1 WHY HEALTHCARE FINANCE? 1

1.1 Financing: The Lifeblood of Biomedical Innovation 2
1.2 Being Harvey Lodish 4
1.3 Convergence 5
1.4 Biomedicine from a Financial Perspective 7

PROFILE OF A LEADING HEALTHCARE INSTITUTION: NATIONAL INSTITUTES OF HEALTH (NIH) 9

1.5 The Challenges of Drug Development 11

PROFILE OF A LEADING HEALTHCARE INSTITUTION: NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES (NCATS) 14

1.6 What Do Investors Want? 14
1.7 Financial Engineering Can Help Bridge the Valley of Death 21
1.8 Roadmap 24

CONCEPT CHECK ANSWERS 26
REFERENCES 26
EVALUATING BUSINESS OPPORTUNITIES

4.1 Valuing a Typical Biomedical Program
 4.1a Probability of Success and Duration
 4.1b Costs
 THE COST OF AN APPROVED DRUG
 4.1c Revenues
 4.1d Discounted Cash Flows and rNPV
4.2 Valuing a Typical Biopharma Company
 4.2a Portfolio Constituents
 4.2b Consolidated Financials
4.3 Deciding to Undertake or Shut Down a Project:
 The NPV Decision Rules
 4.3a Use Cash Flows, Not Accounting Earnings,
 When Calculating NPV
 4.3b Use After-Tax Cash Flows
 4.3c Use Cash Flows on an Incremental Basis
4.4 Accounting Basics for Capital Budgeting
4.5 How to Use Accounting Data to Estimate Cash Flows
4.6 Other Capital Budgeting Techniques
 4.6a Profitability Index
 4.6b Payback Period
 4.6c Internal Rate of Return
 4.6d Industry Practices
4.7 Discounted Cash Flow Analysis of Artemis Biotherapeutics
 4.7a Program Overview
 4.7b Time Line and Probability of Transition Success (PoTS)
 4.7c Program Revenues
 4.7d Program Expenses
 4.7e Discounted Cash Flow Analysis
4.8 Conclusion
 KEY POINTS
 CONCEPT CHECK ANSWERS
 PROBLEM SET
 REFERENCES
Contents

5 Valuing Bonds

- **5.1 Overview of Fixed-Income Markets**
- **5.2 Valuing Discount Bonds and the Term Structure of Interest Rates**
- **5.3 Forward Rates**
- **5.4 Coupon Bonds**
- **5.5 Yield to Maturity**
- **5.6 Corporate Bonds**
- **5.7 The Yield Spread: Sources of Risk**
- **5.8 Bonds and Biopharma Companies**

Key Points

Concept Check Answers

Problem Set

References

6 Valuing Stocks

- **6.1 Legal Characteristics of Stocks**
- **6.2 Stock Markets**
- **6.3 Valuing Stocks Using the Dividend Discount Model**
- **6.4 The Gordon Growth Model**
- **6.5 The Multistage Valuation Model**
- **6.6 Modeling Dividends via Payout Policy**
- **6.7 Growth Opportunities**

Key Points

Concept Check Answers

Problem Set

References

7 Portfolio Management and the Cost of Capital

- **7.1 Measuring the Randomness of Returns**
- **7.2 Portfolio Returns and Diversification**
- **7.3 The Limits of Diversification**

Key Points

Concept Check Answers

Problem Set

References
7.4 Estimating the Cost of Capital 166
7.5 Deriving the CAPM and Estimating Beta 168
7.6 The Weighted-Average Cost of Capital 171
7.7 The Cost of Capital in the Biopharma Industry 172

PROFILE OF A LEADING HEALTHCARE ECONOMIST: SCOTT E. HARRINGTON 175

KEY POINTS 176
CONCEPT CHECK ANSWERS 176
PROBLEM SET 177
REFERENCES 178

8 THERAPEUTIC DEVELOPMENT AND CLINICAL TRIALS 179

8.1 Introduction to Pharmaceutical R&D 179
8.1a Drug Development 180

PROFILE OF A LEADING HEALTHCARE INSTITUTION: FDA 181
8.1b Device Development 182
8.2 Clinical Trials by the Numbers 183

PROFILE OF A LEADING BIOPHARMA PROFESSIONAL: RICHARD SCHELLER 186
8.3 Unique Challenges for Medical Devices 186
8.4 Randomized Clinical Trial Design 187
8.5 Size, Power, and Cost 192
8.6 Bayesian Adaptive Clinical Trials 201
8.7 Bayesian Decision Analysis and Patient Preferences 205

KEY POINTS 209
CONCEPT CHECK ANSWERS 210
PROBLEM SET: THE STATISTICS OF CLINICAL TRIAL DESIGN 210
REFERENCES 211

DEEP DIVE Indicates a section that contains more advanced or technical material that can be omitted without much loss in continuity of the chapter’s narrative.

For general queries, contact webmaster@press.princeton.edu
9 Decision Trees and Real Options

9.1 Overview of Decision Trees and Options 213

<table>
<thead>
<tr>
<th>Profile of a Leading Biopharma Professional: Judy C. Lewent</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
</tr>
</tbody>
</table>

9.2 Decision Tree Analysis 215

<table>
<thead>
<tr>
<th>Constructing a Decision Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision Tree Analysis for Pharmaceutical R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
</tr>
</tbody>
</table>

9.3 Decision Trees and Optionality 222

<table>
<thead>
<tr>
<th>Additional Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Managing Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
</tr>
</tbody>
</table>

9.4 Real Options and the Binomial Option-Pricing Model 225

<table>
<thead>
<tr>
<th>Deep Dive</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
</tr>
</tbody>
</table>

9.5 Building a Binomial Tree 228

<table>
<thead>
<tr>
<th>Deep Dive</th>
</tr>
</thead>
<tbody>
<tr>
<td>228</td>
</tr>
</tbody>
</table>

9.6 Incorporating Scientific Risk 231

<table>
<thead>
<tr>
<th>Deep Dive</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
</tr>
</tbody>
</table>

9.7 The Binomial Option-Pricing Model 235

<table>
<thead>
<tr>
<th>Deep Dive</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Two-Period Binomial Option-Pricing Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>236</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Multiperiod Binomial Option-Pricing Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
</tr>
</tbody>
</table>

Key Points

<table>
<thead>
<tr>
<th>Concept Check Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem Set: ABC Pharmaceuticals Case Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>241</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>243</td>
</tr>
</tbody>
</table>

10 Monte Carlo Simulation

10.1 Why Simulate? 244

<table>
<thead>
<tr>
<th>Key Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>244</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept Check Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
</tr>
</tbody>
</table>

11 Healthcare Analytics

11.1 Estimating Clinical Trial Success Rates 252

<table>
<thead>
<tr>
<th>Profile of a Leading Healthcare Institution: Tufts Center for the Study of Drug Development (Tufts CSDD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>254</td>
</tr>
</tbody>
</table>

x CONTENTS
12.4 Biotech Valuation

12.4a Determining Value Out: Revenues

PROFILE OF A LEADING HEALTHCARE ECONOMIST:
MICHAEL GROSSMAN

PROFILE OF A LEADING HEALTHCARE ECONOMIST:
JOSEPH A. DIMASI

12.4b Determining Money In: Expenses
12.4c Investment Time Horizon

CASE STUDY Valuing Therapies for Rare Diseases

12.4d Biotech Valuation Summary

12.5 Venture Philanthropy

PROFILE OF A LEADING HEALTHCARE ECONOMIST:
CAM DONALDSON

CASE STUDY The Cystic Fibrosis Foundation and Venture Philanthropy

KEY POINTS
CONCEPT CHECK ANSWERS
PROBLEM SET: AXON BIO CASE STUDY
REFERENCES

13 SECURITIZING BIOMEDICAL ASSETS

13.1 What Is Securitization?

13.2 A Numerical Example of Securitization

13.3 Securitization and the Financial Crisis of 2007–2008

13.3a Numerical Example of Securitization Gone Wrong

13.4 Biomedical Megafunds

PROFILE OF A LEADING BIOPHARMA PROFESSIONAL:
CHRISTIANA GOH BARDON

PROFILE OF A LEADING BIOPHARMA PROFESSIONAL:
NEIL KUMAR

13.5 When Megafunds Don’t Work

13.6 Conclusion

KEY POINTS
CONCEPT CHECK ANSWERS
14 PRICING, VALUE, AND ETHICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Price versus Value</td>
<td>326</td>
</tr>
<tr>
<td>14.2</td>
<td>Ethics</td>
<td>328</td>
</tr>
<tr>
<td>14.3</td>
<td>Evaluating Cost Effectiveness</td>
<td>330</td>
</tr>
<tr>
<td>14.4</td>
<td>Financing Health</td>
<td>334</td>
</tr>
<tr>
<td>14.5</td>
<td>Can We Afford It?</td>
<td>336</td>
</tr>
<tr>
<td>14.6</td>
<td>Pricing Issues</td>
<td>338</td>
</tr>
<tr>
<td>14.6a</td>
<td>Drug Shortages</td>
<td>339</td>
</tr>
<tr>
<td>14.6b</td>
<td>Medical Device Shortages</td>
<td>340</td>
</tr>
<tr>
<td>14.6c</td>
<td>Drug Shortages Task Force</td>
<td>340</td>
</tr>
<tr>
<td>14.7</td>
<td>Drug Manufacturer as Utility Company?</td>
<td>341</td>
</tr>
<tr>
<td>14.8</td>
<td>Price Gouging versus Pricing for Survival</td>
<td>343</td>
</tr>
</tbody>
</table>

Profile of a Leading Healthcare Institution:
- **National Institute for Health and Care Excellence (Nice)**
 - Page 333

Profile of a Leading Healthcare Institution:
- **Institute for Clinical and Economic Review (ICER)**
 - Page 338

Profile of a Leading Healthcare Policy Expert:
- **Peter B. Bach**
 - Page 343

Profile of a Leading Healthcare Economist:
- **Kenneth J. Arrow**
 - Page 347

Key Points
- Page 347

Concept Check Answers
- Page 347

References
- Page 348

15 EPILOGUE: A CASE STUDY OF ROYALTY PHARMA

Profile of a Leading Biopharma Professional:
- **Pablo Legorreta**
 - Page 350

References
- Page 354

- Glossary
 - Page 355

- Index
 - Page 377

For general queries, contact webmaster@press.princeton.edu
Healthcare is an enormously complex part of the global economy. It consists of multiple stakeholders, many distinct industries, highly sophisticated technologies, and critical products and services that affect the lives of virtually everyone in the world. To fully appreciate the complexity of this field, consider the pharmaceutical or drug you took this morning for allergies or the medical device you used while exercising to measure your heart rate. How did those products come about?

Most likely, the process began decades ago, with scientists in academia making discoveries about biology and the specific mechanisms of a given disease or condition. These discoveries were then used by a different set of scientists and clinicians—most likely in a biotechnology company—to develop potential methods for disrupting those mechanisms, typically using chemical or biological agents. These agents were first tested in animals such as mice, dogs, and primates, and if the results showed promise, they progressed to human clinical trials. Because of the potential for toxic side effects, when clinical trials go wrong, people can die. Therefore, the highly methodical process by which clinical trials are designed and conducted requires extraordinary skill, patience, and regulatory oversight by government agencies such as the U.S. Food and Drug Administration (FDA) or the European Medicines Agency (EMA). From start to finish, this process can take a decade or longer, and biotechnology companies will often partner with or be acquired by larger pharmaceutical companies to complete the trials. And at the end of this lengthy process, there’s no guarantee that the drug or device candidate will turn out to be safe and effective. In fact, historically, the overall probability of success of clinical trials is about 8%, which translates to a failure rate of about 92%.

In the unlikely event that clinical trials do show safety and effectiveness, the company sponsoring the trial can submit an application to the FDA for a license to produce,
After a detailed review of the company’s manufacturing processes, marketing and distribution practices, and patient safety measures, regulators will decide whether to award such a license. If a license is granted, the company can introduce the therapeutic into the healthcare delivery system, which involves an entirely different set of stakeholders that includes pharmaceutical sales representatives, doctors, hospitals, academic medical centers, public and private health insurance companies, pharmacies, pharmacy benefit managers, and patients. It’s through this administrative labyrinth that an approved drug or device finally reaches you, the patient. This complex process (see Figure 1.1), including the role that money and financing plays, is the main focus of this text.

1.1 FINANCING: THE LIFEBLOOD OF BIOMEDICAL INNOVATION

Despite the many different parties and processes involved in drug development and delivery, there’s one common denominator: the need for financing. Financing is needed to cover the cost of laboratory equipment, space, and supplies, patient volunteers, the salaries of scientists, engineers, and clinicians, and filing fees for regulatory approval, and the cost of manufacturing, marketing, distributing, and monitoring the approved drug. Because financial capital is the lifeblood of this entire value chain from the laboratory to the patient, issues such as business models, investor behavior, risk and reward trade-offs, and other financial considerations play a critical role in biomedical innovation.

In some instances, financial considerations dominate decision making and end up driving the scientific and medical agendas of biotechnology and pharmaceutical
(biopharma) companies. In one sense, this shouldn’t be too surprising. The process of developing a new drug or medical device typically requires hundreds of millions of dollars paid out over a decade or more, with a probability of success that’s often less than 10%. With these challenges, it’s no surprise that financing opportunities and constraints can drive the priorities of the biopharma industry.

We believe this state of affairs is backward. Shouldn’t the science be driving the financing decisions?

In a surprising number of cases, however, we’ve found that biopharma decision makers aren’t familiar with the basic principles of financial analysis. As a result, these decision makers sometimes delegate important financial decisions to others who may not have an appreciation of the time frames and risk of biomedical research and development (R&D). The decision makers are then shocked when their work is interrupted because their funding has run out at the worst possible moment in their scientific and clinical agendas. If this happens at a time when raising additional capital is difficult, if not impossible (e.g., during an economic recession), years of hard work and millions of dollars of valuable research—research that could have helped many desperate patients—may be abandoned and, ultimately, destroyed.

Our goal in writing this textbook is to help remedy this situation by providing life scientists and clinicians, biotechnology entrepreneurs, pharmaceutical company executives, regulators, patients, philanthropists, and other stakeholders of the vast biomedical ecosystem with the key financial principles and tools most relevant to the biopharma industry. The tools we cover include discounted cash flow analysis, portfolio theory, real options analysis, decision trees, Monte Carlo simulation, securitization, and other techniques broadly known among investment professionals as financial engineering. If these terms are unfamiliar to you, good! You’re the reason we wrote this book. Better financing and business decisions can lower the cost of capital for drug development, increase the amount of funding devoted to biomedicine, and get new and better therapies to patients faster.

One caveat about what this textbook does not cover: the economics of healthcare delivery. Because there are already several excellent textbooks on hospital administration, health insurance coverage, healthcare policy, and cost–benefit analysis and other health technology assessment tools, there’s no need for us to cover these topics here. Instead, our focus is on how new drugs, devices, diagnostics, and other healthcare innovations get financed from start to finish and what can be done from the financial engineering perspective to make this process more efficient.

Our motivation isn’t just academic. Both of us have had close friends and family members affected by cancer and other illnesses. As financial engineers, we felt powerless to help them in any meaningful way. Ironically, our line of work regularly exposes us to the many scientific and medical breakthroughs that seem to be occurring almost

2Traditionally, biotechnology referred to medicines derived from living organisms, such as enzymes for enzyme replacement therapy, and pharmaceuticals related to medicines that were chemically synthesized. However, it has become common for companies to use both biological and chemical sources in their R&D efforts (hence the coinage of the term biopharma), and so the distinction we make is based on a company’s size and stage in its life cycle.
daily. By helping you—a member of the healthcare ecosystem—learn how to effectively harness financial tools to fund these biomedical innovations, we believe that together we can make a difference in patients’ lives. There’s no better time to be investing in the future of our health than now.

1.2 BEING HARVEY LODISH

The potential impact of such investments became apparent to us through the remarkable story of Harvey Lodish, a world-renowned cellular biologist at the Whitehead Institute for Biomedical Research at MIT.

In 1983, Dr. Lodish was approached by a biotech venture capitalist to join an effort to develop a new treatment for Gaucher disease, a rare inherited disorder that causes a deficiency in an important “housekeeping” enzyme. When this enzyme is absent or nonfunctional, microscopic fat droplets build up in white blood cells, the liver, the spleen, and bone marrow. As a result, the size of the liver and spleen increase dramatically; blood cells are destroyed prematurely, leading to anemia and a tendency to bruise easily; and the structure of bone tissue is disrupted, leading to severe joint pain and osteoporosis. For a subset of Gaucher patients, this disease is usually terminal by the time they reach their late teens, and in 1983 no treatments were available.

Thanks to Dr. Lodish and other scientists working with him at a biotech start-up, an effective drug was developed—the first enzyme replacement therapy to reach patients—and in 1991, the FDA approved the new treatment, Ceredase (algglucerase). This drug, and its subsequent improvements, has turned this deadly disease into a chronic but medically manageable condition. Their little start-up, Genzyme, eventually grew into a highly successful company that was acquired in 2011 by the French pharmaceutical company Sanofi for a little more than $20 billion.

But the most remarkable part of this story occurred in 2002. In that year, Dr. Lodish’s daughter became pregnant with her second child and discovered via prenatal screening that her son had the mutation for Gaucher disease. Ten years later, when the child began showing the symptoms of the disease, he was treated with the drug his grandfather had helped develop decades before he was born. Thanks to this drug, Dr. Lodish’s

3One of the most puzzling things about the pharmaceutical industry is that drugs always seem to have two names, one capitalized (known as “brand” names) and the other lowercase (known as “generic” names). Why? The lowercase name is assigned according to a standardized nonproprietary scientific naming convention that identifies the drug type, so that the same drug has the same name everywhere. For example, the cancer drug imatinib refers to the specific chemical compound C29H31N7O regardless of what hospital or country you’re in, and the suffix “-inib” indicates that it’s an angiogenesis inhibitor, meaning that it works by slowing or stopping the growth of blood vessels in cancerous tumors. Two organizations are responsible for assigning these names that communicate the specific medical properties of the drug: the United States Adopted Names (USAN) Council and the World Health Organization (WHO) International Nonproprietary Names (INN) Programme. The drug’s capitalized name is assigned by the biopharma company that owns and develops the compound, and this name is chosen primarily with branding and marketing considerations in mind. The brand name for imatinib is Gleevec, which is trademarked by and proprietary to its owner, the pharmaceutical company Novartis. In this text, we’ll follow the convention of providing both names when a drug is first cited, after which we’ll use only the brand name.
grandson as well as tens of thousands of other Gaucher patients now live completely normal lives.

What an extraordinary twist of fate. When he undertook this project to treat Gaucher disease, Dr. Lodish had no idea he would be participating in something that would one day save the life of his as-yet-unborn grandson. We would all love to be Harvey Lodish, but for most of us without a biomedical background, this is an impossibility. However, it became clear to us after studying the business of biomedicine that we can all be Harvey Lodish if we help finance the therapies that could one day save the lives of our future grandchildren.

1.3 CONVERGENCE

Another reason for studying healthcare finance is the growing need for financing due to the unprecedented pace of discovery and innovation that biomedicine is currently experiencing, something that MIT scientists Phillip Sharp, Tyler Jacks, and Susan Hockfield (2016) call “convergence.” Over the last two decades, a convergence of knowledge in the life sciences, the physical sciences, and engineering has brought biomedicine—and, consequently, human evolution—to an inflection point. A significant milestone in the process of convergence was reached in 1998, during the first clinical trial of the drug Gleevec (imatinib), a chemical compound used to treat chronic myelogenous leukemia, a specific type of blood cancer. Gleevec was discovered by a team led by Dr. Nicholas Lydon, a biochemist working at the pharmaceutical company Ciba-Geigy (now Novartis), and the oncologist Dr. Brian Druker of the Oregon Health & Science University.

The team developed Gleevec using rational drug design, the process of engineering new treatments based on specific knowledge of a biological target such as a protein. As part of their research, the scientists used high-throughput screening, an automated process involving a combination of specialized machines, computational algorithms, and biochemistry that allows researchers to quickly conduct millions of biochemical tests. Through this process, the team was able to identify a compound that could selectively inhibit the hyperactive Bcr-Abl tyrosine kinase protein, which had been implicated in the biological development, or pathogenesis, of the cancer. This process illustrates what we mean by convergence.

In 1998, the team began clinical trials to test the effectiveness and safety of the drug in humans. Of the 31 patients treated, all 31 experienced complete remission of the disease. As a result of this astonishing outcome, the FDA approved the drug only 3 years later in 2001, the fastest time to approval by the FDA of any drug up to that point. Since then, Gleevec has saved the lives of thousands of leukemia patients each year and has also generated tremendous revenues for Novartis: In 2015, Novartis reported $4.7 billion in annual sales just from this one drug. Figure 1.2 summarizes Gleevec’s development time line.

\(^4\)See footnote 3.
The rate at which breakthroughs such as Gleevec are being made is accelerating. In 2004, the anti-cancer drug Avastin (bevacizumab), also developed using rational drug design, was approved. In 2008, Sutent (sunitinib) was approved for the treatment of two cancers: renal cell carcinoma and gastrointestinal stromal tumors. In fact, since the success of the Gleevec model, more than 50 new drugs created via rational drug design have been approved.

More recently, an entirely new set of treatments called immunotherapies, treatments that use the body’s own immune system to fight cancer, has emerged. For example, in 2014, Keytruda (pembrolizumab) was approved to treat the deadly form of skin cancer known as melanoma. This drug received national attention in 2015 when it was used to treat former president Jimmy Carter’s Stage IV metastatic melanoma (which had spread to his liver and brain) and apparently cured him.

At the same time that biomedicine has reached an inflection point, however, funding innovation remains a challenge that’s becoming more complex. This is particularly true during the initial stages of therapeutic development (preclinical development; i.e., before a therapeutic is ready for human clinical trials) as well as during the subsequent stage when therapeutics are first tested in human subjects (early-stage clinical development). But how can funding be a challenge when a single drug like Gleevec can generate $4.7 billion in just one year?
1.4 BIOMEDICINE FROM A FINANCIAL PERSPECTIVE

Before delving into the financial challenges facing the biopharma industry, we should clarify some terms we’ll be using throughout this text and agree on certain conventions. The term drug typically refers to a chemical or biological agent that’s administered to a patient, but there are other broad classes of therapeutics that are part of the biopharma industry. These include medical devices (e.g., magnetic resonance imaging equipment, dialysis machines, artificial hearts), diagnostics (e.g., blood tests, cancer diagnostics, genetic sequencing), and bioinformatics (e.g., computational analysis of genetic profiles and their associations with specific diseases, mathematical and numerical simulations of the properties of chemical and biological compounds, and machine-learning predictions of drug efficacy, toxicity, and clinical trial outcomes). For most of this textbook, the financial methods and tools covered are so broadly applicable to all of these industry segments that we’ll use the more compact phrase drug development as shorthand to mean “drug, device, diagnostics, and bioinformatics development.” In some cases, we’ll use the more generic term, therapeutic, to mean any treatment or study that can benefit a patient with a given illness. In other cases, when we refer to a specific class of therapeutic such as devices or diagnostics, it should be clear from the context whether the term is being used in the specific or broader sense.

The drug development industry can be divided roughly into two components: large pharmaceutical companies (sometimes called big pharma) like Johnson & Johnson, Merck, Novartis, Pfizer, and Roche, and smaller biotechnology companies, often founded by scientist-entrepreneurs, that bring the very newest ideas from the laboratory into the clinic.

A typical big pharma company has multiple approved drugs in the market that treat many different diseases and many more drug candidates under development in its pipeline, has billions of dollars in annual sales, employs many thousands of professionals all over the world, and is profitable (meaning its annual revenues exceed its annual costs, hence it has positive annual earnings). In contrast, a typical biotech company is much smaller in every dimension and usually has no approved drugs and no revenues. Biotech companies are often said to be burning cash. As odd as it may seem, in some cases, the greater the biotech’s cash burn rate (the dollars spent per month), the greater its value, because more cash spent often (but not always) implies more progress. Biotech companies are focused on conducting scientific and clinical investigations to develop a specific therapeutic that may eventually become an approved drug or device.

In recent years, a third category of companies known as small pharma or specialty pharma has emerged. These are much larger than the typical biotech start-up but may be generating revenues and even profits, usually with only one or two approved drugs in a relatively narrow therapeutic area (like Gaucher disease).

Figure 1.3 illustrates the performance of the U.S. biotech and pharma stock market indexes from December 5, 1994, to May 12, 2021. Their performance is plotted on a logarithmic scale on the vertical axis, so that equal vertical distances represent equal rates of return. The slope of each line therefore tells us how quickly each index is growing.
CHAPTER 1

Pharmaceutical companies grew at a steady rate from the mid- to late 1990s, after which their performance flatlined and then began a slow, decade-long decline that industry insiders refer to as big pharma’s “lost decade.” By 2009, their performance started to improve, for reasons that we’ll consider further in Chapter 2 (Section 2.6).

A much different narrative emerges for the smaller, more dynamic biotechnology companies. From the mid- to late 1990s, biotech also had a positive growth rate, but one with much more risk relative to the steady growth rate of the pharmaceutical index, as reflected in its comparatively large swings in value. However, starting in 2003—interestingly enough, around the same time that the human genome was completely sequenced—the growth rate of biotechnology accelerated and has remained high throughout much of the following decades.

From a financial perspective, it appears that biomedicine has reached a turning point. So why is funding still so hard to come by at the early stages of drug and device development? We can break down biomedical funding into private and public components. Public funding for early-stage biomedical research from sources such as the National Institutes of Health (NIH) has declined (Figure 1.4) for a variety of reasons, many of them political rather than economic or business-related. However, this decline may be reversed as political perspectives shift in response to the growing healthcare needs of an aging population in the United States and abroad, and in the aftermath of the COVID-19 pandemic.

Global funding from the private venture capital (VC) sector has been more cyclical, going through a long period of declining funding followed by a reversal in recent
Funding for the National Institutes of Health. U.S. government funding for biomedical research from 1950 to 2020, adjusted for inflation using the Biomedical Research and Development Price Index (BRDPI).

Profile of a Leading Healthcare Institution: National Institutes of Health (NIH)

The National Institutes of Health (NIH) is the primary agency of the U.S. federal government for biomedical and public health research. It’s part of the Department of Health and Human Services and is composed of 27 separate institutes and centers. With an annual budget of $42 billion as of 2020, the NIH encompasses 0.9% of the current operating budget of the United States.

The NIH as an institution traces its origin to 1887, when the Hygienic Laboratory was established at the Marine Hospital on Staten Island, New York, using the new field of bacteriology in a clinical setting. As a scientific institution, the NIH has been involved in both basic and applied research, including the development of new vaccines, new laboratory techniques and methods, and the first approved gene therapy in the United States. Six thousand scientists are employed in this intramural research, within the metaphorical walls of NIH, whose facilities are primarily located in Bethesda, Maryland.

The NIH has been even more influential in its extramural activities. Only 10% of the NIH’s federal funding goes to its own research, whereas more than 80% is disbursed through nearly 50,000 competitive grants to more than 300,000 researchers at more than 2,500 research institutions throughout the world. Approximately 17% of current biomedical R&D funding in the United States comes from NIH grants.
years. Between 2008 and 2015, the number of active biotech VCs in the United States decreased by about a quarter, from 201 to 153 (Table 1.1), and the global number of VC financings of private biotech companies in 2012 was the lowest it had been in nearly a decade (Figure 1.5). The decline in funding for translating research ideas to early-stage drug discovery and clinical development often prevents potentially lifesaving therapies from completing the journey from bench to patient bedside. In the field of translational research, this notoriously difficult funding challenge has been labeled the Valley of Death.

TABLE 1.1 Number of active biotech venture capital firms in the world, by year and region.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>19</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>China</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Europe</td>
<td>105</td>
<td>106</td>
<td>111</td>
<td>75</td>
<td>80</td>
<td>80</td>
<td>89</td>
<td>78</td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Israel</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>USA</td>
<td>201</td>
<td>163</td>
<td>140</td>
<td>131</td>
<td>151</td>
<td>153</td>
<td>153</td>
<td>153</td>
</tr>
<tr>
<td>Global total*</td>
<td>309</td>
<td>256</td>
<td>247</td>
<td>212</td>
<td>214</td>
<td>222</td>
<td>238</td>
<td>229</td>
</tr>
</tbody>
</table>

*The global total is not the sum of all regions, as an investor involved in many regions counts only once in the global total.

FIGURE 1.5

Source: Huggett (2013, 2014, 2015), Lawrence (2017), and authors’ calculations.
Although biotech VC funding has been rising between 2015 and 2021—spurred in no small part by the COVID-19 pandemic and the success of mRNA technology—there’s still a Valley of Death between the preclinical stages of R&D and clinical development. Why does the Valley of Death exist? Why would capital be scarce at the very moment humanity should be redoubling its efforts to cure diseases now that we have the means to do so? Part of the reason is the increasing risk, uncertainty, and complexity of drug development.

1.5 THE CHALLENGES OF DRUG DEVELOPMENT

The typical drug development process is outlined in Figure 1.6. It begins in the laboratory where research ideas are born, developed, refined, and tested on animals such as mice. Once a new therapy has matured to the point where it’s ready to be tested in humans, it enters clinical trials, which traditionally have three phases. **Phase 1 trials** usually consist of a small number of healthy volunteers or patients with the targeted disease/condition (typically 20–100). In Phase 1, the primary objective is to test for safety and appropriate dosage of the therapeutic. If successful (i.e., the therapy can be given safely to patients without serious side effects), the testing moves on to a **Phase 2 trial**, in which both safety and efficacy are evaluated in a larger group of volunteers (up to several hundred people with the targeted disease/condition). Assuming all has gone well in Phase 2, the therapy is then tested in a **Phase 3 trial**, in which safety and efficacy are evaluated in an even larger sample of patients (typically 1,000–5,000). In total, these clinical trials can take about 6–7 years to complete. With early-stage research and the FDA review process factored in, however, the entire process for a new drug to be approved can take as long as 10–15 years.

Three issues make funding these projects difficult. First, they’re expensive, costing hundreds of millions of dollars or more to take a potential therapy from preclinical animal models all the way through Phases 1–3 and FDA approval. Second, it takes years of testing before they generate revenue. Third, and perhaps most important, the probability of success at the end of this 10- to 15-year process is very low. For example, the historical odds of successfully developing an anti-cancer compound from Phase 1 to FDA approval are about 1 in 20. The combination of these three features of cost, duration, and long odds presents a nightmare scenario for the typical investor. Moreover, the efficiency of the process seems to be getting worse, as illustrated through an empirical relationship that has facetiously been called Eroom’s Law, which is Moore’s Law spelled backward (Figure 1.7).

Moore’s Law (first proposed in 1965) predicted that the computing power of a computer chip would double for the same cost every few years, a rising trend. The illustration of Eroom’s Law in Figure 1.7, however, shows that the number of new drugs approved by the FDA per billion dollars spent on R&D has halved roughly every 9 years (after adjusting for inflation).5 Because this is a logarithmic plot, we see that the downward efficiency of the industry has been getting exponentially worse for decades.

5In 2020, Ringel et al. (2020) reported some promising new evidence that we may finally be reversing Eroom’s Law.
FIGURE 1.6

The drug development process. The path by which a drug is developed from preclinical drug discovery through clinical trials and FDA approval is a lengthy, complex, and financially risky process that involves multiple stakeholders and several discrete phases of R&D and clinical testing.

![Diagram of drug development process](image)

Pre-discovery: Basic research and screening

- **Tens of thousands of compounds**
- **IND submitted**

Drug discovery

- **3–6 years**
- **Number of volunteers**: 20–100

Clinical trials

- **6–7 years**
- **Number of volunteers**: 100–500

FDA review

- **0.5–2 years**
- **Number of volunteers**: 1,000–5,000

Scale-up to manufacturing

- **Phase 4 / Ongoing research and monitoring**
- **NDA submitted**

Figures for number of volunteers are approximate.

FIGURE 1.7

The growing inefficiency of the drug development process as depicted by “Eroom’s Law.” The number of new drugs approved each year per billion dollars of R&D spending has halved roughly every 9 years.

![Graph showing the decline in the number of drugs produced](image)

Average number of drugs produced

Source: Scannell et al. (2012) updated in Jones and Wilsdon (2018), and authors’ calculations.
One reason for this trend is that drug development is apparently becoming more difficult.

Example 1.1: To understand why drug development is becoming more difficult despite (and perhaps because of) improvements in science and technology, consider the following example. Combination therapies, which treat a single disease using multiple medications, have been shown to work remarkably well for certain diseases. The best-known example of a combination therapy is the so-called AIDS “cocktail” of five anti-retroviral drugs, known collectively as highly active anti-retroviral therapy (HAART). Individually, these drugs aren't particularly effective against HIV. But when used together, they turn a death sentence into a chronic but manageable condition for millions of people around the world. It would be hard to overstate the impact that HAART has had on humankind.

Now that we're armed with the scientific knowledge that combination therapies can work much better than single drugs or monotherapies, shouldn't we try treating other diseases with combinations as well? In fact, certain biomedical experts have argued that we don't need more new drugs; they claim that we should be able to deal with *all* human diseases with the drugs we already have, if we can find just the right combination. How hard could that be?

Suppose we could treat each human disease using a unique combination of just two drugs, and we had at our disposal all the existing drugs that have already been approved. As of 2019, there are about 3,700 drugs in total. How many unique pairs of 3,700 drugs are there? The precise mathematical answer is 6,843,150. To search through all possible pairs to find just the right combination would require nearly 7 million clinical trials, each costing hundreds of millions of dollars, taking a decade or longer to complete, and requiring thousands of patients which, across all 3,700 drugs, would involve more subjects than the total population on the planet.

This example should give you some sense of the complexity of the problem. Continuing with the calculation, we find that we can form approximately 8.4 billion unique triplets if three drugs were needed, 7.8 trillion unique quadruplets, and 5.8 quadrillion unique quintuplets of drugs for possible combination therapies. In addition, we would need to consider dosage regimens, biomarkers (i.e., traceable substances whose detection can be used to monitor health), side effects, and other variables in counting the different types of trials we would need to conduct. Very quickly, the search space becomes immensely large—let's just call it gazillions 😃!

This simple thought experiment shows that as biomedical research becomes more complex, drug development can become less efficient, making the odds of success even lower. This increased risk makes funding translational biomedical projects less attractive to investors.

6See https://www.drugbank.ca/stats.
CHAPTER 1

WHAT DO INVESTORS WANT?

We saw in the previous section that drug development projects are costly, lengthy, and have a low probability of success. To understand why these features are so unattractive to investors, consider the following two observations.

Observation 1: There’s a trade-off between risk and reward.

Figure 1.8 displays the cumulative returns of a $1 investment in four different unnamed financial securities over an unspecified investment period. To gauge your own behavior toward risk and reward, choose one—and only one—of these four securities in which to invest all your retirement assets. The green investment turns $1 into $2; not very rewarding, but not particularly risky. The red investment turns $1 into $4.50, way more rewarding but also quite a bit riskier given its ups and downs over time. The blue investment is the most rewarding of all at nearly $8, but also the most risky. And finally, the black investment is somewhere in the middle, with a return of $6.75 and less risk than the red and blue investments. Before reading on, please make a choice so that you’re invested in this example! Which one would you prefer if you had to choose only one of these investments to put your life savings in?

When typical investors are confronted with this choice, most of them select the black investment because it seems to have the best trade-off between risk and return—not as risky as the other investments but still reasonably rewarding.
To see how you fared, take a look at Figure 1.14 at the end of this chapter, which reveals the identities of these four investments and the time period (from October 1990 to October 2008), as well as their performance since 2008. The green investment is U.S. Treasury bills, the safest asset in the world, but not particularly rewarding, yielding virtually nothing since 2008, as Figure 1.14 shows. The red investment is the S&P 500 U.S. stock market index which, at $21.15 in December 2020, does considerably better than Treasury bills, so congratulations if you chose this asset. The blue investment is the big pharma company Pfizer, the best performer of all at $27.50. Finally, the black line—the most popular choice by far—is the Fairfield Sentry fund, the feeder fund for the Bernie Madoff criminal Ponzi scheme, which collapsed after October 2008, so if you chose this asset, condolences for getting wiped out!

Like a moth to a flame, most of us are drawn to investments that have high return and low risk. Financial analysts have a measure of this tendency, and it’s known as the Sharpe ratio (which we’ll study in more detail in Chapter 7), defined as the ratio of an asset’s excess expected return ($E[R]$) above the U.S. Treasury bill return (R_f) to a measure of its riskiness, which is usually the standard deviation of the asset’s returns ($SD[R]$):

$$\text{Sharpe} = \frac{\text{Reward}}{\text{Risk}} = \frac{E[R] - R_f}{SD[R]}$$

(1.1)

It’s human nature that investors are drawn to high Sharpe-ratio investments. The Sharpe ratios of the three risky assets in Figure 1.8 are 0.39 for the S&P 500, 0.44 for
Pfizer, and 2.89 for Fairfield Sentry (at least on paper, before it blew up). Based on your own choice, it should now be clear how the Madoff Ponzi scheme grew to approximately $50 billion, the largest fraud in the history of financial investment funds. One of the challenges to the biomedical ecosystem is that as we develop more sophisticated ways of treating diseases, medicine becomes more complex, which increases the financial risk of biopharma investments and reduces their Sharpe ratios. As a result, investors decide to put their money in higher Sharpe-ratio assets. This leads us to our second observation about investor behavior.

Observation 2: There’s a difference between risk and uncertainty.

Consider an urn that contains 100 balls, 50 red and 50 black (Figure 1.9). Now suppose you pick a color, red or black, after which a ball is randomly selected from the urn. If the randomly selected ball matches the color that you chose, then you get $10,000; otherwise, you get nothing.

In this situation, it doesn’t matter which of the two colors you select, because you’ll always have a 50% chance of winning. How much would you be willing to pay to play a single round of this game? When finance students are asked this question, the highest bid is often a little less than $5,000, which is the expected value from playing the game ($50\%\times$10,000 + $50\%\times$0 = $5,000).

Now consider Urn B, which also has 100 balls, but now you don’t know the proportion of red to black. In fact, your opponent gets to choose the proportion in the turn beforehand. Other than that single difference, the rest of the game is played in exactly the same way. How much would you be willing to pay to play a single round of this game? Despite that the odds of winning or losing are precisely the same in this game as in the previous case in which you know the proportion of red and black balls (50/50 odds of choosing the winning color from both Urn A and Urn B), most people will offer much less to play a single round of this game. How much less? Typically, as much as 40% to 80% less. Why?

When subjects are asked why, they explain that in the first case, they know the odds. In the second case, the odds are unknown and the fact that their opponent gets to choose the proportion is particularly troubling. Despite the fact that there exists a strategy whereby the subject can guarantee that the odds are fair—simply flip your own fair coin and pick red if the coin comes up tails and pick black otherwise—subjects

FIGURE 1.9

Risk versus uncertainty as illustrated through the Ellsberg Paradox. Pick a color, red or black, and if a ball drawn from Urn A, which contains 50 red balls and 50 black balls is your color, you receive $10,000, and if it isn’t your color, you receive nothing. How much would you pay to play this game just once? Suppose the same game is played with Urn B, which contains an unknown mix of red and black balls. How much would you pay to play this game just once?
still won’t pay as before because they say that they just don’t “feel as comfortable” when there’s uncertainty about the risk.

This example is the famous Ellsberg Paradox from psychology, and it underscores a key aspect of human behavior: there are two kinds of randomness, and we treat them very differently. Risk is defined as the kind of randomness that can be quantified, as in the case of the 50/50 urn. Uncertainty is defined as the kind of randomness that can’t be quantified, that is, the unknown unknowns. Humans view risk and uncertainty as tangibly different. From a financial perspective, uncertainty can have a substantial impact on how people value an investment that goes well beyond the standard statistical models used to evaluate investments—investors dislike uncertainty even more than they dislike risk.

Example 1.2: Consider the investment opportunity in an anti-cancer drug project depicted in Figure 1.10:

- $200 million up-front investment
- 10-year time horizon
- 5% probability of success
- If successful, $2 billion per year for 10 years until the drug’s patent expires, which, as we’ll see in Chapter 4, is equivalent to a single payment of $12.3 billion in Year 10

FIGURE 1.10

Payout timeline for a hypothetical investment project. Requires a $200 million up-front investment and has no cash flows until Year 10, a 95% chance of total failure, and a 5% chance of receiving $2 billion a year from Years 11 to 20 (which is equivalent to a single payout of $12.3 billion in Year 10).

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash Flows</th>
<th>Total Cost</th>
<th>Total Profits if Approved = $20B</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Drug Discovery & Clinical Trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>● ● ●</td>
</tr>
</tbody>
</table>
| 20 | | | ● •

Would you be willing to invest in this project? For most people, this project is simply too risky. When you calculate the statistics, the project has a positive expected rate of return, but it also has a large standard deviation, implying a Sharpe ratio close to 0. Moreover, any model that forecasts 20 years into the future has a great amount of uncertainty.
Example 1.2 highlights the issues that affect biomedical R&D projects. They’re simply too risky, and as the risk and uncertainty increase, the behavior of the stakeholders responsible for new medicines changes. For example, biotech venture capitalists will respond by investing in fewer start-ups, focusing instead on scientists and entrepreneurs with proven track records, well-established therapeutic areas, and assets in later stages of development. Pharma companies will respond by de-emphasizing in-house drug discovery efforts in favor of partnering with or acquiring smaller biotech companies that have reached certain milestones of demonstrated success. Entrepreneurs will respond by avoiding more speculative technologies in favor of areas that are currently “hot,” and may decide to forgo entrepreneurial ventures altogether in favor of safer positions within large corporations. And even government agencies such as the FDA or the NIH will respond to increased risk and their own funding shortages by favoring safer, albeit less transformative, medicines and research agendas.

Table 1.2 summarizes the drivers of increasing risk and uncertainty among these stakeholders and their predicted responses, a number of which have already been observed in practice. These trends and tendencies explain how the efficiency of the biopharma ecosystem is so closely tied to issues related to funding. In fact, more often than not, financing ends up driving scientific research agendas, as illustrated by the next example.

Example 1.3: Consider a $200 million investment opportunity in the following two projects:

- A “me-too” cancer drug that offers only incremental benefits relative to the current standard of care. It’s already in Phase 3 clinical trials and is likely to be approved. Moreover, it will immediately begin generating revenues once launched, because the law currently states that a substantial portion of the treatment costs of any cancer therapy must be reimbursed, regardless of
whether it offers real transformational improvements or incremental benefits, as long as a physician prescribes it to a patient.

- A combination therapy that consists of a newly developed drug that treats acute lymphoblastic leukemia and a second chemical compound. This combination has the potential to be a transformational therapy, one that could possibly cure the disease, but you haven’t yet identified the second drug.

In which of these two projects would you choose to invest your retirement assets? Most people select the “me-too” drug because it’s safer, and thus more likely to be profitable. This type of decision has been happening across the industry and is another contributing factor to the Valley of Death.

As risk and uncertainty increase, investors will demand higher rates of return. A study conducted by Cockburn and Lerner (2006) found that investors expect about a 20% per year rate of return from smaller biotech companies to compensate them for the risks of these early-stage projects. Figure 1.11 shows that biotech has sometimes performed extraordinarily well relative to this 20% hurdle rate (i.e., the minimum rate of return on an investment required by investors to compensate them for the level of risk), but in more recent periods, has generally underperformed.

In contrast, a similar study conducted by Giaccotto et al. (2011) found that investors expect a 10–15% per year rate of return from pharmaceutical companies. These

FIGURE 1.11

Biotech VC pooled internal rate of return (IRR) from 1996 to 2018.

![Graph showing biotech VC pooled internal rate of return (IRR) from 1996 to 2018. The graph illustrates the percentage of pooled IRR per year with a 20% hurdle rate line.](image-url)
companies are larger, more established, and more diversified than the smaller biotech firms, which helps to explain their lower hurdle rate (and subsequently allows them to raise funds from investors at more favorable rates, also known as their cost of capital). However, across all sectors in the economy, only 10% of U.S. companies have hurdle rates above 10% per year (Figure 1.12), so we see that funding for pharmaceutical companies is still expensive relative to other industries. We say that their funding is expensive, and the cost of capital is high because, when these companies go out to raise money, investors will demand a higher interest rate on their debt or greater concessions on the price of their equity to compensate them for the higher level of risk. As an analogy, consumers with higher credit scores tend to pay back their debts on time more consistently, so they typically get charged lower borrowing rates (we would say they have a lower cost of capital).

Is there a way we can reduce the risk of early-stage biomedical projects and, consequently, the cost of capital for these projects?

Concept Check 1. Which of the following does NOT characterize a typical investment in a biopharma project?

a. Investments can be very large.
b. Investments are illiquid (i.e., they can’t easily be sold or converted into cash).
c. Investments have a short time horizon.
d. Investments involve both risk and uncertainty.
1.7 FINANCIAL ENGINEERING CAN HELP BRIDGE THE VALLEY OF DEATH

Because the cost of capital is linked to an investment’s degree of risk—greater risks require higher rates of return so as to compensate investors for taking on such risks—the way to reduce the cost of capital is simple: reduce the risk. This is one of the primary objectives of the field of financial engineering, a collection of mathematical, statistical, and computational models and tools focused on measuring and managing the risks and rewards of all types of investments, including drug development projects. You may have come across some of these models and tools if you’ve ever taken an economics or finance class, ideas such as portfolio theory, mean-variance optimization, and securitization. We’ll discuss these ideas in more depth in the chapters to come. But for now, let’s consider a simple illustration of the power of financial engineering to reduce the cost of capital for drug development.

Consider combining 150 anti-cancer drug projects like the one outlined in Figure 1.10 ($200 million cost, 10-year horizon, and a 5% success rate) into a single financial investment, called a portfolio. This portfolio is similar to a mutual fund, which is a single legal entity that owns a collection of investments on behalf of its shareholders. As a shareholder of the mutual fund, you own a fraction of each and every security in that fund. So, in our example, a single legal entity owns 150 anti-cancer drug projects, and investors can then buy shares of that entity.

But if investors aren’t interested in investing in one of these projects, why would they want to invest in a fund that owns 150 of them? The answer to this question is critical because we’re going to need $200 million × 150 = $30 billion to fund our cancer fund. Given this large sum of capital required, our fund will need to be highly attractive to investors. It turns out that if these 150 projects are statistically independent—meaning that the success or failure of one project has nothing to do with the outcomes of any of the other projects—then we can show that the overall annualized standard deviation of the portfolio decreases from an incredibly volatile 423.5% to only 34.6%, while the expected return remains the same at 11.9%, implying a Sharpe ratio of about 0.34. In contrast, the Sharpe ratio for just one of these projects is only 0.03. By investing in a portfolio of 150 of these projects, and assuming they’re independent, we’ve managed to reduce the risk by an order of magnitude!

This feat is the result of diversification, the financial equivalent of not putting all your eggs in one basket. As a result, the kind of return that investors demand will be significantly lower for this portfolio, allowing us to attract more capital.

In fact, in this specific instance, we can actually raise most of the $30 billion needed by issuing bonds, which are similar to mortgages, auto loans, and other forms of borrowing, rather than through the traditional biotech funding route of venture capitalists and initial public offerings of shares of stock. With a 5% probability of success for each project and assuming independence, the probability that at least three of the 150 projects will be successful is about 98%. If we assume that each of the three successful projects is worth $12.3 billion (see Example 1.2), then there’s a 98% probability the portfolio will be worth $3 × $12.3 billion = $37 billion in Year 10. What if we borrowed money to fund this portfolio by issuing IOUs, or bonds, that promised to pay back a certain amount of money in Year 10, after our drug development projects
mature? How much could we borrow? Well, if we issued IOUs that promised to pay up to $37 billion in Year 10, we have a 98% chance of being able to make good on that promise, or a 2% chance of defaulting. As of September 9, 2021, the market interest rate for loans with a 2% chance of defaulting was about 1.76%, and we’ll learn from Chapter 3 that a 10-year loan involving a payment of $37 billion in Year 10 with an interest rate of 1.76% would give the borrower proceeds of $31.1 billion today in exchange for that IOU. Thus, the $30 billion needed can be easily obtained from bond markets, which are larger than any other source of capital by at least one or two orders of magnitude. For example, in 2020 the size of the U.S. corporate bond market was about $10.6 trillion (Figure 5.1). In comparison, the total assets under management in the entire VC industry in 2020 was just $548 billion, and the amount deployed in the pharma and biotech sector in that year was $28 billion. If we need $30 billion for a cancer megafund, we have to look beyond VC funds.

By using financial engineering techniques to reduce the risk, we can access entirely new funding sources like bond, private-equity, and derivatives markets, which we’ll describe in greater detail in the coming chapters.

A warning: This analysis relies on the assumption of statistically independent projects, that is, we’ve assumed that the outcome of one project won’t affect the outcome of any other. There are all sorts of reasons why this assumption may not hold true, not the least of which is that science is a very interconnected process. Figure 1.13 shows the probability of at least k successes among the 150 projects, using different assumptions for the pairwise correlation of success/failure between projects. As this
pairwise correlation increases from 0% (which is the case of independence, depicted by the blue line) to 10% (orange line) to 40% (green line) to 80% (purple line), the benefits of diversification decline and the probability of having at least three successful projects decreases. As a result, the cost of capital doesn’t decrease as much as before, and we can no longer raise as much capital.

Figure 1.13 demonstrates the importance of diversification, that is, spreading investments across very different and, to the greatest extent possible, independent projects. Companies that crowd around the same therapies and technologies are like young and inexperienced soccer players who all crowd around the ball. Soccer coaches have to remind these novices to spread out and go to where the ball will be, not to where it is now. Similarly, diversification—the idea of spreading the risk across uncorrelated projects—can help the biomedical industry to reduce its cost of capital and reach its goals with higher likelihood.

At the time of writing, interest rates are at near-record lows, yet we still have many promising research programs that can’t raise the money to develop the cures that patients desperately need. A large part of this textbook will be devoted to understanding this conundrum and to developing the tools that will allow us to create new financing structures and business models that can be used to bridge this Valley of Death. Financial engineering can play an important role in accelerating biomedical innovation.

Example 1.4: In 2009, the Defense Advanced Research Projects Agency (DARPA), a research organization of the U.S. Department of Defense, ran a competition known as the “DARPA Network Challenge” in which it placed 10 large, red weather balloons in random, fixed locations all across the United States. The contest stated that the first person or team to identify the GPS coordinates of all 10 balloons would win a cash prize of $40,000. A group of MIT students led by Professor Alex Pentland won the challenge, and they won it in an astonishingly short amount of time: it took the team only 8 hours and 52 minutes! How did they accomplish this amazing feat? Financial engineering.

In addition to concentrating their efforts on social networks, the MIT team came up with a specific reward mechanism to recruit collaborators to help them. They announced publicly on a website that if they won the $40,000 prize, they would pay out all of it to those who helped them win. But they were very explicit about how they were going to do this. The team’s stated plan was to pay out $4,000 for each balloon, but in the following way: they would pay $2,000 to the first person to send them the location of any balloon they hadn’t already located. However, they also proposed to pay half that amount, $1,000, to the person who recruited the person who sent them the location of any balloon they hadn’t already located. If you recruited someone who recruited someone who was the first to send the MIT team the location of a balloon they hadn’t already located, you would receive half of $1,000 or $500. And so on. For each degree of separation from the first person who sent them the location of a balloon they hadn’t already located, you would receive half the amount of the money promised to the person with the next lowest degree of separation.
This beautifully engineered algorithm for incentivizing people to help them with this task had three key features: (1) it rewarded collaborators in proportion to how helpful they were in identifying the location of a balloon, so they had every incentive to recruit as many people as possible to maximize their chances of getting paid something—literally everybody got paid something; (2) it was totally credible in the sense that the amount of money promised added up exactly to the prize money they would receive if they won (in particular, you can show through some simple algebraic manipulation that $2,000 + $1,000 + $500 + $250 + \cdots = $4,000, and 10 balloons at $4,000 each is $40,000); and (3) it was totally transparent—everyone knew ahead of time what the rules were and where they stood relative to other collaborators. By the end of this process, the MIT team managed to recruit more than 10,000 participants in this network in less than 9 hours.

Financial engineering can provide just the right incentives to mobilize large groups of people to collaborate on a given task. In this textbook, we’ll explore how new business models and innovative financial structures can be used to motivate biomedical stakeholders to collaborate in the search for new medicines and cures in a similar fashion. Imagine if literally everyone in the world were incentivized to help develop new therapies for patients in need.

1.8 ROADMAP

The primary goal of this textbook is to explore how tools from financial engineering can be used to fund innovation in the life sciences more efficiently. These tools can be applied to other industries that have similar challenges, such as clean energy, infrastructure, and geo-engineering solutions to global warming, but our focus will be exclusively on biomedical applications.

The book is divided into two parts. The first half, Chapters 1–7, provides the reader with tools from modern financial analysis that are particularly relevant for the life sciences. In particular, we’ll cover the healthcare industry from a systems perspective (Chapter 2); present value relations (Chapter 3); evaluating business opportunities (Chapter 4); valuing bonds (Chapter 5) and stocks (Chapter 6); and portfolio management and the cost of capital (Chapter 7).

The second half of the book focuses entirely on biomedical applications, with an emphasis on new business models and structures. We’ll explore drug and device development and clinical trials (Chapter 8); decision trees and real options (Chapter 9); Monte Carlo simulation (Chapter 10); healthcare analytics (Chapter 11); biotech venture capital (Chapter 12); securitizing biomedical assets (Chapter 13); and pricing, value, and ethics (Chapter 14). We conclude with an extended case study of the drug royalty investment company Royalty Pharma that brings together many of the concepts covered throughout this textbook (Chapter 15).

Healthcare finance is evolving even as you read this. No single individual really understands all aspects of this complex and dynamic industry. Only through collaborations among all key stakeholders in the biomedical ecosystem will we be able to solve
the challenges facing healthcare in the 21st century. The ideas developed in this textbook are meant not only for business school students interested in the life sciences, but also for life sciences and medical students and professionals who are interested in taking their research ideas and clinical expertise and turning them into lifesaving therapies. This textbook also provides patient advocates, investors, and portfolio managers an opportunity to use these new structures to help drive biomedical innovation. Many of these stakeholders view the financial system as merely a set of constraints to their activities, never considering the possibility that this very same system contains powerful forces that can be harnessed to help them achieve their own objectives more effectively.

This strange admixture of finance and healthcare may be offensive to some readers—after all, who but an economist would even think of considering investment return on investment and financing decisions in the context of life-and-death issues like cancer drug development? We understand. Like many of you, we’ve lost friends and family members to cancer and other diseases. But we’re convinced that the only way to make system-wide improvements in how therapeutics are developed is to be as objective and practical as possible about the financial challenges of the biopharma industry. By examining the drug development process from all the major stakeholders’ perspectives, we can begin to determine the greatest roadblocks to biomedical innovation and propose methods for getting around them.
But the most important perspective of all—and the one that underlies all of our efforts in healthcare finance—is the patient perspective. Tremendous fortunes are possible in this sector, but much more importantly, there are hundreds of thousands of patients who are now being helped by these new therapies, and millions more who are still waiting. Finance doesn’t have to be a zero-sum game if we use it wisely. We can do well by doing good, and our hope is that this textbook will motivate a new generation of students to enter the exciting and immensely rewarding field of healthcare finance.

CONCEPT CHECK ANSWERS

Concept Check 1. The answer is c: Investments in biopharma projects usually have a long time horizon. New therapies take time to be researched, developed, tested clinically, reviewed by regulatory agencies, and so forth. We study the drug development process in more detail in Chapter 8.

REFERENCES

Abbott, 353
ABSs (asset-backed securities), 114, 115f–16f, 305–6
academia: drug development role, 37–41, 39t–40t; risk-uncertainty response of, 18t; as term, 1. See also specific universities
academic medical centers, 2
academic research organizations, 27, 29
accounting income, 84
accounts payable, 89
accounts receivable, 89
acquisitions, 35, 138. See also mergers
Acthar Gel, 344–46, 344t, 345t
ACTT clinical trial, 201
Adagio, 278
adalimumab (Humira), 353–54, 355f
adaptive clinical trials: approval and rejection process in, 201, 202f; Bayesian, 201–5, 202f–4f; disadvantages and risks of, 202; as term, 201
Adimab, 278
adjustable-rate mortgages, 311
ado-trastuzumab emtansine (Kadcyla), 332
Aducanumab, 278
affordable care act of 2010, 175, 331
aflibercept (Zaltrap), 338–39
after-tax cash flows, 85
AIG, 309
Alector, 278
alglycerase (Ceredase), 4
Alianza Médica para la Salud, 350
Alkermes, 285
Alliance for Clinical Trials in Oncology, 207
AlloVir, 284
Alnylam Pharmaceuticals, 272
alternative hypothesis, in clinical trials, 193, 196, 198–99
Alzheimer’s drugs, 201, 209, 265, 266f, 320–21
Amazon, 72, 258
American Academy of Arts & Sciences, 214
American Association for Cancer Research, 319
American Cancer Society: BrightEdge Impact Fund, 296–97; drug development funding, 29–30, 33
American Enterprise Institute, 343
American Journal of Managed Care, 57
American Medical Association, 327
American Oil and Gas Historical Society, 341–42
American Risk and Insurance Association, 175
American Society of Clinical Investigators, 343
amortization expenses, 88, 108
Amphivena Therapeutics, 284
analytics. See healthcare analytics
angel investors, 275, 280
annualized interest rates, 121
annuity: formula, 62–65, 66f; growing, 64, 64f; perpetuity and, 63; as term, 62
anti-tumorigenics, 31
Apple, 58, 72
Arrow, Kenneth J., 347
Arsanis, 278
asset-backed securities (ABSs), 114, 115f–16f, 305–6
assets: on balance sheet, 87; defined, 47; discount rate to determine NPV of, 51–56; intangible, 279; liquid, 35; perpetuity as (see perpetuity); pool of, 303–4; securitizing biomedical (see securitization); as sequences of cash flows, 47–48; as term, 47; time value of money and, 48–51, 50f; underlying, 226
Astellas, 284
AstraZeneca, 353
asymmetric information, 279
Atlas Venture, 285
Aurora Biosciences, 299
automation, 71–72, 72t
Avastin (bevacizumab), 6, 338
Aventis, 345, 346
Avila, 285
Avitide, 278
AvroBio, 285
Bach, Peter B., 339, 343
balanced two-arm RCT, 188
balance sheet, 87, 87f
bankruptcies: from medical expenses, 42, 335, 336, 337; venture capital and, 280, 281f
Bardon, Christiana Goh, 319
basket trials, 203
Battelle, 183
Bayesian decision analysis (BDA), 205–9, 207f–8f
Bayesian statistics, for adaptive clinical trials, 201–5, 202f–4f
Beall, Robert, 298
Beckman Research Institute, 186
bench science. See research and development
beta, 167–71, 172
bevacizumab (Avastin), 6, 338
Bial, 285
big data, 252, 257–58
big data analytics, 257–58
big pharma: cost of capital for, 172–75; business opportunity evaluation for, 81–82 (see also business opportunity evaluation); consolidated financials for, 82; cost of capital for, 172–75, 173t–74t; portfolio of, 81–82; as term, 2–3; venture capital for (see venture capital). See also biotechnology companies; pharmaceutical companies
biosimilars, 80, 102–3, 292
biotechnology companies: acquisitions or buyouts of, 35, 138; business opportunity evaluation of (see business opportunity evaluation); cost of capital for, 172–75, 173t; industry for, 7; innovation in (see biomedical innovation); profits of (see profits); returns from (see rate of return); return on investment; start-ups of (see start-ups); stock performance of, 7–8, 8f (see also stocks; stock valuation); as term, 1, 30; valuation of, 286–94, 296; venture capital for (see venture capital). See also biopharma companies
biotechnology venture capitalists, 272. See also venture capital
Biovail, 285
BLA (Biologics License Application), 182
Black, Fischer, 235
Black–Scholes/Merton model, 235, 240f
Blackstone, William, 194
Blade Therapeutics, 284
“blank check” company. See special purpose acquisition company blinding, 189–90
blockbuster drugs, 293
Blue Cross Blue Shield, 42
BMS, 285
board of directors, 137
bonds: binomial option-pricing model and, 236–37, 236f–37f; biopharma companies and, 132–33; convertible preferred, 280, 282; corporate (see corporate bonds); coupon, 123–26, 124f, 126f (see also zero-coupon bonds); coupon payments, 119; credit ratings for, 118, 128, 128t, 132, 308–9, 309f; default-free, 119; default risk, 128–30, 128t, 129t, 130f, 308–9, 309f, 314; discount or zero-coupon, 119–21, 124, 124t; drug development funding, 36–37; face or par value of, 119; fixed-income market for, 22, 114–19, 115f–18f; interest on, 113, 118–23, 120t, 121f, 124t, 303; key market stakeholders, 116, 118, 118f; market for, 22, 114–19, 115f–18f; maturity date of, 119, 120–21, 120t, 121f; municipal, state, and local government, 114, 115f–16f; principal payments for, 113; risk premium for, 59t, 131–32, 131f; securitization with, 303–10, 314, 317; as term, 21; tranches for, 304–5, 305f, 307–9, 308t, 309f, 314, 317; U.S. federal agency, 114, 115f–16f; U.S. Treasury (see U.S. Treasury securities); valuation of (see bond valuation)
bond valuation, 113–35; overview of, 113–14, 133; biopharma companies and, 132–33; of corporate bonds, 127–32; of coupon bonds, 123–26, 124f, 126f; of discount or zero-coupon bonds, 119–21, 124t; fixed-income market overview and, 114–19, 115f–18f; forward rates and, 121–23; interest rates and, 119–23, 120t, 121f, 124t; yield spread and, 130–32, 131f; yield to maturity and, 125–27, 126f–27f, 129f
book value per share (BVPS), 144–48, 145f
Booth, Bruce, 284–85, 285
branches, of decision trees, 216
branded drugs, 4n3, 42, 344
BRDPI (Biomedical Research and Development Price Index), 69–70, 70f
BridgeBio Pharma, Inc., 186, 319
Bridging Interventional Development Gaps program, 267
broker–dealers, 113
Brown University, 350
Budish, Eric, 270
burden of disease, 288, 289
Bureau of Economic Analysis, 350
contract provisions, 282
contract research organizations (CROs), 34, 185
control arm, 188
convergence, 5–6, 37
convertible preferred stocks or bonds, 280, 282
co-pays, 290
corporate bonds: default risk, 128–30, 128t, 129t, 130f, 309f, 314; in fixed-income market, 114–17, 115f–17f; as term, 114; valuation of, 127–32; yield spread for, 130–32, 131f; yield to maturity, 129f
corporate income tax expenses, 89, 107f, 280, 282
cost effectiveness, 330–34, 332t, 334f
correlation matrix, 263–64, 265, 266f
correlation: of defaults, 311, 314–15, 315t; correlation of, 267–68, 269t; pairwise, 22, 162
costs: of approved drugs, 80, 292; of capital, 155, 165–70; of clinical trials, 34, 80, 105, 105f, 184–85, 185f, 198, 199, 200f, 293, 293t; of debt, 171; drug development challenges due to, 11; of equity, 171; general and administrative, 79, 105, 106f, 345, 345t; of goods sold, 79, 105–6, 107f; of healthcare, 42, 335–38, 337f; manufacturing, 293; of medical device development, 186; opportunity, 85; research and development, 79, 105, 105f, 293, 345, 345t (see also under clinical trials); risk-adjusted, 79; sales and marketing, 79, 105–6, 107f, 293–94, 345, 345t; as term, 7; total, 106, 107f. See also expenses
Council of Economic Advisers, 65
coupon bonds, 123–26, 124f, 126f. See also zero-coupon bonds
covariance, 158–59, 162, 164, 169
covenants, 282
COVID-19 pandemic: clinical trials for, 201, 208; corporate bond default risk in, 129–30, 130f; drug pricing and, 342–43; public funding and, 8; Treasury security yield curves pre- and post-, 127f; vaccine development, 41, 208, 262, 321–22, 342–43; venture capital and, 11
cox, John C.
cPI (Consumer Price Index), 68–70, 68f, 69f, 70f
credit cycles, 139
credit default swaps (CDSs), 309, 315
credit enhancers, 118
credit ratings, 118, 118, 128, 128t, 308–9, 309f
critical value, 195–96
cROs (contract research organizations), 34, 185
crossover trials, 191–92
cullinan Oncology, 284
cVS, 41, 45
CVS Caremark, 42, 45
cystic Fibrosis Foundation (CFF), 31, 297–300
daraprim, 344
dARPA (Defense Advanced Research Projects Agency) Network Challenge, 23–24
dartmouth College, 278
data snooping, 190–91
dCF analysis. See discounted cash flow (DCF) analysis
debt: collateralized debt obligations, 305; cost of, 171; investment grade, 113, 128, 128t (see also bonds); medical, 335–36; rate of return for, 20; as term, 20
default-free bonds, 119
default premium, 130–31, 131f
defaults: corporate bond risk of, 128–30, 128f, 129f, 130f, 308–9, 309f, 314; correlation of, 311, 314–15, 315t; credit default swaps, 309, 315; healthcare mortgage, 335–36; mortgage, 311; as term, 128
defense Advanced Research Projects Agency (DARPA) Network Challenge, 23–24
defeathering, as term, 311
dell, 214
delta, 236
denovo requests, 183
dependent variables, 258
depreciation, 88, 89, 108
derisked drug candidates, 36
derisking, 164
derivatives markets, 22. See also credit default swaps
diagnosed, percent, 102
diagnostics, 7
dIANTU clinical trial, 201
dilution, 32, 279–80
diMasi, Joseph A., 291
discount bonds, 119–21, 124, 124t
discounted cash flow (DCF) analysis: in business opportunity evaluation, 81, 99–108; calculation results, 106, 108, 108f; epidemiology in, 100, 102, 102f; market share in, 102–3, 103f; pricing and net sales in, 104, 104f; probability of success in, 100, 101f, 216; program expenses in, 105–6, 105f–7f; program overview, 99f, 100; program revenues in, 100; as term, 81; time line in, 100, 101f; transition probabilities in, 100
discounting, 51. See also time value of money
discount rates: annuity formula and, 62–65, 66f; NPV determination using, 51–56, 55f, 95, 96f, 108; perpetuity formula and, 59–62, 61f; risk-adjusted, 139; as term, 51. See also cost of capital
distributors, 41
discount rates: annuity formula and, 51–56, 55f, 95, 96f, 108; perpetuity formula and, 59–62, 61f; risk-adjusted, 139; as term, 51. See also cost of capital
discounting, 51.

See also time value of money
discount rates: annuity formula and, 62–65, 66f; NPV determination using, 51–56, 55f, 95, 96f, 108; perpetuity formula and, 59–62, 61f; risk-adjusted, 139; as term, 51. See also cost of capital
dividends per share (DPS), 144–50, 145f; dividends: payout policy, 144–48; dividend discount model, 139–40
dividends: payout policy, 144–48; dividend discount model, 139–40
diversification: defined, 23; idiosyncratic risk reduction with, 163, 166, 170–71; limits of, 163–65; portfolio, 21, 23, 153, 158–65, 166, 170–71; returns and, 158–65; as term, 21, 153
dividend discount model, 139–40
dividends: payout policy, 144–48; per share, 144–50, 145f; stock valuation and, 139–40, 144–50; as term, 136; for venture capital securities, 280
dividends per share (DPS), 144–50, 145f
doctors, 2
Donaldson, Cam, 297
dosage regimens, 13
double-blinded trials, 190
drug candidates: de-risked, 36; as term, 7
drug development: overview of, 180–82, 180f; academia and, 37–41, 39t–40t; approval process in, 36, 182, 192–93, 193f, 201, 202f; Bayesian decision analysis for, 205–9, 207f–8f; challenges of, 11–13; clinical stage, 6, 142 (see also clinical trials); complexity of, 1–2, 13; costs of (see costs); decision trees for (see decision trees); defined, 7; drug-indication pathways in, 253, 253f, 258; early-stage drug discovery in, 33, 34f–35f; early-stage R&D for, 27–28; Eroom’s Law on, 11, 12f; false negatives (Type 2 errors) in, 192–97, 193f, 201, 205–9; false positives (Type 1 errors) in, 188–89, 192–97, 193f, 199, 201, 205–9; financing of, 2–4 (see also healthcare finance); for Gaucher disease, 4–5; healthcare delivery system and, 41–42, 43f; high-throughput screening in, 5; industry for, 7–8 (see also biopharma companies; biotechnology companies; pharmaceutical companies); later-stage clinical development, 34–37; licensing in (see licensing); milestones in, 31–32, 79; Monte Carlo simulation for (see Monte Carlo simulation); nonprofit organization role in, 29–30, 31–33; post-approval commercialization and distribution, 41–42, 43f; preclinical stage, 6, 142; predicting approvals in, 257–61, 259f–60f, 269–70; present value relations, 54–55; probability of success in, 1, 11, 290, 291t (see also under clinical trials); process of, 11, 12f, 38f, 180–82, 180f; profits from (see profits); rational drug design in, 5–6; real options analysis for (see real options analysis); research for, 27–28, 180–82, 180f (see also research and development); revenues from (see revenues; royalties); stakeholders in, 2, 2f, 38f; systems perspective on, 27–46; as term, 7; time/duration of, 11, 33, 36, 294, 294t, 299; time line for, 180f; venture capital for (see venture capital). See also pharmaceuticals; therapeutic development
drug discovery assays, 14
drug-indication pathways, 253, 253f, 258
drugs: Alzheimer’s, 201, 209, 265, 266f, 320–21; blockbuster, 293; branded, 4n3, 42, 344; combined therapies, 13; commercialization and distribution of, 41–42, 43f; cost of approved, 80, 292; defined, 7; generic (see generic versions); hepatitis C (see hepatitis C drugs); “me-too,” 339; monotherapies, 13; oncology (see oncology drugs); payment for, 41–42; prescription, 42; pricing of, 44, 295, 297, 338–41, 339t (see also pricing); shortages of, 339–41, 339t; sterile injectable, 339, 339t; as term, 7; top 30 in 2000 and 2018, 39t–40t. See also pharmaceuticals; specific drugs
Drug Shortages Task Force, 340–41
drug sponsors, 180
Druker, Brian, 5, 6f

earnings: per share, 144–50, 145f; price-to-earnings ratio, 150; retained, 144–50; as term, 7
earnings per share (EPS), 144–50, 145f

eBay v. Newmark (2010), 83n1, 328n4
EBIT (earnings before income and taxes), 88

EBITDA (earnings before interest, taxes, depreciation, and amortization), 88, 108
economies of scale, 149
effectiveness: cost, 330–34, 332f, 334f; drug development requirements of, 182, 193f, 201; as term, 182
Ellsberg Paradox, 16f, 17
employer health plans, 42. See also health insurance companies
Endpoints News, 45
enzyme replacement therapy, 145
epidemiology, DCF analysis of, 100, 102, 102f
EPS (earnings per share), 144–50, 145f
equi-correlated cases, 264
equity: in biotech start-ups, 30; corporate debt vs., 117f; cost of, 171; rate of return for, 20; return on (see return on equity); stocks as (see stocks); as term, 20, 30, 136. See also private-equity markets; shareholders’ equity
equity tranche, 304, 305f
Eroom’s Law, 11, 12f
ethical issues: in clinical trials, 188, 192; neuroscientific underpinnings of, 328, 330; with pricing, 83, 326, 330; with shareholder value maximization, 83–84, 328; trolley car dilemma as, 328–30, 329f
European Medicines Agency, 1 evaluation of business opportunities. See business opportunity evaluation
Evnin, Luke, 283–84
Excel, Microsoft, DCF model, 99–108
exchanges: bonds traded on, 113; stocks traded on, 139 (see also stock markets); as term, 113
exclusivity, loss of, 80, 292. See also generic versions
Expanded Access Program, 197–98n5
expected returns, 156, 171
expected value, 16
expected yield, 130–31
expenses: amortization, 88, 108; biotech valuation estimating, 292–94; capital, 87–88, 106, 108; corporate income tax, 89, 171; DCF analysis of, 105–6, 105f–7f; healthcare or medical, 42, 335–38, 337f; operating, 87. See also costs
Express Scripts, 42, 45
Facebook, 72
face value, 119
Fairfield Sentry fund, 15–16, 15f, 25f
false negatives (Type 2 errors), 192–97, 193f, 196f–97f, 201, 205–9
false positives (Type 1 errors), 188–89, 192–97, 193f, 196f–97f, 199, 201, 205–9
FDA (Federal Drug and Cosmetic
Agency): BLAs to, 182; drug development); Drug Shortages Task Force, 340–41; Expanded Access Program, 197–98n5; IND applications to, 14, 32, 180–81; licensing by, 1–2, 188; medical device development under, 182–83, 186–87 (see also medical device development); NDAs to, 36, 182, 345; Philipson at, 65; profile of, 181; regulatory oversight by, 1;

risk-uncertainty response of, 18;
as term, 1, 180
Forbes, 285
forecasting: dividends, 139, 144–48; forward rates, 121–23; predictive analytics for, 257–61, 269–70; top-down, 100
Forest Labs, 175
formulary, 42, 289–90
Forum for Health Economics and Health Policy, 57
forward rates, 121–23
Franklin, Benjamin, 194
Freddie Mac (Federal Home Loan Mortgage Corporation), 114
frequency distribution, 155
Fundamental Law of Healthcare Finance, 78, 252
funding. See healthcare finance future value (FV), 56

GAAP (Generally Accepted Accounting Principles), 84
Gadieck, Ansbert, 283–84
Gates Foundation, 285
Gaucher disease, 4–5
GBM-AGILE clinical trial, 201
GDP. See gross domestic product
gene editing, 257
Genentech, 154–57, 155f–56f, 186
general and administrative (G&A) costs, 79, 105, 106f, 345, 345t
Generally Accepted Accounting Principles (GAAP), 84
general partners, 276, 277f
generic versions: incentives for, 339, 340; market share changes with, 102–3; names of, 4n3; patent expiration and, 44, 80, 292; revenue effects of, 80, 292; shortages of, 339–40; as term, 42
gene therapy, 100, 102, 257
Genzyme, 4
go geography, 80
geometric Brownian motion, 229
German Cancer Research Center, 284
Gerdgross, Tillman, 278
Gilead Sciences, 284, 327–28
Ginnie Mae (Government National Mortgage Association), 114
Glasgow Caledonian University, 297
GlycoSphing, 186, 214
Gleevec (imatinib), 4n3, 5–6, 6f
GlycoFi, 278
Goldman, Dana, 57
Google, 72
Gordon, Myron J., 140n1
Gordon Growth Model, 140, 149
Government National Mortgage Association (Ginnie Mae), 114
grants, 32, 275
Greene, Joshua, 330n5
gross domestic product (GDP), 336; healthcare expenses as percentage of, 336–37, 337f
gross domestic product (GDP) price index, 70, 70f
Grossman, Michael, 289
gross-to-net ratio, 104
group purchasing organizations, 341
growth opportunities, 148–50
growth stage, 141

HAART (highly active antiretroviral therapy), 13
Harpoon Therapeutics, 284
Harrington, Scott, 174, 175
Harvard University, 284
Hausen, Harald zur, 284
Health Affairs, 57
Health and Human Services, U.S.
Department of, 9, 181, 339. See also Food and Drug Administration, U.S.; National Institutes of Health
Health and Social Care Act 2012 (UK), 333
healthcare analytics, 252–71; overview of, 252, 269–70; big data for, 252, 257–58; for clinical trial success rate estimation, 252–57; for correlation modeling, 261–69; machine learning for, 252, 257–61, 269–70; Monte Carlo simulation in, 267–68, 269t; for predicting drug approvals, 257–61, 269–70
healthcare delivery system, 2, 41–42, 43f
healthcare expenses, 42, 335–38, 337f
healthcare finance: overview of, 1–26; analytics in (see healthcare analytics); biomedical innovation and, 2–4; biomedicine from financial perspective and, 7–11; bond valuation in (see bond valuation); capital in (see capital); case studies of (see case studies); convergence and, 5–6, 37; decision trees in (see decision trees); Fundamental Law of, 78, 252; global funding in, 8, 10–11, 10f, 10t (see also venture capital); investors in (see investors); Monte Carlo simulation in (see Monte Carlo simulation); portfolio management in (see portfolio management); present value relations in (see
Kadryla (ado-trastuzumab emtansine), 332
Kalydeco (ivacaftor), 298–99
Kefauver-Harris Amendment of 1962, 181
Kemeny, Nancy, 340
Keytruda (pembrolizumab), 6
k-nearest neighbors algorithm, 259
Knudson, Katie, 6f
Kumar, Neil, 319
kurtosis, 157
Kefauver-Harris Amendment of 1962, 80, 292.
See also generic versions
lumacaftor/ivacaftor (Orkambi), 299
LUNG-MAP clinical trial, 201
Luxturna (voretigene neaparvovec), 337–38
Lydon, Nicholas, 5, 6f
lysozyme storage diseases, 145
Lysosomal Therapeutics, 285
machine learning, 252, 257–61, 269–70
Madoff, Bernie, 15, 16, 25f
Magenta Therapeutics, 285
mail-order delivery system, 42
Mallinckrodt Pharmaceuticals, 346n7
manufacturing costs, 293
market capitalizations, 140
marketing, 42. See also sales and marketing (S&M) costs
market risk: biotech valuation and, 290, 291t; bond valuation and, 131–32; in real options analysis, 226, 234, 238; as term, 226
market share, DCF analysis of, 102–3, 103f
Massachusetts Institute of Technology. See MIT
master protocols, 205
maturity date, 119, 120–21, 120t, 121f
Maverick Therapeutics, 284
MBRs (mortgage-backed securities), 114–16, 115f–16f, 129, 303, 305, 310–11
MCIT (Medicare Coverage of Innovative Technology) pathway, 187
mean return, 156
mean-variance optimization, 21
Medicaid, 42, 44, 187, 320
Medical Device Amendments of 1976, 183
medical device development: overview of, 182–83; Bayesian decision analysis for, 208; Class I, 182–83; Class II, 182–83; Class III, 182–83; clinical trials for, 183, 208; complexity of, 1; costs of, 186; 510(k) clearance applications in, 183; premarket notification in, 183; regulatory uncertainty for, 186–87; unique challenges for, 186–87; venture capital for, 187. See also therapeutic development
medical devices: development of (see medical device development); shortages of, 340, 341f; as term, 7
medical expenses, 42, 335–38, 337f
Medicare, 42, 44, 187, 290, 320, 330
Medicare Coverage of Innovative Technology (MCIT) pathway, 187
medicinal chemistry, 32–33
megafund, 317. See also biomedical megafunds
Memorial Sloan Kettering (MSK), 338–39, 340, 343
Merck, 7, 34, 214, 278, 284
mergers, 45. See also acquisitions
Merton, Robert C., 235
“me-too” drugs, 339
Michael J. Fox Foundation, 208
Microsoft, 265; Excel, DCF model, 99–108
midbrain, 330
Millennium Pharmaceuticals, 284
milestone payments, 31–32, 79
MIT: DARPA Network Challenge winners from, 23–24; Gadieke at, 284; Langer at, 274; Project ALPHA, 252–53, 261, 317; Sharp at, 272; therapeutic development case studies, 27; Whitehead Institute for Biomedical Research, 4; Williams at, 270
MIT Corporation, 214
Mitobridge, 284
Moderna, 41, 172, 262, 321
money markets, 115f
monotherapies, 13
Monte Carlo simulation, 244–51; overview of, 244, 251; applications of, 247–50; of biomedical megafund, 317, 318f; of correlated random variables, 267–68, 269t; graphical illustration of, 246f; Merck’s use of, 214; reasons to use, 244–46; results of, 246t, 248t, 249f, 250t; as term, 244
Moody’s, 128, 128t, 308, 309f
Moore’s Law, 11
Morgan Stanley, 41
mortgage-backed securities (MBSs), 114–16, 115f–16f, 129, 303, 305, 310–11
mortgages: adjustable-rate, 311; healthcare, 335–36, 335t
Motorola Solutions, 214
MPM Capital, 283–84, 319
MSK (Memorial Sloan Kettering), 338–39, 340, 343
multi-period binomial option-pricing formula, 238
Multiple Myeloma Research Foundation’s Myeloma Investment Fund, 296–97
multistage valuation model, 141–44
municipal bonds, 114, 115f–16f
mutual funds, 21, 37
Mylan, 44
MyoKardia, 319
National Academy of Medicine, 186, 343
National Academy of Sciences, 186
National Association of Securities Dealers Automated Quotations (NASDAQ), 139
National Brain Tumor Society, 33
National Bureau of Economic Research, 57
National Center for Advancing Translational Sciences (NCATS), 14, 267, 320
national coverage determinations (NCDs), 187
National Health Service (NHS), 332, 333
National Institute for Health and Care Excellence (NICE), 331–33, 332t, 333
National Institutes of Health (NIH): BRDPI development by, 69; drug development funding by, 29–30; NCATS at, 14, 267, 320; profile of, 9; public funding by, 8, 9, 9f, 18t; risk-uncertainty response of, 18, 18t; STTR program at, 32; as term, 8
National Venture Capital Association (NVCA), 187, 285
natural history of disease, 288
natural monopolies, 342
NCATS (National Center for Advancing Translational Sciences), 14, 267, 320
NCDs (national coverage determinations), 187
NDA (New Drug Application), 36, 182, 345
Netflix, 258
net present value (NPV): of after-tax cash flows, 85; for business opportunity evaluation, 76–79, 81, 82–86, 95, 96f, 98f, 99, 106, 108; of cash flows, 49–50, 84–85; decision rules, 82–86; defined, 49; discount rates to determine, 51–56, 55f, 95, 96f, 108; of growth opportunities, 149–50; on incremental basis, 85; Monte Carlo simulation and, 245–50, 246f, 246t, 248t, 249f, 250t; risk-adjusted (see risk-adjusted net present value); standard error of estimated, 248, 250t; as term, 49; value, price, and, 72–73. See also present value relations
net present value of growth opportunities (NPVGO), 149–50
net sales, 104, 104f
neuroscience of ethics, 328, 330
New Drug Application (NDA), 36, 182, 345
New England Disabled Sports, 285
New Home Economics movement, 289
New York Academy of Sciences, 350
New York State Public Service Commission, 342
New York Stock Exchange (NYSE), 139
NHS (National Health Service), 332, 333
NICE (National Institute for Health and Care Excellence), 331–33, 332t, 333
NIH. See National Institutes of Health
Nimbus Therapeutics, 285
nodes, in decision trees: root, 216, 220, 222–23, 224f, 234; as term, 216; terminal or leaf, 216
nominal rate of return, 67
nominal wealth, 67–68
nonfavorable correlation: probability of success and, 22–23, 262–64, 267–68, 270; of returns, 162; as term, 22
nonprofit organizations: business opportunity evaluation by, 99; drug development role of, 29–30, 31–33; tax-exempt status of, 85; venture philanthropy and, 273, 296–97, 298–300. See also specific organizations
normal distribution, 155
Novartis, 4n3, 5, 6f, 7, 34, 261
NPV. See net present value
NPVGO (net present value of growth opportunities), 149–50
null hypothesis, 193, 194–95, 198
NYSE (New York Stock Exchange), 139
oncogene, 28
oncology drugs: clinical trials for, 183, 184, 197, 201–5, 203f–4f, 207–8, 207f, 294, 299; cost effectiveness of, 332; development of, 4n3, 5–6, 6f, 27–46; medical devices to deliver, 340, 341f; pediatric, 255, 257; pricing of, 338–41, 339f; probability of success for, 203f, 255, 255f, 260–61, 261f, 268, 269f; sales and marketing costs for, 294; shortages of, 339–40, 339f
Oncology Impact Funds (OIF), 283, 319
oncology medical devices, 340, 341f
Oncorus, 284
one-tailed tests, 194
Open Medical Institute, 350
operating expenses, 87
operating profits, 88
operating revenues, 87. See also revenues; sales
opportunity costs, 85
option pricing model. See binomial option-pricing model
option pricing theory, 215
options: call, 236–38, 236f; financial, 215, 235–38, 240f; real, 215 (see also real options analysis)
Oregon Health & Science University, 5
Orem, Judy, 6f
Orkambi (lumacaftor/ivacaftor), 299
orphan diseases. See rare diseases
Orphan Drug Act of 1983, 295
orphan drug designation, 292, 295
out-licensed programs, 80
Padlock, 285
pairwise correlation: probability of success and, 22–23, 262–64, 267–68, 270; of returns, 162; as term, 22
pairwise covariance, 162
Park Avenue Armory, 350
Parkinson’s disease therapeutics, 186, 208
par value, 119
pass-through securities, 305
Pasteur Foundation, 350
patent cliff, 80, 292
patent expiration stage, 142
patents: drug development, 28–29; exclusivity and, 80, 292; expiration of, 44, 80, 142, 292; fees for, 29; filing for, 28, 29; ownership of, 29; as term, 17; time line of, 29, 29f
pathogenesis, 5
patient advocacy groups, 295
patient-centered data, 183
Patient-Centered Outcomes Research Institute, 331
patients: advocacy for, 295; Bayesian decision analysis and preferences of, 208–9, 208f; demand for drug, 288; healthcare mortgage paid by, 336; as term, 2
payback period, 94, 99
payers: for drugs, 41–42; single-payer system, 332; as term, 41. See also health insurance companies; Medicaid; Medicare
payout policy, 144–48
payout ratio, 144–48, 145f
PBMs (pharmacy benefit managers), 2, 42, 45
peak sales, 80

INDEX 385

For general queries, contact webmaster@press.princeton.edu
pembrolizumab (Keytruda), 6
Pemberton, Alex, 23
Pentland, Pentland, 23
P/E (price-to-earnings) ratio, 150
percentiles, 157
perpetuity: annuity and, 63; formula for, 59–62, 61f; growing, 60–62,
61f, 140; as term, 59; time line for, 60f
Pfizer: drug development by, 7, 34,
41, 262; return on investment in,
154–57, 155f–56f; risk/reward trade-off of investment in, 15–16,
15f, 25f; stock valuation, 61–62
p-hacking, 190
pharmaceutical companies: academia vs., 37–41, 39t–40t; big pharma
(see big pharma); cost of capital for,
172–75, 173f–74f; drug development by, 1, 34–36, 39t–40t (see also drug development); industry for, 7; profits of (see profits); rate of return from, 19–20; risk-uncertainty response of, 18, 18t; small or specialty pharma, 7; stock performance of, 7–8, 8f (see also stocks; stock valuation); as term, 1. See also biopharma companies
pharmacies, 2
pharmacy benefit managers (PBMs), 2, 42, 45
Pharmakon Advisors, 350
Pharmasset, 284
Phase 1 trials: costs of, 293t; defined, 11; design of, 188; drug-indication pathways and, 253, 253f; duration of, 294t; objective of, 33, 181; probability of success rates for, 253, 254f, 256t; as term, 11, 181
Phase 2 trials: adaptive, 203, 205; costs of, 293t; decision tree analysis of,
219–24, 220f–21f, 223f–24f; defined, 11; design of, 188; drug-indication pathways and, 253, 253f; duration of, 294t; objective of, 33, 181; probability of success rates for, 253, 254f, 256t; scientific risk in, 231–34, 232f–34f; as term, 11, 181
Phase 3 trials: adaptive, 205; costs of, 293t; decision tree analysis of,
219–24, 220f–21f, 223f–24f; defined, 11; design of, 188; drug-indication pathways and, 253, 253f; duration of, 294t; objective of, 33, 181–82; probability of success rates for, 253, 254f, 256t; scientific risk in, 231–34, 232f–34f; as term, 11, 181
Phase 4 trials, 182
Philipson, Tomas J., 65
PhRMA, 183
pipeline, 7, 81
placebos, 188
platform trials, 203
plowback ratio, 144–45
PMA (premarket approval), 183
PMN (premarket notification), 183
Polaris Partners, 274
Ponzis scheme, 15, 16, 25f
pool of assets, 303–4
population: prevalent, 100, 102; as term, 245
portfolio: business opportunity evaluation of, 81–82; correlation in, 159–60, 160f, 162–63, 165, 265, 270, 315, 315f; covariance in, 158–59, 162, 164, 169; diversification with, 21, 23, 153, 158–65, 166, 170–71; management of (see portfolio management); probability of success for, 21–23, 22f, 270; returns from, 158–65; securitization with (see securitization); as term, 21, 153; variance in, 157, 162, 163–64, 264
portfolio management, 153–76; overview of, 153, 176; cost of capital and, 153, 166–76; of diversification and returns, 158–65, 166, 170–71
portfolio theory, 21
portfolio weight, 161–62
PoS. See probability of success
positive definiteness, 265
post-approval stage, 142
post-money valuation, 280, 281f
Potenza Therapeutics, 284
power of statistical decision, 215–16, 219–22, 220f–21f
preclinical development, 6
preclinical stage, 142
predecessor devices, 183
predictive analytics, 257–61, 269–70
preferred provider organizations (PPOs), 44–45
preferred provider organizations (PPOs), 44–45
prefrontal cortex, 330
premarket approval (PMA), 183
premarket notification (PMN), 183
pre-money valuation, 279–80, 281f
prescription drugs, 42
present value relations, 47–75; overview of, 47, 73; annuity in, 62–65,
64f, 66f; assets and time value of money in, 48–51, 50f; assets as sequences of cash flows in, 47–48; discount rates to determine asset’s NPV in, 51–56, 55f; future value of current cash flows and, 56; inflation in, 66–72; net present value in, 49–56, 72–73 (see also net present value); perpetuity in, 59–62, 60f, 61f, 63; pricing and, 47, 72–73; risk premium in, 57–58, 58f, 59f; value and, 47, 72–73
Prestwick, 285
prevalent population, 100, 102
price gouging, 343–46
price-to-earnings (P/E) ratio, 150
pricing, 326–48; overview of, 326,
347; cost effectiveness and, 330–34,
332t, 334f; DCF analysis of, 104,
104f; drug, 44, 295, 297, 338–41,
339t; drug shortages and, 339–41,
339t; ethical issues with, 83, 326,
330; firm survival and, 343–46; government infrastructure and support affecting, 341–43; health-care financing and, 334–38; housing market, 310–11, 314f; list price, 80; medical device shortages and, 340, 341f; net sales and, 104; of oncology drugs, 338–41, 339t; present value relations and, 47, 72–73; price gouging, 343–46; revenue effects of, 288–90; vaccine, 321, 342–43; value vs., 72–73, 326–28
primary market, 138
primary-market dealers, 118
Princeton University, 284
principal, 113
prior beliefs, 201
private-equity markets, 22
private markets, 37
probability distribution, 155–58,
156f
probability of success (PoS): binomial distribution of, 262, 263f; business opportunity evaluation of, 76–79, 101f; in clinical trials, 1, 252–61,
254f–56f, 256t, 290; correlation of, 22–23, 261–69, 270; DCF analysis of, 100, 101f, 216; decision trees and, 215–16, 219–22, 220f–21f; in drug development, 1, 11, 290, 291t (see also under clinical trials); healthcare analytics to characterize (see healthcare analytics); market risk and, 290, 291t; Monte Carlo simulation of, 267–68,
INDEX 387

269t; for oncology drugs, 203f, 255, 255f, 260–61, 261f, 268, 269t; for portfolio, 21–23, 22f, 179; predicting, 257–61, 269–70; for rare diseases treatments, 255, 256f, 265, 267; revenues and, 290, 291t; scientific risk and, 226, 231–34, 290, 291t; of start-ups, 273, 273f; as term, 1; by therapeutic area, 255, 255f, 256t
Procter & Gamble, 58
product development. See therapeutic development
profitability index, 93–94
profits: business opportunity evaluation of, 81, 93–94; drug development and, 5–6, 6f; operating, 88; uncertainty and, 17f
Project ALPHA (Analytics for Life-sciences Professionals and Healthcare Advocates), 252–53, 261, 317
proofs-of-concept, 30
prospective studies, 190
public markets, 37, 138. See also stock markets
public–private partnerships, 320
public utility companies, comparison to, 341–43
quality-adjusted life years (QALYs), 331, 333–34, 340
Questcor Pharmaceuticals, 343–46, 345t
RAND Corporation, 57
R&D. See research and development
random forest classifiers, 259
random forest decision trees, 259–60, 260f
randomized clinical trials (RCTs): adaptive, 201–5, 202f–4f; balanced two-arm, 188; design of, 187–92; randomization importance to, 189; single- vs. double-blinded, 189–90; statistical size and power in, 200f; as term, 179. See also clinical trials
randomness: RCT importance of, 189 (see also randomized clinical trials); of returns, measuring, 153–58, 155f–56f
random samples, 102
random variables: binary, 78; correlation of, 159, 160f, 262–64, 267–68, 269t; indicator, 262; in Monte Carlo simulation, 245–48, 250, 267–68, 269t; returns as, measuring, 153–58, 155f–56f; as term, 245
random walk, 229
rare diseases: biological megafund returns for drug development for, 317, 320; orphan drug designation for, 292, 295; pricing of drugs for, 345; probability of success for drugs treating, 255, 256f, 265, 267; as term, 255; valuing therapies for, 295
rate of return: of biomedical megafunds, 317, 320; bond (see yield to maturity); “break-even,” 95; hurdle rate, 19–20, 19f, 166; internal (see internal rate of return) investment time horizon and, 294, 297, 299, 300; nominal, 67; randomness of, 153–58, 155f–56f; real, 67; risk-uncertainty and demand for, 17, 19–20, 19f; as term, 17. See also interest rate
rational drug design, 5–6
RBOs (research-backed obligations), 59, 305, 316–17
RCTs. See randomized clinical trials read-through, 262
real options, 215
real rate of return, 67
real wealth, 67
recombinant proteins, 145
recombining binomial trees: building, 228–31; market risk in, 226, 234; non-recombining vs., 227, 228f; for real option analysis, 226–34, 227f–30f, 232f–34f; scientific risk in, 226, 231–34, 232f–34f; as term, 226
registration rights, 282
regressors, 258
regulatory uncertainty, 186–87
REMAP-COVID clinical trial, 201
Repligen, 278
research and development (R&D): overview of, 179–83, 180f; clinical trials in (see clinical trials); costs of, 79, 105, 105f, 293, 345, 345t (see also under clinical trials); decision tree analysis for, 219–22, 220f–21f; for drug development, 27–28, 180–82, 180f; early-stage, 27–28; funding for (see healthcare finance); in vivo, 32, 105; in vivo, 32, 105; for medical device development, 182–83; peer review of, 28; risk-uncertainty effects on, 17–19, 18t; as term, 3; translational research, 10, 14; venture capital for (see venture capital)
research-backed obligations (RBOs), 59, 305, 316–17
research reports, 37
residual claimants, 137
retail pharmacies, 41–42, 45
retained earnings per share, 144–50
retrospective studies, 190
return on equity (ROE): as cost of equity, 171; growth opportunities and, 148–50; bond valuation and, 144–50, 145f (see also dividends); as term, 144
return on investment (ROI): correlation of, 159–60, 160f, 162–63, 165; cost of capital as minimum, 153 (see also cost of capital); covariance of, 158–59, 162, 164, 169; expected return, 156; interest rate and (see interest rate); portfolio diversification and, 158–65; probability distribution for, 155–58, 156f; randomness of, measuring, 153–58, 155f–56f; rate of return (see rate of return); risk/reward trade-off, 14–16, 15f, 25f, 157–58, 167 (see also risk premium); as term, 287; time horizon and, 294, 297, 299, 300; variance of, 157, 162, 163–64; for venture capital, 287; venture philanthropy and, 296–97
revenues: average price effect on, 288–90; biotech valuation estimating, 287–92; business execution and, 291–92; business opportunity evaluation of, 80, 100; drug development time to generate, 11; exclusivity loss and, 80, 292; operating, 87 (see also sales); patient demand and, 288; probability of success and, 290, 291t; risk-adjusted, 79; as term, 7; top-down forecasting of, 100; treatment duration and, 290; uncertainty and future, 17f. See also royalties
Rhône-Poulenc Rorer, 345
Riggs, Arthur, 186
right-hand-side variables, 258
rIRR (risk-averse internal rate of return), 106, 108, 108f

For general queries, contact webmaster@press.princeton.edu
INDEX

risk: capital available in relation to, 274, 276f; cost of capital and, 153, 154, 166–76; default (see defaults); defined, 17; de-risking, 36, 164; diversification reducing (see diversification); financial engineering to reduce, 21–24; idiosyncratic, 163, 166, 170–71, 226, 290; liquidity, 121, 131; market, 131–32, 226, 234, 238, 290, 291t; Monte Carlo simulation modeling, 245; randomness and, 153–58; risk/reward trade-off, 14–16, 15f, 25f, 157–58, 167 (see also risk premium); scientific or technical, 226, 231–34, 232f–34f, 238, 290, 291t; securitization against (see securitization); systematic, 163, 166–68, 170–71, 172; as term, 17; uncertainty and, 16–20, 16f, 17f, 18t, 18t, 274, 276f; yield spread measuring, 130–32, 131f

risk-adjusted costs, 79
risk-adjusted discount rates, 139
risk-adjusted internal rate of return (rIRR), 106, 108, 108f
risk-adjusted revenues, 79
risk-neutral probabilities, 238
risk premium: cost of capital and, 154, 166–70, 172; in present value relations, 57–58, 58f, 59t; as term, 57, 154; yield spread and, 131–32, 131f
Risk Theory Society, 175
rNPV. See risk-adjusted net present value
Roche, 7. See also Genentech
Rockefeller University, 350
Rodin Therapeutics, 285
ROE. See return on equity
ROL. See return on investment
Roin, Ben, 270
Romer, Paul, 343
root nodes, in decision trees, 216, 220, 222–23, 224f, 234
Ross, Stephen, 235
royalties: costs of payment of, 79; drug development, 31, 36; revenue effects of, 80; Royalty Pharma investment in, 299, 300, 349–54; securitization with, 305–6; as term, 31; venture philanthropy and, 296–300
Royalty Pharma: bonds issued by, 113, 351; case study of, 349–54; CFF royalty rights sold to, 299, 300
Rubinstein, Mark, 235
safety, 180, 182, 193f
sales: biotech valuation estimating future, 287–92; cost of, 79, 105–6, 107f, 293–94, 345, 345t; net, 104, 104f; peak, 80. See also operating revenues sales and marketing (S&M) costs, 79, 105–6, 107f, 293–94, 345, 345t sales curve, 80
sales representatives, 2
salvage value, 89
sample paths, 246, 246f, 246t
Sandoz, 44
S&P 500, 15, 15f, 25f, 158, 167, 170. See also Standard & Poor’s
Sanoﬁ, 4
scale: internal rate of return ignoring, 95, 96t; payback period ignoring, 94; proﬁtability index ignoring, 93–94
Scheller, Richard, 186
Scholes, Myron, 235
scientific risk, 226, 231–34, 232f–34f, 238, 290, 291t
Scleroderma Research Foundation, 284
SE (standard error), 248, 250t
seasoned equity offerings (SEOs), 138
secondary market, 139
secondary-market dealers, 118
securities: asset-backed, 114, 115f–16f, 305–6; ﬁxed-income (see bonds; ﬁxed-income securities); mortgage-backed (see mortgage-backed securities); pass-through, 305; risk/reward trade-off for, 14–16, 15f, 25f; as term, 14; U.S. federal agency, 114, 115f–16f; U.S. Treasury (see U.S. Treasury securities); venture capital in exchange for, 280, 282
seed investors, 275, 280
selection bias, 189, 191–92
senior tranche, 304, 305f, 307–9, 308t, 309f, 314–15, 315t; super, 309, 315
SEOs (seasoned equity offerings), 138
Shanghai Stock Exchange, 139
Sharpe, Eli, 140n1
Sharpe, William F., 166–67
Sharpe ratio, 15–16, 158, 320–21
Shick, Rob, 6f
Shkreli, Martin, 343, 344
side effects, 13, 32–33
single-arm clinical trials, 188
single-blinded trials, 189–90
single-payer system, 332
skewness, 157
Sling Therapeutics, 285
Small Business Administration, 114
Small Business Technology Transfer (STTR) program, 32
small capitalization stocks, 58, 59t
small pharma, 7
Sovaldi (sofosbuvir), 284, 289, 327–28, 330, 331–34, 332t, 335
Spark Therapeutics, 337–38
special purpose acquisition company (SPAC), 138–39
special purpose vehicles (SPVs), 303–8, 307f, 311–14, 316, 318
specialty pharma, 7
speculative therapeutic development, 209
Spinal Muscular Atrophy (SMA) Foundation, 297
spot interest rate, 119–23, 124t
stakeholders: ﬁxed-income market, 116, 118, 118f; therapeutic development, 2, 2f, 38f
standard deviation, 15, 58, 157, 162–63
standard error (SE), 248, 250t
standardization, 195
standardized difference, 199
Standard & Poor’s (S&P), 128, 128t. See also S&P 500
Stanford University, 186, 270
start-ups: biotech, 7, 30–31, 273, 284–86; life cycle of, 276, 277f
probability of success of, 273, 273f; raising capital for, 284–86; as term, 7; venture capital for, 30–31, 273, 275–76, 277f, 284–86 (see also venture capital)

state government bonds, 114 statistically independent projects, 21 statistical significance level, 195–96, 200f statistical size, 192–200, 196f, 197f, 200f sterile injectable drugs, 339, 339t stock markets: overview of, 138–39; initial public offerings on, 138–39, 273, 276, 279, 282, 350; pharma and biotech indexes, 7–8, 8f; and biotech indexes, 7–8, 8f, 273, 276, 279, 282, 350; pharma companies; biotechnology companies; pharmaceutical companies; Monte Carlo simulation for (see Monte Carlo simulation); preclinical stage, 6, 142; probability of success in, 1, 11, 290, 291t (see also under clinical trials); profits from (see profits); real options analysis for (see real options analysis); research for, 179–83, 180f (see also research and development); speculative, 209; stakeholders in, 2, 2f, 38f; systems perspective on, 27–46; as term, 7. See also drug development; medical device development Therapeutics for Rare and Neglected Diseases, 267 Thermo Fisher Scientific, 214 Third Rock Ventures, 319 time horizon, investment, 294, 297, 299, 300 time lines: for annuity, 64f; of cash flows, 49, 50f; in DCF analysis, 100, 101f; decision trees vs., 216, 217f; defined, 49; for discount rate, 52–53; for drug development, 180f; of patents, 29, 29f; for perpetuity, 60f; as term, 49 time steps, in recombining binomial trees, 228, 230 time value of money, 48–51, 50f Tizona Therapeutics, 284 TOBI (tobramycin), 299 top-down forecasting, 100 total addressable market (TAM), 102 total costs, DCF analysis of, 106, 107f toxicityology, 32 trade secrets, 344 trading volume and, 139 tranches, 304–5, 305f, 307–9, 308t, 309f, 314–15, 315t, 317, 335–36 transition probabilities, 211 transitional research, 10, 14 Transportation, U.S. Department of, 327 Treasuries. See U.S. Treasury bills; U.S. Treasury securities treatable rates, 102 treatment duration, 290 treatment effect, 194–95, 198–99, 201 trial master files, 185 true positives, 193, 199 TTO (technology transfer office), 29
Tufts Center for the Study of Drug Development (Tufts CSDD), 254, 291
21st Century Cures Act of 2016, 183, 209
23andMe, 186
two-tailed tests, 194
Type 1 errors, 193–97, 193f, 196f–97f, 201, 205–9. See also false positives
Type 2 errors, 193–97, 193f, 196f–97f, 201, 205–9. See also false negatives
Uber, 72
UBS Optimus Foundation, 319
UCB, 285
Ulam, Stanislaw, 244–45
Uncertainty: business opportunity evaluation of, 77; defined, 17; Monte Carlo simulation modeling, 245; regulatory, 186–87; risk and, 16–20, 16f, 17f, 18, 57–58; as term, 17; venture capital and, 18, 18t, 274
“Uncertainty and the Welfare Economics of Medical Care” (Arrow), 347
underlying assets, 226
underwriting, 37
UnitedHealth Group, 42
United States Adopted Names (USAN) Council, 4n3
universities. See academia; specific universities
University of California San Francisco, 284
University of Chicago, 65
University of Pennsylvania, 175
University of Southern California, 57
up-front payments, 80
U.S. federal agency securities, 114, 115f–16f
U.S. Federal Reserve, 118–19, 311
U.S. Food and Drug Administration. See Food and Drug Administration, U.S.
U.S. Patent and Trademark Office, 29
U.S. Treasury bills, 15, 15f, 25f, 58, 59f, 158. See also U.S. Treasury securities
U.S. Treasury securities, 114–16, 115f–16f, 121, 127, 127f, 158. See also U.S. Treasury bills utility companies, comparison to, 341–43
vaccine development, 41, 208, 262, 321–22, 342–43
Valeant Pharmaceuticals, 343
Valley of Death, 10–11, 21–24, 321
valuation: of biotech companies, 286–94, 296; of bonds (see bond valuation); of business opportunities (see business opportunity evaluation); post-money, 280, 281f; pre-money, 279–80, 281f; present value (see present value relations); of rare disease therapies, 295; of stocks (see stock valuation)
value: book value per share, 144–48, 145f; critical, 195–96; expected, 16; face or par, 119; future, 56; intrinsic, 82; present (see net present value; present value relations); pricing vs., 72–73, 326–28; salvage; 89; shareholder, 83–84, 328; time value of money, 48–51, 50f
value of a statistical life (VSL), 327
variables: binary random, 78; dependent, 258; flow, 86–87, 86f (see also cash flows); indicator random, 262; latent, 262–64; left-hand-side, 258; random (see random variables); right-hand-side, 258; stock, 86–87, 86f
variance, 157, 162, 163–64, 264
venture capital (VC), 272–302; overview of, 272–79, 296–97; biotech start-up funding with, 30–31, 273, 275–76, 277f, 284–86; biotech valuation and, 286–94, 296; capital commitments by, 279–80, 281f; covenants on firm governance with, 282; defined/described, 273–79; drug development funding, 30–31, 33, 272–302; early stage, 276, 277f; entry and exit statistics for, 273f; global funding by, 8, 10–11, 10f, 10t; internal rate of return for, 19f, 94, 96; later stage, 276, 277f; legal structure of VC fund, 276, 277f; life cycle of VC fund, 276, 278f, 279; medical device development funding, 187; for rare disease therapies, 295; registration rights for, 282; return on investment for, 287; risk-uncertainty response of, 18, 18t, 274, 276f; securities for investment of, 280, 282; as term, 8, 30; term sheets for, 273, 279–83, 283t; U.S. industry for, 273–74, 275f; venture philanthropy and, 273, 296–97, 298–300
venture philanthropy, 273, 296–97, 298–300
Vertex Pharmaceuticals, 297–300
veto rights, 282
Vigil Therapeutics, 285
volatility, 157, 234
von Neumann, John, 244–45
voretigene neparvovec (Luxturna), 337–38
Vosaroxin, 352–53
VSL (value of a statistical life), 327
Walgreens, 41
wealth: nominal, 67–68; real, 67
weighted-average cost of capital (WACC), 171–72
Werewolf Therapeutics, 284
Whitehead Institute for Biomedical Research, 4, 284
wholesalers, 41
Williams, Heidi, 270
wisdom of crowds, 260
working capital, 89, 106, 108
working memory, 330
World Health Organization (WHO), 343; International Nonproprietary Names (INN) Programme, 4n3
yield curves, 127, 127f
yield spread, 130–32, 131f
yield to maturity, 124t
yield to maturity, 125–27, 126f–27f, 129f
YouTube, 258
Yunus, Muhammad, 297
Zafgen, 285
Zaltrap (aflibercept), 338–39
zero-coupon bonds, 119–21, 124, 124t
Z-statistic or Z-score, 195–96, 196f–97f, 199