10

© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

CONTENTS

Acknowledgments  ix

Abbreviations  xi
Introduction
Ethics and Economics of Longevity: Is It Right to Study Aging?
Why Do We Age?

Studying the Genetics of Human Longevity: Centenarians and
What We Can Learn from Them

Long-Lived Species and Longevity Mutants of Model Organisms

What Is Aging (and How Can We Measure It)? Biomarkers
of Aging and “Quality of Life” Metrics

Insulin Signaling, FOXO Targets, and the Regulation
of Longevity and Reproduction

Dietary Restriction: Nutrient and Genetic Regulation
of Longevity and Reproduction

Taking out the Trash: Molecular Homeostasis in
the Regulation of Longevity

Powering Longevity: Mitochondria’s Role
in Aging and Longevity

Dracula and Wolverine: How DNA Repair and
Cell Replacement Can Help Us Live Long

For general queries, contact info@press.princeton.edu

15

37

S1

71

87

107

137

152

173



11

12

13

14

15

16

17

© Copyright, Princeton University Press. No part of this book may be

distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher.
vii CONTENTS

Use It or Lose It: Reproductive Aging, the Germline,
and Longevity

Sex, Flies (and Worms), and Videotape: The Battle of the Sexes
I See Dead Flies: Neurons and Sensory Regulation of Longevity

Don’t You Forget about Me: What We Are Learning about
Cognitive Aging and How to Slow It

Lamarck’s Revenge? Transgenerational Inheritance,
the “Molecular Clock,” and the Epigenetic Regulation
of Longevity

Gut Feelings: The Microbiome and Aging

Long Life in a Pill? The Future of Longevity: From Bench
to Biotech

Notes 349
Index 417

For general queries, contact info@press.princeton.edu

193

214

237

250

279

303

319



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

Introduction

What doesn’t fit is often what is getting at something exciting!

—DR. EVELYN WITKIN, AMERICAN GENETICIST
WHO TURNED 100 ON MARCH 9, 2021

IN THE LATE 19908, I was a graduate student in the lab of Jim Spudich, in the
Department of Biochemistry at Stanford University. I studied how the motor
protein myosin—the molecular motor that powers our muscles and makes
our hearts pump—works, by swapping parts from myosins of “slow” and “fast”
organisms, and then testing how those swaps affected its activity. I loved that
protein; understanding how a sequence of amino acids arranged the right way
could take energy and turn it into movement by swinging its “lever arm” a
small distance was one of the most interesting questions I could imagine at the
time. But when I explained my research to people at parties who asked me,
“What do you do?” they would nod and politely smile, then ask when I would
graduate. That would be the end of the discussion.

That all changed a few months later after  heard a fantastic talk by Dr. Cyn-
thia Kenyon, a professor from the University of California, San Francisco
(UCSF). Cynthia is a lively, engaging speaker and she told the audience about
her lab’s work on aging and longevity in a small worm, the nematode Cae-
norhabditis elegans. Her lab had found that changing a single gene could double
the lifespan of these animals,' and she showed movies of the mutant worms
crawling around at an age when normal worms were already decrepit and
dying. This was an “Aha!” moment that made it clear that she wasn't talking
about extending the end oflife, but rather the youthful, healthy part oflife, an
outcome that we would all like to experience. That gene, called daf-2, turned
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2 INTRODUCTION

out to encode an insulin/IGF-1 receptor, meaning it could matter for people,
too, since our bodies also have insulin. After hearing her talk, I knew what I
wanted to do: find out how those mutant worms were so healthy. Soon after,
I asked Cynthia if I could come to her lab for my postdoctoral research,” and
she agreed. At that point, when people asked me what I was going to do, there
was a noticeable difference. It turns out that almost everyone is interested in
aging research, and everyone has an opinion about it. It quickly became obvi-
ous that one’s likelihood of supporting the idea of aging research is generally
correlated with one’s age, and I got several exhortations to “work faster!”

I decided to write this book after developing a class at Princeton, “Molecu-
lar Mechanisms of Longevity: The Genetics, Genomics, and Cell Biology of
Aging,” to teach students about my research field. While preparing for that
class, I realized that we (the royal We, being researchers in the field of aging
and longevity) have made many molecular insights in the past two decades
that would be good to convey to the general public. While the popular science
market for longevity books is saturated—no one needs another celebrity’s
viewpoint on aging or another diet book, and several excellent introductory
books already exist—at least a few people might want to have a molecular
explanation of the exciting work that has been done in this arena. As I will
explain, we have found outa LOT in the past two decades about how longevity
is regulated, which can give us clues about how we might slow aging. We now
have a better grasp of the genetic pathways and cellular processes that com-
municate from one cell to another how to tune the rate of aging, and we also
better understand the reasons that longevity is regulated at all. These insights
have then led to ideas about how to slow age-related decline, and we have some
good candidates for those medicines now. Some of this excitement has re-
cently been turned into serious biotech development, with many companies
focused on longevity and aging springing up in the past few years.

I have been lucky enough to be right in the middle of things since 2000,
since new genes that control longevity had just been revealed. The millennium
was a real turning point: after bacteria and yeast, C. elegans was the first mul-
ticellular organism whose genome was sequenced, and Drosophila quickly
followed. Those large-scale projects were a direct benefit of the approaches
developed for the Human Genome Project and allowed biologists to carry out
experiments that had not been previously possible on a genome-wide scale.
RNA interference (RNAi), a mechanism that causes the messenger RNA
(mRNA) of a gene of interest to be degraded, was first described in detail by
Craig Mello and Andrew Fire in C. elegans in 1998,® and it was quickly
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employed by the worm field to test all of the genes in the genome for every char-
acteristic of interest—including aging—through new tools to easily knock
down gene expression levels.* This ability to rapidly test many genes in worms
quickly led to an explosion of functional genomics (that is, testing of all genes
ina genome for a particular activity), and the field has been expanding in many
directions ever since.

I got into the aging field because I was fascinated with the question of how
longevity and aging are controlled genetically and biochemically. The tools
that were newly available at the time, genomic expression microarrays and
RNAj, allowed a previously unimaginable ability to probe long-lived mutants
(that is, animals with changes to their DNA that affect a gene) and to learn
what was going on inside them. The existence of complete genome sequences
for all of these organisms also ushered in new genomic approaches, such as DNA
microarrays and later next-generation sequencing, allowing the analysis of
every gene simultaneously and giving us unprecedented insights into the inner
workings of cells as they age. The amount of data available to researchers has
been exploding ever since. Genetic and genomic methods have led the way in
longevity research, and large-scale studies of metabolism have added to our
understanding. Meanwhile, new molecular tools, particularly the gene-editing
tool CRISPR and stem-cell approaches, offer the exciting possibility that we
might even modify ourselves to achieve better health.®

Because of the nature of the question—understanding how aging works—
the field is extremely broad. One can attack the aging question from many
different viewpoints: demography, population genetics, evolution, model-
system genetics, molecular biology, cell biology, nutrition science, and phar-
macology. All of these perspectives are helpful in understanding how aging
works and whether we can slow it down. While I will tell you about my lab’s work
(and I'll try not to only talk about our work), I will also explain the latest work
throughout the field. It’s a fast-moving field, with new discoveries all the time,
and inevitably a few things will be missed, but I'll try to give you a good un-
derstanding of not only what we know but how we know it—the work that was
done to figure things out.

What you will not find in this book are descriptions of what I or other
scientists eat, or weigh, or how often we exercise—all information that has
somehow become the norm for pop-sci books and articles on aging and the
researchers who work on aging. As a scientist, I can’t stand reading this
information—those are all “n of 1” experiments whose results we don’t yet
know, so I won’t report them—it’s just bad science. Additionally, I've noticed
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an 0odd cult-of-personality air about some aging books, and those cults usually
leave out the contributions of female scientists. And I'm not a longevity evan-
gelist; I'm not trying to sell you something, no supplements or drugs or diet
plans. I just want to tell you what we know about aging and how we came to
these conclusions.

Finally, Iwon’t be using the popular phrase, . . ., at least in worms and flies,”
which seems to pepper most books on aging. I am an unapologetic model-
system advocate, for one simple reason: almost everything we know at the
molecular level about the underlying mechanisms controlling (regulating)
longevity is because of the work that was done first in invertebrate model sys-
tems, and then tested later in higher organisms (mammals like mice), a fact that
is often overlooked and underreported. Beyond that, the tools that allow us to
do the work, all the way up through human cells, have been identified, char-
acterized, and tested in these simpler model systems before being adapted for
use in mammals. (The most powerful yet may be CRISPR, which was first
discovered in bacteria.) Without model systems, our understanding of longev-
ity regulation would be very poor indeed. For that reason, I won’t just be talk-
ing about studies of humans with some verification in mice, but I'll try to
describe how we really learned about the molecular goings-on inside all of our
cells, which relies on studies in small invertebrate systems. For the Sarah Palins
of the world, who do not acknowledge the contributions of fundamental
(“basic”) research to medicine,* this will be a shock, but for the rest of you
I'hope it will give a fairer insight into how scientists actually learn how things
work, and how we might apply what we’ve learned to help people live better,
longer—as Palin would say, I kid you not.

In this book, I hope to let you know what we’ve discovered about longevity
in recent years. But before diving into the science, I'll discuss why we should
study aging—it’s not always immediately obvious, but understanding aging
could help our whole society in the long run, even economically (chap-
ter 1)—longevity is not just for billionaires. There are many evolutionary
theories about why we age (chapter 2), but molecular techniques are now help-
ing us better understand this question and adjust our theories accordingly. In

*“You've heard about some of these pet projects, they really don’t make a whole lot of sense

and sometimes these dollars go to projects that have little or nothing to do with the public good.
Things like fruit fly research in Paris, France. I kid you not” (Sarah Palin quoted in Adam Ruth-
erford, “Palin and the Fruit Fly,” Guardian, October 27, 2008, https://www.theguardian.com
/commentisfree/2008/oct/27/ sarahpalin-genetics—fruit-ﬂies).

For general queries, contact info@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

INTRODUCTION S

chapter 3, we'll start to see how modern genetic and genomic techniques can
reveal the secrets of centenarians’ long lifespans; but to experimentally test
them we need to use model organisms—that is, well-studied animals we can
grow in the lab and genetically manipulate so that we can test hypotheses
(chapter 4). Of course, in order to study aging, we have to establish some defi-
nitions of what it means, and how we can measure these changes with age
(chapter ). In later chapters, I'll describe what we currently know about lon-
gevity pathways (chapters 6-10) and interventions in detail, so that you'll
recognize the molecules that are being targeted for clinical treatment (chap-
ter 17). Reproduction and mating are intimately linked with longevity, as I'll
describe in chapters 11 and 12. What we can sense can also influence howlong
we live (chapter 13), while aging can affect what we can sense and our cogni-
tive function (chapter 14). Some of the newest thoughts in the field concern
how we might inherit factors from our ancestors that affect aging (chapter 15),
and that what we eat and the microbes that inhabit our gut might also in-
fluence aging (chapter 16). Finally, I'll discuss the current state of longevity
biotech, and how we might go about finding treatments for age-related decline
(chapter 17).

We are right in the middle of the business of understanding the processes
that regulate aging, and it is an exciting time because we are still in that era of
discovery. I don’t want to imply that we know all of the answers at this time.
Instead, what I hope to convey is what we do know and, more importantly,
how we know it, and what we might be able to do with that wealth of data. With
this information at our disposal, we should all be able to make wise decisions
about how to manage our own longevity.
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