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Chapter One

An Overview of the Proof

The purpose of this chapter is to give the main steps in the proof of The-
orems A and B (stated in the introduction) that for each n the norm residue
homomorphism

KM
n (k)/� −→ Hn

ét(k, μ
⊗n
� ) (1.1)

is an isomorphism, and Hp,n(X,μ⊗n
� )∼=Hp

ét(X,μ
⊗n
� ) for p≤n. We proceed by

induction on n. It turns out that in order to prove Theorems A, B, and C, we
must simultaneously prove several equivalent (but more technical) assertions,
H90(n) and BL(n), which are defined in 1.5 and 1.28.

1.1 FIRST REDUCTIONS

We fix a prime � and a positive integer n. In this section we reduce Theorems A
and B to H90(n), an assertion (defined in 1.5) about the étale cohomology of
the �-local motivic complex Z(�)(n). We begin with a series of reductions, the
first of which is a special case of the transfer argument.

The transfer argument 1.2. Let F be a covariant functor on the category of
fields which are algebraic over some base field, taking values in Z/�-modules
and commuting with direct limits. We suppose that F is also contravariant for
finite field extensions k′/k, and that the evident composite from F (k) to itself is
multiplication by [k′:k]. The contravariant maps are commonly called transfer
maps. If [k′ : k] is prime to �, the transfer hypothesis implies that F (k) injects as
a summand of F (k′). More generally, F (k) injects into F (k′) for any algebraic
extension k′ consisting of elements whose degree is prime to �. Thus to prove
that F (k)= 0 it suffices to show that F (k′)= 0 for the field k′.

Both k �→KM
n (k)/� and k �→Hn

ét(k, μ
⊗n
� ) satisfy these hypotheses, and so do

the kernel and cokernel of the norm residue map (1.1), because the norm residue
commutes with these transfers. Thus if the norm residue is an isomorphism for
k′ it is an isomorphism for k, by the transfer argument applied to the kernel
and cokernel of (1.1). For this reason, we may assume that k contains all �th

roots of unity, that k is a perfect field, and even that k has no field extensions
of degree prime to �.

The second reduction allows us to assume that we are working in character-
istic zero, where, for example, the resolution of singularities is available.
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4 CHAPTER 1

Lemma 1.3. If (1.1) is an isomorphism for all fields of characteristic 0, then
it is an isomorphism for all fields of characteristic �= �.

Proof.1 Let R be the ring of Witt vectors over k and K its field of fractions.
By the standard transfer argument 1.2, we may assume that k is a perfect field,
so that R is a discrete valuation ring. In this case, the specialization maps “sp”
are defined and compatible with the norm residue maps in the sense that

KM
n (K)/� � Hn

ét(K,μ
⊗n
� )

KM
n (k)/�

sp
�

� Hn
ét(k, μ

⊗n
� )

sp
�

commutes (see [Wei13, III.7.3]). Both specialization maps are known to be split
surjections. Since char(K)= 0, the result follows.

Our third reduction translates the problem into the language of motivic
cohomology, as the condition H90(n) of Definition 1.5.

The (integral) motivic cohomology of a smooth variety X is written as
Hn,i(X,Z) or Hn(X,Z(i)); it is defined to be the Zariski hypercohomology on
X of Z(i); see [MVW, 3.4]. Here Z(i) is a cochain complex of étale sheaves which
is constructed, for example, in [MVW, 3.1]. By definition, Z(i)= 0 for i< 0 and
Z(0)=Z, so Hn(X,Z(i))= 0 for i< 0 and even i=0 when n �=0. There are pair-
ings Z(i)⊗Z(j)→Z(i+ j) making H∗(X,Z(∗)) into a bigraded ring. When k is
a field, we often write H∗(k,Z(∗)) for H∗(Spec k,Z(∗)).

There is a quasi-isomorphism Z(1)
�−→ O×[−1]; see [MVW, 4.1]. This yields

an isomorphism H1(X,Z(1))∼=O×
X . When X =Spec(k) for a field k, the Stein-

berg relation holds in H2(X,Z(2)): if a �=0, 1 then a∪ (1− a)= 0. The presen-
tation of KM

∗ (k) implies that we have a morphism of graded rings KM
∗ (k)→

H∗(k,Z(∗)) sending {a1, ..., an} to a1 ∪ · · · ∪ an. It is a theorem of Totaro and
Nesterenko–Suslin that KM

n (k)∼=Hn(Spec k,Z(n)) for each n; proofs are given
in [NS89], [Tot92], and [MVW, Thm. 5.1].

We can of course vary the coefficients in this construction. Given any abelian
groupA, we may considerHn(X,A(i)), whereA(i) denotesA⊗Z(i);H∗(X,A(∗))
is a ring ifA is. Because Zariski cohomology commutes with direct limits, we have

Hn(X,Z(i))⊗Q
�−→ Hn(X,Q(i)) and Hn(X,Z(i))⊗Z(�)

�−→ Hn(X,Z(�)(i)).
Because Hn+1

zar (Spec k,Z(n))= 0 [MVW, 3.6], this implies that we have

KM
n (k)/�∼=Hn

zar(Spec k,Z/�(n)). (1.4)

Since each A(i) is a complex of étale sheaves, we can also speak about
the étale motivic cohomology H∗

ét(X,A(i)). There is a motivic-to-étale map

1. Taken from [Voe96, 5.2].
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AN OVERVIEW OF THE PROOF 5

H∗(X,A(i))→H∗
ét(X,A(i)); it is just the change-of-topology map H∗

zar→H∗
ét.

For A=Z/� we have isomorphisms Hn
ét(X,Z/�(i))

∼=Hn
ét(X,μ

⊗i
� ) for all n, i≥ 0;

see [MVW, 10.2]. We also haveHn
ét(k,Z(i))(�) =Hn

ét(k,Z(�)(i)) andH
n
ét(k,Z(i))⊗

Q=Hn
ét(k,Q(i)).

The condition H90(n)

Definition 1.5. Fix n and �. We say that H90(n) holds if Hn+1
ét (k,Z(�)(n))= 0

for any field k with 1/�∈ k. Note that H90(0) holds as H1
ét(k,Z)= 0, and that

H90(n) implicitly depends on the prime �.

The name “H90(n)” comes from the observation that H90(1) is equivalent
to the localization at � of the classical Hilbert’s Theorem 90:

H2
ét(k,Z(1))

∼=H2
ét(k,Gm[−1])=H1

ét(k,Gm)= 0.

We now connect H90(n) to KM
n (k).

Lemma 1.6. For all n> i, Hn
ét(k,Z(i)) is a torsion group, and its �-torsion sub-

group is Hn
ét(k,Z(�)(i)). When 1/�∈ k and n≥ i+1 we have Hn+1

ét (k,Z(�)(i))∼=
Hn

ét(k,Q/Z(�)(i)), while there is an exact sequence

KM
n (k)⊗Q/Z(�)→Hn

ét(k,Q/Z(�)(n))→Hn+1
ét (k,Z(�)(n))→ 0.

Proof. We have Hn
ét(k,Q(i))∼=Hn(k,Q(i)) for all n by [MVW, 14.23]. If n> i,

Hn(k,Q(i)) vanishes (by [MVW, 3.6]) and hence Hn
ét(k,Z(i)) is a torsion group.

Its �-torsion subgroup is Hn
ét(k,Z(i))(�) =Hn

ét(k,Z(�)(i)). Set D(i)=Q/Z(�)(i).
The étale cohomology sequence for the exact sequence 0→Z(�)(i)→Q(i)→D(i)→
0 yields the second assertion (for n≥ i+1), and (taking n= i) yields the com-
mutative diagram:

Hn(k,Z(�)(n)) � Hn(k,Q(n)) � Hn(k,D(n)) � 0

Hn
ét(k,Z(�)(n))

�
� Hn

ét(k,Q(n))

∼=
�

� Hn
ét(k,D(n))

� onto� Hn+1
ét (k,Z(�)(n)).

The bottom right map is onto because Hn+1
ét (k,Q(i))= 0. Since Hn(k,D(n))∼=

KM
n (k)⊗Q/Z(�), a diagram chase yields the exact sequence.

The example Br(k)(�) =H2
ét(k,Q/Z(�)(1))∼=H3

ét(k,Z(�)(1)) shows that the
higher étale cohomology of Z(n) and Z(�)(n) need not vanish.

Theorem 1.7. Fix n and �. If KM
n (k)/�

�−→ Hn
ét(k, μ

⊗n
� ) holds for every field

k containing 1/�, then H90(n) holds.

Of course, the weaker characteristic 0 hypothesis suffices by Lemma 1.3.
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6 CHAPTER 1

Proof. Recall that KM
n (k)∼=Hn

zar(Spec k,Z(n)). The change of topologies map
Hn

zar→Hn
ét yields a commutative diagram:

KM
n (k)

� � KM
n (k) � KM

n (k)/� � 0

Hn
ét(k,Z(n))

� �� Hn
ét(k,Z(n))

�
� Hn

ét(k, μ
⊗n
� )

Norm residue
�

� Hn+1
ét (k,Z(n))

��

The right vertical map is the Norm residue homomorphism, because the left
vertical maps are multiplicative, and H1

ét(k,Z(1))= k×. If the norm residue is a
surjection, then Hn+1

ét (k,Z(n)) has no �-torsion. But it is a torsion group, and
its �-primary subgroup is Hn+1

ét (k,Z(�)(n)) by Lemma 1.6. As this must be zero
for all k, H90(n) holds.

The converse of Theorem 1.7 is true, and will be proven in chapter 2 as
Theorem 2.38 and Corollary 2.42. For reference, we state it here. Note that parts
a) and b) are the conclusions of Theorems A and B (stated in the introduction).

Theorem 1.8. Fix n and �. Suppose that H90(n) holds. If k is any field con-
taining 1/�, then:

a) the norm residue KM
n (k)/�→Hn

ét(k, μ
⊗n
� ) is an isomorphism;

b) for every smooth X over k and all p≤n, the motivic-to-étale map
Hp(X,Z/�(n))→Hp

ét(X,μ
⊗n
� ) is an isomorphism.

1.2 THE QUICK PROOF

With these reductions behind us, we can now present the proof that the norm
residue is an isomorphism. In order to keep the exposition short, we defer defi-
nitions and proofs to later sections.

We will proceed by induction on n, assuming H90(n− 1) holds. By Theorems
1.7 and 1.8, this is equivalent to assuming that KM

n−1(k)/�
∼=Hn−1

ét (k, μ⊗n−1
� ) for

all fields k containing 1/�.

Definition 1.9. We say that a field k containing 1/� is �-special if k has no
finite field extensions of degree prime to �. This is equivalent to the assertion
that every finite extension is a composite of cyclic extensions of degree �, and
hence that the absolute Galois group of k is a pro-�-group.

If k is a field containing 1/�, any maximal prime-to-� algebraic extension is
�-special. These extensions correspond to the Sylow �-subgroups of the absolute
Galois group of k.

The following theorem first appeared as [Voe03a, 5.9]; it will be proven in
section 3.1 as Theorem 3.11.
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AN OVERVIEW OF THE PROOF 7

Theorem 1.10. Suppose that H90(n− 1) holds. If k is an �-special field and
KM
n (k)/�=0, then Hn

ét(k, μ
⊗n
� )= 0 and hence Hn+1

ét (k,Z(�)(n))= 0.

The main part of this book is devoted to proving the following deep theorem.

Theorem 1.11. Suppose that H90(n− 1) holds. Then for every field k of char-
acteristic 0 and every nonzero symbol a= {a1, . . . , an} in KM

n (k)/� there is a
smooth projective variety Xa whose function field Ka= k(Xa) satisfies:

(a) a vanishes in KM
n (Ka)/�; and

(b) the map Hn+1
ét (k,Z(�)(n))→Hn+1

ét (Ka,Z(�)(n)) is an injection.

Outline of proof. (See Figure 1.1.) The varieties Xa we use to prove Theorem
1.11 are called Rost varieties for a ; they are defined in section 1.3 (see 1.24).
Part of the definition is that any Rost variety satisfies condition (a). The proof
that a Rost variety exists for every a, which is due to Markus Rost, is postponed
until part II of this book, and is given in chapter 11 (Theorem 11.2).

The proof that Rost varieties satisfy condition (b) of Theorem 1.11 will be
given in chapter 4 (in Theorem 4.20). The proof requires the motive of the Rost
variety to have a special summand called a Rost motive; the definition of Rost
motives is given in section 4.3 (see 4.11).

The remaining difficult step in the proof of Theorem 1.11, due to Voevodsky,
is to show that there is always a Rost variety for a which has a Rost motive. We
give the proof of this in chapter 5, using the simplicial scheme X which is defined
in 1.32. The input to the proof is a cohomology class μ∈H2b+1,b(X,Z); μ will
be constructed in chapter 3, starting from a; see Corollary 3.16. The class μ is
used to construct a motivic cohomology operation φ and chapter 6 is devoted
to showing that φ coincides with the operation βP b (b=(�n−1− 1)/(�− 1)); see
Theorem 6.34. The proof requires facts about motivic cohomology operations
which are developed in part III.

The quick proof

Assuming Theorems 1.8, 1.10 and 1.11, we can now prove Theorems A and B
of the introduction. This argument originally appeared on p. 97 of [Voe03a].

Theorem 1.12. If H90(n− 1) holds, then H90(n) holds. By Theorem 1.8, this
implies that for every field k containing 1/�:

a) the norm residue KM
n (k)/�→Hn

ét(k, μ
⊗n
� ) is an isomorphism;

b) for every smooth X over k and all p≤n, the motivic-to-étale map
Hp(X,Z/�(n))→Hp

ét(X,μ
⊗n
� ) is an isomorphism.

Since H90(1) holds, it follows by induction on n that H90(n) holds for every
n. Note that Theorem A is 1.12(a) and Theorem B is 1.12(b).
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8 CHAPTER 1

Figure 1.1: Dependency chart of Main Theorem 1.11

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



AN OVERVIEW OF THE PROOF 9

Proof of Theorem 1.12. Fix k, and an algebraically closed overfield Ω of infinite
transcendence degree > |k| over k. We first use transfinite recursion to produce
an �-special field k′ (k⊂ k′⊂Ω) such that KM

n (k)/�→KM
n (k′)/� is zero and

Hn+1
ét (k,Z(�)(n)) embeds into Hn+1

ét (k′,Z(�)(n)).
Well-order the symbols in KM

n (k): {aλ}λ<κ. Fix λ<κ; inductively, there is
an intermediate field kλ such that aμ vanishes in KM

n (kλ)/� for all μ<λ and

Hn+1
ét (k,Z(�)(n)) embeds into Hn+1

ét (kλ,Z(�)(n)). If aλ vanishes in KM
n (kλ)/�,

set kλ+1 = kλ. Otherwise, Theorem 1.11 states that there is a variety Xλ over
kλ whose function field K = kλ(Xλ) splits aλ, and such that Hn+1

ét (kλ,Z(�)(n))

embeds into Hn+1
ét (K,Z(�)(n)); set kλ+1 =K. If λ is a limit ordinal, set kλ=

∪μ<λkμ. Finally, let k′ be a maximal prime-to-� algebraic extension of kκ.
Then Hn+1

ét (k,Z(�)(n)) embeds into Hn+1
ét (kκ,Z(�)(n)), which embeds in Hn+1

ét

(k′,Z(�)(n)) by the usual transfer argument 1.2. By construction, k′ splits every
symbol in KM

n (k).
Iterating this construction, we obtain an ascending sequence of field exten-

sions k(m); let L denote the union of the k(m). Then L is �-special and
KM
n (L)/�=0 by construction, so Hn+1

ét (L,Z(�)(n))= 0 by Theorem 1.10. Since

Hn+1
ét (k,Z(�)(n)) embeds into Hn+1

ét (L,Z(�)(n)), we have Hn+1
ét (k,Z(�)(n))= 0.

Since this holds for any k, H90(n) holds.

In the remainder of this chapter, we introduce the ideas and basic tools we
will use in the rest of the book.

1.3 NORM VARIETIES AND ROST VARIETIES

In this section we give the definition of norm varieties and Rost varieties; see
Definitions 1.13 and 1.24. These varieties are the focus of the main theorem
1.11, and will be shown to exist in chapters 10 and 11 in part II.

We begin with the notions of a splitting variety and a norm variety for a
symbol a∈KM

n (k)/�. Norm varieties will be the focus of chapter 10.

Definition 1.13. Let a be a symbol in KM
n (k)/�. A field F over k is said to

split a, and be a splitting field for a, if a=0 in KM
n (F )/�. A variety X over k is

called a splitting variety for a if its function field splits a (i.e., if a vanishes in
KM
n (k(X))/�).
A splitting variety X is called an �-generic splitting variety if any splitting

field F has a finite extension E of degree prime to � with X(E) �= ∅.
A norm variety for a nonzero symbol a in KM

n (k)/� is a smooth projective
�-generic splitting variety of dimension �n−1− 1.

We will show in Theorem 10.17 that norm varieties always exist for all n when
char(k)= 0. When n=1, the 0-dimensional variety X =Spec k( �

√
a) is a norm

variety for a because KM
n (k)/�= k×/k×�. When n=2, Severi–Brauer varieties

are norm varieties by Proposition 1.25.
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10 CHAPTER 1

Remark 1.13.1. (Specialization) Let Y be a reduced subscheme of X, not con-
tained in the singular locus of X. If X is a splitting variety for a then so is Y .
When X is a smooth splitting variety, such as a norm variety for a, this implies
that a is split by every field E with X(E) �= ∅.

To see this, pick a closed nonsingular point x lying on Y . By specialization
[Wei13, III.7.3], there is a map KM

n (k(X))→KM
n (k(Y )) sending the class of a

on k(X) to the class of a on k(Y ).

Severi–Brauer varieties

Recall that the set of minimal left ideals of the matrix algebra M�(k)
correspond to the k-points of the projective space P

�−1
k ; if I is a minimal

left ideal corresponding to a line L of k� then the rows of matrices in I all
lie on L.

Now fix a symbol a= {a1, a2} and a primitive �th root of unity in k, ζ. Let
A=A(a) denote the central simple algebra k{x, y}/(x�= a1, y

�= a2, xy= ζyx).
It is well known that there is a smooth projective variety X of dimension �−1,
defined over k, such that for every field F over k, X(F ) is the set of (nonzero)
minimal ideals of A⊗kF : X(F ) �= ∅ if and only if A⊗kF ∼=M�(F ). The variety
X is called the Severi–Brauer variety of A.

Here is one way to construct the Severi–Brauer variety X. If E= k( �
√
a1 )

then A⊗k E∼=M�(E); the Galois group of E/k acts on the set of minimal ideals
of A⊗k E and hence on P

�−1
E and X ×k E is P

�−1
E with this Galois action. Now

apply Galois descent. This method originated in [Ser63]; see [KMRT98].

Definition 1.14. If k contains a primitive �th root of unity, ζ, the Severi–Brauer
variety X associated to a symbol a= {a1, a2} is defined to be the Severi–Brauer
variety of A=A(a). (The variety is independent of the choice of ζ.) If k does
not contain a primitive �th root of unity, we will mean the Severi–Brauer variety
for {a1, a2} defined over k(ζ).

If ζ ∈F , there is a canonical map KM
2 (F )/� −→ �Br(k), sending {a1, a2} to

its associated central simple algebra A. The Merkurjev–Suslin Theorem [MeS82]
states that this is an isomorphism. Since A⊗k k(X) is a matrix algebra by
construction, the Merkurjev–Suslin Theorem implies that k(X) splits a. Here is
a more elementary proof.

Lemma 1.15. Every symbol a= {a1, a2} is split by its Severi–Brauer variety.

Proof. (Merkurjev) Fix α= �
√
a1 and set E= k(α). Recall from [Wei82] (or

11.12) that the Weil restrictions of A
1 along E and k are isomorphic to the

affine spaces A
� and A

1 over k, and the Weil restriction of the norm map NE/k is

a map N :A�→A
1. Then the Severi–Brauer variety X is birationally equivalent

to the subvariety of A
� defined by N(X0, . . . , X�−1)= a2.

In the function field k(X), we set xi=Xi/X0 and c=N(1, x1, . . . , x�−1),
so that cX�

0 = a2. Then k(X)= k(x1, . . . , x�−1)(β), β
�= a2/c. By construction,
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the element y=1+
∑
xiα

i of E(X)=E(x1, . . . ) has Ny= c= a2/β
� so in

KM
2 (k(X))/� we have

{a1, a2}= {a1, a2/β�}= {a1, Ny}=N{α�, y}=N(0)= 0.

Thus the field k(X) splits the symbol a.

Corollary 1.16. The Severi–Brauer variety X of a symbol a= {a1, a2} is a
norm variety for a.

Proof. Since any norm variety for k(ζ) is also a norm variety for k, and a field
F splits a iff F (ζ) splits a, we may assume that k contains a primitive �th root
of unity. Thus X exists and is a smooth projective variety of dimension �−1.
By Lemma 1.15, k(X) splits the symbol. Finally, suppose that a field F/k splits
a. Then the associated central simple algebra is trivial (A⊗k F ∼=M�(F )) and
hence X(F ) �= ∅.

The characteristic number sd(X)

The definition of a Rost variety also involves the notion of a νi-variety, which
is defined using the classical characteristic number sd(X).

Let X be a smooth projective variety of dimension d> 0. Recall from [MS74,
§16] that there is a characteristic class sd :K0(X)→CHd(X) corresponding to
the symmetric polynomial

∑
tdj in the Chern roots tj of a bundle; the charac-

teristic number is the degree of the characteristic class. We shall write sd(X) for
the characteristic number of the tangent bundle TX , i.e., sd(X)=deg(sd(TX)).
When d= �ν − 1, we know that sd(X)≡ 0 (mod �); see [MS74, 16.6 and 16-E]
and [Sto68, pp. 128–29] or [Ada74, II.7].

Definition 1.17. A νi-variety over a field k is a smooth projective variety X
of dimension d= �i− 1, with sd(X) �≡ 0 (mod �2).

Remark. In topology, a smooth complex variety X of dimension d= �i− 1 for
which sd(X)≡±� (mod �2) is called a Milnor manifold. In complex cobordism
theory, the bordism classes of Milnor manifolds inMUd are among the generators
of the complex cobordism ring MU∗ of stably complex manifolds.

Examples 1.18. (1) It is well known that sd(P
d)= d+1; see [MS74, 16.6]. Set-

ting d= �− 1, we see that P
�−1 (and any form of it) is a ν1-variety. In particular,

the Severi–Brauer variety of a symbol {a1, a2} is a ν1-variety, since it is a form
of P

�−1.
(2) A smooth hypersurface X of degree � in P

d+1 has sd(X)= �(d+2− �d)
by [MS74, 16-D], so if d= �i− 1 we see that X is a νi-variety and X(C) is a
Milnor manifold.

(3) We will see in Proposition 10.14 that if char(k)= 0, any norm variety for
a symbol {a1, . . . , an} (n≥ 2) is a νn−1-variety.
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Borel–Moore homology

The Borel–Moore homology group HBM
−1,−1(X) of a scheme X is defined as

HomDM(Z,M c(X)(1)[1]) if char(k)= 0 (resp., HomDM(Z[1/p],Z[1/p]⊗M c(X)
(1)[1]) if char(k)= p> 0 and k is perfect); see [MVW, 16.20]. Here M c(X) is
the motive of X with compact supports. HBM

−1,−1(X) is a covariant functor in
X for proper maps, and contravariant for finite flat maps, because M c(X) has
these properties; see [MVW, 16.13]. When X is projective, the natural map
from M(X)=Ztr(X) to M c(X) is an isomorphism in DM, so the Borel–Moore
homology group agrees with the usual motivic homology group H−1,−1(X,R),
which is defined as HomDM(R,Rtr(X)(1)[1]), where R is Z (resp., Z[1/p]); see
[MVW, 14.17].

Proposition 1.19. Let X be a smooth variety over a perfect field k. Then
HBM

−1,−1(X) is the group generated by symbols [x, α], where x is a closed point of
X and α∈ k(x)×, modulo the relations

(i) [x, α][x, α′] = [x, αα′] and
(ii) for every point y of X such that dim({y})= 1, the image of the tame symbol
K2(k(y))→⊕k(x)× is zero.

That is, we have an exact sequence

⊕

y
KM

2 (k(y))
tame�

⊕

x
k(x)×

⊕
[x,−]� HBM

−1,−1(X)→ 0.

Proof. Let A denote the abelian group presented in the Proposition, and set
d=dim(X). Note that A is uniquely p-divisible when k is a perfect field of
characteristic p> 0, because each k(x)× is uniquely p-divisible, and the group
KM

2 (k(y)) is also uniquely p-divisible by Lemma 1.20.
We first show that A is isomorphic to H2d+1,d+1(X,Z). To this end, consider

the hypercohomology spectral sequence Ep,q2 =Hp(X,Hq)⇒Hp+q,d+1(X,Z),
where Hq denotes the Zariski sheaf associated to the presheaf Hq,d+1(−,Z).
Since Hq,d+1 =0 for q >d+1, the terms Ep,q2 are zero unless p≤ d and q≤ d+1.
From this we deduce that H2d+1,d+1(X,Z)∼=Hd(X,Hd+1).

For each n, Hn is a homotopy invariant Zariski sheaf, by [MVW, 24.1]. More-
over, it has a canonical flasque “Gersten” resolution on each smooth X, given
in [MVW, 24.11], whose cth term is the coproduct of the skyscraper sheaves
Hn−c,d+1−c(k(z)) for which z has codimension c in X. Taking n= d+1, and
recalling that KM

n
∼=Hn,n on fields, we see that the skyscraper sheaves in the

(d− 1)st and dth terms take values in KM
2 (k(y)) and KM

1 (k(x)). Moreover, by
[Wei13, V.9.2 and V(6.6.1)], the mapKM

2 (k(y))→KM
1 (k(x)) is the tame symbol

if x∈{y}, and zero otherwise. As Hd(X,Hd+1) is obtained by taking global sec-
tions of the Gersten resolution and then cohomology, we see that it is isomorphic
to A.

Now suppose that char(k)= 0. Using motivic duality with d=dim(X) (see
[MVW, 16.24] or [FV00, 7.1]), the proof is finished by the duality calculation:
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HBM
−1,−1(X,Z)=Hom(Z,M c(X)(1)[1])

=Hom(Z(d)[2d],M c(X)(d+1)[2d+1])

=HomDM(M(X),Z(d+1)[2d+1])=H2d+1,d+1(X).

(1.19a)

Now suppose that char(k)> 0. Since H2d+1,d+1(X,Z)∼=A is uniquely divis-
ible, the duality calculation (1.19a) goes through with Z replaced by Z[1/p],
using the characteristic p version of motivic duality (see [Kel13, 5.5.14]).

Lemma 1.20. (Bloch–Kato–Gabber) If F is a field of transcendence degree 1
over a perfect field k of characteristic p, KM

2 (F ) is uniquely p-divisible.

Proof. For any field F of characteristic p, the group K2(F ) has no p-torsion (see
[Wei13, III.6.7]), and the d log map K2(F )/p→Ω2

F is an injection with image
ν(2); see [Wei13, III.7.7.2]. Since k is perfect, Ω1

k =0 and Ω1
F is 1–dimensional,

so Ω2
F =0 and hence K2(F )/p=0.

The motivic homology functor HBM
−1,−1(X) has other names in the litera-

ture. It is isomorphic to the K-cohomology groups Hd(X,Kd+1) [Qui73] and
Hd(X,KMd+1), where d=dim(X), and to Rost’s Chow group with coefficients
A0(X,K1) [Ros96]. Since we will only be concerned with smooth projective
varieties X and integral coefficients, we will omit the superscript “BM” and the
coefficients and just write H−1,−1(X).

Examples 1.21. (i) H−1,−1(SpecE)=E× for every field E over k. This is
immediate from the presentation in 1.19.
(ii) If E is a finite extension of k, the proper pushforward from E× =H−1,−1

(SpecE) to k× =H−1,−1(Spec k) is just the norm map NE/k.
(iii) For any proper variety X over k, the pushforward map

NX/k :H−1,−1(X)→H−1,−1(Spec k)= k×

is induced by the composites Spec k(x)→X→Spec k, x∈X. By (ii), we see
that NX/k sends [x, α] to the norm Nk(x)/k(α).

Definition 1.22. When X is proper, the projections X ×X→X are proper
and we may define the reduced group H−1,−1(X) to be the coequalizer of
H−1,−1(X ×X)⇒H−1,−1(X), i.e., the quotient of H−1,−1(X) by the difference
of the two projections.

Example 1.23. When E= k( �
√
a) is a cyclic field extension of k, with Galois

group generated by σ, then H−1,−1(SpecE) is the cokernel of E× 1−σ−→ E×, and
Hilbert’s Theorem 90 induces an exact sequence

0→H−1,−1(SpecE)
NE/k−→ k× a∪−→ Br(E/k)→ 0.
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Note that Br(E/k) is a subgroup of KM
2 (k)/� when μ�⊂ k×. We will generalize

this in Proposition 7.7, using KM
n+1(k)/�.

Rost varieties

Definition 1.24. A Rost variety for a sequence a=(a1, . . . , an) of units of k is
a νn−1-variety X satisfying:

(a) X is a splitting variety for a, i.e., a vanishes in KM
n (k(X))/�;

(b) for each integer i, 1≤ i<n, there is a νi-variety mapping to X;
(c) the map N :H−1,−1(X)→ k× is an injection.

When n=1, Spec(k( �
√
a )) is a Rost variety for a. When n=2, Proposition

1.25 shows that Severi–Brauer varieties of dimension �−1 are Rost varieties. In
chapter 11 we will show that Rost varieties exist over �-special fields for all n,
� and a, at least when char(k)= 0. More specifically, Theorem 11.2 shows that
norm varieties for a are Rost varieties for a.

Proposition 1.25. The Severi–Brauer variety X of a symbol a= {a1, a2} is a
Rost variety for a.

Proof. By Lemma 1.15,X splits a; by Example 1.18(1),X is a ν1-variety. Finally,
Quillen proved that H−1,−1(X)=H1(X,K2) is isomorphic to K1(A), and it is
classical that K1(A) is the image of A×→ k×; see [Wan50, p. 327].

1.4 THE BEILINSON–LICHTENBAUM CONDITIONS

Our approach to Theorems A and B (for n) will use their equivalence with
a more general condition, which we call the Beilinson–Lichtenbaum condition
BL(n). In this section, we define BL(n) (in 1.28); in section 2.1 we show that it
implies the corresponding condition BL(p) for all p<n.

Consider the morphism of sites π : (Sm/k)ét→ (Sm/k)zar, where π∗ is restric-
tion and π∗ sends a Zariski sheaf F to its associated étale sheaf Fét. The total
direct image Rπ∗ sends an étale sheaf (or complex of sheaves) F to a Zariski
complex such that H∗

zar(X,Rπ∗F)=H∗
ét(X,F). In particular, the Zariski coho-

mology of Rπ∗μ⊗n
� agrees with the étale cohomology of μ⊗n

� .
Recall [Wei94, 1.2.7] that the good truncation τ≤nC of a cochain complex C

is the universal subcomplex which has the same cohomology as C in degrees ≤n
but is acyclic in higher degrees. Applying this to Rπ∗F leads to the following
useful complexes.

Definition 1.26. The cochain complexes of Zariski sheaves L(n) and L/�ν(n)
are defined to be

L(n)= τ≤nRπ∗[Z(�)(n)] and L/�ν(n)= τ≤nRπ∗[Z/�ν(n)].
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We know by [MVW, 10.3] that for each n (and all ν) there is a quasi-isomorphism
of complexes of étale sheaves μ⊗n

�ν
∼→ Z/�ν(n). When X is a Zariski local scheme

this implies that Hn(X,L(n)) is : Hn
ét(X,Z(�)(n)) for p≤n and zero for p>n;

while Hn(X,L/�ν(n)) is : Hp
ét(X,μ

⊗n
�ν ) for p≤n and zero for p>n.

Now Z(�)(n) and the Z/�ν(n) are étale sheaves with transfers, so their canon-
ical flasque resolutions E• are complexes of étale sheaves with transfers by
[MVW, 6.20]. The restriction π∗E• to the Zariski site inherits the transfer struc-
ture, so the truncations L(n) and L/�ν(n) are complexes of Zariski sheaves with
transfers.

The adjunction 1→Rπ∗π∗ gives a natural map of Zariski complexes Z/�ν(n)
→Rπ∗[Z/�ν(n)]. Since the complexes Z(n) and Z/�ν(n) are zero above degree
n by construction ([MVW, 3.1]), we may apply τ≤n to obtain morphisms of
sheaves on Sm/k:

Z(�)(n)
α̃n−→ L(n), Z/�ν(n)

αn−→ L/�ν(n). (1.27)

Definition 1.28. We will say that BL(n) holds if the map Z/�(n)
αn→ L/�(n)

is a quasi-isomorphism for any field k containing 1/�. This is equivalent to the
seemingly stronger but analogous assertion with coefficients Z/�ν ; see 1.29(a).

Beilinson and Lichtenbaum had conjectured that BL(n) holds for all n,
whence the name; see [Lic84, §3] and [Bĕı87, 5.10.D].

Lemma 1.29. If BL(n) holds then:

(a) αn :Z/�
ν(n)

∼−→ τ≤nRπ∗μ⊗n
�ν is a quasi-isomorphism for all ν≥ 1;

(b) Q/Z(�)(n)
∼−→ τ≤nRπ∗[Q/Z(�)(n)] is a quasi-isomorphism;

(c) α̃n :Z(�)(n)
∼−→ L(n)= τ≤nRπ∗[Z(�)(n)] is also a quasi-isomorphism;

(d) KM
n (k)(�)→Hn

ét(k,Z(�)(n)) is an isomorphism for all k containing 1/�.

Proof. The statement for Z/�ν coefficients follows by induction on ν using the
morphism of distinguished triangles:

Z/�(n)[−1] � Z/�ν−1(n) � Z/�ν(n) � Z/�(n) � Z/�ν−1(n)[1]

L/�(n)[−1]
∼=�

� L/�ν−1(n)

∼=�
� L/�ν(n)

αn �
� L/�(n)

∼=�
� L/�ν−1(n)[1].

∼=�

Taking the direct limit over ν in part (a) yields part (b).
Since α̃n is also an isomorphism for Q coefficients by [MVW, 14.23], the

coefficient sequence for 0 → Z(�)(n) → Q(n) → Q/Z(�)(n) → 0 shows that

Z(�)(n)
∼−→ L(n) is also a quasi-isomorphism. Part (d) is immediate from (c)

and KM
n (k)(�)∼=Hn

zar(k,Z(n))(�) =Hn
zar(k,Z(�)(n)).
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The main result in chapter 2 is that BL(n) is equivalent to H90(n) and
hence Theorem A, that KM

n (k)/�∼=Hn
ét(k, μ

⊗n
� ). The fact that H90(n) implies

BL(n) is proven in Theorem 2.38. Here is the easier converse, that BL(n) implies
H90(n).

Lemma 1.30. If BL(n) holds then H90(n) holds.
In addition, if BL(n) holds then for any field k containing 1/� :

(a) KM
n (k)/�∼=Hn(k,Z/�(n))∼=Hn

ét(k, μ
⊗n
� ).

(b) For all p≤n, Hp(k,Z/�(n))∼=Hp
ét(k, μ

⊗n
� ).

Proof. Applying Hp(k,−) to αn yields (b). Setting p=n in (b) proves (a),
because KM

n (k)/�∼=Hn(k,Z/�(n)). By Theorem 1.7, (a) implies H90(n).

Corollary 1.31.2 If BL(n) holds then for every smooth simplicial scheme X•
the map Hp,n(X•,Z/�)→Hp

ét(X•, μ
⊗n
� ) is an isomorphism for all p≤n. It is an

injection when p=n+1.

Proof. First, suppose that X is a smooth scheme. A comparison of the hyper-
cohomology spectral sequences Hp(X,Hq)⇒Hp+q(X) for coefficient complexes
L/�(n) and Rπ∗[Z/�(n)] shows that αn :Hp,n(X,Z/�)→Hp

ét(X,μ
⊗n
� ) is an iso-

morphism for p≤n and an injection for p=n+1.
For X•, the assertion follows from a comparison of the spectral sequences

Ep,q2 =Hq(Xp)⇒Hp+q(X•) for the Zariski and étale topologies, and the result
for each smooth scheme Xp.

1.5 SIMPLICIAL SCHEMES

In this section, we construct a certain simplicial scheme X which will play a
crucial role in our constructions, and introduce some features of its cohomology.

It is well known that the hypercohomology of a simplicial scheme X• agrees
with the group of morphisms in the derived category of sheaves of abelian groups,
from the representable simplicial sheaf Z[X•] (regarded as a complex of sheaves
via the Dold–Kan correspondence) to the coefficient sheaf complex. Applying
this to the coefficient complex A(q), we obtain the original definition of the
motivic cohomology of X•: H

p,q(X•, A)=H
p
zar(X•, A(q)); see [MVW, 3.4].

For our purposes, it is more useful to work in the triangulated category DM,
which is a quotient of the derived category of Nisnevich sheaves with transfers,
or its triangulated subcategory DMeff

nis, where we have

Hp,q(X•, A)∼=HomDMeff
nis
(Ztr(X•), A(q)[p]) =HomDM(Ztr(X•), A(q)[p]).

2. Taken from [Voe03a, 6.9]. It is needed for Lemma 3.13.
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See [MVW, 14.17]. Similarly, the étale motivic cohomology H∗
ét(X•, A(q)) is the

étale hypercohomology of the étale sheaf A(q)ét underlying A(q), and agrees
with HomDM−ét

(Ztr(X•), A(q)[p]); see [MVW, 10.1, 10.7].

We begin with a simplicial set construction. Associated to any nonempty set
S there is a contractible simplicial set Č(S) :n �→Sn+1; the face maps are pro-
jections (omit a term) and the degeneracy maps are diagonal maps (duplicate a
term). In fact, Č(S) is the 0-coskeleton of S; see Lemma 12.6. More generally, for
any set T , the projection T × Č(S)→T is a homotopy equivalence; it is known
as the canonical cotriple resolution of T associated to the cotriple ⊥(T )=T ×S;
see [Wei94, 8.6.8].

Definition 1.32. Let X be a (nonempty) smooth scheme over k. We write
X= Č(X) for the simplicial scheme Xn=Xn+1, whose face maps are given by
projection:

X⇔X ×X ←−←−←− X3 ⇔⇔ X4 · · · .
That is, X is the 0-coskeleton of X.

We may regard X and X×Y as simplicial representable presheaves on Sm/k;
for any smooth U , X(U)= Č(X(U)). Thus if X(Y )=Hom(Y,X) �= ∅ then the
projection (X×Y )(U)→Y (U) is a homotopy equivalence for all U by the cotriple
remarks above. In particular, X(k) is either contractible or ∅, according to
whether or not X has a k-rational point.

Remark 1.32.1. Amap of simplicial presheaves is called a global weak equivalence
if its evaluation on each U is a weak equivalence of simplicial sets. It follows that
X→Spec(k) is a global weak equivalence if and only if X has a k-rational point,
and more generally that the projection X×Y →Y is a global weak equivalence
if and only if Hom(Y,X) �= ∅.

We will frequently use the following standard fact. We let R denote Z if
char(k)= 0, and Z[1/ char(k)] if k is a perfect field of positive characteristic.

Lemma 1.33. For all smooth Y and p>q, HomDM(R,Rtr(Y )(q)[p])= 0.

Proof. By definition [MVW, 3.1], Rtr(Y )(q)[q] is a chain complex C∗(Y ×G
∧q
m )

of sheaves which is zero in positive cohomological degrees. By [MVW, 14.16],

Hom(R,Rtr(Y )(q)[p])∼=Hp−q
zar (k,Rtr(Y )(q)[q])=Hp−qRtr(Y )(q)[q](k).

Lemma 1.34. For every smooth X, H−1,−1(X)∼=H−1,−1(X).

Proof. For all p and n> 1, Lemma 1.33 yields HomDM(R,RtrX
p(1)[n])= 0.

Therefore every row below q=−1 in the spectral sequence

E1
pq =Hom(R[q], RtrX

p+1(1))⇒Hom(R,RtrX(1)[p− q])=Hq−p,−1(X)
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is zero. The homology at (p, q)= (0,−1) yields the exact sequence

0 � H−1,−1(X) � H−1,−1(X) � H−1,−1(X ×X).

Since H−1,−1(X) is the cokernel of the right map, the result follows.

Lemma 1.35.3 For every smooth X, H0,0(X, R)=R and Hp,0(X, R)= 0 for
p> 0; H0,1(X,Z)=H2,1(X,Z)= 0 and H1,1(X;Z)∼=H1,1(Spec k;Z)∼= k×.

Proof. The spectral sequence Ep,q1 =Hq(Xp+1;R)⇒Hp+q,0(X;R) degenerates
at E2 for X smooth, being zero for q > 0, and the R-module cochain complex of
the contractible simplicial set Č(π0(X)) for q=0.

The spectral sequence Ep,q1 =Hq(Xp+1;Z(1))⇒Hp+q,1(X;Z) degenerates at
E2, all rows vanishing except for q=1 and q=2, because Z(1)∼=O×[−1]; see
[MVW, 4.2]. We compare this with the spectral sequence converging to
Hp+q

ét (X;Gm); Hq
zar(Y,O×)→Hq

ét(Y,Gm) is an isomorphism for q=0, 1

(and an injection for q=2). Hence we have Hq,1(X)=Hq,1
ét (X) for q≤ 2, and

Hq,1
ét (X)∼=Hq,1

ét (k)=Hq−1
ét (k,Gm) by Lemma 1.37.

Recall that if f :X•→Y• is a morphism of simplicial objects in any category
with coproducts and a final object, the cone of f is also a simplicial object. It
is defined in [Del74, 6.3.1].

Definition 1.36. The suspension ΣX• of a simplicial scheme X• is the cone of
(X•)+→Spec(k)+. The reduced suspension Σ̃X• of any simplicial scheme X• is
the pointed pair (ΣX•, point), where “point” is the image of Spec(k) in ΣX•.

If X• is pointed then Hp,q(Σ̃X•)= H̃p,q(ΣX•), but this makes little sense
when X• has no k-points. The pointed pair is chosen to avoid this problem. By
construction there is a long exact sequence on cohomology:

· · ·→Hp−1,q(X•)→Hp,q(Σ̃X•)→Hp,q(Spec k)→Hp,q(X•)→· · · .

In particular, if X• is pointed then we have the suspension isomorphism σs :

H̃p−1,q(X•)→Hp,q(Σ̃X•). If p> q then Hp,q(X•)
�−→ Hp+1,q(Σ̃X•), because in

this range Hp,q(Spec k)= 0.

Lemma 1.37.4 If X has a point x with [k(x) : k] = e then for each (p, q) the

group Hp(Σ̃X,Z(q)) has exponent e. Hence the kernel and cokernel of each
Hp(k,Z(q))→Hp(X,Z(q)) has exponent e.

The maps Hp,q
ét (k,Z)

∼−→ Hp,q
ét (X,Z) are isomorphisms for all (p, q). There-

fore H∗,∗
ét (Σ̃X,Z)= 0 and H∗,∗

ét (Σ̃X,Z/�)= 0.

3. H0,0(X) and H0,1(X) are used in 4.5 and 4.15.
4. Based on Lemmas 9.3 and 7.3 of [Voe03a], respectively.
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Proof. Set F (Y )=Hp(Σ̃X×Y,Z(q)); this is a presheaf with transfers which
vanishes on Spec(k(x)). As with any presheaf with transfers, the composition
F (k)→F (k(x))→F (k) is multiplication by e. It follows that e ·F (k)= 0.

Now any nonemptyX has a point x with k(x)/k étale, and Xx=X× Spec k(x)
is an étale cover of X. Since the map from Xx to the étale cover x of Spec(k)
is a global weak equivalence, the second assertion follows from a comparison of
the descent spectral sequences for the covers of X and Spec k.

As in topology, the integral Bockstein β̃ :Hp,q(Y,Z/�)→Hp+1,q(Y,Z) is the
boundary map in the cohomology sequence for the coefficient sequence 0→
Z(q)

�→ Z(q)→Z/�(q)→0; the usual Bockstein β :Hp,q(Y,Z/�)→Hp+1,q(Y,Z/�)

is the boundary map for 0→Z(q)
�→ Z/�2(q)→Z/�(q)→0. Both are natural in

Y ; see 1.42(3) and section 13.1 for more information.

Corollary 1.38. Suppose that X has a point of degree �. Then the motivic
cohomology groups H∗,∗(Σ̃X,Z) have exponent �, and we have exact sequences:

0→Hp,q(Σ̃X,Z)→Hp,q(Σ̃X,Z/�)
β̃−→ Hp+1,q(Σ̃X,Z)→ 0,

Hp−1,q(Σ̃X,Z/�)
β−→ Hp,q(Σ̃X,Z/�)

β−→ Hp+1,q(Σ̃X,Z/�).

Corollary 1.39. If BL(n− 1) holds and X is smooth then Hp,n−1(Σ̃X,Z/�)= 0

for all p≤n, and Hp,q(Spec k,Z/�)
∼=−→ Hp,q(X,Z/�) for all p≤ q <n.

Proof. As Hp,n−1
ét (Σ̃X,Z/�)= 0 by Lemma 1.37, the first assertion follows from

1.31. The second assertion follows from the cohomology sequence in Definition
1.36, and Lemma 1.30.

Example 1.40. Assume that BL(n− 1) holds, and that X has a point of degree

�. Then Hn,n−1(Σ̃X,Z/�)= 0 by 1.39. From the first sequence in 1.38, and nat-

urality of β̃, we see that Hn+1,n−1(Σ̃X,Z)= 0 and hence the integral Bockstein

Hn+1,n−1(Σ̃X,Z/�)
β̃−→ Hn+2,n−1(Σ̃X,Z)

is injective. It follows that the integral Bockstein β̃ :Hn,n−1(X,Z/�)→Hn+1,n−1

(X,Z) is an injection because, as noted in 1.36, Hn,n−1(X,Z/�)∼=Hn+1,n−1

(Σ̃X,Z/�) and Hn+1,n−1(X,Z)∼=Hn+2,n−1(Σ̃X,Z).

1.6 MOTIVIC COHOMOLOGY OPERATIONS

Cohomology operations are another fundamental tool we shall need, both in sec-
tion 3.4 (to construct the element μ of Corollary 3.16), and in chapter 5 (to show
that Rost motives exist). We refer the reader to chapter 13 for more discussion.
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Recall that for each coefficient group A, and all p, q≥ 0, the motivic coho-
mology groups Hp,q(−, A)=Hp(−, A(q)) are contravariant functors from the
category ΔopSm/k of smooth simplicial schemes over k to abelian groups. For
each set of integers n, i, p, q and every two groups A and B, a cohomology oper-
ation φ from Hn,i(−, A) to Hp,q(−, B) is just a natural transformation. The
bidegree of φ is (p−n, q− i).

There is a twist isomorphism σt :H
n,i(X,A)

∼−→ Hn+1,i+1(X+ ∧Gm, A) of
bidegree (1, 1) in motivic cohomology; see [Voe03c, 2.4] or [MVW, 16.25].

Definition 1.41. A family of operations φ(n,i) :H
n,i(−, A)→Hn+p,i+q(−, B)

with a fixed bidegree (p, q) is said to be bi-stable if it commutes with the sus-
pension and twist isomorphisms, σs and σt.

Examples 1.42. There are several kinds of bi-stable operations.

1. Any homomorphism A→B induces a bi-stable operation of bidegree (0, 0),
the change of coefficients map H∗,∗(−, A)→H∗,∗(−, B).

2. If R is a ring and A is an R-module then multiplication by λ∈Hp,q(k,R) is
a bi-stable operation of bidegree (p, q) from H∗,∗(−, A) to itself.

3. The integral Bockstein β̃ : Hn,i(X,Z/�)→Hn+1,i(X,Z) and its reduction
modulo �, the usual Bockstein β : Hn,i(X,Z/�)→Hn+1,i(X,Z/�) are both
bi-stable operations. They are the boundary maps in the long exact coho-
mology sequence associated to the coefficient sequences

0→Z(q)
�→ Z(q)→Z/�(q)→ 0, and

0→Z/�(q)
�→ Z/�2(q)→Z/�(q)→ 0.

4. In [Voe03c, p. 33], Voevodsky constructed the reduced power operations

P i : Hp,q(X,Z/�)→Hp+2i(�−1),q+i(�−1)(X,Z/�)

and proved that they are bi-stable. If �=2 it is traditional to write Sq2i for
P i and Sq2i+1 for βP i.

We may compose bi-stable operations if the coefficient groups match: φ′ ◦φ is a
bi-stable operation whose bidegree is bidegree(φ′)+bidegree(φ). It follows that
the stable cohomology operations with A=B=R form a bigraded ring, and
that H∗,∗(k,R) is a subring.

Definition 1.43. (Milnor operations). There is a family of motivic operations
Qi on H

∗,∗(X,Z/�) constructed in [Voe03c, §13], called the Milnor operations.
The bidegree of Qi is (2�

i− 1, �i− 1), Q0 is the Bockstein β, Q1 is P 1β−βP 1,
and the other Qi are defined inductively.
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If �> 2 the inductive formula is Qi+1 = [P �
i

, Qi]. If �=2 the inductive for-

mula is Qi= [β, P ri ]; this differs from [P 2i−1

, Qi] by correction terms involving
[−1]∈ k×/k×2 =H1,1(k,Z/2). See section 13.4 in part III.

We list a few properties of these operations here, referring the reader to
section 13.4 for a fuller discussion. The Qi satisfy Q

2
i =0 and QiQj =−QjQi,

are KM
∗ (k)-linear and generate an exterior algebra under composition.

The following theorem concerns the vanishing of a motivic analogue of the
classical Margolis homology; see section 13.6 in part III. It was established for
i=0 in 1.38, and will be proven for all i in Theorem 13.24. This exact sequence
will be used in Propositions 3.15 and 3.17 to show that the Qi are injections in
an appropriate range.

Theorem 1.44. If X is a Rost variety for (a1, ..., an), the following sequence
is exact for all i<n and all (p, q).

Hp−2�i+1,q−�i+1
(
Σ̃X,Z/�

)
Qi−→ Hp,q

(
Σ̃X,Z/�

)
Qi−→ Hp+2�i−1,q+�i−1

(
Σ̃X,Z/�

)

Remark. In Theorem 1.44, it suffices that for each i<n there is a νi-variety Xi

and a map Xi→X. This is the formulation given in Theorem 13.24.

1.7 HISTORICAL NOTES

As mentioned in the introduction, the question of whether the norm residue
is always an isomorphism was first raised by Milnor in his 1970 paper [Mil70]
defining what we now call “Milnor K-theory.” For local and global fields, Tate
had already checked that it was true for n=2 (i.e., for K2) and all primes �
(published in [Tat76]), and Milnor checked in his paper that it was true for all
n> 2 (where the groups have exponent 2). Kato verified that the norm residue
was an isomorphism for fields arising in higher class field theory, and stated the
question as a conjecture in [Kat80]. Bloch also asked about it in [Blo80, p. 5.12].

Originally, norm residue homomorphism referred to the symbol (a, b)k of a
central simple algebra in the group μ�(k) of a local field, arising in Hilbert’s
9th Problem. Later it was realized that the symbol should take values in the
Brauer group, or more precisely μ�⊗Br�(k), and that this map factored through
K2(k)/�; see [Mil71, 15.5]. The use of this term for the map from KM

∗ (F )/m to
H2

ét(F, μ
⊗2
� ) seems to have originated in Suslin’s 1986 ICM talk [Sus87, 4.2].

The question was completely settled for n=2 by Merkurjev and Suslin in the
1982 paper [MeS82]. Their key geometric idea was the use of Severi–Brauer vari-
eties, which we now recognize as the Rost varieties for n=2. The case n=3 for
�=2 was settled independently by Rost and Merkurjev–Suslin in the late 1980s.
In 1990, Rost studied Pfister quadrics (Rost varieties for �=2) and constructed
what we now call its Rost motive; see [Ros90] and [Voe03a, 4.3].
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In 1994, Suslin and Voevodsky noticed that this conjecture about the norm
residue being an isomorphism would imply a circle of conjectures due to Beilin-
son [Bĕı87] and Lichtenbaum [Lic84] regarding the (then hypothetical) com-
plexes of sheaves Z(n); the preprint was posted in 1995 and an expanded version
was eventually published in [SV00a]. This is the basis of our chapter 2.

In 1996, Voevodsky announced the proof of Milnor’s conjecture for �=2,
using work of Rost on the motive of a Pfister quadric. The 1996 preprint [Voe96]
was expanded into [Voe03a] and [Voe03c], which appeared in 2003.

In 1998, Voevodsky announced the proof of the Bloch–Kato conjecture, i.e.,
Milnor’s conjecture for �> 2, assuming the existence of what we call Rost vari-
eties (1.24). Details of this program appeared in the 2003 preprint [Voe03b], and
the complete proof was published in 2011 [Voe11].

Later in 1998, Rost announced the construction of norm varieties; the con-
struction was released in the preprints [Ros98a] and [Ros98b], but did not
contain the full proof that his norm varieties were “Rost varieties,” i.e., sat-
isfied the properties (1.24) required by Voevodsky’s program. Most of those
details appeared in [SJ06]; Rost’s informal notes [Ros06] provided other details,
and the final details were published in [HW09].

The combination of Rost’s construction and Voevodsky’s work combines to
verify not only the Bloch–Kato conjecture (proving Theorem A) but also proving
Theorems B and C, which are stated in the overview of this book.

The material in section 1.5 is taken from the appendix of [Voe03a].
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23, 28, 41, 72, 107, 109, 118,
141, 147, 151, 153, 169
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42, 50, 51, 59–66, 71, 74, 95,
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S-local equivalences, see Bousfield
localization

scalar weight, 253, 258, 258–259,
269–276

semi-simplicial object, 197
Severi–Brauer variety, 9–14, 21,

145–146, 147, 156, 159–160
Shapiro’s Lemma, 43, 45
sheaf with transfers, 26–37, 206,
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étale —, 15, 26
homotopy invariant, 28, 29, 38,

39, 102
Nisnevich —, 51, 77, 78, 206–207
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25, 31, 37, 40, 59, 62, 76–79,
175, 176, 185–189, 200,
206–211, 253

Zariski —, 15, 26, 63
simplicial equivalence, 79
simplicial scheme, 16–19, 76–94
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X, 17, 17–21, 42, 50–53, 56–74,

84–87, 101, 226–230
skeleton, 178, 198, 199, 275
slice filtration, 59, 67–73, 76,

82–84, 87, 90–92
slice functor, see slice filtration
small object argument, 182, 190,

195
specialization map, 4, 10, 114, 121,

128, 145, 160
spectral sequence, 12, 16–18, 29–36,

50, 64, 215, 260, 273–275
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179, 180, 189, 198
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splitting field, see splitting variety
splitting variety, 9, 9–14, 71, 100,

144–157, 163–170
�-generic –, 9, 100, 142, 144–171
splitting field, 9, 100, 140,

144–147
stably complex manifold, 11,

109–113, 117, 118

Steenrod algebra, 220, 221
Steenrod operation, 90, 93, 94,

216–219, 252, 272
axioms, 217

Steenrod’s formula, 236, 251
Steenrod, N., 230, 236, 259
suitable element, 71, 65–74
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suspension, 18, 20, 52, 57, 92, 93,
211, 215, 216, 226, 244–251,
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symmetric polynomials, 127, 236
symmetric power SmX, 232–253
symmetric powers, 66–74, 76, 88,

101, 122, 153, 190, 205,
253–276

tame symbol, 12
tangent bundle, 11, 147, 148, 167,

225
tangent space, 112, 138, 150, 167
Tate motive
proper, 253, 268–269

Tate objects, 59, 72, 80, 83
Tate suspension, 216
Tate twist, 81
Tate, J., xi, xii, 21, 44
termwise nice map, see nice

presheaf map
termwise projective presheaf, 78
termwise split map, 181, 188, 197,

244, 248, 249
Thom class, 223, 229
Thom isomorphism, 223, 229, 230
Thom space Th(V ), 223, 264–266
Thom, R., 117, 252
Todd numbers td,r, 110–112, 114,

170
topological realization, 211, 251,
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Totaro, B., 4
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transfinite composition, 181, 182,
188, 195, 197, 204

truncation
brutal, 36
good, xii, 14, 23, 25, 39, 62
n-truncation, 178, 179, 180

twisted dual, see duality

Unique Factorization Domain,
UFD, 150, 154

upper distinguished square, 200,
200–204, 239, 240

Vanishing Theorem, 62, 66
Verdier quotient, 77, 79
Villa Madruzzo, 41
Voevodsky, V., xi, xiii, xv, 22, 41,

63, 64, 206, 208, 211, 212, 231,
252, 253

weak equivalence, 176–211
A

1-, 77–79, 175, 207–211,
236–245, 254–257, 264–269

global, 17, 19, 176, 176–211,
226, 234, 238, 244, 246, 247,
254, 254, 255–257, 257

Nisnevich G-local, 245, 245–248,
252

Nisnevich-local, 200, 200–209,
239–252, 255, 266

simplicial, 17, 56, 176, 190–192
S-local, see Bousfield localization

Weil restriction, 10, 127, 163,
162–164, 168, 170

Weil, A., 162
wrapping functor, 197, 198
wreath product, 237–238, 271

X-duality, 56

Yoneda extension, 88–89

Zariski sheaf, 12, 14, 40
transfers, see sheaf with transfers

Zariski’s Main Theorem, 115
zero-cycle, see algebraic cycle
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