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1 Look at Data

Some data visualizations are better than others. This chapter dis-
cusses why that is. While it is tempting to simply start laying down
the law aboutwhatworks andwhat doesn’t, the process ofmaking a
really good or really useful graph cannot be boiled down to a list of
simple rules to be followed without exception in all circumstances.
The graphs you make are meant to be looked at by someone. The
effectiveness of any particular graph is not just a matter of how
it looks in the abstract but also a question of who is looking at
it, and why. An image intended for an audience of experts read-
ing a professional journal may not be readily interpretable by the
general public. A quick visualization of a dataset you are currently
exploringmight not be ofmuch use to your peers or your students.

Some graphs work well because they depend in part on some
strong aesthetic judgments about what will be effective. That sort
of good judgment is hard to systematize. However, data visualiza-
tion is not simply a matter of competing standards of good taste.
Some approaches work better for reasons that have less to do with
one’s sense of what looks good and more to do with how human
visual perception works. When starting out, it is easier to grasp
these perceptual aspects of data visualization than it is to get a reli-
able, taste-based feel for what works. For this reason, it is better
to begin by thinking about the relationship between the structure
of your data and the perceptual features of your graphics. Getting
into that habit will carry you a long way toward developing the
ability to make good taste-based judgments, too.

As we shall see later on, when working with data in R and
ggplot, we get many visualization virtues for free. In general, the
default layout and look of ggplot’s graphics is well chosen. This
makes it easier to do the right thing. It alsomeans that, if you really
just want to learn how to make some plots right this minute, you
could skip this chapter altogether and go straight to the next one.
But althoughwewill not bewriting any code for the next fewpages,
we will be discussing aspects of graph construction, perception,
and interpretation thatmatter for code you will choose to write. So
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2 • Chapter 1

I urge you to stick around and follow the argument of this chapter.
Whenmaking graphs there is only so much that your software can
do to keep you on the right track. It cannot force you to be honest
with yourself, your data, and your audience. The tools you use can
help you live up to the right standards. But they cannot make you
do the right thing. This means it makes sense to begin cultivating
your own good sense about graphs right away.

We will begin by asking why we should bother to look at pic-
tures of data in the first place, instead of relying on tables or numer-
ical summaries. Then we will discuss a few examples, first of bad
visualization practice, and then more positively of work that looks
(and is) much better. We will examine the usefulness and limits of
general rules of thumb in visualization and show how even taste-
ful, well-constructed graphics can mislead us. From there we will
briefly examine some of what we know about the perception of
shapes, colors, and relationships between objects. The core point
here is that we are quite literally able to see some thingsmuchmore
easily than others. These cognitive aspects of data visualization
make some kinds of graphs reliably harder for people to interpret.
Cognition and perception are relevant in other ways, too. We tend
to make inferences about relationships between the objects that
we see in ways that bear on our interpretation of graphical data,
for example. Arrangements of points and lines on a page can
encourage us—sometimes quite unconsciously—to make infer-
ences about similarities, clustering, distinctions, and causal rela-
tionships that might or might not be there in the numbers. Some-
times these perceptual tendencies can be honestly harnessed to
make our graphics more effective. At other times, they will tend to
lead us astray, andwemust take care not to lean on them toomuch.

In short, good visualization methods offer extremely valuable
tools that we should use in the process of exploring, understand-
ing, and explaining data. But they are not a magical means of
seeing the world as it really is. They will not stop you from try-
ing to fool other people if that is what you want to do, and they
may not stop you from fooling yourself either.
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Figure 1.1: Plots of Anscombe’s quartet.

1.1 Why Look at Data?

Anscombe’s quartet (Anscombe 1973; Chatterjee & Firat 2007),
shown in figure 1.1, presents its argument for looking at data in
visual form. It uses a series of four scatterplots. A scatterplot shows
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Look at Data • 3

the relationship between two quantities, such as height andweight,
age and income, or time and unemployment. Scatterplots are the
workhorse of data visualization in social science, and we will be
looking at a lot of them. The data for Anscombe’s plots comes
bundled with R. You can look at it by typing anscombe at the com-
mand prompt. Each of the fourmade-up “datasets” contains eleven
observations of two variables, x and y. By construction, the numer-
ical properties of each pair of x and y variables, such as theirmeans,
are almost identical. Moreover, the standard measures of the asso-
ciation between each x and y pair also match. The correlation Correlations can run from -1 to 1, with zero meaning

there is no association. A score of -1 means a perfect
negative association and a score of 1 a perfect
positive asssociation between the two variables.
So 0.81 counts as a strong positive correlation.

coefficient is a strong 0.81 in every case. But when the datasets
are visualized as a scatterplot, with the x variables plotted on the
horizontal axis and the y variables on the vertical, the differences
between them are readily apparent.
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Figure 1.2: Seeing the effect of an outlier on a
regression line.

Anscombe’s quartet is an extreme, manufactured example. But
the benefits of visualizing one’s data can be shown in real cases.
Figure 1.2 shows a graph from Jackman (1980), a short comment
on Hewitt (1977). The original paper had argued for a significant
association between voter turnout and income inequality based on
a quantitative analysis of eighteen countries. When this relation-

A more careful quantitative approach could have
found this issue as well, for example, with a proper
sensitivity analysis. But the graphic makes the case
directly.

ship was graphed as a scatterplot, however, it immediately became
clear that the quantitative association depended entirely on the
inclusion of South Africa in the sample.

An exercise by Jan Vanhove (2016) demonstrates the useful-
ness of looking at model fits and data at the same time. Figure 1.3
presents an array of scatterplots. As with Anscombe’s quartet, each
panel shows the association between two variables. Within each
panel, the correlation between the x and y variables is set to be
0.6, a pretty good degree of association. But the actual distribution
of points is created by a different process in each case. In the top
left panel each variable is normally distributed around its mean
value. In other panels there is a single outlying point far off in one
direction or another. Others are produced by more subtle rules.
But each gives rise to the same basic linear association.

Illustrations like this demonstrate why it is worth looking at
data. But that does not mean that looking at data is all one needs
to do. Real datasets are messy, and while displaying them graph-
ically is very useful, doing so presents problems of its own. As
we will see below, there is considerable debate about what sort of
visual work is most effective, when it can be superfluous, and how
it can at times be misleading to researchers and audiences alike.
Just like seemingly sober and authoritative tables of numbers, data
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Figure 1.3: What data patterns can lie behind a correlation? The correlation coefficient in all these plots is 0.6. Figure adapted from code by Jan
Vanhove.
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Look at Data • 5

visualizations have their own rhetoric of plausibility. Anscombe’s
quartet notwithstanding, and especially for large volumes of data,
summary statistics and model estimates should be thought of as
tools that we use to deliberately simplify things in a way that lets
us see past a cloud of data points shown in a figure. We will not
automatically get the right answer to our questions just by looking.

1.2 What Makes Bad Figures Bad?

It is traditional to begin discussions of data visualization with a
“parade of horribles,” in an effort to motivate good behavior later.
However, these negative examples often combine several kinds of
badness that are better kept separate. For convenience, we can
say that our problems tend to come in three varieties. Some are
strictly aesthetic. The graph we are looking at is in some way
tacky, tasteless, or a hodgepodge of ugly or inconsistent design
choices. Some are substantive. Here, our graph has problems that
are due to the data being presented. Good taste might make
things look better, but what we really need is to make better
use of the data we have, or get new information and plot that
instead. And some problems are perceptual. In these cases, even
with good aesthetic qualities and good data, the graph will be
confusing or misleading because of how people perceive and pro-
cess what they are looking at. It is important to understand that
these elements, while often found together, are distinct from one
another.

Bad taste

Let’s start with the bad taste. The chart in figure 1.4 both is taste-
less and has far too much going on in it, given the modest amount
of information it displays. The bars are hard to read and com-
pare. It needlessly duplicates labels and makes pointless use of
three-dimensional effects, drop shadows, and other unnecessary
design features.

The best-known critic by far of this style of visualization, and
the best-known taste-maker in the field, is Edward R. Tufte. His
book The Visual Display of Quantitative Information (1983) is a
classic, and its sequels are also widely read (Tufte 1990, 1997). The
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6 • Chapter 1

Figure 1.4: A chart with a considerable amount of
junk in it.

bulk of this work is a series of examples of good and bad visualiza-
tion, along with some articulation of more general principles (or
rules of thumb) extracted from them. It is more like a reference
book about completed dishes than a cookbook for daily use in the
kitchen. At the same time, Tufte’s early academic work in political
science shows that he effectively applied his own ideas to research
questions. His Political Control of the Economy (1978) combines
tables, figures, and text in a manner that remains remarkably fresh
almost forty years later.

Tufte’s message is sometimes frustrating, but it is consistent:

Graphical excellence is the well-designed presentation of interest-
ing data—a matter of substance, of statistics, and of design. . . .
[It] consists of complex ideas communicated with clarity, preci-
sion, and efficiency. . . . [It] is that which gives to the viewer the
greatest number of ideas in the shortest time with the least ink
in the smallest space. . . . [It] is nearly always multivariate. . . . And
graphical excellence requires telling the truth about the data. (Tufte
1983, 51)

Tufte illustrates the pointwithCharles JosephMinard’s famous
visualization of Napoleon’s march on Moscow, shown here in
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Look at Data • 7

Figure 1.5:Minard’s visualization of Napoleon’s
retreat from Moscow. Justifiably cited as a classic, it
is also atypical and hard to emulate in its specifics.

figure 1.5. He remarks that this image “may well be the best
statistical graphic ever drawn” and argues that it “tells a rich, coher-
ent story with its multivariate data, far more enlightening than just
a single number bouncing along over time. Six variables are plot-
ted: the size of the army, its location on a two-dimensional surface,
direction of the army’s movement, and temperature on various
dates during the retreat from Moscow.”

It is worth noting how far removed Minard’s image is from
most contemporary statistical graphics. At least until recently,
these have tended to be applications or generalizations of scatter-
plots and bar plots, in the direction of either seeing more raw data
or seeing the output derived from a statistical model. The former
looks for ways to increase the volume of data visible, or the number
of variables displayed within a panel, or the number of panels dis-
played within a plot. The latter looks for ways to see results such
as point estimates, confidence intervals, and predicted probabil-
ities in an easily comprehensible way. Tufte acknowledges that a
tour de force such as Minard’s “can be described and admired, but
there are no compositional principles on how to create that one
wonderful graphic in a million.” The best one can do for “more
routine, workaday designs” is to suggest some guidelines such as
“have a properly chosen format and design,” “use words, num-
bers, and drawing together,” “display an accessible complexity of
detail,” and “avoid content-free decoration, including chartjunk”
(Tufte 1983, 177).

In practice those compositional principles have amounted to
an encouragement to maximize the “data-to-ink” ratio. This is
practical advice. It is not hard to jettison tasteless junk, and if
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8 • Chapter 1

we look a little harder we may find that the chart can do with-
out other visual scaffolding as well. We can often clean up the
typeface, remove extraneous colors and backgrounds, and sim-
plify, mute, or delete gridlines, superfluous axis marks, or needless
keys and legends. Given all that, we might think that a solid
rule of “simpify, simplify” is almost all of what we need to make
sure that our charts remain junk-free and thus effective. Unfor-
tunately this is not the case. For one thing, somewhat annoy-
ingly, there is evidence that highly embellished charts like Nigel
Holmes’s “MonstrousCosts” (fig. 1.6) are oftenmore easily recalled
than their plainer alternatives (Bateman et al. 2010). Viewers do
not find them more easily interpretable, but they do remember
them more easily and also seem to find them more enjoyable to
look at. They also associate them more directly with value judg-
ments, as opposed to just trying to get information across. Borkin
et al. (2013) also found that visually unique, “infographic”-style
graphs were more memorable than more standard statistical visu-
alizations. (“It appears that novel and unexpected visualizations
can be better remembered than the visualizations with limited
variability that we are exposed to since elementary school,” they
remark.)

Evenworse, itmay be the case that graphics that really domax-
imize the data-to-ink ratio are harder to interpret than those that
are a littlemore relaxed about it. E.W.Anderson et al. (2011) found
that, of the six kinds of boxplot shown in figure 1.7, the minimalist
version from Tufte’s own work (option C) proved to be the most
cognitively difficult for viewers to interpret. Cues like labels and
gridlines, together with some strictly superfluous embellishment
of data points or other design elements, may often be an aid rather
than an impediment to interpretation.

Figure 1.6: “Monstrous Costs” by Nigel Holmes
(1982). Also a classic of its kind.

a b c d e f

Figure 1.7: Six kinds of summary boxplots. Type (c) is
from Tufte. While chartjunk is not entirely devoid of merit, bear in mind

that ease of recall is only one virtue among many for graphics.
It is also the case that, almost by definition, it is no easier to
systematize the construction of a chart like “Monstrous Costs”
than it is to replicate the impact of Minard’s graph of Napoleon’s
retreat. Indeed, the literature on chartjunk suggests that the two
may have some qualities in common. To be sure, Minard’s figure
is admirably rich in data while Holmes’s is not. But both are visu-
ally distinctive in a way that makes them memorable, both show
a substantial amount of bespoke design, and both are unlike most
of the statistical graphs you will see or make.
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Look at Data • 9

Bad data

In your everyday work you will be in little danger of produc-
ing either a “Monstrous Costs” or a “Napoleon’s Retreat.” You are
much more likely to make a good-looking, well-designed figure
that misleads people because you have used it to display some bad
data. Well-designed figures with little or no junk in their compo-
nent parts are not by themselves a defense against cherry-picking
your data or presenting information in a misleading way. Indeed,
it is even possible that, in a world where people are on guard
against junky infographics, the “halo effect” accompanying a well-
produced figure might make it easier to mislead some audiences.
Or, perhapsmore common, good aesthetics does notmake itmuch
harder for you to mislead yourself as you look at your data.

In November 2016 the New York Times reported on some
research on people’s confidence in the institutions of democracy.
It had been published in an academic journal by the political sci-
entists Yascha Mounk and Roberto Stefan Foa. The headline in
the Times ran “How Stable Are Democracies? ‘Warning Signs Are
Flashing Red’ ” (Taub 2016). The graph accompanying the article,
reproduced in figure 1.8, certainly seemed to show an alarming
decline.

The graph was widely circulated on social media. It is impres-
sively well produced. It’s an elegant small-multiple that, in addition
to the point ranges it identifies, also shows an error range (labeled
as such for people who might not know what it is), and the story
told across the panels for each country is pretty consistent.

Percentage of people who say it is “essential” to live in a democracy

Sweden
100%

75%

50%

25%

1930s 1980s ‘30s ‘80s

95%

confidence

intervals

‘30s ‘80s ‘30s

Decade of birth

‘80s ‘30s ‘80s ‘30s ‘80s

Australia Netherlands United States New Zealand Britain

Figure 1.8: A crisis of faith in democracy?
(Source: Roberto Stefan Foa and Yascha Mounk,
“The Signs of Deconsolidation,” Journal of
Democracy, 28(1), 5–16.)
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10 • Chapter 1

The figure is a little tricky to interpret. As the x-axis label says,
the underlying data are from a cross-sectional survey of people of
different ages rather than a longitudinal studymeasuring everyone
at different times. Thus the lines do not show a trend measured
each decade from the 1930s but rather differences in the answers
given by people born in different decades, all of whom were asked
the question at the same time. Given that, a bar graph might have
been a more appropriate to display the results.

More important, as the story circulated, helped by the com-One reason I chose this example is that, at the time
of writing, it is not unreasonable to be concerned
about the stability of people’s commitment to
democratic government in some Western countries.
Perhaps Mounk’s argument is correct. But in such
cases, the question is how much we are letting the
data speak to us, as opposed to arranging it to say
what we already think for other reasons.

pelling graphic, scholars who knew the World Values Survey data
underlying the graph noticed something else. The graph reads
as though people were asked to say whether they thought it was
essential to live in a democracy, and the results plotted show the
percentage of respondents who said “Yes,” presumably in contrast
to those who said “No.” But in fact the survey question asked
respondents to rate the importance of living in a democracy on
a ten-point scale, with 1 being “Not at all Important” and 10 being
“Absolutely Important.” The graph showed the difference across
ages of people who had given a score of 10 only, not changes in the
average score on the question. As it turns out, while there is some
variation by year of birth, most people in these countries tend to
rate the importance of living in a democracy very highly, even if
they do not all score it as “Absolutely Important.” The political sci-
entist Erik Voeten redrew the figure using the average response.
The results are shown in figure 1.9.

Figure 1.9: Perhaps the crisis has been overblown.
(Erik Voeten.)
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The change here is not due to a difference in how the y-axis
is drawn. That is a common issue with graphs, and one we will
discuss below. In this case both the New York Times graph and
Voeten’s alternative have scales that cover the full range of pos-
sible values (from 0 to 100% in the former case and from 1 to 10
in the latter). Rather, a different measure is being shown. We are
now looking at the trend in the average score, rather than the trend
for the highest possible answer. Substantively, there does still seem
to be a decline in the average score by age cohort, on the order
of between 0.5 point and 1.5 points on a 10-point scale. It could
be an early warning sign of a collapse of belief in democracy, or it
could be explained by something else. It might even be reasonable
(as we will see for a different example shortly) to present the data
in Voeten’s version with the y-axis covering just the range of the
decline, rather than the full 0–10 scale. But it seems fair to say that
the story might not have made the New York Times if the original
research article had presented Voeten’s version of the data rather
than the one that appeared in the newspaper.

Bad perception

Our third category of badness lives in the gap between data and
aesthetics. Visualizations encode numbers in lines, shapes, and
colors. That means that our interpretation of these encodings is
partly conditional on how we perceive geometric shapes and rela-
tionships generally. We have known for a long time that poorly
encoded data can be misleading. Tufte (1983) contains many
examples, as does Wainer (1984). Many of the instances they cite
revolve around needlessly multiplying the number of dimensions
shown in a plot. Using an area to represent a length, for exam-
ple, can make differences between observations look larger than
they are.

Although the most egregious abuses are less common than
they once were, adding additional dimensions to plots remains a
common temptation. Figure 1.10, for instance, is a 3-D bar chart
made using a recent version ofMicrosoft Excel. Charts like this are
common in business presentations and popular journalism and are
also seen in academic journal articles from time to time. Here we
seek to avoid too much junk by using Excel’s default settings. As To be fair, the 3-D format is not Excel’s default type

of bar chart.
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Figure 1.10: A 3-D column chart created
in Microsoft Excel for Mac. Although it may
seem hard to believe, the values shown in the
bars are 1, 2, 3, and 4.
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3D column charts in excel are awesome

you can see from the cells shown to the left of the chart, the data we
are trying to plot is not very complex. The chart even tries to help
us by drawing and labeling grid lines on the y- (and z-) axes. And
yet the 3-D columns in combination with the default angle of view
for the chart make the values as displayed differ substantially from
the ones actually in the cell. Each column appears to be somewhat
below its actual value. It is possible to see, if you squint with your
mind’s eye, how the columns would line up with the axis guide-
lines if your angle of view moved so that the bars were head-on.
But as it stands, anyone asked what values the chart shows would
give the wrong answer.

By now, many regular users of statistical graphics know
enough to avoid excessive decorative embellishments of charts.
They are also usually put on their guard by overly elaborate pre-
sentation of simple trends, as when a three-dimensional ribbon
is used to display a simple line. Moreover, the default settings of
most current graphical software tend tomake the user work a little
harder to add these features to plots.

Even when the underlying numbers are sensible, the default
settings of software are good, and the presentation of charts is
mostly junk-free, some charts remain more difficult to interpret
than others. They encode data in ways that are hard for viewers to
understand. Figure 1.11 presents a stacked bar chart with time in
years on the x-axis and some value on the y-axis. The bars show
the total value, with subdivisions by the relative contribution of
different categories to each year’s observation. Charts like this are
commonwhen showing the absolute contribution of various prod-
ucts to total sales over time, for example, or the number of different
groups of people in a changing population. Equivalently, stacked
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Figure 1.11: A junk-free plot that remains hard to
interpret. While a stacked bar chart makes the
overall trend clear, it can make it harder to see the
trends for the categories within the bar. This is partly
due to the nature of the trends. But if the additional
data is hard to understand, perhaps it should not be
included to begin with.
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Figure 1.12: Aspect ratios affect our perception of
rates of change. (After an example by William S.
Cleveland.)

line-graphs showing similar kinds of trends are also common for
data with many observation points on the x-axis, such as quarterly
observations over a decade.

In a chart like this, the overall trend is readily interpretable,
and it is also possible to easily follow the over-time pattern of the
category that is closest to the x-axis baseline (in this case, type D,
in purple). But the fortunes of the other categories are not so easily
grasped. Comparisons of both the absolute and the relative share of
type B orC aremuchmore difficult, whether onewants to compare
trends within type or between them. Relative comparisons need
a stable baseline. In this case, that’s the x-axis, which is why the
overall trend and the type D trend are much easier to see than any
other trend.

A different sort of problem is shown in figure 1.12. In the left
panel, the lines appear at first glance to be converging as the
value of x increases. It seems like they might even intersect if
we extended the graph out further. In the right panel, the curves
are clearly equidistant from the beginning. The data plotted in each
panel is the same, however. The apparent convergence in the left
panel is just a result of the aspect ratio of the figure.
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These problems are not easily solved by the application of good
taste, or by following a general rule to maximize the data-to-ink
ratio, even though that is a good rule to follow. Instead, we need to
know a littlemore about the role of perception in the interpretation
of graphs. Fortunately for us, this is an area that has produced a
substantial amount of research over the past twenty-five years.

1.3 Perception and Data Visualization

While a detailed discussion of visual perception is well beyond
the scope of this book, even a simple sense of how we see things
will help us understand why some figures work and others do
not. For a much more thorough treatment of these topics, Colin
Ware’s books on information design are excellent overviews of
research on visual perception, written from the perspective of peo-
ple designing graphs, figures, and systems for representing data
(Ware 2008, 2013).

Edges, contrasts, and colors

Looking at pictures of data means looking at lines, shapes, and
colors. Our visual system works in a way that makes some things
easier for us to see than others. I am speaking in slightly vague
terms here because the underlying details are the remit of vision
science, and the exact mechanisms responsible are often the sub-
ject of ongoing research. I will not pretend to summarize or evalu-
ate this material. In any case, independent of detailed explanation,
the existence of the perceptual phenomena themselves can often be
directly demonstrated through visual effects or “optical illusions”
of various kinds. These effects demonstrate that perception is not
a simple matter of direct visual inputs producing straightforward
mental representations of their content. Rather, our visual system
is tuned to accomplish some tasks very well, and this comes at a
cost in other ways.

Figure 1.13: Hermann grid effect.

The active nature of perception has long been recognized. The
Hermann grid effect, shown in figure 1.13, was discovered in 1870.
Ghostly blobs seem to appear at the intersections in the grid but
only as long as one is not looking at them directly. A related effect
is shown in figure 1.14. These areMach bands. When the gray bars
share a boundary, the apparent contrast between them appears to
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Figure 1.14:Mach bands. On the left side, five gray
bars are ordered from dark to light, with gaps
between them. On the right side, the bars have no
gap between them. The brightness or luminance of
the corresponding bars is the same. However, when
the bars touch, the dark areas seem darker and the
light areas lighter.

increase. Speaking loosely, we can say that our visual system is try-
ing to construct a representation ofwhat it is looking at basedmore
on relative differences in the luminance (or brightness) of the bars
rather than on their absolute value. Similarly, the ghostly blobs in
the Hermann grid effect can be thought of as a side-effect of the
visual system being tuned for a different task.

These sorts of effects extend to the role of background con-
trasts. The same shade of graywill be perceived differently depend-
ing on whether it is against a dark background or a light one. Our
ability to distinguish shades of brightness is not uniform either.
We are better at distinguishing dark shades than we are at distin-
guishing light ones. The effects interact, too. We will do better at
distinguishing very light shades of gray when they are set against
a light background. When set against a dark background, differ-
ences in the middle range of the light-to-dark spectrum are easier
to distinguish.

Our visual system is attracted to edges, and we assess con-
trast and brightness in terms of relative rather than absolute values.
Some of themore spectacular visual effects exploit ourmostly suc-
cessful efforts to construct representations of surfaces, shapes, and
objects based on what we are seeing. Edward Adelson’s checker-
shadow illusion, shown in figure 1.15, is a good example. Though
hard to believe, the squares marked “A” and “B” are the same shade
of gray.

To figure out the shade of the squares on the floor, we compare
it to the nearby squares, and we also discount the shadows cast
by other objects. Even though a light-colored surface in shadow
might reflect less light than a dark surface in direct light, it would
generally be an error to infer that the surface in the shade reallywas
a darker color. The checkerboard image is carefully constructed to
exploit these visual inferences made based on local contrasts in
brightness and the information provided by shadows. As Adelson
(1995) notes, “The visual system is not very good at being a
physical light meter, but that is not its purpose.” Because it has
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Figure 1.15: The checkershadow illusion
(Edward H. Adelson).

evolved to be good at perceiving real objects in its environment,
we need to be aware of how it works in settings where we are using
it to do other things, such as keying variables to some spectrum of
grayscale values.

An important point about visual effects of this kind is that
they are not illusions in the way that a magic trick is an illusion.
If a magician takes you through an illusion step by step and shows
you how it is accomplished, then the next time you watch the trick
performed you will see through it and notice the various bits of
misdirection and sleight of hand that are used to achieve the effect.
But the most interesting visual effects are not like this. Even after
they have been explained to you, you cannot stop seeing them,
because the perceptual processes they exploit are not under your
conscious control. This makes it easy to be misled by them, as
when (for example) we overestimate the size of a contrast between
two adjacent shaded areas on a map or grid simply because they
share a boundary.

Figure 1.16: Edge contrasts in monochrome and
color, after Ware (2008).

Our ability to see edge contrasts is stronger for monochrome
images than for color. Figure 1.16, from Ware (2008, 71), shows
an image of dunes. In the red-green version, the structure of the
landscape is hard to perceive. In the grayscale version, the dunes
and ridges are much more easily visible.

Using color in data visualization introduces a number of other
complications (Zeileis & Hornik 2006). The central one is related
to the relativity of luminance perception. As we have been dis-
cussing, our perception of how bright something looks is largely
a matter of relative rather than absolute judgments. How bright a
surface looks depends partly on the brightness of objects near it.
In addition to luminance, the color of an object can be thought
of has having two other components. First, an object’s hue is what
we conventionally mean when we use the word “color”: red, blue,
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green, purple, and so on. In physical terms it can be thought of
as the dominant wavelength of the light reflected from the object’s
surface. The second component is chrominance or chroma. This is
the intensity or vividness of the color.

To produce color output on screens or in print we use various
color models that mix together color components to get specific
outputs. Using the RGB model, a computer might represent color
in terms of mixtures of red, green, and blue components, each of
which can take a range of values from 0 to 255. When using colors
in a graph, we are mapping some quantity or category in our data
to a color that people see.Wewant thatmapping to be “accurate” in
some sense, with respect to the data. This is partly a matter of the
mapping being correct in strictly numerical terms. For instance,
we want the gap between two numerical values in the data to be
meaningfully preserved in the numerical values used to define the
colors shown. But it is also partly a matter of how that mapping
will be perceived when we look at the graph.

For example, imagine we had a variable that could take val-
ues from 0 to 5 in increments of 1, with zero being the lowest
value. It is straightforward to map this variable to a set of RGB col-
ors that are equally distant from one another in purely numerical
terms in our color space. The wrinkle is that many points that are
equidistant from each other in this sense will not be perceived as
equally distant by people looking at the graph. This is because our
perception is not uniform across the space of possible colors. For
instance, the range of chroma we are able to see depends strongly
on luminance. If we pick the wrong color palette to represent our
data, for any particular gradient the same-sized jump between one
value and another (e.g., from 0 to 1, as compared to from 3 to 4)
might be perceived differently by the viewer. This also varies across
colors, in that numerically equal gaps between a sequences of
reds (say) are perceived differently from the same gaps mapped to
blues.

Sequential grayscale

Sequential blue to gray

Sequential terrain

Diverging

Unordered hues

Figure 1.17: Five palettes generated from R’s color
space library. From top to bottom, the sequential
grayscale palette varies only in luminance, or
brightness. The sequential blue palette varies in
both luminance and chrominance (or intensity).
The third sequential palette varies in luminance,
chrominance, and hue. The fourth palette is
diverging, with a neutral midpoint. The fifth features
balanced hues, suitable for unordered categories.

When choosing color schemes, we will want mappings from
data to color that are not just numerically but also perceptually uni-
form. R provides color models and color spaces that try to achieve
this. Figure 1.17 shows a series of sequential gradients using the
HCL (hue-chroma-luminance) color model. The grayscale gradi-
ent at the top varies by luminance only. The blue palette varies by
luminance and chrominance, as the brightness and the intensity of
the color vary across the spectrum. The remaining three palettes
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vary by luminance, chrominance, and hue. The goal in each case is
to generate a perceptually uniform scheme, where hops from one
level to the next are seen as having the same magnitude.

Gradients or sequential scales from low to high are one of
three sorts of color palettes. When we are representing a scale
with a neutral midpoint (as when we are showing temperatures,
for instance, or variance in either direction from a zero point or a
mean value), we want a diverging scale, where the steps away from
themidpoint are perceptually even in both directions. The blue-to-
red palette in figure 1.17 displays an example. Finally, perceptual
uniformity matters for unordered categorical variables as well. We
often use color to represent data for different countries, or politi-
cal parties, or types of people, and so on. In those cases we want
the colors in our qualitative palette to be easily distinguishable but
also have the same valence for the viewer. Unless we are doing it
deliberately, we do not want one color to perceptually dominate
the others. The bottom palette in figure 1.17 shows an example of
a qualitative palette that is perceptually uniform in this way.

The upshot is that we should generally not pick colors in an ad
hocway. It is too easy to go astray. In addition to the considerations
we have been discussing, we also want to avoid producing plots
that confuse people who are color-blind, for example. Fortunately,
almost all the work has been done for us already. Different color
spaces have been defined and standardized in ways that account
for these uneven or nonlinear aspects of human color percep-
tion. R and ggplot make these features available to us for free. TheThe body responsible for this is the appropriately

authoritative-sounding Commission Internationale
de l’Eclairage, or International Commission on
Illumination.

default palettes we will be using in ggplot are perceptually uni-
form in the right way. If we want to get more adventurous later,
the tools are available to produce custom palettes that still have
desirable perceptual qualities. Our decisions about color will focus
more on when and how it should be used. As we are about to
see, color is a powerful channel for picking out visual elements of
interest.

Preattentive search andwhat “pops”

Some objects in our visual field are easier to see than others. They
pop out at us from whatever they are surrounded by. For some
kinds of object, or through particular channels, this can happen
very quickly. Indeed, from our point of view it happens before or
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Color only, N = 20 Color only, N = 100 Shape only, N = 20 Shape only, N = 100 Color & shape, N = 100

Figure 1.18: Searching for the blue circle becomes progressively harder.

almost before the conscious act of looking at or for something.
The general term for this is “preattentive pop-out,” and there is
an extensive experimental and theoretical literature on it in psy-
chology and vision science. As with the other perceptual processes
we have been discussing, the explanation for what is happening is
or has been a matter of debate, up to and including the degree to
which the phenomenon really is “preattentive,” as discussed, for
example, by Treisman & Gormican (1988) or Nakayama & Joseph
(1998). But it is the existence of pop-out that is relevant to us,
rather than its explanation. Pop-out makes some things on a data
graphic easier to see or find than others.

Consider the panels in figure 1.18. Each one of them contains
a single blue circle. Think of it as an observation of interest. Read-
ing left to right, the first panel contains twenty circles, nineteen
of which are yellow and one blue. The blue circle is easy to find,
as there are a relatively small number of observations to scan, and
their color is the only thing that varies. The viewer barely has to
search consciously at all before seeing the dot of interest.

In the second panel, the search is harder, but not that much
harder. There are a hundred dots now, five times asmany, but again
the blue dot is easily found. The third panel again has only twenty
observations. But this time there is no variation on color. Instead
nineteen observations are triangles and one is a circle. On average,
looking for the blue dot is noticeably harder than searching for it in
the first panel, and it may even bemore difficult than in the second
panel despite there being many fewer observations.

Think of shape and color as two distinct channels that can be
used to encode information visually. It seems that pop-out on the

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



20 • Chapter 1

color channel is stronger than it is on the shape channel. In the
fourth panel, the number of observations is again upped to one
hundred. Finding the single blue dot may take noticeably longer.
If you don’t see it on the first or second pass, it may require a
conscious effort to systematically scan the area in order to find it.
It seems that search performance on the shape channel degrades
much faster than on the color channel.

Finally the fifth panel mixes color and shape for a large num-
ber of observations. Again there is only one blue dot on the graph,
but annoyingly there are many blue triangles and yellow dots that
make it harder to find what we are looking for. Dual- or multiple-
channel searches for large numbers of observations can be very
slow.

Similar effects can be demonstrated for search across other
channels (for instance, with size, angle, elongation, and move-
ment) and for particular kinds of searches within channels. For
example, some kinds of angle contrasts are easier to see than oth-
ers, as are some kinds of color contrasts. Ware (2008, 27–33) has
more discussion and examples. The consequences for data visual-
ization are clear enough. As shown in figure 1.19, adding multiple
channels to a graph is likely to quickly overtax the capacity of
the viewer. Even if our software allows us to, we should think
carefully before representing different variables and their values
by shape, color, and position all at once. It is possible for there
to be exceptions, in particular (as shown in the second panel of
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Figure 1.19:Multiple channels become uninterpretable very fast (left), unless your data has a great deal of structure (right).
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figure 1.19) if the data shows a great deal of structure to begin with.
But even here, in all but the most straightforward cases a different
visualization strategy is likely to do better.

Gestalt rules

At first glance, the points in the pop-out examples in figure 1.18
might seem randomly distributed within each panel. In fact, they
are not quite randomly located. Instead, I wrote a little code to lay
them out in a way that spread them around the plotting area but
prevented any two points from completely or partially overlapping
each other. I did this because I wanted the scatterplots to be pro-
grammatically generated but did not want to take the risk that the
blue dot would end up plotted underneath one of the other dots
or triangles. It’s worth taking a closer look at this case, as there is a
lesson here for how we perceive patterns.

Each panel in figure 1.20 shows a field of points. There are
clearly differences in structure between them. The first panel
was produced by a two-dimensional Poisson point process and is
“properly” random. (Defining randomness, or ensuring that a pro-
cess really is random, turns out to be a lot harder than you might
think. But we gloss over those difficulties here.) The second panel
was produced from aMatérn model, a specification often found in
spatial statistics and ecology. In a model like this points are again
randomly distributed but are subject to some local constraints.
In this case, after randomly generating a number of candidate
points in order, the field is pruned to eliminate any point that
appears too close to a point that was generated before it. We can
tune the model to decide how close is “too close.” The result is a
set of points that are evenly spread across the available space.

Poisson

Matérn

Figure 1.20: Each panel shows simulated data.
The upper panel shows a random point pattern
generated by a Poisson process. The lower panel
is from a Matérn model, where new points are
randomly placed but cannot be too near already-
existing ones. Most people see the Poisson-
generated pattern as having more structure, or less
“randomness,” than the Matérn, whereas the reverse
is true.

If you ask people which of these panels has more structure in
it, they will tend to say the Poisson field. We associate randomness
with a relatively even distribution across a space. But in fact, a ran-
dom process like this is substantially more clumpy than we tend to
think. I first saw a picture of this contrast in an essay by Stephen
Jay Gould (1991). There the Matérn-like model was used as a rep-
resentation of glowworms on thewall of a cave inNewZealand. It’s
a good model for that case because if one glowworm gets too close
to another, it’s liable to get eaten. Hence the relatively even—but
not random—distribution that results.
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Figure 1.21: Gestalt inferences: proximity, similarity,
connection, common fate. The layout of the figure
employs some of these principles, in addition to
displaying them.

We look for structure all the time. We are so good at it that we
will find it in random data, given time. (This is one of the reasons
that data visualization can hardly be a replacement for statisti-
cal modeling.) The strong inferences we make about relationships
between visual elements from relatively sparse visual information
are called “gestalt rules.” They are not pure perceptual effects like
the checkerboard illusions. Rather, they describe our tendency to
infer relationships between the objects we are looking at in a way
that goes beyond what is strictly visible. Figure 1.21 provides some
examples.

What sorts of relationships are inferred, and under what cir-
cumstances? In general we want to identify groupings, classifica-
tions, or entities than can be treated as the same thing or part of
the same thing:

• Proximity: Things that are spatially near to one another seem
to be related.

• Similarity: Things that look alike seem to be related.
• Connection: Things that are visually tied to one another seem

to be related.
• Continuity: Partially hidden objects are completed into famil-

iar shapes.
• Closure: Incomplete shapes are perceived as complete.
• Figure and ground: Visual elements are taken to be either in the

foreground or in the background.
• Common fate: Elements sharing a direction of movement are

perceived as a unit.
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Some kinds of visual cues outweigh others. For example, in
the upper left of figure 1.21, the circles are aligned horizontally
into rows, but their proximity by column takes priority, and we see
three groups of circles. In the upper right, the three groups are still
salient but the row of blue circles is now seen as a grouped entity. In
themiddle row of the figure, the left side showsmixed grouping by
shape, size, and color. Meanwhile the right side of the row shows
that direct connection outweighs shape. Finally the two schematic
plots in the bottom row illustrate both connection and common
fate, in that the lines joining the shapes tend to be read left-to-
right as part of a series. Note also the points in the lower right plot
where the lines cross. There are gaps in the line segments joining
the circles, but we perceive this as them “passing underneath” the
lines joining the triangles.

1.4 Visual Tasks and Decoding Graphs

Theworkings of our visual system and our tendency tomake infer-
ences about relationships between visible elements form the basis
of our ability to interpret graphs of data. There is more involved
besides that, however. Beyond core matters of perception lies the
question of interpreting and understanding particular kinds of
graphs. The proportion of peoplewho can read and correctly inter-
pret a scatterplot is lower than you might think. At the intersec-
tion of perception and interpretation there are specific visual
tasks that people need to perform in order to properly see the
graph in front of them. To understand a scatterplot, for example,
the viewer needs to know a lot of general information, such as
what a variable is, what the x-y coordinate plane looks like, why
we might want to compare two variables on it, and the conven-
tion of putting the supposed cause or “independent” variable on
the x-axis. Even if viewers understand all these things, they must
still perform the visual task of interpreting the graph. A scatterplot
is a visual representation of data, not a way to magically transmit
pure understanding. Even well-informed viewers may do worse
than we think when connecting the picture to the underlying data
(Doherty, et al. 2007; Rensink & Baldridge 2010).

In the 1980s William S. Cleveland and Robert McGill con-
ducted some experiments identifying and ranking theses tasks for
different types of graphics (Cleveland &McGill, 1984, 1987). Most
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Figure 1.22: Schematic representation of basic perceptual tasks for nine chart types, by Heer and Bostock, following Cleveland and McGill. In both
studies, participants were asked to make comparisons of highlighted portions of each chart type and say which was smaller.

often, research subjects were asked to estimate two values within a
chart (e.g., two bars in a bar chart, or two slices of a pie chart) or
compare values between charts (e.g., two areas in adjacent stacked
bar charts). Cleveland went on to apply the results of this work,
developing the trellis display system for data visualization in S, the
statistical programming language developed at Bell Labs. (R is a
later implementation of S.) He also wrote two excellent books that
describe and apply these principles (Cleveland 1993, 1994).

In 2010 Heer & Bostock replicated Cleveland’s earlier exper-
iments and added a few assessments, including evaluations of
rectangular-area graphs, which have become more popular in
recent years. These include treemaps, where a square or rectan-
gle is subdivided into further rectangular areas representing some
proportion or percentage of the total. It looks a little like a stacked
bar chart withmore than one column. The comparisons and graph
types made by their research subjects are shown schematically in
figure 1.22. For each graph type, subjects were asked to identify
the smaller of two marked segments on the chart and then to
“make a quick visual judgment” estimating what percentage the
smaller one was of the larger. As can be seen from the figure, the
charts tested encoded data in different ways. Types 1–3 use posi-
tion encoding along a common scale while types 4 and 5 use length
encoding. The pie chart encodes values as angles, and the remain-
ing charts as areas, using either circular, separate rectangles (as in
a cartogram) or subrectangles (as in a treemap).

Their results are shown in figure 1.23, along with Cleveland
and McGill’s original results for comparison. The replication was
quite good. The overall pattern of results seems clear, with per-
formance worsening substantially as we move away from compar-
ison on a common scale to length-based comparisons to angles
and finally areas. Area comparisons perform even worse than the
(justifiably) maligned pie chart.
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Figure 1.23: Cleveland and McGill’s original results
(top) and Heer and Bostock’s replication with
additions (bottom) for nine chart types.

These findings, and other work in this tradition, strongly sug-
gest that there are better and worse ways of visually representing
data when the task the user must perform involves estimating and
comparing values within the graph. Think of this as a “decoding”
operation that the viewer must perform in order to understand
the content. The data values were encoded or mapped in to the
graph, and now we have to get them back out again. When doing
this, we do best judging the relative position of elements aligned
on a common scale, as, for example, when we compare the heights
of bars on a bar chart, or the position of dots with reference to a
fixed x- or y-axis. When elements are not aligned but still share a
scale, comparison is a little harder but still pretty good. It is more
difficult again to compare the lengths of lines without a common
baseline.

Outside of position and length encodings, things generally
become harder and the decoding process is more error prone. We
tend to misjudge quantities encoded as angles. The size of acute
angles tends to be underestimated, and the size of obtuse angles

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



26 • Chapter 1

overestimated. This is one reason pie charts are usually a bad idea.
We alsomisjudge areas poorly. We have known for a long time that
area-based comparisons of quantities are easily misinterpreted or
exaggerated. For example, values in the data might be encoded as
lengths, which are then squared to make the shape on the graph.
The result is that the difference in size between the squares or rect-
angles areawill bemuch larger than the difference between the two
numbers they represent.

Comparing the areas of circles is prone tomore error again, for
the same reason. It is possible to offset these problems somewhat
by choosing a more sophisticated method for encoding the data
as an area. Instead of letting the data value be the length of the
side of a square or the radius of the circle, for example, we could
map the value directly to area and back-calculate the side length or
radius. Still, the result will generally not be as good as alternatives.
These problems are further compounded for “three-dimensional”
shapes like blocks, cylinders, or spheres, which appear to represent
volumes. And as saw with the 3-D bar chart in figure 1.10, the
perspective or implied viewing angle that accompanies these kinds
of charts creates other problems when it comes to reading the scale
on a y-axis.

Finally, we find it hard to judge changes in slope. The estima-
tion of rates of change in lines or trends is strongly conditioned
by the aspect ratio of the graph, as we saw in figure 1.12. Our
relatively weak judgment of slopes also interacts badly with three-
dimensional representations of data. Our ability to scan the “away”
dimension of depth (along the z-axis) is weaker than our ability to
scan the x- and y-axes. For this reason, it can be disproportion-
ately difficult to interpret data displays of point clouds or surfaces
displayed with three axes. They can look impressive, but they are
also harder to grasp.

1.5 Channels for Representing Data

Graphical elements represent our data inways that we can see. Dif-
ferent sorts of variables attributes can be represented more or less
well by different kinds of visual marks or representations, such
as points, lines, shapes, and colors. Our task is to come up with
methods that encode or map variables in the right way. As we do
this, we face several constraints. First, the channel or mapping that

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Look at Data • 27

we choose needs to be capable of representing the kind of data that
we have. If we want to pick out unordered categories, for example,
choosing a continuous gradient to represent them will not make
much sense. If our variable is continuous, it will not be helpful to
represent it as a series of shapes.

Area (2D as size)

Depth

(3D as position)

Color Iuminance

or brightness

Color saturation

or intensity

Curvature

Volume

(3D as size)

Position on

a common scale

Position on

unaligned

scales

Length

Tilt or Angle

0 5 10

0 5 10

0 5 10

Figure 1.24: Channels for mapping ordered data
(continuous or other quantitative measures),
arranged top to bottom from more to less effective,
after Munzer (2014, 102).

Second, given that the data can be comprehensibly repre-
sented by the visual element we choose, we will want to know how
effective that representation is. This was the goal of Cleveland’s
research. Following Tamara Munzer (2014, 101–3), Figures 1.24
and 1.25 present an approximate ranking of the effectiveness of
different channels for ordered and unordered data, respectively. If
we have ordered data and we want the viewer to efficiently make
comparisons, then we should try to encode it as a position on
a common scale. Encoding numbers as lengths (absent a scale)
works too, but not as effectively. Encoding them as areas will make
comparisons less accurate again, and so on.

Third, the effectiveness of our graphics will depend not just on
the channel that we choose but on the perceptual details of howwe
implement it. So, if we have ameasure with four categories ordered
from lowest to highest, we might correctly decide to represent it
using a sequence of colors. But if we pick the wrong sequence,
the data will still be hard to interpret, or actively misleading. In
a similar way, if we pick a bad set of hues for an unordered cate-
gorical variable, the result might not just be unpleasant to look at
but actively misleading.

Finally, bear inmind that these different channels ormappings
for data are not in themselves kinds of graphs. They are just the ele-
ments or building blocks for graphs. When we choose to encode
a variable as a position, a length, an area, a shade of gray, or a
color, we have made an important decision that narrows down
what the resulting plot can look like. But this is not the same as
deciding what type of plot it will be, in the sense of choosing
whether to make a dotplot or a bar chart, a histogram or a fre-
quency polygon, and so on.

1.6 Problems of Honesty and Good Judgment

Figure 1.26 shows twoways of redrawing our life expectancy figure
(fig. 1.4). Each of these plots is far less noisy than the junk-filled
monstrosity we began with. But they also have design features that
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could be argued over andmight evenmatter substantively depend-
ing on the circumstances. For example, consider the scales on the
x-axis in each case. The left-hand panel in figure 1.26 is a bar chart,
and the length of the bar represents the value of the variable “aver-
age life expectancy in 2007” for each continent. The scale starts at
zero and extends to just beyond the level of the largest value.Mean-
while the right-hand panel is a Cleveland dotplot. Each observa-
tion is represented by a point, and the scale is restricted to the range
of the data as shown.

It is tempting to lay down inflexible rules about what to do in
terms of producing your graphs, and to dismiss people who don’t
follow them as producing junk charts or lying with statistics. But
being honest with your data is a bigger problem than can be solved
by rules of thumb aboutmaking graphs. In this case there is amod-
erate level of agreement that bar charts should generally include a
zero baseline (or equivalent) given that bars make lengths salient
to the viewer. But it would be a mistake to think that a dotplot
was by the same token deliberately misleading, just because it kept
itself to the range of the data instead.

Position

in space

Color hue

Motion

Shape

Figure 1.25: Channels for mapping unordered
categorical data, arranged top-to-bottom frommore
to less effective, after Munzer (2014, 102).
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Figure 1.26: Two simpler versions of our junk chart.
The scale on the bar chart version goes to zero,
while the scale on the dotplot version is confined to
the range of values taken by the observations.

Which one is to be preferred? It is tricky to give an unequivocal
answer, because the reasons for preferring one type of scaling over
another depend in part on how often people actively try to mis-
lead others by preferring one sort of representation over another.
On the one hand, there is a lot of be said in favor of showing the
data over the range we observe it, rather than forcing every scale
to encompass its lowest and highest theoretical value. Many oth-
erwise informative visualizations would become useless if it was
mandatory to include a zero point on the x- or y-axis. On the
other hand, it’s also true that people sometimes go out of their
way to restrict the scales they display in a way that makes their
argument look better. Sometimes this is done out of active mal-
ice, other times out of passive bias, or even just a hopeful desire to
see what you want to see in the data. (Remember, often the main
audience for your visualizations is yourself.) In those cases, the
resulting graphic will indeed be misleading.

Rushed, garish, and deliberately inflammatory or misleading
graphics are a staple of social media sharing and the cable news
cycle. But the problem comes up in everyday practice as well, and
the two can intersect if your work ends up in front of a public
audience. For example, let’s take a look at some historical data
on law school enrollments. A decline in enrollments led to some
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reporting on trends since the early 1970s. The results are shown in
figure 1.27.

The first panel shows the trend in the number of students
beginning law school each year since 1973. The y-axis starts from
just below the lowest value in the series. The second panel shows
the same data but with the y-axisminimum set to zero instead. The
columnist and writer Justin Fox saw the first version and remarked
on how amazing it was. He was then quite surprised at the strong
reactions he got from people who insisted the y-axis should have
included zero. The original chart was “possibly . . . one of the worst
represented charts I’ve ever seen,” said one interlocutor. Another
remarked that “graphs that don’t go to zero are a thought crime”
(Fox 2014).

My own view is that the chart without the zero baseline shows
you that, after almost forty years of mostly rising enrollments, law
school enrollments dropped suddenly and precipitously around
2011 to levels not seen since the early 1970s. The levels are clearly
labeled, and the decline does look substantively surprising and sig-
nificant. In a well-constructed chart the axis labels are a necessary
guide to the reader, and we should expect readers to pay atten-
tion to them. The chart with the zero baseline, meanwhile, does
not add much additional information beyond reminding you, at
the cost of wasting some space, that 35,000 is a number quite a lot
larger than zero.
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Figure 1.27: Two views of the rapid decline in law
school enrollments in the mid-2010s.

That said, I am sympathetic to people who got upset at the first
chart. At a minimum, it shows they know to read the axis labels on
a graph. That is less common than you might think. It likely also
shows they know interfering with the axes is one way to make a
chart misleading, and that it is not unusual for that sort of thing to
be done deliberately.

1.7 Think Clearly about Graphs

I am going to assume that your goal is to draw effective graphs
in an honest and reproducible way. Default settings and general
rules of good practice have limited powers to stop you from doing
the wrong thing. But one thing they can do is provide not just
tools for making graphs but also a framework or set of concepts
that helps you think more clearly about the good work you want
to produce. When learning a graphing system or toolkit, people
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often start thinking about specific ways they want their graph to
look. They quickly start formulating requests. They want to know
how tomake a particular kind of chart, or how to change the type-
face for the whole graph, or how to adjust the scales, or how to
move the title, customize the labels, or change the colors of the
points.

These requests involve different features of the graph. Some
have to do with basic features of the figure’s structure, with which
bits of data are encoded as or mapped to elements such as shape,
line, or color. Some have to do with the details of how those ele-
ments are represented. If a variable is mapped to shape, which
shapes will be chosen, exactly? If another variable is represented
by color, which colors in particular will be used? Some have to do
with the framing or guiding features of the graph. If there are tick-
marks on the x-axis, can I decide where they should be drawn? If
the chart has a legend, will it appear to the right of the graph or on
top? If data points have information encoded in both shape and
color, do we need a separate legend for each encoding, or can we
combine them into a single unified legend? And some have to do
with thematic features of the graph that may greatly affect how the
final result looks but are not logically connected to the structure of
the data being represented. Can I change the title font from Times
New Roman to Helvetica? Can I have a light blue background in
all my graphs?

A real strength of ggplot is that it implements a grammar
of graphics to organize and make sense of these different ele-
ments (Wilkinson 2005). Instead of a huge, conceptually flat list
of options for setting every aspect of a plot’s appearance at once,
ggplot breaks up the task of making a graph into a series of distinct
tasks, each bearing a well-defined relationship to the structure of
the plot.When youwrite your code, you carry out each task using a
function that controls that part of the job. At the beginning, ggplot
will domost of the work for you. Only two steps are required. First,
you must give some information to the ggplot() function. This
establishes the core of the plot by saying what data you are using
and what variables will be linked ormapped to features of the plot.
Second, youmust choose a geom_ function. This decides what sort
of plot will be drawn, such as a scatterplot, a bar chart, or a boxplot.

As you progress, you will gradually use other functions to gain
more fine-grained control over other features of the plot, such as
scales, legends, and thematic elements. This also means that, as
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you learn ggplot, it is very important to grasp the core steps first,
before worrying about adjustments and polishing. And so that is
how we’ll proceed. In the next chapter we will learn how to get
up and running in R and make our first graphs. From there, we
will work through examples that introduce each element of ggplot’s
way of doing things.Wewill be producing sophisticated plots quite
quickly, and we will keep working on them until we are in full con-
trol of what we are doing. As we go, we will learn about some ideas
and associated techniques and tricks to make R do what we want.

1.8 Where to Go Next

For an entertaining and informative overview of various visual
effects and optical “illusions,” take a look at Michael Bach’s web-
site at michaelbach.de. If you would like to learn more about the
relationship between perception and data visualization, follow up
on some of the references in this chapter. Munzer (2014), Ware
(2008), and Few (2009) are good places to start. William Cleve-
land’s books (1993, 1994) aremodels of clarity and good advice. As
we shall see beginning in the next chapter, the ideas developed in
Wilkinson (2005) are at the heart of ggplot’s approach to visualiza-
tion. Finally, foundational work by Bertin (2010) lies behind a lot
of thinking on the relationship between data and visual elements.
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