of the other projects—then we can show that the overall annualized standard devia­
tion of the portfolio decreases from an incredibly volatile 423.5% to only 34.6%, while 
the expected return remains the same at 11.9%, implying a Sharpe ratio of about 0.34. 
In contrast, the Sharpe ratio for just one of these projects is only 0.03. By investing in 
a portfolio of 150 of these projects, and assuming they’re independent, we’ve managed 
to reduce the risk by an order of magnitude!

This feat is the result of diversification, the financial equivalent of not putting all 
your eggs in one basket. As a result, the kind of return that investors demand will be 
significantly lower for this portfolio, allowing us to attract more capital.

In fact, in this specific instance, we can actually raise most of the $30 billion needed 
by issuing bonds, which are similar to mortgages, auto loans, and other forms of bor­
rowing, rather than through the traditional biotech funding route of venture capital­
ists and initial public offerings of shares of stock. With a 5% probability of success for 
each project and assuming independence, the probability that at least three of the 
150 projects will be successful is about 98%. If we assume that each of the three suc­
cessful projects is worth $12.3 billion (see Example 1.2), then there’s a 98% probability 
the portfolio will be worth 3 × $12.3 billion ≈ $37 billion in Year 10. What if we bor­
rowed money to fund this portfolio by issuing IOUs, or bonds, that promised to pay 
back a certain amount of money in Year 10, after our drug development projects 



22   C H A P T E R  1

mature? How much could we borrow? Well, if we issued IOUs that promised to pay up 
to $37 billion in Year 10, we have a 98% chance of being able to make good on that 
promise, or a 2% chance of defaulting. As of September 9, 2021, the market interest 
rate for loans with a 2% chance of defaulting was about 1.76%, and we’ll learn from 
Chapter 3 that a 10-year loan involving a payment of $37 billion in Year 10 with an 
interest rate of 1.76% would give the borrower proceeds of $31.1 billion today in ex­
change for that IOU. Thus, the $30 billion needed can be easily obtained from bond 
markets, which are larger than any other source of capital by at least one or two orders 
of magnitude. For example, in 2020 the size of the U.S. corporate bond market was 
about $10.6 trillion (Figure 5.1). In comparison, the total assets under management in 
the entire VC industry in 2020 was just $548 billion, and the amount deployed in the 
pharma and biotech sector in that year was $28 billion. If we need $30 billion for a 
cancer megafund, we have to look beyond VC funds.

By using financial engineering techniques to reduce the risk, we can access entirely 
new funding sources like bond, private-equity, and derivatives markets, which we’ll 
describe in greater detail in the coming chapters.

A warning: This analysis relies on the assumption of statistically independent proj­
ects, that is, we’ve assumed that the outcome of one project won’t affect the outcome 
of any other. There are all sorts of reasons why this assumption may not hold true, 
not the least of which is that science is a very interconnected process. Figure 1.13 
shows the probability of at least k successes among the 150 projects, using different 
assumptions for the pairwise correlation of success/failure between projects. As this 

FIGURE 1.13

Probability of at least k successes out of 150 projects, each with a 5% probability  
of success, for pairwise correlations of 0% (blue), 10% (orange), 40% (green), and  
80% (purple).
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pairwise correlation increases from 0% (which is the case of independence, depicted 
by the blue line) to 10% (orange line) to 40% (green line) to 80% (purple line), the ben­
efits of diversification decline and the probability of having at least three successful 
projects decreases. As a result, the cost of capital doesn’t decrease as much as before, 
and we can no longer raise as much capital.

Figure 1.13 demonstrates the importance of diversification, that is, spreading invest­
ments across very different and, to the greatest extent possible, independent projects. 
Companies that crowd around the same therapies and technologies are like young and 
inexperienced soccer players who all crowd around the ball. Soccer coaches have to 
remind these novices to spread out and go to where the ball will be, not to where it is 
now. Similarly, diversification—the idea of spreading the risk across uncorrelated 
projects—can help the biomedical industry to reduce its cost of capital and reach its 
goals with higher likelihood.

At the time of writing, interest rates are at near-record lows, yet we still have many 
promising research programs that can’t raise the money to develop the cures that pa­
tients desperately need. A large part of this textbook will be devoted to understanding 
this conundrum and to developing the tools that will allow us to create new financing 
structures and business models that can be used to bridge this Valley of Death. Financial 
engineering can play an important role in accelerating biomedical innovation.

Example 1.4: In 2009, the Defense Advanced Research Projects Agency (DARPA), 
a research organization of the U.S. Department of Defense, ran a competition 
known as the “DARPA Network Challenge” in which it placed 10 large, red weather 
balloons in random, fixed locations all across the United States. The contest stated 
that the first person or team to identify the GPS coordinates of all 10 balloons 
would win a cash prize of $40,000. A group of MIT students led by Professor Alex 
Pentland won the challenge, and they won it in an astonishingly short amount of 
time: it took the team only 8 hours and 52 minutes! How did they accomplish 
this amazing feat? Financial engineering.

In addition to concentrating their efforts on social networks, the MIT team 
came up with a specific reward mechanism to recruit collaborators to help them. 
They announced publicly on a website that if they won the $40,000 prize, they 
would pay out all of it to those who helped them win. But they were very explicit 
about how they were going to do this. The team’s stated plan was to pay out $4,000 
for each balloon, but in the following way: they would pay $2,000 to the first per­
son to send them the location of any balloon that they hadn’t already located. 
However, they also proposed to pay half that amount, $1,000, to the person who 
recruited the person who sent them the location of any balloon they hadn’t al­
ready located. If you recruited someone who recruited someone who was the first 
to send the MIT team the location of a balloon they hadn’t already located, you 
would receive half of $1,000 or $500. And so on. For each degree of separation 
from the first person who sent them the location of a balloon they hadn’t already 
located, you would receive half the amount of the money promised to the person 
with the next lowest degree of separation.
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This beautifully engineered algorithm for incentivizing people to help them 
with this task had three key features: (1) it rewarded collaborators in proportion 
to how helpful they were in identifying the location of a balloon, so they had every 
incentive to recruit as many people as possible to maximize their chances of get­
ting paid something—literally everybody got paid something; (2) it was totally cred­
ible in the sense that the amount of money promised added up exactly to the prize 
money they would receive if they won (in particular, you can show through some 
simple algebraic manipulation that $2,000 + $1,000 + $500 + $250 +  ​= $4,000, 
and 10 balloons at $4,000 each is $40,000); and (3) it was totally transparent—
everyone knew ahead of time what the rules were and where they stood relative 
to other collaborators. By the end of this process, the MIT team managed to re­
cruit more than 10,000 participants in this network in less than 9 hours.

Financial engineering can provide just the right incentives to mobilize large 
groups of people to collaborate on a given task. In this textbook, we’ll explore 
how new business models and innovative financial structures can be used to 
motivate biomedical stakeholders to collaborate in the search for new medicines 
and cures in a similar fashion. Imagine if literally everyone in the world were 
incentivized to help develop new therapies for patients in need.

1 .8   R O A D M A P

The primary goal of this textbook is to explore how tools from financial engineering 
can be used to fund innovation in the life sciences more efficiently. These tools can be 
applied to other industries that have similar challenges, such as clean energy, infra­
structure, and geo-engineering solutions to global warming, but our focus will be ex­
clusively on biomedical applications.

The book is divided into two parts. The first half, Chapters 1–7, provides the reader 
with tools from modern financial analysis that are particularly relevant for the life sci­
ences. In particular, we’ll cover the healthcare industry from a systems perspective 
(Chapter 2); present value relations (Chapter 3); evaluating business opportunities 
(Chapter 4); valuing bonds (Chapter 5) and stocks (Chapter 6); and portfolio manage­
ment and the cost of capital (Chapter 7).

The second half of the book focuses entirely on biomedical applications, with an 
emphasis on new business models and structures. We’ll explore drug and device de­
velopment and clinical trials (Chapter  8); decision trees and real options (Chap­
ter 9); Monte Carlo simulation (Chapter 10); healthcare analytics (Chapter 11); biotech 
venture capital (Chapter 12); securitizing biomedical assets (Chapter 13); and pricing, 
value, and ethics (Chapter 14). We conclude with an extended case study of the drug 
royalty investment company Royalty Pharma that brings together many of the concepts 
covered throughout this textbook (Chapter 15).

Healthcare finance is evolving even as you read this. No single individual really un­
derstands all aspects of this complex and dynamic industry. Only through collabora­
tions among all key stakeholders in the biomedical ecosystem will we be able to solve 
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the challenges facing healthcare in the 21st century. The ideas developed in this text­
book are meant not only for business school students interested in the life sciences, 
but also for life sciences and medical students and professionals who are interested in 
taking their research ideas and clinical expertise and turning them into lifesaving ther­
apies. This textbook also provides patient advocates, investors, and portfolio managers 
an opportunity to use these new structures to help drive biomedical innovation. Many of 
these stakeholders view the financial system as merely a set of constraints to their activi­
ties, never considering the possibility that this very same system contains powerful forces 
that can be harnessed to help them achieve their own objectives more effectively.

This strange admixture of finance and healthcare may be offensive to some readers—
after all, who but an economist would even think of considering investment rates of 
return and financing decisions in the context of life-and-death issues like cancer drug 
development? We understand. Like many of you, we’ve lost friends and family mem­
bers to cancer and other diseases. But we’re convinced that the only way to make 
system-wide improvements in how therapeutics are developed is to be as objective and 
practical as possible about the financial challenges of the biopharma industry. By ex­
amining the drug development process from all the major stakeholders’ perspectives, 
we can begin to determine the greatest roadblocks to biomedical innovation and pro­
pose methods for getting around them.

FIGURE 1.14

The mystery of Figure 1.8 revealed. The green line is U.S. Treasury bills, the red line is the S&P 500, the 
blue line is the single stock Pfizer, and the black line is the Fairfield Sentry fund, the feeder fund for the 
Bernie Madoff Ponzi scheme that collapsed in October 2008. From December 1990 to December 2020.  
SR: Sharpe ratio 
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But the most important perspective of all—and the one that underlies all of our ef­
forts in healthcare finance—is the patient perspective. Tremendous fortunes are pos­
sible in this sector, but much more importantly, there are hundreds of thousands of 
patients who are now being helped by these new therapies, and millions more who are 
still waiting. Finance doesn’t have to be a zero-sum game if we use it wisely. We can do 
well by doing good, and our hope is that this textbook will motivate a new generation 
of students to enter the exciting and immensely rewarding field of healthcare finance.

C O N C E P T  C H E C K  A N S W E R S

Concept Check 1. The answer is c: Investments in biopharma projects usually have a 
long time horizon. New therapies take time to be researched, developed, tested clini­
cally, reviewed by regulatory agencies, and so forth. We study the drug development 
process in more detail in Chapter 8.
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