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PROBABILITY IN YOUR HEAD

Peter Winkler

Probability theory is a well-developed science, and most probability puzzles, if
translated into precise logical form, could in principle be solved bymachine. But
the theory also provides some remarkable problem-solving tools with which we
humans, using our imagination, can often find delightful shortcuts.

Here are eight puzzles that you can try to solve by taking pencil in hand and
“doing the math," but each can also be solved in your head, just by reasoning.

1 Problems

1.1 Flying Saucers
A fleet of saucers from planet Xylofon has been sent to bring back the inhabitants
of a certain apartment building, for exhibition in the planet zoo. The earthlings
therein constitute 11 men and 14 women.

Saucers arrive one at a time and randomly beam people up. However, owing to
the Xylofonians’ strict sex separation policy, a saucer cannot take off with humans
of both sexes. Consequently, a saucer will continue beaming people up until it
acquires a member of a second sex; that human is immediately beamed back
down, and the saucer takes off with whomever it already has on board. Another
saucer then swoops in, again beaming up people at random until it gets one of a
new gender, and so forth, until the building is empty. What is the probability that
the last person beamed up is a woman?

1.2 Points on a Circle
Three points are chosen at random on a circle. What is the probability that there
is a semicircle of that circle containing all three?

1.3 Meet the Williams Sisters
Some tennis fans get excited when Venus and Serena Williams meet in a tourna-
ment. The likelihood of that happening normally depends on seeding and talent,
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so let us instead assume an idealized elimination tournament of 64 players, each
as likely to win as to lose any given match, with bracketing chosen uniformly
at random. What is the probability that the Williams sisters get to play each
other?

1.4 Service Options
You are challenged to a short tennis match, with the winner to be the first player
to win four games. You get to serve first. But there are options for determining the
sequence in which the two of you serve:

1. Standard: Serve alternates (you, her, you, her, you, her, you).
2. Volleyball style: The winner of the previous game serves the next one.
3. Reverse volleyball style: The winner of the previous game receives in the

next one.
Which option should you choose?Youmay assume it is to your advantage to serve.
You may also assume that the outcome of any game is independent of when the
game is played and of the outcome of any previous game.

1.5 WhoWon the Series?
Two evenly-matched teams meet to play a best-of-seven World Series of baseball
games. Each team has the same small advantage when playing at home. As usual,
one team (say, TeamA) plays games 1 and 2 at home, and, if necessary, plays games
6 and 7 at home. Team B plays games 3, 4 and, if needed, 5 at home.

You go to a conference in Europe and return to find that the series is over, and
six games were played. Which team is more likely to have won the series?

1.6 Random Rice
You go to the grocery store needing 1 cup of rice. When you push the button on
the machine, it dispenses a uniformly random amount of rice between nothing
and 1 cup. On average, how many times do you have to push the button to get (at
least) a cupful?

1.7 Six with No Odds
On average, how many times do you need to roll a die to get a 6, given that you
do not roll any odd numbers en route? (Hint: The answer is not 3.)

1.8 Getting the Benz
Your rich aunt has died and left her beloved 1955Mercedes-Benz 300 SLGullwing
to either you or one of your four siblings, according to the following stipulations.
Each of the five of you will privately write “1,” “2,” or “3" on a slip of paper. The
slips are put into a bowl to be examined by the estate lawyers, who will award the
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car to the heir whose number was not entered by anyone else. (If there is no such
heir, or more than one, the procedure is repeated.)

For example, if the bowl contains one 1, two 2s and two 3s, the one who put in
the 1 gets the car.

After stewing and then shrugging your shoulders, you write a 1 on your slip
and put it in the bowl. What the heck, a 1/5 chance at this magnificent vehicle
is not to be sneezed at! But just before the bowl is passed to the lawyers, you get
a sneak peek and can just make out, among the five slips of paper, one 1 (which
may or may not be yours), one 2, and one 3.

Should you be happy, unhappy, or indifferent to this information?

2 Solutions

2.1 Flying Saucers
This puzzle—and many others—is more easily tackled if we rephrase the
question, perhaps by putting the randomness up front. Supposewe imagine that
the building occupants are first lined up uniformly at random, then picked up
by the flying saucers starting from the left end. Then the gender of the rightmost
person in line would determine whether the last person picked up is a woman,
and of course that gender is female with probability 14/(14+ 11)= 56%.

But there’s a problem: This model is not correct, because the next saucer’s
beam-ups are newly randomized andmight not begin with the person who was
last rejected. You can see the difference by examining the case where there are
just two women and one man.

So, let us imagine a different model, where the remaining occupants are
re-lined up randomly each time a saucer arrives. Then the next-to-last saucer
must be facing a line consisting entirely of one or more men followed by one or
more women; or, one or more women followed by one or more men. Because
these possibilities are equally likely (reversing the line, for example, transforms
one set of possibilities to the other), the probability that the last saucer will be
greeted by women is 1/2.

2.2 Points on a Circle
This puzzle, a classic, was suggested to me by combinatorics legend Richard
Stanley of the Massachusetts Institute of Technology and the University of
Miami.

Let us pick the three points in a funny way: Choose three random diameters,
that is, three lines through the center of the circle at uniformly random angles.
Each diameter has two endpoints on the circle, giving us six points, which we
can labelA,B,C,D,E, F clockwise around the circle, beginning anywhere. Then
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Figure 1.1. Three diameters with their endpoints labeled sequentially. Any three con-
secutive points, such asA,B,C or B,C,D, are easily seen to lie on a common
semicircle. Nonconsecutive points that include one endpoint from each of
the three diameters, such as A,C,E, do not lie on a common semicircle.

we will use a coin flip (three times) to decide, for each line, which of these two
intersections becomes one of our three points.

It not hard to see that if the chosen points are consecutive (i.e., A,B,C,
or B,C,D, etc.), up to F,A,B (six possibilities), then they are contained in a
semicircle; otherwise not. This is illustrated in Figure 1.1.

Since there are eight possible outcomes for the coin flips, the probability that
the desired semicircle exists is a whopping 3/4. (If you ask your friend to pick
three random points on a circle, I expect they are less likely than not to be
contained in a semicircle.)

Similar reasoning shows that if n points are chosen, n≥ 2, the probability
that they are contained in some semicircle is 2n/2n. In fact, you can even apply
a version of this argument in higher dimensions; for example, to deduce that
the probability that four random points on a sphere are contained in some
hemisphere is 1/8.

2.3 Meet the Williams Sisters
This puzzle appears in Frederick Mosteller’s wonderful little book, 50 Chal-
lenging Problems in Probability [2], but the solution he offers involves working
out examples, then guessing a general solution and proving its correctness by
induction. Here, instead, is a solution you can work out in your head.

Given the problem’s symmetry conditions, each of the
(64
2
)= 63× 32

pairs of players has the same probability of meeting. Since 63 matches are
played (remember that all but one of the 64 players needs to be eliminated
to arrive at the winner), the probability that the Williams sisters meet is
63/(63× 32)= 1/32.
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Here is another approach that almost works. It takes two coin flips on
average to get a head and thus two matches in our random tournament to get
a loss. Therefore, a player will meet on average two other players, so Serena’s
probability of meeting Venus is 2/63. Wait, that is not quite right. Can you find
the flaw?

2.4 Service Options
This puzzle was inspired by one I heard from Dick Hess, author of Golf on the
Moon [1] and other delightful puzzle books.

Assume that you play lots of games (maybemore than is needed to determine
thematch winner), and letA be the event that of the first four served by you and
the first three served by your opponent, at least four are won by you. Then it is
easily checked that nomatter which service option you choose, you will win ifA
occurs and lose otherwise. Thus, your choice makes no difference. Notice that
the independence assumptions mean that the probability of the event A, since
it always involves four particular service games and three particular returning
games, does not depend on when the games are played or in what order.

If the game outcomes were not independent, the service option could make
a difference. For example, if your opponent is easily discouraged when losing,
you might benefit by using the volleyball scheme, in which you keep serving if
you win.

The idea that playing extra games may be useful for analytic purposes
(despite—no, because!—they do not affect the outcome) will be evenmore crit-
ical in the next solution.

2.5 WhoWon the Series?
This nice question came to me from Pradeep Mutalik, who writes the math
column for the excellent online science magazineQUANTA. The solution is my
own.

The key here is that potential games are as important as actual ones when it
comes to computing the odds. It is tempting to think, for example, that Team
A’s extra home game is less of a factor, because the series does not usually go to
seven games. But this is false reasoning: Youmay as well assume all seven games
are played (since it makes no difference to the outcome if they are). Thus, the
4-to-3 advantage in home games enjoyed by TeamA is real and is unaffected by
the order of the games.

(To see a more extreme example of this phenomenon, imagine the series
winner is to be the first team to win 50 games, and that the first 49 are home
games for TeamB and the rest for TeamA. Then, since the series is a big favorite
to end before game 98, most games will probably be played on Team B’s home
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field—yet, it is Team A that has the advantage. This, again, can be seen by
imagining that 99 games are played regardless; perhaps tickets for all 99 have
already been sold and the fans don’tmindwatching games played after the series
outcome is decided.)

Similar reasoning shows that if you know atmost six gameswere played, then
because half these potential games were at each team’s home field, you would
correctly conclude that the probability that Team A won the series is exactly
1/2. If, however, you know that at most five games were played, then Team B,
with its 3-to-2 home game advantage, is more likely to have won.

It follows that if exactly six games were played, TeamA is more likely to have
won!

Given that the answer to this puzzle does not depend on the degree of home-
field advantage, you could arrive at this answer the following way. Assume
that home-field advantage is overwhelming. Therefore, given that exactly six
games were played, it is highly probable that there was only one upset—that
is, only one game was won by the visiting team. Then that upset must have
occurred in games 3, 4, 5 or 6, because otherwise the series would have ended
at game 5. In only one of those cases (upset at game 6) would Team B have
won the series, thus Team A has nearly a three-to-one advantage! This kind of
“extremal reasoning" can be very useful in puzzle solving. As noted, however,
it depends on the assumption that changing the parameter does not affect the
solution.

2.6 Random Rice
This puzzle is an oldie but goodie. You’ll need a bit of math background to be
able to solve it in your head (or any other way, for that matter).

The volume of the ith squirt of rice is, by assumption, an independent
uniformly random real number Xi between 0 and 1. We want to determine
the expected value of the first j for which X1+X2+ · · ·+Xj exceeds 1. That
number will be at least 2, since the probability of getting a full cup on the first
squirt is 0. But it might be 3 or even more if you are unlucky and begin with
small squirts.

The key is to consider the fractional parts Y1,Y2, . . . of the partial sums.
These numbers are also independent random numbers between 0 and 1, as you
can easily see by noting that given the first i squirts, each possible value of Yi+1
arises from just one value of Xi+1.

We can assume themachine’s output is never exactly 0 or 1, since those events
have probability 0 and hence do not affect the expected number of squirts. Then,
as you squirt rice, the value of Yi keeps going up until your rice total exceeds 1,
at which point Yi goes down. Thus, the probability that you’ll need more than i
squirts is exactly the probability that Y1 <Y2 < · · ·<Yi. This is just one of the
i! ways to order i numbers, so that probability is 1/i!.
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The expected value of any “counting" random variable is just the sum of the
probabilities that that variable exceeds i, for all i≥ 0, so the expected value of
the critical j is

∞∑

i=0
1/i!,

which is the famous constant e. So on average, it takes exactly e (about
2.718281828459045) squirts to fill that rice cup.

2.7 Six with No Odds
This puzzle was communicated tome byMITprobabilist ElchananMossel, who
came up with it as a problem for his undergraduate probability students before
realizing that it wasmore subtle than he thought. The solution below ismy own.

The first issue to be tackled is perhaps: Why is the answer not 3? Is this
any different from rolling a die whose six faces are labeled with two 2s, two 4s,
and two 6s? In that case, the answer would surely be 3, since the probability of
“success" (rolling a 6) is 1/3, andwhen doing independent trials with probability
p of success, the expected number of trials to reach success is 1/p.

But it is different. When rolling an ordinary die until a 6 is obtained,
conditioning on no odd numbers favors short experiments—if it took you a
long time to roll your 6, you would probably have rolled some odd number on
the way. Thus the answer to the puzzle should be less than 3.

It might help you to think about a series of experiments. If you repeatedly
roll until a 6 appears, but ignore odd numbers, you will find that on the average
it takes 3 (non-odd) rolls to get that 6. But the correct experiment is to throw out
the current series of rolls if an odd number appears, then start a new series with
roll number 1. Thus only series with no odds will count in your experiment.

That gedankenexperimentmight give you an idea. Each series of rolls would
end with either a 6 or an odd number. Does it matter? The final number in
the sequence (1, 3, 5, or 6) is independent of the length of the series. Thus, by
reciprocity of independence if you like, the length of the series is independent of
what number caused it to end.

If you simply roll a die until either a 1, 3, 5, or 6 appears, it takes 3/2 rolls on
average (since here the probability of “success” is 2/3). Since ending in a 6 has no
effect on the number of trials, the answer to the original puzzle is that same 3/2.

2.8 Getting the Benz
You have only your author to blame for this last puzzle.

Your first thought, perhaps, is that since you have seen one of each number,
all is fair and the odds have not changed.
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But wait a second. The 1 you sawmight have been yours, but the 2 and 3were
definitely submitted by your siblings. If you had guessed 2 or 3 instead of 1, you
would now be plumb out of luck (for this round, anyway). So you did well to
guess 1, thus your chances must be higher now.

Thinking of it another way, what is written on the two slips you did not
see? There are 32= 9 possibilities, of which two—(2, 3) and (3, 2)—get you the
car, and three—(1,1), (2,2), and (3,3)—get you a rematch. You do not need a
calculator to work out that this gives you quite a bit better than your original
1/5 probability of getting the Benz.

Wonderful! You can already imagine your friends’ jealous stares when you
show up in your classic coupé. But something’s nagging at your brain. It seems
that your siblings, whatever they wrote on their slips, could all reason this way
with the same peek that you got. Since you are all going for the same car, how
can it be that you are all happy?
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