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 Introduction

What  doesn’t fit is often what is getting at something exciting!

— dr . ev e ly n w itk in, a m er ica n ge ne ticist  
w ho tu r ne d 100 on m a rch 9, 2021

in the late 1990s, I was a gradu ate student in the lab of Jim Spudich, in the 
Department of Biochemistry at Stanford University. I studied how the motor 
protein myosin— the molecular motor that powers our muscles and makes 
our hearts pump— works, by swapping parts from myosins of “slow” and “fast” 
organisms, and then testing how  those swaps affected its activity. I loved that 
protein; understanding how a sequence of amino acids arranged the right way 
could take energy and turn it into movement by swinging its “lever arm” a 
small distance was one of the most in ter est ing questions I could imagine at the 
time. But when I explained my research to  people at parties who asked me, 
“What do you do?” they would nod and politely smile, then ask when I would 
gradu ate. That would be the end of the discussion.

That all changed a few months  later  after I heard a fantastic talk by Dr. Cyn-
thia Kenyon, a professor from the University of California, San Francisco 
(UCSF). Cynthia is a lively, engaging speaker and she told the audience about 
her lab’s work on aging and longevity in a small worm, the nematode Cae-
norhabditis elegans. Her lab had found that changing a single gene could double 
the lifespan of  these animals,1 and she showed movies of the mutant worms 
crawling around at an age when normal worms  were already decrepit and 
 dying. This was an “Aha!” moment that made it clear that she  wasn’t talking 
about extending the end of life, but rather the youthful, healthy part of life, an 
outcome that we would all like to experience. That gene, called daf-2, turned 
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out to encode an insulin/IGF-1 receptor, meaning it could  matter for  people, 
too, since our bodies also have insulin.  After hearing her talk, I knew what I 
wanted to do: find out how  those mutant worms  were so healthy. Soon  after, 
I asked Cynthia if I could come to her lab for my postdoctoral research,2 and 
she agreed. At that point, when  people asked me what I was  going to do,  there 
was a noticeable difference. It turns out that almost every one is interested in 
aging research, and every one has an opinion about it. It quickly became obvi-
ous that one’s likelihood of supporting the idea of aging research is generally 
correlated with one’s age, and I got several exhortations to “work faster!”

I de cided to write this book  after developing a class at Prince ton, “Molecu-
lar Mechanisms of Longevity: The Ge ne tics, Genomics, and Cell Biology of 
Aging,” to teach students about my research field. While preparing for that 
class, I realized that we (the royal We, being researchers in the field of aging 
and longevity) have made many molecular insights in the past two de cades 
that would be good to convey to the general public. While the popu lar science 
market for longevity books is saturated—no one needs another celebrity’s 
viewpoint on aging or another diet book, and several excellent introductory 
books already exist—at least a few  people might want to have a molecular 
explanation of the exciting work that has been done in this arena. As I  will 
explain, we have found out a LOT in the past two de cades about how longevity 
is regulated, which can give us clues about how we might slow aging. We now 
have a better grasp of the ge ne tic pathways and cellular pro cesses that com-
municate from one cell to another how to tune the rate of aging, and we also 
better understand the reasons that longevity is regulated at all.  These insights 
have then led to ideas about how to slow age- related decline, and we have some 
good candidates for  those medicines now. Some of this excitement has re-
cently been turned into serious biotech development, with many companies 
focused on longevity and aging springing up in the past few years.

I have been lucky enough to be right in the  middle of  things since 2000, 
since new genes that control longevity had just been revealed. The millennium 
was a real turning point:  after bacteria and yeast, C. elegans was the first mul-
ticellular organism whose genome was sequenced, and Drosophila quickly 
followed.  Those large- scale proj ects  were a direct benefit of the approaches 
developed for the  Human Genome Proj ect and allowed biologists to carry out 
experiments that had not been previously pos si ble on a genome- wide scale. 
RNA interference (RNAi), a mechanism that  causes the messenger RNA 
(mRNA) of a gene of interest to be degraded, was first described in detail by 
Craig Mello and Andrew Fire in C. elegans in 1998,3 and it was quickly 
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employed by the worm field to test all of the genes in the genome for  every char-
acteristic of interest— including aging— through new tools to easily knock 
down gene expression levels.4 This ability to rapidly test many genes in worms 
quickly led to an explosion of functional genomics (that is, testing of all genes 
in a genome for a par tic u lar activity), and the field has been expanding in many 
directions ever since.

I got into the aging field  because I was fascinated with the question of how 
longevity and aging are controlled genet ically and biochemically. The tools 
that  were newly available at the time, genomic expression microarrays and 
RNAi, allowed a previously unimaginable ability to probe long- lived mutants 
(that is, animals with changes to their DNA that affect a gene) and to learn 
what was  going on inside them. The existence of complete genome sequences 
for all of  these organisms also ushered in new genomic approaches, such as DNA 
microarrays and  later next- generation sequencing, allowing the analy sis of 
 every gene si mul ta neously and giving us unpre ce dented insights into the inner 
workings of cells as they age. The amount of data available to researchers has 
been exploding ever since. Ge ne tic and genomic methods have led the way in 
longevity research, and large- scale studies of metabolism have added to our 
understanding. Meanwhile, new molecular tools, particularly the gene- editing 
tool CRISPR and stem- cell approaches, offer the exciting possibility that we 
might even modify ourselves to achieve better health.5

 Because of the nature of the question— understanding how aging works— 
the field is extremely broad. One can attack the aging question from many 
diff er ent viewpoints: demography, population ge ne tics, evolution, model- 
system ge ne tics, molecular biology, cell biology, nutrition science, and phar-
macology. All of  these perspectives are helpful in understanding how aging 
works and  whether we can slow it down. While I  will tell you about my lab’s work 
(and I’ll try not to only talk about our work), I  will also explain the latest work 
throughout the field. It’s a fast- moving field, with new discoveries all the time, 
and inevitably a few  things  will be missed, but I’ll try to give you a good un-
derstanding of not only what we know but how we know it— the work that was 
done to figure  things out.

What you  will not find in this book are descriptions of what I or other 
scientists eat, or weigh, or how often we exercise— all information that has 
somehow become the norm for pop- sci books and articles on aging and the 
researchers who work on aging. As a scientist, I  can’t stand reading this 
information— those are all “n of 1” experiments whose results we  don’t yet 
know, so I  won’t report them— it’s just bad science. Additionally, I’ve noticed 
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an odd cult- of- personality air about some aging books, and  those cults usually 
leave out the contributions of female scientists. And I’m not a longevity evan-
gelist; I’m not trying to sell you something, no supplements or drugs or diet 
plans. I just want to tell you what we know about aging and how we came to 
 these conclusions.

Fi nally, I  won’t be using the popu lar phrase, “. . . , at least in worms and flies,” 
which seems to pepper most books on aging. I am an unapologetic model- 
system advocate, for one  simple reason: almost every thing we know at the 
molecular level about the under lying mechanisms controlling (regulating) 
longevity is  because of the work that was done first in invertebrate model sys-
tems, and then tested  later in higher organisms (mammals like mice), a fact that 
is often overlooked and underreported. Beyond that, the tools that allow us to 
do the work, all the way up through  human cells, have been identified, char-
acterized, and tested in  these simpler model systems before being adapted for 
use in mammals. (The most power ful yet may be CRISPR, which was first 
discovered in bacteria.) Without model systems, our understanding of longev-
ity regulation would be very poor indeed. For that reason, I  won’t just be talk-
ing about studies of  humans with some verification in mice, but I’ll try to 
describe how we  really learned about the molecular goings-on inside all of our 
cells, which relies on studies in small invertebrate systems. For the Sarah Palins 
of the world, who do not acknowledge the contributions of fundamental 
(“basic”) research to medicine,* this  will be a shock, but for the rest of you 
I hope it  will give a fairer insight into how scientists actually learn how  things 
work, and how we might apply what  we’ve learned to help  people live better, 
longer—as Palin would say, I kid you not.

In this book, I hope to let you know what  we’ve discovered about longevity 
in recent years. But before diving into the science, I’ll discuss why we should 
study aging— it’s not always immediately obvious, but understanding aging 
could help our  whole society in the long run, even eco nom ically (chap-
ter 1)— longevity is not just for billionaires.  There are many evolutionary 
theories about why we age (chapter 2), but molecular techniques are now help-
ing us better understand this question and adjust our theories accordingly. In 

* “ You’ve heard about some of  these pet proj ects, they  really  don’t make a  whole lot of sense 
and sometimes  these dollars go to proj ects that have  little or nothing to do with the public good. 
 Things like fruit fly research in Paris, France. I kid you not” (Sarah Palin quoted in Adam Ruth-
erford, “Palin and the Fruit Fly,” Guardian, October 27, 2008, https:// www . theguardian . com 
/ commentisfree / 2008 / oct / 27 / sarahpalin - genetics - fruit - flies).
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chapter 3,  we’ll start to see how modern ge ne tic and genomic techniques can 
reveal the secrets of centenarians’ long lifespans; but to experimentally test 
them we need to use model organisms— that is, well- studied animals we can 
grow in the lab and genet ically manipulate so that we can test hypotheses 
(chapter 4). Of course, in order to study aging, we have to establish some defi-
nitions of what it means, and how we can mea sure  these changes with age 
(chapter 5). In  later chapters, I’ll describe what we currently know about lon-
gevity pathways (chapters 6–10) and interventions in detail, so that you’ll 
recognize the molecules that are being targeted for clinical treatment (chap-
ter 17). Reproduction and mating are intimately linked with longevity, as I’ll 
describe in chapters 11 and 12. What we can sense can also influence how long 
we live (chapter 13), while aging can affect what we can sense and our cogni-
tive function (chapter 14). Some of the newest thoughts in the field concern 
how we might inherit  factors from our ancestors that affect aging (chapter 15), 
and that what we eat and the microbes that inhabit our gut might also in-
fluence aging (chapter 16). Fi nally, I’ll discuss the current state of longevity 
biotech, and how we might go about finding treatments for age- related decline 
(chapter 17).

We are right in the  middle of the business of understanding the pro cesses 
that regulate aging, and it is an exciting time  because we are still in that era of 
discovery. I  don’t want to imply that we know all of the answers at this time. 
Instead, what I hope to convey is what we do know and, more importantly, 
how we know it, and what we might be able to do with that wealth of data. With 
this information at our disposal, we should all be able to make wise decisions 
about how to manage our own longevity.
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