CONTENTS

Acknowledgments ix
Abbreviations xi

Introduction 1

1 Ethics and Economics of Longevity: Is It Right to Study Aging? 6

2 Why Do We Age? 15

3 Studying the Genetics of Human Longevity: Centenarians and What We Can Learn from Them 37

4 Long-Lived Species and Longevity Mutants of Model Organisms 51

5 What Is Aging (and How Can We Measure It)? Biomarkers of Aging and “Quality of Life” Metrics 71

6 Insulin Signaling, FOXO Targets, and the Regulation of Longevity and Reproduction 87

7 Dietary Restriction: Nutrient and Genetic Regulation of Longevity and Reproduction 107

8 Taking out the Trash: Molecular Homeostasis in the Regulation of Longevity 137

9 Powering Longevity: Mitochondria’s Role in Aging and Longevity 152

11 Use It or Lose It: Reproductive Aging, the Germline, and Longevity 193
12 Sex, Flies (and Worms), and Videotape: The Battle of the Sexes 214
13 I See Dead Flies: Neurons and Sensory Regulation of Longevity 237
14 Don’t You Forget about Me: What We Are Learning about Cognitive Aging and How to Slow It 250
15 Lamarck’s Revenge? Transgenerational Inheritance, the “Molecular Clock,” and the Epigenetic Regulation of Longevity 279
16 Gut Feelings: The Microbiome and Aging 303
17 Long Life in a Pill? The Future of Longevity: From Bench to Biotech 319

Notes 349
Index 417
Introduction

What doesn’t fit is often what is getting at something exciting!

—DR. EVELYN WITKIN, AMERICAN GENETICIST
WHO TURNED 100 ON MARCH 9, 2021

In the late 1990s, I was a graduate student in the lab of Jim Spudich, in the Department of Biochemistry at Stanford University. I studied how the motor protein myosin—the molecular motor that powers our muscles and makes our hearts pump—works, by swapping parts from myosins of “slow” and “fast” organisms, and then testing how those swaps affected its activity. I loved that protein; understanding how a sequence of amino acids arranged the right way could take energy and turn it into movement by swinging its “lever arm” a small distance was one of the most interesting questions I could imagine at the time. But when I explained my research to people at parties who asked me, “What do you do?” they would nod and politely smile, then ask when I would graduate. That would be the end of the discussion.

That all changed a few months later after I heard a fantastic talk by Dr. Cynthia Kenyon, a professor from the University of California, San Francisco (UCSF). Cynthia is a lively, engaging speaker and she told the audience about her lab’s work on aging and longevity in a small worm, the nematode Caenorhabditis elegans. Her lab had found that changing a single gene could double the lifespan of these animals, and she showed movies of the mutant worms crawling around at an age when normal worms were already decrepit and dying. This was an “Aha!” moment that made it clear that she wasn’t talking about extending the end of life, but rather the youthful, healthy part of life, an outcome that we would all like to experience. That gene, called daf-2, turned
out to encode an insulin/IGF-1 receptor, meaning it could matter for people, too, since our bodies also have insulin. After hearing her talk, I knew what I wanted to do: find out how those mutant worms were so healthy. Soon after, I asked Cynthia if I could come to her lab for my postdoctoral research, and she agreed. At that point, when people asked me what I was going to do, there was a noticeable difference. It turns out that almost everyone is interested in aging research, and everyone has an opinion about it. It quickly became obvious that one's likelihood of supporting the idea of aging research is generally correlated with one's age, and I got several exhortations to “work faster!”

I decided to write this book after developing a class at Princeton, “Molecular Mechanisms of Longevity: The Genetics, Genomics, and Cell Biology of Aging,” to teach students about my research field. While preparing for that class, I realized that we (the royal We, being researchers in the field of aging and longevity) have made many molecular insights in the past two decades that would be good to convey to the general public. While the popular science market for longevity books is saturated—no one needs another celebrity’s viewpoint on aging or another diet book, and several excellent introductory books already exist—at least a few people might want to have a molecular explanation of the exciting work that has been done in this arena. As I will explain, we have found out a LOT in the past two decades about how longevity is regulated, which can give us clues about how we might slow aging. We now have a better grasp of the genetic pathways and cellular processes that communicate from one cell to another how to tune the rate of aging, and we also better understand the reasons that longevity is regulated at all. These insights have then led to ideas about how to slow age-related decline, and we have some good candidates for those medicines now. Some of this excitement has recently been turned into serious biotech development, with many companies focused on longevity and aging springing up in the past few years.

I have been lucky enough to be right in the middle of things since 2000, since new genes that control longevity had just been revealed. The millennium was a real turning point: after bacteria and yeast, C. elegans was the first multicellular organism whose genome was sequenced, and Drosophila quickly followed. Those large-scale projects were a direct benefit of the approaches developed for the Human Genome Project and allowed biologists to carry out experiments that had not been previously possible on a genome-wide scale. RNA interference (RNAi), a mechanism that causes the messenger RNA (mRNA) of a gene of interest to be degraded, was first described in detail by Craig Mello and Andrew Fire in C. elegans in 1998, and it was quickly
employed by the worm field to test *all of the genes in the genome* for every characteristic of interest—including aging—through new tools to easily knock down gene expression levels. This ability to rapidly test many genes in worms quickly led to an explosion of functional genomics (that is, testing of all genes in a genome for a particular activity), and the field has been expanding in many directions ever since.

I got into the aging field because I was fascinated with the question of how longevity and aging are controlled genetically and biochemically. The tools that were newly available at the time, genomic expression microarrays and RNAi, allowed a previously unimaginable ability to probe long-lived mutants (that is, animals with changes to their DNA that affect a gene) and to learn what was going on inside them. The existence of complete genome sequences for all of these organisms also ushered in new genomic approaches, such as DNA microarrays and later next-generation sequencing, allowing the analysis of every gene simultaneously and giving us unprecedented insights into the inner workings of cells as they age. The amount of data available to researchers has been exploding ever since. Genetic and genomic methods have led the way in longevity research, and large-scale studies of metabolism have added to our understanding. Meanwhile, new molecular tools, particularly the gene-editing tool CRISPR and stem-cell approaches, offer the exciting possibility that we might even modify ourselves to achieve better health.

Because of the nature of the question—understanding how aging works—the field is extremely broad. One can attack the aging question from many different viewpoints: demography, population genetics, evolution, model-system genetics, molecular biology, cell biology, nutrition science, and pharmacology. All of these perspectives are helpful in understanding how aging works and whether we can slow it down. While I will tell you about my lab’s work (and I’ll try not to *only* talk about our work), I will also explain the latest work throughout the field. It’s a fast-moving field, with new discoveries all the time, and inevitably a few things will be missed, but I’ll try to give you a good understanding of not only what we know but *how* we know it—the work that was done to figure things out.

What you will not find in this book are descriptions of what I or other scientists eat, or weigh, or how often we exercise—all information that has somehow become the norm for pop-sci books and articles on aging and the researchers who work on aging. As a scientist, I can’t stand reading this information—those are all “n of 1” experiments whose results we don’t yet know, so I won’t report them—it’s just bad science. Additionally, I’ve noticed
an odd cult-of-personality air about some aging books, and those cults usually leave out the contributions of female scientists. And I’m not a longevity evangelist; I’m not trying to sell you something, no supplements or drugs or diet plans. I just want to tell you what we know about aging and how we came to these conclusions.

Finally, I won’t be using the popular phrase, “. . . , at least in worms and flies,” which seems to pepper most books on aging. I am an unapologetic model-system advocate, for one simple reason: almost everything we know at the molecular level about the underlying mechanisms controlling (regulating) longevity is because of the work that was done first in invertebrate model systems, and then tested later in higher organisms (mammals like mice), a fact that is often overlooked and underreported. Beyond that, the tools that allow us to do the work, all the way up through human cells, have been identified, characterized, and tested in these simpler model systems before being adapted for use in mammals. (The most powerful yet may be CRISPR, which was first discovered in bacteria.) Without model systems, our understanding of longevity regulation would be very poor indeed. For that reason, I won’t just be talking about studies of humans with some verification in mice, but I’ll try to describe how we really learned about the molecular goings-on inside all of our cells, which relies on studies in small invertebrate systems. For the Sarah Palins of the world, who do not acknowledge the contributions of fundamental (“basic”) research to medicine,* this will be a shock, but for the rest of you I hope it will give a fairer insight into how scientists actually learn how things work, and how we might apply what we’ve learned to help people live better, longer—as Palin would say, I kid you not.

In this book, I hope to let you know what we’ve discovered about longevity in recent years. But before diving into the science, I’ll discuss why we should study aging—it’s not always immediately obvious, but understanding aging could help our whole society in the long run, even economically (chapter 1)—longevity is not just for billionaires. There are many evolutionary theories about why we age (chapter 2), but molecular techniques are now helping us better understand this question and adjust our theories accordingly.

* “You’ve heard about some of these pet projects, they really don’t make a whole lot of sense and sometimes these dollars go to projects that have little or nothing to do with the public good. Things like fruit fly research in Paris, France. I kid you not” (Sarah Palin quoted in Adam Rutherford, “Palin and the Fruit Fly,” Guardian, October 27, 2008, https://www.theguardian.com/commentisfree/2008/oct/27/sarahpalin-genetics-fruit-flies).
chapter 3, we’ll start to see how modern genetic and genomic techniques can reveal the secrets of centenarians’ long lifespans; but to experimentally test them we need to use model organisms—that is, well-studied animals we can grow in the lab and genetically manipulate so that we can test hypotheses (chapter 4). Of course, in order to study aging, we have to establish some definitions of what it means, and how we can measure these changes with age (chapter 5). In later chapters, I’ll describe what we currently know about longevity pathways (chapters 6–10) and interventions in detail, so that you’ll recognize the molecules that are being targeted for clinical treatment (chapter 17). Reproduction and mating are intimately linked with longevity, as I’ll describe in chapters 11 and 12. What we can sense can also influence how long we live (chapter 13), while aging can affect what we can sense and our cognitive function (chapter 14). Some of the newest thoughts in the field concern how we might inherit factors from our ancestors that affect aging (chapter 15), and that what we eat and the microbes that inhabit our gut might also influence aging (chapter 16). Finally, I’ll discuss the current state of longevity biotech, and how we might go about finding treatments for age-related decline (chapter 17).

We are right in the middle of the business of understanding the processes that regulate aging, and it is an exciting time because we are still in that era of discovery. I don’t want to imply that we know all of the answers at this time. Instead, what I hope to convey is what we do know and, more importantly, how we know it, and what we might be able to do with that wealth of data. With this information at our disposal, we should all be able to make wise decisions about how to manage our own longevity.
INDEX

Page number in italics refer to figures.

abortion rights, 9–10
acarbose, 218, 221, 337
acetylcholine, in Alzheimer’s disease, 269
acetylcholine receptors: hearing sense of
 C. elegans and, 249; nicotinic, 44, 46, 54,
 121, 269
acetylcholinesterase inhibitors, 269
ADAR proteins, 150
aducanumab (Aduhelm), 270, 271
African Americans: childhood mortality in,
 10, 273; Covid-19 pandemic and, 7n, 8;
 environmental factors in cognitive aging
 of, 272–74; health care inequality and,
 10; historical trauma suffered by, 282;
 maternal mortality in, 10; men’s decrease
 in life expectancy, 8; shortened telomeres
 in men, 185
age-1, encoding PI3 kinase, 93
age-1 mutants, 80, 88, 89, 90
age-related diseases. See diseases,
 age-related
AGEs (advanced glycation end products),
 75, 78, 85, 143–44
aging: autophagy impairment in, 147; be-
 ginning only in adulthood, 17; beyond
 reproductive span, 30 (see also post-
 reproductive lifespan); cause/effect con-
 fusion with, 99–100; cellular damage in,
 138; circular RNAs and, 150–51; DNA
 damage theory of, 177; early theories of,
 16–21; facial features and, 75–77, 341;
 free radical theory of, 155–56 (see also
 reactive oxygen species); gait and, 74, 77,
 82; as loss of homeostasis, 15; meno-
 pause accelerating rate of, 199–200,
 201–2; meta-analysis of GWAS and,
 48–49; not regulated itself, 213; sex
 differences in, 214–22; as side effect
 of post-reproductive survival, 15, 33,
 106. See also biomarkers of aging;
 longevity; reproductive aging; sex
 differences in aging
aging research: economics of, 12; ethics
 of, 11–12; goal of, 74; lack of focus on
 reproduction in, 196–97; longitudinal
 studies in, 72–73
aging treatments. See therapies,
 life-extending
Aguilaniu, Hugo, 68, 124–25, 135, 135n,
 146, 324
Ahringer, Julie, 64, 95n, 98, 157
AICAR, 323, 327
air pollution, and cognitive aging, 272–73
Akey, Joshua, 48
Albert Lea, Minnesota, 41
Alcedo, Joy, 241
alcohol and drug use, 8–9
ALS (amyotrophic lateral sclerosis): dietary
 restriction and, 120; mitochondrial func-
 tion and, 155; protein aggregation in,
 142, 263; retrotransposon activation
 and, 291; trial of antiretrovirals for, 267
Alzheimer’s disease, 262–74; aducanumab for, 270, 271; air pollution and, 272–73; antiretroviral therapy and, 267; autophagy enhancers for, 322; behavioral map approach to, 86; CETP gene and, 45; current treatments for, 269; failure of drug trials for, 14, 269–72; gene therapy trial for, 335–36; increasing incidence of, 14; infection and, 265; insulin signaling factor in vitro and, 162; microbiota-gut-brain axis and, 314–15; mitochondrial function and, 155; protein aggregation in, 141–42, 292; racial disparities in, 272–74; transposable element activity in, 266–67; women’s higher rate of, 215. See also APOE (apolipoprotein E); dementia amino acids: branched-chain (BCAAs), 115, 116, 120, 134, 170; diets restricted in, 113, 115
Amon, Angelika, 185
AMPK (AMP kinase), 128, 131, 134, 163; FGF21 and, 312; in neuronal signaling, 242, 245
AMPK activators: dietary restriction mimetics, 323; exercise mimetics, 172, 326–27; metformin, 278, 323
amyloid-beta plaques, 142, 262, 263–65, 268, 292
amyloid hypothesis, 262, 264–65, 269
amyloid precursor protein (APP), 264, 267
Ancestry.com, 49
Anderson, Rozalyn, 110–11, 149–50
Andreason, Katrin, 277
androdiocious species, 221, 230, 231
androthestadienone, 233
androstadienone, 233
androstasis, 231
anorexia nervosa, 107
antagonistic pleiotropy theory, 19–20, 44, 257, 325
Antebi, Adam, 133, 149, 171
antibiotics, 304–5
anti-inflammatory drugs, 322
antimicrobial peptides, in daf-2, 97, 99
anti-Mullerian hormone, 197
antioxidant genes, 22, 23. See also catalase; superoxide dismutase (SOD)
antioxidants, 21, 321–22; blunting hormetic stress response, 24; preventing benefits of exercise, 164; pterostilbene as, 171, 342; rescuing premature aging phenotype, 156
antiretroviral therapy, and Alzheimer’s disease, 267
antisense oligonucleotide treatment, 336
apelin receptor J, 340
Apfeld, Javier, 237–38, 241
Aplysia, 143, 258, 259, 292
APOE (apolipoprotein E), 44–45, 47, 267–68, 272; ε4 allele of, 44, 47, 267–68, 272, 315, 335; gene therapy trial with, 335–36; microbiome and, 315; TOMM40 and, 44, 47, 48–49
Arctica islandica, 23, 53
Aricept (donepezil), 269
ART (artificial reproductive technology), 208. See also IVF (in vitro fertilization)
ascarosides, 227, 229
Ashraf, Jasmine, 103
Asian Americans, Alzheimer’s disease in, 273
aspartame, and microbiome, 308
aspirin, 321–22, 323, 337
astrocytes: APOE and, 268; neural stem cells and, 182
ATFS-1, 160, 161, 169
ATP generation, 154–55; cognitive aging and, 277
Austad, Steve, 23, 29, 55
autism spectrum disorder (ASD), and microbiomes, 305, 316, 317
autonomous signaling, neuronal, 247
autophagy, 146–48; daf-2 upregulated genes for, 97, 139; DAF-16 and, 103; in dietary restriction, 133, 145; different types of, 147; enhancers of, 322; of mitochondria, 166–67, 168; mitochondrial dysfunction and, 161–62; nighttime fasting in flies and, 117; therapies to increase, 321; in yeast cells, 69
Avery, Oswald, 287, 300
bacteria: fed to C. elegans, 243, 306; replicative senescence in, 66; small RNAs made by, 300–302. See also microbiomes

Baltimore Longitudinal Study of Aging (BLSA), 72

Bargmann, Cori, 100, 239–40, 241, 299

Barlow, Denise, 279

Barr, Maureen, 231–32

Barzilai, Nir, 343

bats: anal microbiome in, 309; longevity compared to mice, 29, 55–56; ROS theory of aging and, 156–57; species with longer-lived males, 217

Batten's disease, 336

Baudisch, Annette, 31

bees: epigenetic programming in, 293; microbiomes of, 307, 309. See also eusocial animals

Benzer, Seymour, 128

Bert, Paul, 188

beta-amyloid aggregates, 142, 262, 263–65, 268, 292

biogenic amines, 242, 244

biological age: companies selling diagnostics of, 341–42; DNA methylation and, 199–200, 293–95, 342; single-cell transcription and, 295

biological clock, for having children, 193

biomarkers of aging: in C. elegans, 77–79; companies selling information on, 341–42; DNA methylation, 293–95; facial imaging correlated with, 341; in humans, 73, 74–75, 77; microRNAs (miRNAs), 150; nucleolar size, 86, 141; progerin expression, 178; in TAME metformin trial, 343–44; transcriptional heterogeneity, 148

biotech companies, 320, 321; diagnostics sold by, 341–42; plasma factors and, 332–33; resveratrol and, 328, 329; searching for new drugs, 337–38, 339; senolytics and, 333; stem cells and, 334, 337; telomeres and, 334–35

Birney, Ewan, 285

Blackburn, Elizabeth, 184, 185

Blagosklonny, Mikhail, 20–21

blood-borne factors, 188–92, 261–62. See also plasma factors

blood-brain barrier: in cognitive aging, 256, 275; as obstacle to treatments, 336

blood pressure regulation, 45

Bloom syndrome, 177

Blue Zones, 40–41, 43; Mediterranean diet in, 41, 317; telomere length and, 185

Bodmer, Rolf, 85

body mass index (BMI), 46

Bogdnanov, Alexander, 188

bombykol, 232

Booth, Lauren, 227

Botstein, David, 68, 93

bovine spongiform encephalopathy, 142–43, 292

bowhead whales, 54

Braak's hypothesis, 315–16

brain function: caloric intake and, 136; improved by inhibitor of ISR, 323; microbiota-gut-brain axis and, 314–16; plasma factors and, 191. See also cognitive aging

branched-chain amino acids (BCAAs), 115, 116, 120, 134, 170

Brenner, Charles, 329

Brenner, Sydney, 62

Briggs, Margaret, 62

Brown, Pat, 93–94

browning of adipose tissue, 35, 162, 244

Brunet, Anne, 70, 110, 128–29, 131, 226–27, 228, 295, 296–97

Buettner, Dan, 41

Buffenstein, Rochelle (Shelley), 23, 56, 157

Bussemaker, Harmen, 102

butyrate: bacterial groups producing, 316–17; fecal transplants from aged mice and, 312; FGF21 and, 312–13; future studies needed on, 318; from young microbiome, 310–11
Caenorhabditis elegans: aging phenotypes in, 77–79; arrest states in, 239, 298 (see also dauer); cellular structure of, 62; death in, 79–80; dietary restriction in, 130–31, 221–22; disposable soma theory and, 24–27, 26, 32; DNA damage in, 187; early development of, 25; forced to exercise, 171; germline and gonad controlling longevity in, 200–201; gut microbiota of, 305, 306, 307; hearing of, 248–49; histone modifications regulating lifespan of, 296–97; insulin signaling and, 63 (see also insulin/IGF-1 signaling pathway); intestinal proteostasis in, 150; learning in, 81, 120–21, 258–60, 268; mating in, 205, 220, 225–31; memory in, 81, 85, 120–21, 171, 254, 254, 258–60, 268, 274–75; microarray studies of, 95–97; mitophagy booster in, 327; as model system, 52, 62–65, 87, 90; motility characteristics of, 82–85; mutants bought for $7, 206; mutations that stop development of, 34–35; nonlethal stresses increasing lifespan of, 23–24; oxygen sensing in, 245–46; parental age in, 87; post-reproductive lifespan in, 209–10, 210; proteostasis in, 97, 103, 139–40, 150; rejuvenating oocyte proteins, 16, 68, 125, 144, 146; reproductive aging in, 204–5, 206–8; resveratrol and, 126, 127; RNA interference (RNAi) in, 2–3, 64–65, 300; RNA splicing in, 149; sensory regulation of lifespan, 237–38, 247; sequenced genome of, 2, 95; Sir-2 in, 125–26, 330; starvation survival in, 133, 298; stochasticity of aging in, 78–79; testing candidate drugs in, 337; transgenerational effects in, 298; velocity of, 82–85; vitellogenins in, 21, 229–30; wild type vs. lab mutants, 35, 94. See also hermaphroditic C. elegans; longevity mutants of C. elegans; male C. elegans

CALERIE trial, 118

Calico, 49

Calment, Jeanne, 11, 38, 40
caloric restriction. See dietary restriction (DR)
Caloric Restriction Society, 119
Cambodian refugees, 282
Campisi, Judith, 47, 186, 187–88
cancer: autophagy enhancers for, 322; autophagy impairment in, 147; as biotech target, 340; cellular damage and, 174; genes involved in suppression of, 48, 54, 55; mTOR inhibitors for, 323; performance-enhancing drugs and, 327; PI3 kinase and, 63; PTEN phosphatase and, 90; regeneration therapies boosting risk of, 336; senescent cells and, 187, 192; stem cells’ limited lifespan and, 186; suppressed in naked mole rats, 56–57; telomerase boosting risk of, 334, 336; transposable element in, 291

Cannon, Walter, 17
capsaicin, 245
carbon dioxide sensing, 245, 247
cardiomyopathy, 190

cardiovascular disease: as biotech target, 322, 340; genes involved in, 45, 48, 59; menopause after age 55 and, 199; protein in diet and, 115; statins for, 339; sugar and, 114–15; in utero starvation and, 280–81

Carroll, Sean, 30

Case, Anne, 8
catalase, 22, 97, 98, 156, 161
cathepsin B proteases, 207–8

Caulobacter crescentus, 66

CCL11, 190
cell culture, 59
cell cycle checkpoints, 176, 186
cell cycle/senescence regulator, 48
cellular damage, 137–38
centenarians: age-related diseases and, 49, 73; in Ashkenazi Jewish population, 43, 46, 334; athletic achievements of, 152–53; dietary restriction and, 108; DNA methylation in, 294; eunuchs among, 24, 202;
FOXO3A variants in, 45, 93, 216; genetic studies of, 42–47; genomes of 2000 Han Chinese, 47, 215–16; giving birth later in life, 195, 209; health of, 39–40, 73–74; IGF-1 receptor mutations in, 45–46, 93; maximum lifespan and, 11; microbiome diversity in, 309; mostly women, 215–16; RNA editing and, 150; telomeres and, 334. See also supercentenarians
central dogma, 138, 139, 174
cerebral amyloid angiopathy, 268
cETP, 45, 59, 268
cGAS–STING, 186–87, 253
chaperones, 139, 141, 147
Chase, Martha, 287
chemotaxis, transgenerational inheritance of, 284
chemotaxis assay, 258–59
chico mutant of Drosophila, 64, 92
childbearing: after 45 without ART, 208; maternal age and, 194–96; maternal lifespan and, 194–96, 195; number of children and, 195; planning for, 196–97, 213; post-reproductive lifespan and, 210, 211. See also maternal mortality; pregnancy
childhood mortality, 7–8; in Black population, 10, 273
Chinese emperors, 234–35, 235, 236
cholesterol metabolism, 44, 45, 47, 268.
See also high density lipoprotein (HDL) cholinesterase inhibitors, 269
CHRNA3/5 nicotinic acetylcholine receptor, 44, 46, 54
CHRNA10 nicotinic acetylcholine receptor, 54
chromatin, and pathogenic tau, 267
chromosome location 5q33.3, 44, 45, 47
chromosomes, 174
chronological age, 199, 293–94
chronological lifespan (CLS), in yeast, 67, 123–24, 125, 128
Church, George, 47
ciliated neurons, 238
circadian rhythms: eating and, 117, 135–36; FGF21 and, 131; sex differences in, 219
circular DNA, mitochondrial, 155
circular RNAs, 150–51
clams, long-lived, 23, 53, 156
Clement, James, 47–48
climate change, 347
clofibrate, 338 Clostridium difficile, 305, 307, 312
clusterin, 262
Cockayne syndrome, 177
cockroaches, pheromones of, 232
cognitive aging: air pollution and, 272–73; biotech drug candidate for, 340; blood-brain barrier in, 256, 275; dietary restriction and, 276; fecal transplants from young mice and, 314; IGF-1 levels in mammals and, 275; longevity mutants of C. elegans and, 274–75; Mediterranean diet and, 317; in model systems, 257–61; normal, 251, 252, 262, 278; plasma factors and, 191; prospect for real treatments, 347; racial inequality affecting, 272–74; slowing of, 255, 262, 274–78; systemic regulators of, 261–62; in utero starvation and, 281; vasculature in, 256. See also dementia; neurodegenerative diseases; neuronal aging
cognitive function: companies selling tests of, 341; exercise and, 262, 333; of pet dogs, 344
COMPASS histone modifiers, 296–97, 298, 300
compression of morbidity, 13–14, 40, 42, 56, 73
Conboy, Irina and Michael, 189
congestive heart failure, 75
conserved mechanisms, 161, 162; AMPK regulation of mTOR, 245; germline activation upon mating and, 236; of germline-mediated longevity, 201; histone modifications changing with age, 296;
conserved mechanisms (continued)
insulin signaling pathway and, 93, 240; of learning and memory, 258, 259–60; neuronal gene expression in aging and, 254; neuronal signaling pathways, 242; oxidative damage and, 156; TGF-beta pathway and, 240

cosmeceuticals, 342–43
Cota, Vanessa, 167–68

Covid-19 pandemic: demographics of mortality and, 7n; inflammation in, 341; life expectancy in minorities and, 7n, 8; long Covid and, 256, 267; PCR test for, 179; sex disparity in life expectancy and, 215; vaccines for, 7n, 13

CREB transcription factor: in eat-2 mutants, 276; higher in daf-2 mutants, 274–75; levels declining with age, 260–61; in long-term memory, 258, 259, 260, 274; reversal of cognitive impairment and, 191; thermosensation and, 244

Creutzfeldt-Jakob disease, 142–43, 292
Crimmins, Eileen, 8, 12

CRISPR: first discovered in bacteria, 4; gene therapy and, 336; in killifish, 69, 70; in model systems, 59; possibly used to modify humans, 3; possibly used to prevent progerias, 192; primate models and, 66

Cryan, John, 314
Curran, Sean, 20, 325
cyanobacteria, 179
cytochrome P-450s, 269

DAF-2 insulin/IGF-1 receptor, 27, 80, 104, 105; late-life degradation of, 325–26
daf-2 mutants: aging phenotypes and, 78; eat-2’s lifespan and, 122, 122n; gene expression in, 95, 97–99; increased lifespan of, 63–64, 88–89, 90–91, 94; insulin/IGF-1 receptor and, 1–2, 22, 22n, 63, 89–90, 94; memory ability with age in, 254, 254, 274; naming of, 22n, 63; neuronal functions and aging in, 85; neurons’ transcriptional targets in, 275; oocyte mitochondria in, 168; proteostasis in, 139, 145; regulation of longevity in, 104; reproductive span of, 206–7, 208, 212; RNA editing and, 150; SOD and catalase in, 157; staying healthy longer, 40, 80–82, 82n, 94; synaptic traffic system in, 253; transcription quality control in, 149; ubiquitin-proteasome system and, 144–45; wild type winning out over, 94

DAF-7, 240
DAF-9/DAF-12 nuclear hormone signaling pathway, 244, 247

DAF-16: DNA sequences bound by, 100–102; as FOXO homolog, 45, 63, 90, 93 (see also DAF-16/FOXO); insulins in the intestine and, 247; intermittent fasting and, 94; many genes regulated by, 98–99; in neuronal signaling, 242–43; in neuron-specific daf-2 targets, 274; in nonautonomous regulation of lifespan, 242; in regulation of longevity, 104, 104–6; Sir2 and, 124

DAF-16 associated element (DAE), 101–2; PQM-1 binding to, 102–3, 104, 105

DAF-16 binding element (DBE), 101–2, 101n

DAF-16/FOXO, 95; dietary restriction and, 128–29, 130; germline anti-longevity signal and, 200–201; histone modifications and, 296; in hypoxia sensing, 246; in proteostasis, 140; sensory neurons affecting lifespan and, 241; in sexual conflict, 227. See also FOXO; insulin/IGF-1 signaling pathway
daf-16 mutants, 63; daf-2 mutants and, 89, 97; dying early, 80–81; eat-2’s lifespan and, 122, 122n
daf-22 mutants, 229
daf-23 mutants, 89, 90
Daf-d mutants, 89
DAMPs, 163
dauer, 62–64; advantages for genetic studies, 122; availability of food and, 88, 105;
daf mutants and, 22n, 88–89; decision to go into, 239–40; extending lifespan, 87; function of, 88; not needed for longevity, 64, 90–91; sensory neurons and, 239–41; strong mutations stopping development in, 35; TGF-beta pathway and, 91–92, 206, 240

Deaton, Angus, 8

Deinococcus radiodurans, 179
dementia: APOE ε4 allele and, 268; CETP gene and, 45; decreased in diabetic patients on metformin, 278; historical trauma and, 282; increasing incidence of, 14; microbiomes in, 315; racial disparities in onset of, 272–74; vascular, 256; women’s higher rate of, 215. See also Alzheimer’s disease

DeRisi, Joe, 93–95
development: hyperfunction quasi-program and, 20–21; mutations that slow or stop, 34–35, 34n
diabetes: AGEs and, 143; Alzheimer’s disease and, 265, 273, 277; cognitive aging and, 277–78; drugs with life-extending benefits, 339–40 (see also metformin); exercise mimetic and, 326; fecal transplants in mice and, 311; insulin/IGF-1 signaling pathway and, 94; in utero starvation and, 280–81
diapause: in C. elegans, 22n, 34, 35, 87, 298, 299; function of, 238–39; in killifish, 69–70; longevity and, 240. See also dauer
diet: changes in Western diet, 114–15; healthy, 41; inconsistent messages on, 116; Mediterranean, 41, 317, 318; sugar link to cardiovascular disease, 114–15
dietary restriction (DR): aging slowed by, 133–36; autophagy in, 147; brain function and, 112–13, 136; in C. elegans, 130–31, 221–22 (see also eat mutants of C. elegans); cell biology of, 129–33; cellular repair mechanisms and, 138; cognitive aging and, 276; diets used in study of, 113, 115–16; different types of, 110; difficulty of defining, 109–11; in Drosophila, 85, 111–12, 113, 130, 135, 243–44; early research on, 59–60, 108–9; extending lifespan and reproduction, 32; fleeting benefits of, 111–12; gender in studies of, 118, 119; genetics of, 121–29; healthspan increased by, 108; human populations experiencing, 108; human studies and choosers of, 118–20; insulin signaling pathway and, 122, 129, 131–32, 134; longevity effect in all animals tested, 109; longevity effect in humans, 108; longevity regulation in, 127–29; metabolic shifts responding to, 133–34; mitochondria and, 167; mood and, 119–20; multiple pathways affecting longevity in, 134; neuronal regulation of lifespan and, 242; nucleolar size and, 86; post-reproductive effect of, 324–26; protein translation inhibition in, 132; retrotransposon activation slowed by, 291; in rhesus monkeys, 65–66, 149–50; RNA splicing and, 149–50; sex differences in, 219, 220, 222; therapies targeting pathways of, 321; timing of, 116–18; in yeast, 67. See also eat mutants of C. elegans
dietary restriction mimetics, 134–35, 136, 323–26; acarbose as, 218, 221, 337; in men versus women, 326; post-reproductive effect of, 324–26
dietary supplements, 342
Dilllin, Andrew, 27, 91, 96n, 128–29, 158, 159, 160, 245
DiLoreto, Rose, 82
diseaseQUEST, 170
diseases, age-related: accelerated by stress, 8; autophagy impairment in, 147; genes involved in growth and, 55; genetics of supercentenarians and, 48; GWAS associations and, 42–50; hyperfunction quasi-program and, 20–21; longer lifespans leading to increase in, 8; in long-lived individuals, 49, 73; nutrient-deprived rats and, 109; as proxy for longevity drugs,
diseases, age-related (continued) 339–41, 346; staved off by centenarians, 40; women’s higher rate of, 215. See also cancer; cardiovascular disease; neurodegenerative diseases disposable soma theory, 24–27, 26, 32 DNA: central dogma and, 174; of extremophiles, 179–80; histones and, 290, 295–97; nucleosome packaging of, 174, 295–96; proved to be hereditary material, 287; replication of, 175–77. See also mitochondrial DNA (mtDNA) DNA damage: SASP and, 186–88; in stem cells, 185–86; types of, 176; UV-induced, 158–59, 176, 177, 179–80 DNA methylation: aging clocks based on, 199–200, 293–95; companies selling kits based on, 341–42; as epigenetic mechanism, 290, 293; menopause and, 294–95; S-adenosine methionine and, 283 DNA repair: aging as slowdown in, 17; bowhead whale genes and, 54; progerias and, 176–77; in semi- and supercentenarians, 48; in thermophilic archaea, 180 DNP (2,4-dinitrophenol), 35, 327–28 Dobzhansky, Theodosius, 36 dod genes, 97, 99, 101, 101n, 102 dog lifespans, 19, 55, 185, 339, 344 Dougherty, Ellsworth, 62 Dracul (Stoker), 188 Driscoll, Monica, 21, 77–78, 80, 171 Drosophila: behavioral changes in, 85–86; carbon dioxide sensing in, 247; cardiac function in, 85; circular RNAs in, 150–51; dietary components fed to, 113; dietary restriction in, 85, 111–12, 113, 130, 135, 243–44; food choice in, 244; germline-mediated longevity in, 201; gut microbiomes of, 307; informed GWAS and, 49; insulin signaling pathway in, 64, 92; intermittent starvation in, 109; intestinal barrier assay in, 85; learning and memory in, 258, 292; longevity regulation in, 92; as model system, 52, 60–62; neuronal regulation of longevity in, 243; retrotransposon activation in, 291; seeing dead flies, 248; sequenced genome of, 2; sex differences in, 219; sexual conflict in, 223–24; SOD and catalase in, 156, 157 DrugAge database, 337, 338 drugs, life-extending: current excitement about, 319–20; exercise mimetics, 171–72, 326–28; geroprotectors, 337–38; increasing autophagy in model systems, 148; senolytics, 187–88, 333, 340; testing candidate effects on lifespan, 218. See also dietary restriction mimetics; therapies, life-extending Dubal, Dena, 219 Dubnau, Josh, 291 Dutch Hunger Winter, 280–81, 283, 285, 298 eating disorders, 107, 119
ed mutants of C. elegans, 62–63, 64, 80–81, 121–22, 128–29, 130, 149, 221; learning and memory in, 113, 275–76 economics: affecting lifespan factors, 13; potential aging population and, 12 education, and lifespan, 46 Eisen, Michael, 93, 96 embryonic stem cells (ESCs), 181, 182 endogenous retroviruses. See retrotransposons endoplasmic reticulum (ER): stress in, 242–43; unfolded and misfolded proteins in, 145 energy: to maintain functioning cells, 16–17; mitochondrial production of, 154–55 enrichment analysis, 101, 101n enteric nervous system, 310, 314–15 entropy, 16 Epel, Elissa, 185 epigenetic clocks, 199–200, 293–95 epigenetics: biotech using, 334; dark history of, 284, 286–89; defined, 279; important role of, 289; marks reset in
every generation, 297, 302; McClintock's contribution to, 288–89; mechanisms of, 289–90; mitochondrial stress signal and, 160–61; silencing mechanisms in, 290–91, 293; in utero conditions and, 283; in yeast, 69. See also DNA methylation

Escherichia coli: fed to *C. elegans*, 243, 306; replicative senescence and, 66

Estrogen: 17α-estradiol and mouse lifespan, 218, 337; extreme female longevity and, 216; postmenopausal health problems and, 215. See also menopausal hormone therapy

eugenics, 288
eukaryotes, 66
eunuchs, long lifespan of, 24–25, 202, 234, 236
eusocial animals, 57–58, 217; insects, 34, 293 (see also bees); naked mole rats, 56, 57

Evans, Ron, 172
evolution: of longevity as a trait, 30, 32; mutations used in, 175, 176; of placenta, 291; post-reproductive lifespan and, 31, 33–34, 213; reproductive success and, 203; successful learning and memory in, 257; transposable elements in, 291. See also conserved mechanisms; selective pressure

Ewald, Collin, 27

exercise: antioxidants and, 23, 164; blood factors affecting memory and, 191; in *C. elegans*, 171; mitochondria and, 166, 171–72; as mitohormesis, 169; nucleolar size and, 86, 171; plasma factor from exercising mice and, 333; plasma proteins increased by, 262; telomere length and, 334; transcriptional clocks and, 295

exercise mimetics, 171–72, 326–28

exons, 149

extremophiles, 179–80

eye diseases: autophagy enhancers for, 322; as biotech target, 340; senolytics for, 333; stem cell therapy in mouse model of, 336. See also retinal cells, and Yamanaka factors

facial aging, 75–77, 341

famine: in Dutch Hunger Winter, 280–81, 283, 285, 298; in Great Chinese Famine, 281, 288; Soviet Lysenkoism and, 288

fasting-mimicking diet, 117, 317–18, 323

FDA approval, 343

fecal microbial transplants, 304, 311–14, 316, 317–18

Felix, Allyson, 10

fen-phen, 35

fibroblast growth factor 21 (FGF21), 131–32, 133, 161–62; in biotech for dogs, 344; butyrate and, 312–13; Klotho and, 190, 312; systemic therapies and, 332

fibroblasts, SOD in, 156

Finch, Caleb (Tuck), 272

Fire, Andrew, 2, 64, 298

fitness, and reproductive aging, 203, 213

flatworms. See planaria

Fontana, Walter, 80

14-3-3 proteins, 105, 124

FOXO, 45–46, 64; DNA sequences bound by, 101; in *Drosophila*, 64, 92; microRNAs and, 297; Sir2 and, 123; treatments that use, 321; ubiquitin-proteasome system in mammals and, 145. See also DAF-16; DAF-16/FOXO

FOXO3A, 44, 45, 93, 216

FOXO3 in bowhead whale, 54

frailty, 14, 39, 74, 153, 316, 317, 326, 341, 346, 347

Frankenstein (Shelley), 173

Franklin, Rosalind, 175

Fraser, Andy, 98

free radical theory of aging, 21–23, 155–56. See also reactive oxygen species (ROS)

Fries, Jim, 14, 40, 42, 73

functional genomics, 3

gait, 74, 77, 82

galantamine, 269

Gallan, Jessie, 232, 236

gallic acid, 338

Garigan, Delia, 21, 77–78, 79, 80

For general queries, contact webmaster@press.princeton.edu
GDF11, 190, 332
Gelsinger, Jesse, 335
Gems, David, 79–80, 125–26, 220–21, 225–26
gender, as social construct, 214n
gene expression: in aging vs. response to aging, 99–100; histone modifications and, 296; inflammation and, 46; knocked down with RNAi, 3; neuronal aging and, 254. See also messenger RNA (mRNA); microarrays
gene knockdown. See RNA interference (RNAi)
gene therapy, 335–36; in dogs, 344
gene x environment effects, 13, 46, 61
genome wide association studies (GWAS), 36, 42–50, 42n; of ages of menarche and menopause, 198–99, 200; APOE alleles in, 267, 268; candidate disease genes in, 170; of centenarians, 93; FOXO in, 63; SNPs tracked in, 175; testing genes found in, 59, 61, 65
germline stem cells, 181
gerontology, 18–19, 304
geroprotectors, 337–38
Ghazi, Arjumand, 200–201
Glantz, Stanley, 114
glial cells: amyloid precursor protein and, 264; cleaning brain during sleep, 256; declining IGF-1 in aging mammals and, 275; endoplasmic reticulum stress and, 243; from induced pluripotent stem cells, 255; in neuroinflammation, 261–62, 266; retrotransposon activation in, 291; tau and, 266. See also microglia
D-glucosamine, 338
glycine, 337
glymphatic system, 256, 262
Goldstein, Dana, 12
gonochoristic species, 221, 229, 230, 231, 232
Gorbunova, Vera, 57
Gottesman, Susan, 158–59
Gottschling, Dan, 69
grandmother hypothesis, 30, 31, 209, 216
Great Chinese Famine, 281, 288
Greenland shark (Somniosus microcephalus), 53
green tea, 322
Greer, Eric, 110, 129
Greider, Carol, 184
Griffith, Frederick, 287
group selection, 28–29
growth hormone, 219
growth hormone receptor, 56, 110
Guarente, Leonard (Lenny), 125, 171, 328, 330
Gula, Sharbat, 75
guppies (Poecilia reticulata), 29–30, 32
GW1516 (Endurobol), 327
Hagiwara, Masatoshi, 149
Hall, David, 78
Han, Jing-Dong Jackie, 76–77, 130–31
Han Chinese centenarians, 47, 215–16
Hannum clock, 294
Hansen, Malene, 103n, 128
Harman, Denham, 21, 23, 155
Harris, Nadine Burke, 282
Hawkes, Kristen, 209
Hayflick, Leonard, 59, 183–84
Hayflick limit, 59, 184, 334, 341
Haynes, Cole, 169
health-care disparities, 12, 13
healthspan, 14, 71; lifespan of C. elegans mutants and, 80–82, 169; metrics in vertebrates, 86. See also compression of morbidity
hearing, of C. elegans, 248–49
heat shock proteins: in daf-2 mutant of C. elegans, 97, 99, 103, 141; proteostasis and, 139, 140; stress responses and, 79
Heimbucher, Thomas, 246
Hekimi, Siegfried, 22, 64, 121, 122
hematopoietic stem cells (HSCs), 183, 185–86
Henrich, Christy, 107
hermaphroditic *C. elegans*, 27n, 31, 62, 205; advantages for research, 220; evolution of, 223, 230; lifespan of, 221; male pheromones shortening lifespan of, 226–27; masculinized, 228n, 229; mating leading to death of, 225–27; running away from males, 231; sperm content decreasing attractiveness to males, 231–32

Herndon, Laura, 21, 78, 80

Hershey, Alfred, 287

heterochronic parabiosis, 188–91, 295

hibernation, 29, 33, 34, 55, 56, 90, 238

hidden Markov models, 101

HIF-1 (hypoxia induced factor), 246, 340–41

high blood pressure, 8, 273

high density lipoprotein (HDL), 44, 45, 47, 59

high-fructose corn syrup, 115

hippocampus: acetylcholinesterase inhibitors and, 269; of calorically restricted rhesus monkeys, 276; CREB in, 260–61; fecal transplants from aged mice and, 312; integrated stress response and, 276; neurogenesis and, 255; transposable element activity in AD and, 267

Hispanics: Alzheimer’s disease in, 273; Covid-19 pandemic and, 7n, 8

histone modifications: COMPASS and, 296–97, 298, 300; as epigenetic mechanism, 290, 295–97; sirtuins and, 328, 329

historical trauma, 281–82, 285, 289

HLA loci, 46, 49

Holocaust survivors, 282

homeostasis: aging as loss of, 15, 17, 36, 137; of autophagy, 148; histone modifications and, 296; mitochondria and, 169; RNA quality control in, 148–51; unfolded protein response in, 145. See also proteostasis

Hoppe, Thorsten, 242–43

hormesis, 18, 23–24; heat stress in *Drosophila* and, 92; mitochondrial, 163–64, 169, 171

Horvath, Steven, 199–200, 293–94

Horvitz, H. Robert, 62, 239

Hsin, Honor, 25, 200

humanin, 162

Huntington’s disease, 142, 263, 336

Hutchinson-Gilford progeria, 177–78, 305, 308, 316, 336

Hutterites, 233

hyaluronic acid, 57, 314

Hydra, stem cells of, 181

hyperfunction quasi-program, 20–21

hypomorphs, 122n

hypoxia sensing, 245–46; muscle aging target and, 340–41

IGF-1. See insulin/IGF-1 signaling pathway; insulin-like growth factor (IGF-1)

IL-6 inflammatory cytokine, 46, 47, 265, 301

immortalists, 345–46

immortality, universal search for, 6–7

“immortal jellyfish” (*Turritopsis dohrnii*), 18, 181

immortal organisms, 17–18, 181

immune system: cognitive aging and, 256, 261, 277; HLA loci and, 46, 49; inflammation and, 46–47, 187, 256, 277; intergenerational response in, 301–2; mate choice in mealworm beetle and, 233; mitochondrial-derived DAMPs and, 163; multigenerational effect on, 281; retrotransposon activation and, 291; RNA editing and, 150; RNA splicing and, 149; senolytics and, 333; stem cells and, 18. See also microglia

immunotherapy, and extracellular tau, 266

InCHIANTI study, 72, 74

induced pluripotent stem cells (iPSCs), 182, 255, 294, 334, 337

inequality, and life expectancy, 8, 9, 10

infant mortality. See childhood mortality

infertility, female, 193–94, 198, 331

inflammaging, 187, 261, 291, 296, 310, 316, 341
inflammation, 46–47; age-related diseases and, 48; AGEs and, 144; in aging brain, 256, 261, 262, 275, 276, 277; Alzheimer’s disease and, 265; drugs that block, 322; fasting-mimicking diet and, 317–18; histone modifications and, 296; lifespan of male mice and, 218; male centenarians and, 215–16; microbiome and, 310, 316; pain receptor in mice and, 245; SASP and, 47, 56, 187; therapies for reduction of, 321
inflammatory bowel disease (IBD), 317–18
influenza pandemic of 1918, 7, 215
informed GWAS (iGWAS), 49
Ingram, Donald, 111
insulin/IGF-1 signaling pathway: autophagy induced by, 147; bat longevity and, 56; in bowhead whale, 54; cellular repair mechanisms and, 138; in centenarians, 36, 45–46, 93; chaperones and, 141; cloning of genes in, 63, 90; daf-2 mutant and, 1–2, 22, 22n, 63, 89–90, 94; DAF-16 transcription factor and, 90, 98–99, 104; dauer decision and, 240–41; diabetes and, 94; dietary restriction and, 122, 129, 131–32, 134; in Drosophila, 64, 92; FOXO activity and, 45–46, 63, 64, 90; germline and gonadal longevity signals and, 201; in killifish, 70; Laron syndrome and, 35, 55; longevity benefit to tiny changes in, 36, 46; longevity regulation by, 62, 64, 89–90, 92–93, 104, 104–6; mammalian, 90, 92–93; microbiome and, 310; microRNAs and, 297; mitochondria and, 161, 162, 167, 168, 204; mTOR and, 128; oocyte quality and, 204; PQM-1 and, 102–3, 104, 105; reproductive span and, 208; sense of smell in mice and, 244; sensory neurons affecting lifespan and, 241; sex differences in, 219; sexual antagonism and, 226, 227; Sir2 in C. elegans and, 124; Sirt6 and, 219; strong mutations of, in C. elegans, 34–35; as therapeutic target, 93, 321, 326, 332; yeast homolog and, 67
insulin-like growth factor (IGF-1): declining with age in mammals, 275; in extreme human longevity, 46; Fgf21 and, 162
insulin-like peptides: in C. elegans, 242, 243, 244–45, 247; in Drosophila, 243
insulin resistance, 156, 162, 163, 244, 277, 311
integrated stress response (ISR), 276, 322–23
intergenerational inheritance, 282–84; trauma and, 281–82
intermittent fasting (IF), 116–17, 129, 130, 134, 135, 323; Fgf21 and, 162; human sexual differences in, 222; lifespan of C. elegans and, 21; mitochondria and, 167
Intervention Testing Program (ITP), 218, 337
introns, 149
ISG15 treatment, 323
IVF (in vitro fertilization), 196–97, 204.
See also ART (artificial reproductive technology)
Izpisua Belmonte, Juan Carlos, 182
James, Sherman, 8
“John Henry” effect, 8
Johnson, Tom, 23–24, 63, 79, 82, 88, 163
Julius, David, 245
Just, E. E., 289
Kaeberlein, Matt, 344
Kahn siblings, 42, 45
Kaletsky, Rachel, 169–70, 300
Kapahi, Pankaj, 128
kefir, 317
Kenyon, Cynthia, 1–2, 21, 25, 27, 63, 77–78, 80, 87, 88–89, 95, 157–58, 159, 164, 200–202, 221, 237–38, 241–42, 244, 330
Kesselheim, Aaron, 270
keto diet, mimics of, 323
killifish, 69–70, 86, 126, 313–14
Kim, John, 95n
Kim, Stuart, 47, 49, 95n
Kimura, Jiroemon, 39
Kirkland, James, 187–88
Kirkwood, Thomas, 24, 195
Klass, Michael, 62–63, 64, 82, 87–88, 121
Klotho, 190, 312, 332, 344
Kluger, Jeffrey, 194
Kopec, Stefan, 109
Kornfeld, Kerry, 80–81, 82, 205
Kreiling, Jill, 291
Lakota, trauma suffered by, 281–82
Lamarck, Jean-Baptiste, 284, 286
Lamarckian inheritance, 284–85, 286, 287
lamin A, 178, 182, 336
Landsteiner, Karl, 188
Laron syndrome, 35, 55, 94
Lashmanova, Elena, 327
learning: in C. elegans, 81, 120–21, 258–60, 268; claimed heritability of, 283, 286–87; fecal transplants from aged mice and, 312; in invertebrate models, 257–61; plasma factors and, 190, 191, 261–62
Lee, Richard, 190
Lee, Seung-Jae V., 148–49, 221, 244
Lee, Stan, 173
Lee, Sylvia, 101, 159
Levine, Morgan, 199, 294, 342
Lewy body dementia, 263, 268
Libina, Natasha, 242
life expectancy: correlated with income in US, 8; Covid-19 pandemic and, 7n, 8, 215; declining in US, 8; demographics of, 7–10; known determinants of, 9, 12–13; menopause after age 55 and, 199; preventable infections and, 304–5; sex difference in, 215; socioeconomic inequality in, 8, 9, 10; twentieth-century US increase in, 7. See also childhood mortality; lifespan of humans; maternal mortality
lifespan of humans: lifestyle factors in, 9, 12–13, 41, 46, 49; maximum, 11, 14, 34, 38–39; post-reproductive, 30–31, 33, 209–12, 210, 216; reproductive span and, 208–9; sexual behavior and, 234–35, 235. See also centenarians; life expectancy; longevity
lifespan of animals: long-lived, 52, 52–57; nucleolar size and, 86, 133, 141, 185; protein and amino acid restrictions and, 113, 115; as sexually dimorphic trait, 214–16; with shorter lifespans, 19, 21; size dependence of, 54–55, 92–93; as somatic quality maintenance, 33; species with broad range of, 52. See also lifespan of humans; longevity; post-reproductive lifespan
lifestyle factors: of centenarians and supercentenarians, 40; lifespan of humans and, 9, 12–13, 41, 46, 49; of longest-lived cultures and populations, 40–41
linkage disequilibrium, 44
lipofuscin, 78
lipoprotein(a) (LPA), 45
lipoproteins: age-related diseases and, 48; high density (HDL), 44, 45, 47, 59; vitellogenin, 21, 229–30
liraglutide, 278
Lithgow, Gordon, 23–24
Liu, Daniel, 132
Liu, David, 178, 336
Logan’s Run (film), 28
longevity: genetic component to, 42–50; late-life childbearing and, 194–96; maximum velocity as predictor of, 83–85; mitochondrial regulation of, 171; quality control mechanisms and, 151; regulated for reproductive timing, 212–13; wealth and, 76. See also lifespan of humans; lifespans of animals
longevity mutants of C. elegans, 14, 62–63, 80–82, 87–88; cognitive aging and, 274–76; gene expression changes in, 99–100; ribosomal proteins reduced in, 132. See also age-1 mutants; daf-2 mutants
longevity quotient (LQ), 52, 55–56; proteostasis and, 140, 146
long interspersed element-1 or LINE-1 (L1), 187, 291
Long Life Family Study (LLFS), 72–73, 74, 195
long-lived animals, 52, 52–57; proteostasis in, 139–40, 146; SOD and catalase in, 156
long-lived people: mostly women, 215–16; reproducing later in life, 194, 208–9; staying healthier longer, 73–74. See also centenarians; supercentenarians
Longo, Valter, 116–17, 317–18
long-term memory, 258–61; in C. elegans, 258–60, 274; differences from short-term memory, 261; evolution of prions for, 292; fecal transplants from young mice and, 314; integrated stress response and, 276. See also CREB transcription factor; memory
Luo, Shijing, 205
lymphatic system, cleaning brain, 256, 262
lysenko, Trofim, 288
lysosomes, 69, 147, 148, 166, 168, 322
MacLeod, Colin, 287, 300
mad cow disease, 142–43, 292
male animals, in sexual conflict, 223
male C. elegans, 205, 206, 220; damaged by mating, 228–30; dietary restriction and, 221; killing females by mating, 224–27; lifespan of, 220–22, 229; memory assays for, 258n; pheromones of, 226–27, 228–29
male hormones, and lifespan, 24–25, 202
Maliha, George, 30, 210–11
mammals: aging of memory ability in, 260–61; blood-brain barrier in, 256; bowhead whales as longest-lived, 54; FGF21 in response to fasting of, 131; IGF-1 declining with age in, 275; lifespan-regulating genes in, 64; mitokines in, 161–62, 163; oocyte quality in, 205–6; pheromones in, 233–34; post-reproductive lifespan in, 210; sirtuins in, 126–27; transgenerational inheritance reported in, 285–86; ubiquitin-proteasome system in, 145. See also mice; primates, nonhuman
Mango, Susan, 128
Mansuy, Isabelle, 285, 287
marmosets, 66
marriage, and lifespan, 216
marsupials, 55, 58, 140
Martin, George, 156
mate choice, 231–33
maternal mortality, 9–10, 31
mating in C. elegans: different Caenorhabditis species and, 230–31; evolution of longevity pathways and, 227; males’ focus on, 220; progeny production in, 205; shortening male lifespan, 228–30; shrinking and death of hermaphrodites caused by, 225–27. See also seminal fluid
mating in Drosophila, 223–24
matricide in C. elegans, 91, 207, 210, 211, 232
Mattison, Julie, 111
maximum human lifespan, 11, 14, 34, 38–39
maximum velocity, predicting lifespan, 83–85
Mazmanian, Sarkis, 315–16
McCarroll, Steven, 100, 130
McCarty, Maclyn, 287, 300
McCary, Clive, 59–60, 109, 188–89
McCintock, Barbara, 288–89, 290
McCurry, Steve, 75
Medawar, Peter, 19, 209
Mediterranean diet, 41, 317, 318
Mello, Craig, 2, 64, 298, 301
Mello, Craig, 2, 64, 298, 301
Meno, Craig, 2, 64, 298, 301
memantine, 269
memory: in C. elegans, 81, 85, 120–21, 171, 254, 254, 258–60, 268, 274–75; dietary restriction and, 113, 120–21, 133; fecal transplants from aged mice and, 312; identity and, 250–51; plasma factors and, 190–91, 261–62; prions and, 143; traumatic brain injury and, 323; Yamanaka factors in mice and, 183. See also long-term memory; short-term memory
menopausal hormone therapy, 199–200, 201, 294–95. See also estrogen
menopause, 194, 198–200; aging of non-reproductive tissues and, 199–200, 201–2; DNA methylation and, 294–95; postmenopausal health problems and, 215 messenger RNA (mRNA): central dogma and, 174–75; maintaining quality of, 148–51; memory and, 259; RNA interference and, 2–3; transcription factors and, 45. See also gene expression

metabolic disease, 45, 48, 49

metabolism: cognitive aging and, 277–78; facial aging and, 75; mitochondria and, 163; nutrient levels and, 33–34; rate-of-living theory and, 19; of warm-blooded animals, 35

metal toxicity, and daf-2 worms, 97

Metchnikoff, Elie, 18–19, 304, 315, 317, 318

metformin: adverse effects of, 344; as AMPK activator, 278, 323; bacterial folate metabolism and, 306; biosimilars of, 324; cognitive benefit in diabetic patients and, 278; increasing autophagy in model systems, 148; microbiome and, 306, 310; mitochondrial activity and, 170–71; repurposing of, 337; TAME clinical trial of, 278, 323, 337, 339, 343–44

methionine, and dietary restriction, 113, 115

MHC genes, 48, 233

mice: dietary restriction in, 109, 110, 112, 115, 135, 203; DNA methylation clock for, 294; fasting-mimicking diet in, 117; insulin/IGF-1 signaling pathway in, 92–93; intergenerational immune response in, 301; lifespan-regulating genes in, 64; longevity compared to bats, 29, 55–56; male bias in research on, 217–19; metrics of aging in, 86; as model system, 52, 59, 60, 61; oocyte quality in, 205–6; ovarian transplants extending lifespan of, 201; reproductive aging in, 203; reprogramming brain cells in, 255; rescuing aging memory in, 261, 275; testing candidate drugs in, 337; testing learning and memory in, 258; transgenerational inheritance reported in, 285–86

microarrays, 3; caloric restriction and, 129–30; on daf-2 longevity mutant, 22, 93–97, 102; of dod genes, 99; late child-bearing and, 208; methylation events and, 199; in SNP studies, 43

microbiomes: aging of, 308–9, 311–14; antibiotics and, 304–5; bacterial composition of, 307; beneficial effects of, 307–8, 309–11; in C. elegans gut, 305, 306, 307; dietary approaches to health of, 316–18; of eusocial insects, 307, 309; factors affecting, 308; in fly intestines, 307; in killifish, 70; Metchnikoff’s early ideas on, 18, 303; number of bacteria in, 303; oral, 315; possible healthy mechanisms in, 309–11; sequencing of bacteria and host cells in, 305, 307; untangling cause and effect in, 305, 308, 310, 311, 315

microbiota-gut-brain axis, 314–16

microglia: Alzheimer’s disease and, 265; APOE and, 268; fecal transplants from aged mice and, 312; neuroinflammation and, 261; Parkinson’s disease and, 316

microRNAs (miRNAs), 150, 151, 187, 242–43, 297

microtubules, and tau protein, 142, 265–66

mild cognitive impairment, 262, 272, 335

Miller, Richard, 218–19, 221

Mitchell, Kevin, 285, 287

mitochondria: asymmetric inheritance of, 165; ATP generated by, 154–55, 277; autophagy of, 166–67; biogenesis of, 166, 171; biotech companies working with, 322; dietary restriction in C. elegans and, 131; DNA repair disorders and, 177; functions of, 153; fusion and fission of, 166, 167; in germline of C. elegans, 167–68; hormetic stress response and, 24, 159; morphological changes in, 166, 167–68; neuronal, 145, 159, 161, 253;
mitochondria (continued)

- oocyte quality and, 204, 205; originating in engulfed prokaryote, 154, 160; quality control of, 164–68; RNA quality control and, 149; stress signal from, 160–62; TOMM40 protein in, 44; uncoupled from longevity extension, 157–58, 159; unfolded protein response in, 123, 145, 159–61
- mitochondrial-derived peptides, 162–63, 340
- mitochondrial diseases, 322
- mitochondrial DNA (mtDNA), 155, 162; coordination with nuclear DNA, 164–65; levels of knockdown in, 163–64; lifespan and, 219; MOTS-c encoded by, 340; replication of, 165; toleration of damage to, 166
- mitochondrial mutations, 155; in C. elegans, 64, 80, 81, 82, 275
- mitochondrial replacement therapy, 204, 322
- mitochondrial uncouplers, 35
- mitohormesis, 163–64, 169, 171
- mitokines, 161–62, 163
- mitophagy, 166–67, 168
- mitophagy boosters, 322, 327
- model systems, 4, 5, 50, 51–52, 52, 70; C. elegans as, 52, 60–61, 62–65, 87, 90; cognitive decline in, 257–61; Drosophila as, 52, 60–62; extremely long-lived, 65–66; extremely short-lived, 66–69; killifish as, 69–70; measuring learning and memory in, 257–58; proposed possibilities for, 58; quality of life and, 71; yeast as, 52, 66–69
- Mondoux, Michelle, 221
- Monod, Jacques, 51
- Moore, Rebecca, 299–300
- Mor, Danielle, 170
- Morgan, Thomas Hunt, 61, 287, 288, 289
- mortality: age in naked mole rats and, 56; decreasing by age 105, 11, 39; early menopause and, 199; extrinsic rate of, 32 (see also predation); in infancy and childhood, 7–8, 10, 273; maternal, 9–10, 31; of nutrient-restricted Drosophila, 112; in utero starvation and, 281
- motility: of aging Drosophila, 85; of C. elegans, 82–85
- MOTS-c, 162–63, 340
- mTOR inhibitors, 323
- mTOR pathway, 127–28, 185, 220, 227, 245. See also TOR (target of rapamycin) muscle. See skeletal muscle
- muscular dystrophies: activator of PPAR-δ for, 172; transposable elements in, 291
- mutation accumulation theory, 19
- mutation fixation, and post-reproductive lifespan, 31
- mutations, 175. See also mitochondrial mutations
- NAD+, 124, 330–31; anti-aging supplements based on, 171, 342; disorders of DNA repair and, 177; histone acetylation and, 283
- NAD+-dependent protein deacetylases, 124
- NAD+/NADH energy metabolism, 67–68, 123, 331
- naked mole rats, 23, 56–57, 140, 157
- Nam, Hong-Gil, 82–85
- Native Americans: Covid-19 and, 8; preventing pellagra, 331, 331n; trauma suffered by, 281–82
- Navajas Acedo, Joaquin, 145
- NDGA (nordihydroguaiaretic acid), 218, 337
- Neill-Dingwall syndrome, 177
- neural stem cells, 182, 190–91, 254–55, 261
- neurodegeneration: behavioral map approach to, 86; biotech drug candidate for, 340; retrotransposon activation and, 291–92
- neurodegenerative diseases, 263; AGES and, 144; biotech companies working on, 322; blood-borne factors and, 192;
cellular damage and, 174; Drosophila models of, 86; gut dysfunction preceding, 315–16; in GWAS studies, 48, 49; microbiota-gut-brain axis and, 314–16; mitochondrial function and, 155, 166–67; prion-like mechanisms and, 292; protein aggregation in, 141–43, 263; stem cells in therapy for, 182, 255; transposable element activity in, 266–67. See also specific diseases

neurofibrillary tangles (NFTs), 142, 263–64, 266; drugs targeting, 271; prion-like protein aggregation in, 292; transposable element activation and, 267

neurogenesis: in adult hippocampus, 255; fecal transplants from aged mice and, 312–13, 314; transcription in mouse brain and, 295

neuronal aging, 252–55; reprogramming in mice and, 255; stem cell replacement in, 254–55; vasculature in, 255–57. See also cognitive aging

neuronal signaling pathways, 242–43

neurons: APOE and, 268; ciliated, 238; dauer decision and, 239–42; mitochondrial stress in, 145, 159, 161, 253; retrotrotransposon activation and, 291–92; for sensing temperature, 244–45; for smelling food, 237–38; thermosensory, 244–45; transgenerational inheritance in C. elegans and, 300–301

niacin, 331
nicotinamide, 330
nicotinamide adenine dinucleotide. See NAD+

nicotinamide mononucleotide (NMN), 331
nicotinamide riboside (NR), 171, 329, 331, 342
nicotine, 46

cannabinoid receptors, 121; Alzheimer’s medicines and, 269; CHRNA3/5, 44, 46, 54; CHRNA10, 54 nictation, 239

Nigon, Victor, 62

NIH-funded research, 196, 218, 262, 265, 337, 345

Nishida, Eisuke, 221

nonautonomous signaling: by blood factors, 261; by inflammation, 261; of mitochondrial stress, 163; neuronal, 247; regulating lifespan, 238, 242

noncoding RNAs, 290, 297–98

nonsense-mediated decay, 148–49

Norris, Arthur, 72

nuclear pore complex proteins, 140

nucleolar size, 86, 132–33, 133n, 141, 171, 185, 253

nucleosomes, 174, 295–96

nutraceuticals, 342, 346

nutrient availability, and reproduction, 32–33, 105–6, 109, 203

nutrient levels: aging rates and, 19; metabolic rates and, 33–34; regulation of longevity and, 212–13

nutrient sensing: epigenetic mechanisms and, 283; by NAD+, 283; neuronal, 131; regulation of longevity and, 134; reproduction as output of, 194

obesity: AMPK in mouse models of, 327; as biotech target, 340; fecal transplants in mice and, 311; lipid dysregulation and, 45; mice protected from, 162, 163; tripled in US since 1950s, 114; in utero starvation and, 280

octopuses, 29

odor fear, transgenerational inheritance of, 283, 287

ODR-10 food-sensing receptor, 84, 220

Okawa, Misao, 39

olfactory cues to choose mates, 233. See also pheromones

olfactory neurons, 244

oligoanalysis, 101

Olins, Don and Ada, 295–96

Olshansky, Jay, 12

oocyte proteins, rejuvenated in C. elegans, 16, 68, 125, 144, 146
oocyte quality, 197, 198, 202–8; cathepsin
B levels and, 207–8; of exploding sma-2
mutants, 211–12
opioid epidemic, 9
oral microbiome, in dementia patients, 315
organ regeneration and replacement, 321,
334, 337
osteoporosis, 333, 338, 340
oxidative stress, 17, 21–24; adverse effects
of antioxidants and, 164; lifespan in-
creased by low levels of, 164; therapies to
reduce, 321. See also reactive oxygen
species (ROS)
oxygen sensing, 245–46
oxytocin, 190, 221, 283
pain sensation, in mice, 245
Palin, Sarah, 4
Panda, Satchin, 117
parabiosis, 188–91, 295, 334
parental age: in C. elegans, 87. See also
childbearing
Parkinson’s disease: behavioral map ap-
proach to, 86; dementia in, 263, 268;
gastrointestinal problems in, 315–16;
gene therapy for, 336; induced pluripo-
tent stem cells and, 182; low BCAA
signaling and, 120; microbiota-gut-brain
axis and, 314–16; mitochondrial damage
and, 166; mitochondrial function and,
155, 170–71; mitophagy boosters for,
322; model systems and, 65; protein
aggregation in, 141–42, 263
Parrish, Elizabeth, 335
Partridge, Linda, 61, 64, 85, 92, 111–12,
130, 223–24
Patapoutian, Ardem, 245
Pauling, Linus, 21, 23, 156
Pavlov, Ivan, 286–87
Pavlovian associations, 257–58, 274
Paxlovid, 267
PCR (polymerase chain reaction), 179
Pearl, Raymond, 19, 156
Pearson’s syndrome, 322
pellagra, 124, 331
Perls, Tom, 194–96, 213
personalized medicine, 182
Pes, Giovanni, 40
Peter, William, 72
PGE₃, 277
PHA-4, 128–30, 133
pheromones, 214, 232–34; of humans,
233–34; of insects, 232–33; of mammals,
233–34; species specificity of, 236
pheromones of C. elegans: female, 227;
hermaphrodite’s sperm content and, 232;
male, 226–27, 228–29, 230–31; of mas-
culinized hermaphrodites, 228n, 229
P13 kinase, 63, 80, 90; inhibitor of, 93, 326
Pincus, Zachary, 133n
piRNAs, 290, 300, 301
placenta, evolution of, 291
placental cell harvesting, 334
planaria, 18, 58, 178, 223
plasticity: epige-
netic mechanisms and,
279–80; in order to reproduce, 33
Pletcher, Scott, 109, 113, 130, 227, 243,
244
pluripotent stem cells, 181; induced
(ipSCs), 182, 255, 294, 334, 337
Portman, Douglas, 84, 220
Posner, Rachel, 283–84
post-reproductive lifespan, 30–31, 33,
209–13, 210, 216
post-traumatic stress disorder (PTSD),
258, 282, 284
Poullain, Michel, 40
PPARβ/δ, 327
PPAR-γ, 166, 216, 326–27
PPAR-δ, 172
PQM-1, 102–3, 104, 105, 227, 228, 229n,
246
prebiotics, 316–17
predation, 29–30, 32, 53, 55, 56
pregnancy: psychological stress during, 282–83. See also childbearing; maternal mortality

premature aging phenotypes: mitochondrial mutation in C. elegans and, 156; mutations of mtDNA in mice and, 155. See also progerias

prion diseases, 177–78; CRISPR applied to, 192, 336; DNA methylation in, 294; fecal microbial transplants and, 313; microbiome and, 305, 308, 313, 316

programmed aging, 18, 304; regulated, 32 programmed death, of Pacific salmon, 27–28

Presenilin, 267

primates, nonhuman: caloric restriction in, 65–66, 111, 149–50; sex differences in longevity, 217

prion diseases, 142–43, 292

probiotics, 18, 303–4, 310

progerias, 177–78; CRISPR applied to, 192, 336; DNA methylation in, 294; fecal microbial transplants and, 313; microbiome and, 305, 308, 313, 316

programmed aging, 18, 304; regulated, 32 programmed death, of Pacific salmon, 27–28

Prolla, Tomas, 130

Promislow, Dan, 344

protandim, 337

protein folding, 141. See also unfolded protein response (UPR)

proteins: central dogma and, 174–75; dietary, 113, 115; oxidative damage to, 17; rejuvenation of, 16, 67–68, 124–25, 144

proteostasis, 138–41; age-related diseases and, 48; in C. elegans intestine, 150; companies aiming to improve, 322; in daf-2 mutant of C. elegans, 97, 103; in dietary restriction, 133; failing with age, 145–46; mechanisms of, 139

Pseudomonas in C. elegans diet: learning and, 299–302; in the wild, 306

pterostilbene, 171, 342

public health efforts, 7–8, 9

p-value, 43, 48, 49

quality of life, 8, 14, 41, 71, 81

quasi-program of aging, 20–21

racial disparities in dementia onset, 272–74

RAGE, 75, 144

Rando, Tom, 189, 190

rapamycin (sirolimus), 127–28; as AMPK activator, 323; biosimilars of, 324; increasing autophagy in model systems, 148; microbiome and, 310; preventing stem cell growth, 185; repurposing of, 337; trial in aging dogs, 344; trial searching for optimal regimen, 324, 325. See also TOR (target of rapamycin)

rate-of-living theory, 19, 156–57

rats: male bias in research on, 218; nutrient-deprived, 60, 109; urolithin A in, 327

Rea, Shane, 163

reactive oxygen species (ROS), 21–24; cellular damage and, 138; DNA damage caused by, 176, 177; mild mitochondrial stress and, 164; mitochondrial production of, 155–57, 158, 161, 170–71; naked mole rats and, 56; Parkinson's disease and, 170–71; in SASP response, 187. See also free radical theory of aging; superoxide dismutase (SOD)

Rechavi, Oded, 284

regeneration: of aging heart muscle, 190; blood-borne factors affecting, 190; in normal human tissues, 181; parabiosis and, 189; treatments based on, 321, 336–37. See also stem cells

repair of cells: energy for, 16–17; oxidative damage and, 23. See also DNA repair replacement of cells: as goal of research, 16; in immortal organisms, 18; in juvenile organisms, 17

replicative lifespan (RLS), in yeast, 67–69, 123–24, 125, 128

replicative senescence, 183–84
reproduction: by animals with shorter life-spans, 19, 21; dauer decision and, 241;
disposable soma theory and, 24–27, 26;
longevity regulation and, 15, 26–27, 194, 212–13; mitochondria and, 168;
mutations accumulating after, 19; nutrient availability and, 32–33, 105–6, 109, 203; predation and, 29–30; quasi-program theory and, 21; as the selected trait, 33; vitellogenins accumulating after, 21
reproductive aging: fitness and, 203, 213; longevity and, 194–96; in men, 194;
menopause and, 194, 198–200; oocyte quality and, 197, 198, 202–8; women's biological clock and, 193–94
reproductive span, 206–12, 210; extrinsic mortality factors and, 29–30; polygamy and, 216
restricted tolerance, 34–35
resveratrol, 67, 123, 126–27, 322, 328–30, 331–32; pterostilbene similar to, 171, 342
retinal cells, and Yamanaka factors, 255, 336. See also eye diseases
retrotransposons, 267, 291–92; learning in C. elegans and, 301
rhesus macques, caloric restriction in, 65–66, 111, 149–50
ribosomal components: downregulated in dietary restriction, 133; downregulated in proteostasis, 140. See also nucleolar size
Riddle, Don, 89, 220–21
Riera, Celine, 245
Ristow, Michael, 24
rivastigmine, 269
RNA: homeostasis of, 148–51; microRNAs (miRNAs), 150, 151, 187, 242–43, 297; noncoding, 290, 297–98; piRNAs, 290, 300, 301. See also small RNAs
RNA editing, 150
RNA interference (RNAi): evolved as silencing mechanism, 290; library of, 64, 98, 122n, 135, 157; modified by RNA editing, 150; testing antagonistic pleiotropy theory, 20; in testing genes for longevity, 98, 99, 140; transgenerational learning in C. elegans and, 300; worm genetics and, 2–3, 64–65
RNA sequencing, single-cell, 295
RNA splicing, 149–50; DNA methylation and, 293; in naked mole rats, 57
Ro, Jenny, 244
Rose, Michael, 61, 92
Rosi, Susanna, 276
r selection, 28
Rush Religious Orders study, 72
Ruvkun, Gary, 20, 63, 89–90, 101, 128, 157
salmon, 27–28, 55, 58
sarcopenia, 78, 130, 153, 155, 171. See also skeletal muscle
schizophrenia, 46, 280
sea urchins, 31, 211
Sebastiani, Paola, 74, 150
Sedivy, John, 291
selective pressure: cellular senescence and, 186; on developmental and reproductive rates, 32; on post-reproductive lifespan, 31, 209; on reproductive lifespan, 29–30; for women’s longer lifespan, 30. See also evolution
Seluanov, Andrei, 57
semelparous species, 27–28, 58
seminal fluid: components in C. elegans, 236; peptides in, 214, 224, 236; regulating hermaphrodite's lifespan, 226, 228. See also mating in C. elegans
senescence-associated secretory phenotype (SASP), 47, 56–57, 186–88, 333
senescent cells, 186–88; drugs targeting, 187–88, 192, 321, 333, 340; failing neurons as, 253; inflammation and, 47; short telomeres and, 334; sleep loss and, 256; transposable elements activated in, 291
senolytics, 187–88, 333, 340
senomorphic drugs, 333
sensory regulation of longevity, 237;
dauer decision and, 239–42; neuronal
coordination of systemic response and,
247; neurons sensing food sources and,
237–38, 241, 243; still unknown in
humans, 249
sequencing, whole-genome (WGS), 3,
43, 52
serotonin signaling, 242, 244, 246, 247,
248
sex, biological definition of, 214n
sex differences in aging, 214–16; biological
bases of, 217–22; in C. elegans, 220–22;
mariage and, 216–17; sons or daughters
and, 217
sex peptide, 224, 236
sexual behavior: human lifespan and, 234–35,
235. See also mating in C. elegans
sexual conflict, 214; in C. elegans, 224–27;
in Drosophila, 223–24
Shaevitz, Josh, 85–86
Shanahan, Nicole, 197
Shelley, Mary, 173
Shock, Nathan, 72
short-chain fatty acids (SCFAs), 310, 315,
316–17. See also butyrate
Short Physical Performance Battery
(SPPB), 74, 82
short-term memory: in C. elegans, 258–59,
274; differences from long-term mem-
ory, 261; first to go in humans, 260; lira-
glutide for diabetic patients and, 278.
See also memory
Sinclair, David, 67, 126, 127, 328–30
single genes affecting lifespan, 19–20, 20n,
32; insulin/IGF-1 signaling pathway and,
63, 93
single nucleotide polymorphisms (SNPs),
36, 42–45, 42n, 175, 176
Sir2, 123–27; in C. elegans, 125–27, 330;
in yeast, 68, 123–25, 144, 328, 329,
331
SIRT1, 326, 329
Sirt6, 218–19
sirtuins, 124, 126, 328–29, 331–32
skeletal muscle: as biotech target, 340–41;
caloric restriction and, 130; declining
performance with age, 153–54; mito-
chondria in C. elegans and, 166, 167, 168;
mitochondrial-derived peptide and,
162–63; mitochondrial dysfunction in
invertebrates and, 161; mitochondrial
dysfunction in mice and, 162; repaired
by heterochronic parabiosis, 189. See also
sarcopenia
Slagboom, Eline, 171
sleep: functions of, 256–57, 262; telomere
length and, 334
sleep loss, brain effects of, 256–57
small RNAs: in neurons, and chemotaxis,
284; personalized therapy based on, 336;
in transgenerational inheritance, 297–98,
300–301, 302. See also RNA
smell, sense of: in C. elegans, 237–38, 241,
243; in Drosophila, 243–44; in humans,
249; in mice, 244
smoking, 46, 75
social castes. See eusocial animals
Social Security, 12
socioeconomic factors: epige-
etic aging
and, 294; inequality and, 8, 9, 10; in life-
span, 49, 76
Sohrabi, Salman, 170
SOS response, 158–59, 160
Soukas, Alex, 128
Soviet Communism, 284, 288
spatial memory, 277, 312
sperm, and epigenetic information, 283
sperm competition, 224, 226
spermidine, 311, 321, 338
sphingosine kinase, 135, 135n, 324
sports doping, 327
Spudich, Jim, 1
Stalin, 288
starvation hormone, 131–32, 162
statins, 339

stem cells: circulating factors affecting, 190; critical for our health, 18; dividing symmetrically or asymmetrically, 165, 181–82; embryonic, 181, 182; hematopoietic, 183, 185–86; of immortal organisms, 18, 181; induced pluripotent (iPSCs), 182, 255, 294, 334, 337; joint pain treatment with, 183n; mitochondria in, 165, 171; modifying humans with, 3, 192; mutations in, 175; neural, 182, 190–91, 254–55, 261; in normal adults, 181–82; of planaria, 178; prion function and, 143; replacing damaged cells, 138; size of, and proliferative potential, 185; therapies using, 192, 321, 334; types of, 181. See also regeneration
sterility; and lifespan, 24–26
steroid hormones: in neuronal signaling, 247. See also estrogen; male hormones, and lifespan
stress: age-related diseases and, 8; chronic in childhood, 282; on disadvantaged populations, 273; facial aging and, 75; lifespan increased by, 23–24; mitochondrial, 145; oxidative damage and, 23–24; telomere shortening and, 185
stress resistance: DNA damage in germ cells and, 184; heat shock proteins and, 79; mitohormesis and, 169; in naked mole rats, 57; regulation of, 104, 105; in tardigrades, 58
stress response: hормesis and, 163–64; integrated, 276; intermittent fasting and, 94; longevity pathways utilizing, 164; senses and, 245; in the uterus, 283. See also unfolded protein response (UPR)
Stroustrup, Nick, 80
Study of Longitudinal Aging in Mice (SLAM), 86
sugars: AGEs and, 143–44; cardiovascular disease and, 114–15; dietary, 143–44
Suh, Yousin, 48, 93, 268
Sulston, John E., 62
supercentenarians, 37–38, 39; exaggerated instances of, 6, 37; genetic studies of, 47–48; Jeanne Calment as, 11, 38, 40; mostly women, 215–16. See also centenarians
superoxide dismutase (SOD), 22, 23, 67, 156
superoxide radicals, 155
synapses: of aging neurons, 253; APOE ε4 allele in pathologies of, 268; learning and, 259; prion form of proteins in, 292; repaired during sleep, 256–57; short-term memory and, 259; tau and, 266
synaptic plasticity, 190, 191
synaptogyrin-3, 266
α-synuclein, 315–16
Szostak, Jack, 184
Taber, Sarah Kendall, 331n
TAME clinical trial, 278, 323, 337, 339, 343–44
Tanaka, Kane, 37, 38
Taq polymerase, 179
tardigrades, 180
taste. See smell, sense of
Tatar, Marc, 64, 92, 201
tauopathies, 265–66
tau protein, 142, 263–64, 265–66; APOE ε4 allele and, 268; drug that targets, 271; prion-like aggregation of, 292; transposable elements and, 267
telomerase, 184–85, 186, 334
telomeres, 183–85; of bats, 55–56; companies selling information on, 341; later-life childbearing and, 195–96; mitochondrial biogenesis and, 165; shortening of, 59, 184–85; SOD expression and, 156; therapies based on, 334–35
temperature sensation, 244–45
Tepper, Ron, 102
TGF-beta pathway: anti-Mullerian hormone and, 197; dauer and, 91–92, 206, 240; mitochondria and, 161; in reproductive
aging, 206–7; reproductive span of Sma/Mab mutants and, 206–7, 211–12; stem-cell maintenance and, 190

therapies, life-extending: categories of, 321; current excitement about, 319–20; insulin signaling as target for, 93, 326; in a just and sustainable world, 347; mitochondrial distress signals and, 163; mitochondrial mechanisms and, 169; stem cells and, 192, 321, 334; systemic factors and, 332–33; telomeres and, 334–35; testing, developing, and selling, 338–41. See also drugs, life-extending

Thomas, Jim, 89
Tibshirani, Rob, 93
Tilly, Jonathan, 203
time-restricted eating (TRE), 116, 117–18, 136, 323
Tissenbaum, Heidi, 81, 82, 84, 169
tissue culture, 59, 61
TOMM40, 44, 47, 48, 49
TOR (target of rapamycin), 54, 67–68; amino acid restriction and, 115, 134; dietary restriction and, 127–29, 130–31, 133, 134, 140; in neuronal signaling, 242. See also mTOR pathway
tortoises, 53–54
transcriptional clocks, 295
transcription factors, 45. See also DAF-16; FOXO; PHA-4

todifferentiation, 18
transfusions: of blood, 188; of plasma from young to old animal, 189–90
transgenerational inheritance, 282–84; epigenetic (TEI), 296–98, 302; flaws in reports of mammals, 285–86; historical trauma and, 281–82, 285
transgenerational learning in C. elegans, 301
translation inhibition: in dietary restriction, 133, 140; in proteostasis, 140
transposable elements (TEs): in aging cells, 266–67, 291; as epigenetic mechanism, 290–92; McClintock’s discovery of, 288–89, 290; silenced by methylation, 293

transposon theory of aging, 266–67
trauma: epigenetic mechanisms and, 283, 302; historical, 281–82, 285, 289; inter- and transgenerational, 281–82
traumatic brain injury, 323
trees: cell replacement in, 18; as longest-lived organisms, 53
Troyanskaya, Olga, 169–70
Trump’s vote, and poor health, 8

ubiquitin-proteasome system, 144–45; ER stress and, 242–43; mitochondrial proteins and, 165
umbilical cord plasma, and brain function, 191
unfolded protein, 141
unfolded protein response (UPR), 123, 145, 146, 159–61, 163, 164, 168; ER stress and, 243; fecal transplants from aged mice and, 312
urolithin A, 148, 311, 327
UV-induced DNA damage, 158–59, 176, 177; survived by some extremophiles, 179–80

vaccination: against childhood diseases, 8; against Covid-19, 7n, 13, 175; public health efforts for, 9
vagus nerve, 314–15
Valenzano, Dario, 70, 313–14
van Andel-Schipper, Hendrikje, 183
van Raamsdonk, Jeremy, 22
vascular cognitive impairment, 268
vascular dementia, 256; cholinesterase inhibitors for, 269
vasculature: A-beta plaque accumulations on, 268; APOE and, 272; declining IGF-1 in aging mammals and, 275; in long Covid, 256; in neuronal aging, 255–57
Vaupel, James, 11, 39
Vig, Jan, 11, 38
Vilchez, David, 201
Villeda, Saul, 190–91, 261–62, 333
vision in *Drosophila*, 248
Vitamin C, 21, 23, 156, 164, 322
Vitamin E, 23, 164, 321–22
vitellogenins, 21, 229–30
vomeronasal organ, 233–34

Wagers, Amy, 189, 190
Walford, Roy, 120, 323
Walker, David, 85
Walter, Peter, 276, 323
warm-blooded animals, 35
Weindruch, Richard, 111
Weismann barrier, 286, 301
Weiss, Ethan, 117–18

X chromosome: dietary restriction in
C. elegans and, 221; extra in women, 219;
in male *C. elegans*, 220; methylation of
extra X, 293; XX animals and, 261
xeroderma pigmentosum, 177
Xu, Shawn, 245, 248–49

Yamanaka, Shinya, 182
Yamanaka factors, 182–83, 255, 336
Yao, Vicky, 169–70

yeast: asymmetric inheritance in, 68, 144,
147, 165; caloric restriction in, 67, 109,
123; cell size and budding of, 185; in
Drosophila diet, 247; longevity regula-
tion in, 125, 128; measuring lifespan in,
68–69, 123–24; microarray experiments
with, 94; as model system, 52, 66–69; new
techniques for replicative aging studies
in, 125; prion functions in, 292; resvera-
trol extending lifespan in, 126, 330; Sir2
in, 68, 123–25, 144, 328, 329, 331; sort-
ing mitochondria when dividing, 165
Yellow Horse Brave Heart, Maria, 281–82

Zak, Nikolai, 38
Zhang, Yun, 299