
C O N T E N T S

Preface vii

 1 The Awe of Understanding 1

 2 Scale 24

 3 Space and Time 53

 4 Energy and  Matter 82

 5 The Quantum World 108

 6  Thermodynamics and the  
Arrow of Time 139

 7 Unification 166

 8 The  Future of Physics 192

 9 The Usefulness of Physics 237

 10 Thinking like a Physicist 259

Acknowl edgments 283
Further Reading 289
Index 299



C H A P T E R   1

THE AWE OF 

UNDERSTANDING

While stories  will always be a vital part of  human 
culture, even in science— and our lives would 
be the poorer without them— modern science 
has now replaced many of the ancient mytholo-
gies and accompanying superstitious beliefs. 
A good example of how we have demystified 
our approach to understanding the world is the 
creation myths. Since the dawn of history, hu-
mankind has in ven ted stories about the origins 
of our world, and deities that  were instrumental 
in its creation, from the Sumerian god Anu, or 
Sky  Father, to the Greek myths about Gaia being 
created out of Chaos and the Genesis myths 
of the Abrahamic religions, which are still be-
lieved as literal truths in many socie ties around 
the world. It may appear to many non- scientists 
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that our modern cosmological theories about the 
origins of the universe are themselves no better 
than the religious mythologies they replace— 
and, if you look at some of the more specula-
tive ideas in modern theoretical physics, you 
might agree that  those who feel this way have a 
point. But through rational analy sis and careful 
observation— a painstaking pro cess of testing 
and building up scientific evidence, rather than 
accepting stories and explanations with blind 
faith—we can now claim with a high degree of 
confidence that we know quite a lot about our 
universe. We can also now say with confidence 
that what mysteries remain need not be attrib-
uted to the super natural. They are phenomena 
we have yet to understand— and which we hope-
fully  will understand one day through reason, 
rational enquiry, and, yes . . .  physics.

Contrary to what some  people might argue, 
the scientific method is not just another way of 
looking at the world, nor is it just another cul-
tural ideology or belief system. It is the way 
we learn about nature through trial and error, 
through experimentation and observation, 
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through being prepared to replace ideas that 
turn out to be wrong or incomplete with bet-
ter ones, and through seeing patterns in nature 
and beauty in the mathematical equations that 
describe  these patterns. All the while we deepen 
our understanding and get closer to that ‘truth’— 
the way the world  really is.

 There can be no denying that scientists have 
the same dreams and prejudices as every one  else, 
and they hold views that may not always be en-
tirely objective. What one group of scientists calls 
‘consensus’,  others see as ‘dogma’. What one gen-
eration regards as established fact, the next gen-
eration shows to be naïve misunderstanding. Just 
as in religion, politics, or sport, arguments have 
always raged in science.  There is often a danger 
that, all the while a scientific issue remains unre-
solved, or at least open to reasonable doubt, the 
positions held by each side of the argument can 
become entrenched ideologies. Each viewpoint 
can be nuanced and complex, and its advocates 
can be just as unshakable as they would be in any 
other ideological debate. And just as with soci-
etal attitudes on religion, politics, culture, race, 
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or gender, we sometimes need a new generation 
to come along, shake off the shackles of the past, 
and move the debate forward.

But  there is also a crucial distinction to sci-
ence, when compared with other disciplines. A 
single careful observation or experimental result 
can render a widely held scientific view or long- 
standing theory obsolete and replace it with a 
new worldview. This means that  those theories 
and explanations of natu ral phenomena that have 
survived the test of time are the ones we trust the 
most; they are the ones we are most confident 
about. The Earth goes around the Sun, not the 
other way around; the universe is expanding, 
not static; the speed of light in a vacuum always 
mea sures the same no  matter how fast the mea-
surer of that speed is moving; and so on. When a 
new and impor tant scientific discovery is made, 
which changes the way we see the world, not all 
scientists  will buy into it immediately, but that’s 
their prob lem; scientific pro gress is inexorable, 
which, by the way, is always a good  thing: knowl-
edge and enlightenment are always better than 
ignorance. We start with not knowing, but we 
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seek to find out . . .  and, though we may argue 
along the way, we cannot ignore what we find. 
When it comes to our scientific understanding 
of how the world is, the notion that ‘ignorance 
is bliss’ is a load of rubbish. As Douglas Adams 
once put it: ‘I’d take the awe of understanding 
over the awe of ignorance any day.’1

W H AT  W E   D O N ’ T  K N O W

It is also true that we are constantly discovering 
how much more  there is that we  don’t yet know. 
Our growing understanding yields a growing un-
derstanding of our ignorance! In some ways, as I 
 will explain, this is the situation we have in physics 
right now. We are currently at a moment in his-
tory when many physicists see, if not a crisis in 
the subject, then at least the building up of a head 
of steam. It feels as though something has to give. 
A few de cades ago, prominent physicists such as 
Stephen Hawking  were asking, ‘Is the end in sight 

1 Douglas Adams, The Salmon of Doubt: Hitchhiking the 
Galaxy One Last Time (New York: Harmony, 2002), 99.
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for theoretical physics?’2 with a ‘theory of every-
thing’ potentially just around the corner. They said 
it was just a  matter of dotting the ‘i’s and crossing 
the ‘t’s. But they  were wrong, and not for the first 
time. Physicists had expressed similar sentiments 
 towards the end of the nineteenth  century; then 
along came an explosion of new discoveries (the 
electron, radioactivity, and X- rays) that  couldn’t 
be explained by the physics known at the time 
and which ushered in the birth of modern phys-
ics. Many physicists  today feel that we might po-
tentially be on the verge of another revolution in 
physics as big as that seen a  century ago with the 
birth of relativity and quantum mechanics. I am 
not suggesting that we are about to discover some 
fundamental new phenomenon, like X- rays or ra-
dioactivity, but  there may yet be a need for another 
Einstein to break the current deadlock.

The Large Hadron Collider has not yet fol-
lowed up on its 2012 success in detecting the 
Higgs boson, and thereby confirming the ex-

2 This was the title of an article Hawking wrote in 1981: 
S. W. Hawking, Physics Bulletin 32, no. 1 (1981): 15–17.
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istence of the Higgs field (which I  will discuss 
 later); many physicists  were hoping for the dis-
covery of other new particles by now, which 
would help resolve long- standing mysteries. 
And we still  don’t understand the nature of the 
dark  matter holding galaxies together or the dark 
energy that is ripping the universe apart; nor do 
we have answers to fundamental questions like 
why  there is more  matter than antimatter; why 
the properties of the universe are so finely tuned 
to allow for stars and planets, and life, to exist; 
 whether  there is a multiverse; or  whether  there 
was anything before the Big Bang that created 
the universe we see.  There is still so much left 
that we cannot explain. And yet, it is hard not 
to be dazzled by our success so far. While some 
scientific theories may turn out to be connected 
to each other at a deeper level than we thought, 
and  others may turn out to be entirely wrong, no 
one can deny just how far  we’ve come.

Sometimes, in the light of new empirical evi-
dence, we realise that we  were barking up the 
wrong tree. Other times we simply refine an idea 
that turns out not to be wrong, but just a rough 
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approximation that we improve upon to gain a 
more accurate picture of real ity.  There are some 
areas of fundamental physics that we might not be 
entirely happy with, where we know deep down 
that  we’ve not heard the final word, but which we 
nevertheless continue to rely on for the time being 
 because they are useful. A good example of this 
is Newton’s universal law of gravitation. It is still 
referred to, grandly, as a ‘law’  because scientists 
at the time  were so confident that it was the last 
word on the subject that they elevated its status 
above that of a mere ‘theory’. The name stuck, de-
spite the fact that we now know their confidence 
was misplaced. Einstein’s general theory (note 
that it’s called a theory) of relativity replaced 
Newton’s law,  because it gives us a deeper and 
more accurate explanation of gravity. And yet, we 
still use Newton’s equations to calculate the flight 
trajectories of space missions. The predictions of 
Newtonian mechanics may not be as accurate 
as  those of Einstein’s relativity, but they are still 
good enough for nearly all everyday purposes.

Another example that we are still working on 
is the Standard Model of particle physics. This is 
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an amalgamation of two separate mathematical 
theories, called electroweak theory and quan-
tum chromodynamics, which together describe 
the properties of all the known elementary par-
ticles and the forces acting between them. Some 
physicists think of the Standard Model as nothing 
more than a stopgap  until a more accurate and 
unified theory is discovered. And yet, it is remark-
able that, as it stands now, the Standard Model 
can tell us every thing we need to know about the 
nature of  matter: how and why electrons arrange 
themselves around atomic nuclei, how atoms in-
teract to form molecules, how  those molecules fit 
together to make up every thing around us, how 
 matter interacts with light (and therefore how al-
most all phenomena can be explained). Just one 
aspect of it, quantum electrodynamics, underpins 
all of chemistry at the deepest level.

But the Standard Model cannot be the final 
word on the nature of  matter,  because it  doesn’t 
include gravity and it  doesn’t explain dark  matter 
or dark energy, which between them make up 
most of the stuff of the universe. Answering 
some questions naturally leads to  others, and 
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physicists continue their search for physics ‘be-
yond the Standard Model’ in an attempt to ad-
dress  these lingering but crucial unknowns.

H O W  W E  P R O  G R E S S

More than any other scientific discipline, physics 
progresses via the continual interplay between 
theory and experiment. Theories only survive 
the test of time as long as their predictions con-
tinue to be verified by experiments. A good the-
ory is one that makes new predictions that can 
be tested in the lab, but if  those experimental 
results conflict with the theory, then it has to be 
modified, or even discarded. Conversely, labo-
ratory experiments can point to unexplained 
phenomena that require new theoretical devel-
opments. In no other science do we see such a 
beautiful partnership. Theorems in pure mathe-
matics are proven with logic, deduction, and 
the use of axiomatic truths. They do not require 
validation in the real world. In contrast, geology, 
ethology or behavioural psy chol ogy are mostly 
observational sciences in which advances in our 
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understanding are made through the painstaking 
collection of data from the natu ral world, or via 
carefully designed laboratory tests. But physics 
can only pro gress when theory and experiment 
work hand in hand, each pulling the other up 
and pointing to the next foothold up the cliffside.

Shining a light on the unknown is another 
good meta phor for how physicists develop 
their theories and models, and how they design 
their experiments to test some aspect of how 
the world works. When it comes to looking for 
new ideas in physics,  there are, very broadly, 
two kinds of researchers. Imagine  you’re walk-
ing home on a dark, moonless night when you 
realise that  there’s a hole in your coat pocket 
through which your keys must have fallen at 
some point along your route. You know they 
have to be somewhere on the ground along the 
stretch of pavement  you’ve just walked, so you 
retrace your steps. But do you only search the 
patches bathed in light beneath lampposts?  After 
all, while  these areas cover only a fraction of the 
pavement, at least you  will see your keys if they 
are  there. Or do you grope around in the dark 
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stretches in between the pools of lamplight? 
Your keys may be more likely to be  here, but they 
 will also be more difficult to find.

Similarly,  there are lamppost physicists and 
searchers in the dark. The former play it safe 
and develop theories that can be tested against 
experiment— they look where they can see. This 
means they tend to be less ambitious in coming 
up with original ideas, but they achieve a higher 
success rate in advancing our knowledge, albeit 
incrementally: evolution, not revolution. In con-
trast, the searchers in the dark are  those who come 
up with highly original and speculative ideas that 
are not so easy to test. Their chances of success 
are lower, but the payoff can be greater if they are 
right, and their discoveries can lead to paradigm 
shifts in our understanding. This distinction is far 
more prevalent in physics than in other sciences.

I have sympathy for  those who get frustrated 
by the searchers and the dreamers, who often 
work in esoteric areas like cosmology and string 
theory, for  these are the  people who think noth-
ing of adding a few new dimensions  here or  there 
if it makes their maths prettier, or to hypothesise 
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an infinity of parallel universes if it reduces the 
strangeness in ours. But  there have been some 
famous examples of searchers who have struck 
gold. The twentieth- century genius Paul Dirac 
was a man driven by the beauty of his equations, 
which led him to postulate the existence of an-
timatter several years before it was discovered 
in 1932. Then  there’s Murray Gell- Mann and 
George Zweig, who in the mid-1960s in de pen-
dently predicted the existence of quarks when 
 there was no experimental evidence to suggest 
such particles existed. Peter Higgs had to wait 
half a  century for his boson to be discovered and 
the theory that bears his name to be confirmed. 
Even the quantum pioneer Erwin Schrödinger 
came up with his eponymous equation with noth-
ing more than inspired guesswork. He picked the 
right mathematical form of equation even though 
he  didn’t yet know what its solution meant.

What unique talents did all  these physicists 
have? Was it intuition? Was it a sixth sense that 
allowed them to sniff out nature’s secrets? Possibly. 
The Nobel Prize winner Steven Weinberg believes 
it is the aesthetic beauty in the mathe matics that 
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has guided  great theoreticians like Paul Dirac 
and the  great nineteenth- century Scottish physi-
cist James Clerk Maxwell.

But it is also true that none of  these physicists 
worked in isolation, and their ideas still had to be 
consistent with all established facts and experi-
mental observations.

T H E  S E A R C H  F O R  S I M P L I C I T Y

The true beauty of physics, for me, is found not 
only in abstract equations or in surprising ex-
perimental results, but in the deep under lying 
princi ples that govern the way the world is. This 
is a beauty that is no less awe- inspiring than a 
breathtaking sunset or a  great work of art such 
as a Leonardo da Vinci painting or Mozart so-
nata. It is a beauty that lies not in the surprising 
profundity of the laws of nature, but in the decep-
tively  simple under lying explanations (where we 
have them) for where  those laws come from.3

3 Of course, beauty need not only be associated with sim-
plicity. Just as with  great art or  music,  there can also be beauty 
in the sheer complexity of some physical phenomena.
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A perfect example of the search for simplicity 
is science’s long and continuing journey to dis-
cover the basic building blocks of  matter. Take 
a look around you. Consider the sheer range of 
materials that make up our everyday world: con-
crete, glass, metals, plastics, wood, fabrics, food-
stuffs, paper, chemicals, plants, cats,  people . . .  
millions of diff er ent substances, each with its 
own distinctive properties: squidgy, hard, runny, 
shiny, bendy, warm, cold. . . .  If you knew noth-
ing of physics or chemistry, you might imagine 
that most materials have  little in common with 
each other; and yet we know that every thing 
is made of atoms, and that  there is only a finite 
number of diff er ent kinds of atoms.

But our quest for ever- deeper simplicity does 
not stop  there. Thinking about the structure of 
 matter goes all the way back to the fifth  century 
BC in ancient Greece, when Empedocles first 
proposed that all  matter consisted of four funda-
mental ‘ele ments’ (his ‘fourfold roots of every-
thing’): earth,  water, air, and fire. In contrast 
to this  simple idea, and around the same time, 
two other phi los o phers, Leucippus and his 
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pupil Democritus, proposed that all  matter was 
 composed of tiny indivisible ‘atoms’. However, 
 these two promising ideas conflicted with each 
other. While Democritus believed that  matter 
was ultimately made of fundamental building 
blocks, he thought  there would be an infinite 
variety of such diff er ent atoms; whereas Em-
pedocles, who proposed that every thing was 
ultimately made up of just four ele ments, ar-
gued that  these ele ments  were continuous and 
infinitely divisible. Both Plato and Aristotle 
promoted the latter theory and rejected Dem-
ocritus’s atomism, believing that its simplistic 
mechanistic materialism could not produce the 
rich diversity of beauty and form of the world.

What the Greek phi los o phers  were  doing was 
not true science as we understand it today— apart 
from a few notable exceptions, such as Aristo-
tle (the observer) and Archimedes (the experi-
menter), their theories  were often not much more 
than idealised philosophical concepts. Neverthe-
less,  today, through the tools of modern science, 
we know that both of  those ancient ideas (atom-
ism and the four ele ments)  were, in spirit at least, 
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along the right lines: that all the stuff making up 
our world, including our own bodies, and includ-
ing every thing we see out in space— the Sun, the 
Moon, and the stars—is all made of fewer than a 
hundred diff er ent types of atoms. We also now 
know that atoms have internal structure. They are 
made of tiny, dense nuclei surrounded by clouds 
of electrons while the nucleus itself is made up 
of smaller constituents: protons and neutrons, 
which are in turn made of even more fundamen-
tal building blocks called quarks.

So, despite the apparent complexity of  matter 
and the immea sur able variety of substances that 
can be made up from the chemical ele ments, the 
truth is that the ancients’ quest for simplicity 
 didn’t go far enough. As we understand phys-
ics  today, all the  matter we see in the world is 
made up of not the four classical ele ments of the 
Greeks, but just three elementary particles: the 
‘up’ quark, the ‘down’ quark, and the electron. 
That’s it. Every thing  else is just detail.

And yet the job of physics is more than just 
classifying what the world is made of. It is about 
finding the correct explanations for the natu ral 
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phenomena we observe and the under lying 
princi ples and mechanisms that account for 
them. While the ancient Greeks might have de-
bated passionately about the real ity of atoms or 
the abstract connection between ‘ matter’ and 
‘form’, they had no idea how to explain earth-
quakes or lightning, let alone astronomical 
events such as the phases of the Moon or the 
occasional appearance of comets— although this 
 didn’t prevent them from trying.

We have come a very long way since the 
Greeks of antiquity, and yet  there is also plenty 
that we still have to understand and explain. 
The physics I  will cover in this book is mostly 
the stuff we are confident about. Throughout, 
I  will explain why we are confident and point 
out what is speculative and where  there may 
be some wiggle room. Naturally, I anticipate 
that some parts of the story  will become out- 
of- date in the  future. Indeed, an impor tant dis-
covery might be made the day  after this book’s 
publication that revises some aspect of our un-
derstanding. But that is the nature of science. 
Mostly, what you  will read about in this book is 
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established beyond reasonable doubt to be the 
way the world is.

In the next chapter, I explore the idea of scale. 
No other science so brazenly addresses such a 
vast range of scales, of time, space, and ener-
gies, as physics does, from the unimaginably tiny 
quantum world to the entire cosmos, and from 
the blink of an eye to eternity.

 After gaining an appreciation for the scope 
of what physics can explain, we  will begin on 
our journey in earnest, starting with the three 
‘pillars’ of modern physics: relativity, quantum 
mechanics, and thermodynamics. In order to 
paint the picture of our world that physics has 
given us, we must first prepare the canvas, and 
in this case the canvas is space and time. Every-
thing that happens in the universe comes down 
to events that take place somewhere in space and 
at some moment in time. And yet, we  will see 
in chapter 3 that we cannot separate the canvas 
from the painting. Space and time themselves are 
an integral part of real ity. You may be shocked 
to discover just how diff er ent the physicist’s 
view of space and time is from our everyday, 
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commonsense one, for it relies on Einstein’s 
general theory of relativity, which describes the 
nature of space and time and defines how we 
think about the fabric of the cosmos. Once this 
canvas is ready, we can proceed to prepare our 
paints. In chapter 4, I define what a physicist 
means by  matter and energy, the stuff of the 
universe: what it consists of, how it was cre-
ated, and how it behaves. One can think of this 
chapter as a companion to the previous one, 
 because I also describe how  matter and energy 
are intimately related to the space and time in 
which they exist.

In chapter 5, I plunge into the world of the 
very small, zooming in and shrinking down to 
study the nature of the fundamental building 
blocks of  matter. This is the quantum world, our 
second pillar of modern physics, where  matter 
behaves very differently from our everyday ex-
periences, and where our grip on what is real 
becomes increasingly tenuous. And yet . . .  our 
understanding of the quantum is far more than 
a flight of fancy or mere intellectual diversion; 
without an understanding of the rules govern-
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ing the building blocks of  matter and energy, we 
would not have been able to build our modern 
technological world.

In chapter 6, we zoom out of the quantum 
world to see what happens when we put many 
particles together to make up larger, more 
complex systems. What do physicists mean by 
order, disorder, complexity, entropy, and chaos? 
 Here, we encounter the third pillar of physics, 
thermodynamics— the study of heat, energy, 
and the properties of  matter in bulk. We are led 
inevitably to ask what makes life itself so spe-
cial. How is living  matter so diff er ent from non- 
living  matter?  After all, life must be subject to the 
same laws of physics as every thing  else. In other 
words, can physics help us understand the differ-
ence between chemistry and biology?

In chapter 7, I explore one of the most pro-
found ideas in physics, the notion of unification: 
the way we have sought, and found, over and 
over again, universal laws that bring together 
seemingly disparate phenomena in nature 
 under one unifying description or theory. I con-
clude the chapter with a look at some of the 
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front- runners for an all- encompassing physical 
‘theory of every thing’.

By chapter 8 we  will have reached the limit of 
what we currently understand about the physi-
cal universe and can fi nally dip our toes in the 
vast ocean of the unknown. I explore some of the 
mysteries we are currently struggling with and 
speculate upon  whether we are close to solving 
them.

In the penultimate chapter, I discuss how the 
interplay of theory and experiment in physics 
has led to the technologies on which our mod-
ern world is built. For example, without quan-
tum mechanics, we would not have been able to 
understand the behaviour of semiconductors or 
invent the silicon chip, on which all of modern 
electronics is founded, and I would not be typ-
ing  these words on my laptop. I  will also take 
a look into the  future and predict how current 
research into quantum technologies is  going to 
revolutionise our world in unimaginable ways.

In the final chapter, I explore the notion of 
scientific truth, particularly in a ‘post- truth’ so-
ciety in which many  people remain suspicious 
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of science. How does the pro cess of science dif-
fer from other  human activities? Is  there such a 
 thing as absolute scientific truth? And if the job 
of science is to seek out deep truths about nature, 
how should scientists convince wider society of 
the value of the scientific enterprise: the forming 
and testing of hypotheses, and rejecting them if 
they do not fit the data?  Will science ever come 
to an end one day when we know all  there is to 
know? Or  will the search for answers continue to 
lead us deeper down an ever-expanding abyss?

I promised you in the preface that I would try 
not to get too tangled up in philosophical mus-
ings, and yet  here I am  doing just that, and this is 
still only the Introduction. So, I  will take a deep 
breath and start us off again,  gently, with a sense 
of scale.
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