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Chapter One

Fluctuations and the Nature of Mutations

1.1 CHANCE FAVORS THE INDEPENDENT MUTATION

Evolution via natural selection denotes any nonrandom change in the genetic makeup of
a population due to the differential reproduction and/or survival of individuals. As such,
evolution via natural selection requires standing variation to facilitate dynamic change in
populations, again and again, over generation and generation. Mutations in the genome
of replicating organisms are the grist for this long wheel of evolutionary change. Yet, in
the early part of the twentieth century, scientists had not yet identified the molecular basis
for heredity. Big questions remained in the field. Big questions that, for us, have become
matters to be read and memorized in textbooks. But to start in the process of integrating
quantitative methods into our study of living systems requires that we try, however difficult,
to displace ourselves from the present time and put ourselves in the mindset of others.

Early molecular biologists faced a profound challenge: what was the basis for the gen-
eration of individual variation? The existence of diversity was never in question, but how
such diversity came into being was. The two major theories differed radically with respect
to the nature of the link between the introduction of variation and its differential selection.
Are mutations dependent on selection or independent of selection? The idea that muta-
tions depend on selection seems heretical to modern practitioners of quantitative biology.
Yet it was not certainly not always the case. Charles Darwin’s theory of evolution via nat-
ural selection presumed that variation was introduced in some kind of heritable material.
The differential success in survival and reproduction became the mechanism to “select” for
a subset of variants. Then those more fit variants would produce new offspring, different
again from them, and so on. In essence, mutations are independent of selection.

The contrasting idea is often attributed to Jean-Baptiste Lamarck, a French biologist
active in the late eighteenth and early nineteenth centuries. To understand Lamarckian evo-
lution, it is worth sharing a few examples. First, consider a parent who decides to join a gym.
She (or he) gets strong. Will the child be more likely to have bigger muscles than if the par-
ent had skipped the gym and stuck to a steady diet of barbecue and ice cream? It seems
unlikely, but according to Lamarckian evolution the answer would, in fact, be yes. Another
example. The classic one. Consider a female giraffe grazing in the Serengeti. Food is sparse,
so the female giraffe must stretch and stretch to reach its preferred acacia leaves. One day
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the giraffe has a calf. Would the calf have a shorter neck had the mother not had to stretch
as far? This is the essence of Lamarckian evolution: it posits that experiences that change
the phenotypic state of a parent will be passed on heritably to its offspring. In other words,
“mutations depend on selection.” The examples of the gym aficionado and the long-necked
giraffe seem improbable. But as anyone who follows the field of epigenetics knows, present
experiences can shape the phenotypes of offspring, often in profound ways.

But Luria and Delbriick did not work with humans or giraffes. Instead, working
with microbes and their viruses afforded them a quantitative framework to directly
address these two hypotheses. It was already known from the work of Frederick
Twort (1915) and Felix d’Herelle (1917) that viruses could infect, lyse, and prop-
agate on bacteria (for a historical perspective, see Summers 1999). These bacterio-
phage were relatively specific in their activity. That is, some phage could spread
on certain bacteria but not others. The difference between a phage-resistant and
phage-susceptible strain could be identified through a simple colony assay where the
number of resistant bacteria were measured on agar plates. Hence, in the case of

microbes and viruses, the two hypotheses can be summarized as follows:
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Figure 1.1: Schematic of Lamarckian and Darwinian views
of selection and mutation. (Top) Lamarckian selection
changes the cell, and daughter cells heritably retain the
characteristic of the mother. (Bottom) Darwinian selection
changes the functional traits/phenotypes of the cell, but
differencesin daughter cells (when they arise via mutation;
see gray versus white) are independent of the selective
experience of the mother.

Spontaneous mutation The change from virus sensi-
tivity to virus resistance happens spontaneously to
cells, irrespective of their interaction with viruses.
This spontaneous change is rare.

Acquired heritable immunity A small fraction of in-
fected cells survive and acquire an immune state,
which can be passed on heritably to daughter cells.
This acquired change is rare.

The hypotheses of spontaneous mutation and acquired
heritable immunity map roughly to Darwinian and
Lamarckian evolution, respectively (Figure 1.1). Yet
these two hypotheses should have profoundly differ-
ent consequences on the variability expected in colony
counts of cells that can no longer be killed by viruses,
even if their recent ancestor could.

The Luria and Delbriick paper is a seminal event
in the history of biological sciences. It proved trans-
formative to understanding the nature of evolution—
showing that heritable changes in cellular state were
independent of, rather than dependent on, selective
forces. The finding is particularly striking given that
the work was completed 10 years before the dis-
covery of the double-helix structure of DNA was
made possible by Francis Crick, Rosalind Franklin,
James Watson, and others (Judson 1979). For Luria
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Fluctuations and the Nature of Mutations

and Delbriick, the selective force was the killing power of bacteriophage. Bacteriophage
(“phage”) are viruses that exclusively infect and kill bacteria. Yet the first image of a virus
was only seen under a microscope 4 years before! Nonetheless, phage and bacteria were
already becoming the workhorses driving discoveries into cellular function.

It was in this context that Salvador Luria—a biologist from the University of Indiana—
and Max Delbriick—a physicist at the University of Vanderbilt—initiated what was to
become a long-term and deservedly famous collaboration. (The rest of this chapter refers
to their collaborative work with the initials LD.) Yet the success of LD’s ideas came slowly.
Their 1943 paper, “Mutations of Bacteria from Virus Sensitivity to Virus Resistance,” is dif-
ficult to read (Luria and Delbriick 1943). The difficulty is not ours alone, separated as we are
in time by 70 years and missing context. Perhaps the authors simply wrote in different ways
and the hints at their underlying methods in the text would have been well understood by
their peers. This seems unlikely.

Recall that the work of Alfred Lotka and Vito Volterra on predator-prey dynamics was
not yet 20 years in the past. The integration of mathematics and biology was hardly com-
monplace. Moreover, unlike the bulk of models of biological systems, the work of Luria
and Delbriick combines elements of both continuous and discrete mathematics. Perhaps
it was only Delbriick who truly understood the mathematical nature of his arguments.
Indeed, 10 years later, Esther Lederberg and Joshua Lederberg leveraged their ingenious
idea of replica plating to show the clonal nature of virus resistance in bacteria (Lederberg
and Lederberg 1952). It was then that LD’s ideas began to gain acceptance not only because
of authority but through the adage “seeing is believing”

The following sections lay out the core arguments to decide whether mutations are
dependent on or independent of selection. In doing so, it is critical to review the nature
of the heritable state as well as the experimental details and mechanistic hypotheses
at stake. This chapter reviews multiple lines of evi-
dence in support of the competing hypotheses, includ-

ing the quantitative predictions for both the mean
and variance of mutant colonies. As we will see, the
1 0 0 7 0 303

history of the LD experiments and their outsized
influence on the foundations of molecular biology
lie in an “irreproducibility opportunity” (Figure 1.2).
This schematic provides a visual recapitulation of the
kind of data that LD observed—in which some of

Experimental replicates

5

their experimental replicas included zero (or very
few) resistant colonies and others included hun-
dreds. As it turned out, the large-scale disagreement
among replicate experiments was precisely the evi-
dence needed to distinguish between the Darwinian
and Lamarckian hypotheses. And, by the end of this
chapter, you will have a sense of how important this
variability was (and is) to understanding something
fundamental about how life works.

0000

Figure 1.2: Schematic of colony assays illustrating the appar-
ent lack of reproducibility in the Luria-Delbriick experiment.
The number of colonies is listed below each plate; these num-
bers in each experimental replica correspond to experiment
17 (Luria and Delbriick 1943). What would you have done with
such large variation between experiments? Is this failure? Or,
instead, something more profound? How and why this lack of
reproducibility explains the very nature of mutations forms the
centerpiece of this chapter.
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1.2 CELLULARPHENOTYPES

Bacteriophage (or phage) are viruses that exclusively infect and lyse bacteria. Infection is
initiated via encounter between the virus particle and the surface of the bacterial cell. After
encounter and successful adsorption, the genetic material of the phage is injected into the
cytoplasm of the bacteria where phage genes redirect the bacterial machinery, including
transcriptional enzymes and ribosomes, to copy the viral DNA and produce viral proteins.
These viral proteins self-assemble into capsids, which are then packed with viral DNA;
through a timed process, viral encoded enzymes—including holins and lysins—make small
holes in the inner membrane and cell wall of the bacterial cell. As a consequence, the cell
explodes and dozens, if not hundreds or more, virus particles are released. The infection
and lysis of bacteria, like E. coli B, by phage, like phage a, is depicted in Figure 1.3. This
process can be scaled up, millions and billions of times over. Indeed, that is precisely what
Luria did.

He did so, as the story goes, on a Sunday. The Saturday night before, in January 1943,
Luria had been at a faculty dance and social (those were different times (Luria 1984)). The
social included slot machines, which generally yield nothing but occasionally pay off in large
jackpots. Luria had observed similarly large, rare events in his experiments to probe the
change from virus sensitivity to resistance among bacteria (see an example in Figure 1.2). He
reasoned: what if such events were not a mistake in his experimental design but rather a fea-
ture of the resistance process itself? These slot machines and their jackpots were the catalyst
Luria needed to revisit his own thinking on the nature of mutations (Judson 1979). To test
the idea, Luria returned to his laboratory and conducted the prototype of what became the
experimental observations at the core of the 1943 LD paper. It is worth explaining precisely
what those experiments entail.

Sensitive

Resistant

C D

Figure 1.3: Infection and lysis of sensitive bacterial cells by viruses. (Top) In the case of sensitive cells,
viruses inject their genetic material into hosts, the virus genome replicates, virus capsids self-assemble
and are packed with virus genomes, and then virus particles are released back into the environment fol-
lowing the lysis of cells. (Bottom) In the case of resistant cells, viruses are unable to adsorb, infect, and lyse
the cell. Note that, more generally, resistance to infection can be due to extracellular and/or intracellular
mechanisms (Labrie et al. 2010).
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Fluctuations and the Nature of Mutations

Luria’s experimental design culminates in

the interaction of phage T1 with bacteria (now Overnight growth . Testforviral _
) ] resistance and sensitivity
known as E. coli B) on agar plates. Despite hav- ~10° (f
. . . . + media =—=——
ing many more viruses than bacteria, Luria had Agar plate
observed that bacteria can and do survive the +<l-i> ~12 hrs )
Pe—

+
interaction. To reach this point requires the fol- \?': »
Virus addition

lowing steps (Figure 1.4). First, a culture of bac-
teria is grown up overnight. Such cultures typi-

Bacteria Viral
culture lysate

cally include bacteria at densities on the order of

108 per ml. If grown in a 100 ml flask, this repre- 16'8 s
sents over 10 billion bacteria. In parallel, viruses N Zl2his ?'—"
; : ®
are added to a culture of bacteria. The replica-
tion of viruses inside sensitive bacteria leads to ‘Media + Bacteria
] . inoculum culture

the release of large numbers of viruses, which 0@
reinfect new cells and release more viruses, such Count colonies

. s . 9
that total virus densities can rapidly exceed 10 Figure 14: The Luria-Delbriick experiment, including overnight
per ml. Ensuring the culture exclusively con- growth of bacteria and phage, mixing on agar plates, and colony
tains viruses requires another step. Chloroform counting.

is often added to eliminate any remaining bac-

teria, the culture spun down, and the supernatant removed to extract a viral lysate, i.e., a
culture of virus particles. This is how the experiment starts. Next, the viral lysate is poured
atop agar plates and bacteria are added. The vast majority of bacteria should be infected by
viruses and lyse. Yet a few, sometimes hundreds, are not killed. These bacteria replicate,
beginning with just a single cell until they form a clustered group of thousands to tens of
thousands of bacterial cells on the plate. These dense assemblages of bacteria that arise from
a single bacterium are termed a colony. How many colonies appear, how often no colonies
appear, and the variation in colony counts between replicate plates forms the heart of the
Luria and Delbriick experiment.

The results from different experiments are shown in Table 1.1, where the columns
denote distinct experiments and the rows denote distinct counts of the number of colonies
in a series of biological replicates as measured in distinct agar plates. There are many striking
features of these results. First, there are many replicas with zero resistant colonies. Yet there
are also many replicas with dozens if not hundreds of resistant colonies. Imagine yourself
staring at this very data, not knowing what Luria and Delbriick discovered. What would
you have done? If you are a PhD student, ask yourself: would you show these results to
your adviser? Or, instead, would you have thought: there’s a mistake in the experiment. It’s
not repeatable. Yet that lack of repeatability, i.e., the zeros and the jackpots together, is the
critical clue to understanding the nature of mutations.

1.3 MUTATIONS THAT DEPEND ON SELECTION

What if Lamarck was right and mutations depend on selection? For a moment, disregard the
potential mechanism by which bacteria acquire resistance and/or immunity. Instead, con-
sider what would happen in the event that N bacteria on the agar plate were each exposed
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Table 1.1: Number of resistant colonies observed in Luria and Delbriick’s 1943 experiment.

Replica
Experiment 1 2 3 4 5 6 71 8| 9|10 M| 1213141516 17| 18 |19 | 20
1 10| 18125 | 10 14 27 3|17 |17
10 29 | 41 171 20 | 3 30 717
" 30| 10| 40| 45| 183 12 | 173 | 23 | 57 | 51
15 6| 5| 10 8| 24 131165 ] 15| 610
16 i{ o0} 3, 0y 0y 5/, 0, 5,0 6107, 0, 0|0 1, 0]0|64] 035
17 11 0 0 7 0 | 303 0| 0] 3|48 11 4
21a o,o0| 0oy 0, 8/ 1| O 1} 01} O0O|jO0|19|0]0OC|17|11| OO0
21b 38 (28| 35| 107 | 13

Note: The table here includes a subset of the original data published in (Luria and Delbriick 1943). Each row is a different experiment and each col-
umn is a different replicate within that experiment. The number of replicates for each experiment was not fixed. Each replicate denotes a biological
replicate referring to distinct numbers of cultures examined in each experiment.

to one or more viruses, and that such interactions can trigger a heritable immunity mech-
anism. To do so, assume that the probability of an acquired mutation is y,. These mutant
bacteria are not killed by viruses and pass on this resistance trait to daughter cells. What
then is the probability of observing m resistant bacteria, i.e., the “mutants”? This probability
is equivalent to flipping a biased coin N times, with the successful outcome occurring quite
rarely; e.g., if y, = 1078, then the mutation occurs one in every one hundred million trials.
Formally, the probability can be written as follows:

m ati sensitive
mutation
——
N! “n (N=m)
POMN:Ha) = Oyt M (1) -y

The first term denotes the number of ways to choose exactly m of N individuals. For exam-
ple, when m =1, then this combinatorial prefactor is N, i.e., the mutation that does occur
could have occurred to any one of the N bacteria in the population. Similarly, when m =2,
then this combinatorial prefactor is N(N—-1)/2, i.e., the number of ways to choose two
unique members of a population of size N, and so on. The remaining factors correspond
to the probability that a mutation with probability u, occurs precisely m times and, by
virtue of the size of the population, that a mutation does not occur—with probability
1 — pa—precisely N — m times (explaining why these counts appear as exponents).

This formula denotes the binomial distribution, but saying that does not seem partic-
ularly helpful. If you were to calculate this formula on the computer, you might find that
calculating massive factorials is not altogether helpful. Instead, we should consider the fact
that the experiment was done in a particular regime, that is, when N is a very, very large
number, on the order of 10® or greater. Similarly, the mutation rate, although unknown,
was almost certainly a very small number, on the order of 1078, In other words, the proba-
bility for observing m mutants can be readily calculated in certain limits, e.g., when N> 1
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and 0 < y; < 1. In that regime, the binomial distribution reduces to

(Nﬂa)m ¢ NHa

(1.2)
m!

p (m|N, pa) =
This formula denotes the Poisson distribution and is the limit of a binomial distribution
given many trials and small probability of success (see the technical appendix for a detailed
derivation).

The Poisson distribution has a number of interesting properties. For one, the mean
is equal to the value of the argument in both the exponential and the polynomial term:
i =Np,. Moreover, the variance of a Poisson distribution is equal to the mean. Hence,
the standard deviation—the square root of the variance—should be & = m"/2. This scal-
ing implies that replica experiments should yield small fluctuations, such that the standard
deviation ¢ increases more slowly than the mean m. One way to measure the smallness
of fluctuations is to consider the ratio of the standard deviation to the mean, termed the
relative error. For example, if there are 10 mutants on average, then the standard deviation
should be 3 and the relative error, or o/, should scale like /2, or 1/3. Similarly, if there
are 100 mutants on average, then the standard deviation should be 10 and the standard
error should be 1/10. In essence, there should be a relatively consistent number of mutants
between trials. As a result, the acquired immunity hypothesis predicts that repeated experi-
ments should tend to have similar levels of colonies despite the randomness associated with
the mutational process.

With this model in hand, let us now adopt the perspective of an experimentalist and try
to infer the most likely mutation rate given measurements. In essence, rather than asking
how many mutants we expect to see if we know the true mutation rate, we would like to
ask: what is the most likely mutation rate compatible with the observations we make? To
find the answer, we must turn to the data.

One set of data is reproduced in Table 1.1. The table includes the numbers of resistant
colonies in a series of replicate experiments. The number of resistant colonies differ. Some
are small, in some cases there are no resistant colonies whatsoever, and some are large, quite
large compared to others, e.g., hundreds versus a handful. There are at least two ways to use
this data. First is to note that if the process of mutation depends on selection, then we should
expect sometimes not to see any mutants at all. This probability is

0 _
(Nlla) € Nia =e—N;4a

o (1.3)

p(OIN, pa) =
Hence, given an observation, fo, of the fraction of replicates with zero colonies, then the
best estimate of the acquired mutation rate should be
» _ logfo

Ha=— N (1.4)

This method has advantages but also drawbacks. First, in the event that fy =0, then the
mutation rate is undefined. In the event that occurs, it is still possible to use a bound, e.g.,
the frequency of zero events should be fy < 1/s where s is the number of replicates. There
are other approaches. Note that the average number of mutant colonies, 7,p,, is another
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feature of the Poisson distribution. It is predicted to be Nu,. Hence, it may be reasonable to
assume that the best estimate of the acquired mutation rate should be ji, = % This is in
fact sensible. Using the mean as the basis for estimating the mutation rate is equivalent to
the maximum likelihood estimate of the unknown rate.

Formally, we would like to estimate the value of the “acquired” mutation rate that is
the most likely value given observations. The choice of the adverb “most” implies there is a
range of potential values to choose from. To begin, denote the joint probability of mutation

rate and observed number of mutants as P(,, m). This joint probability can be written as

P(ﬂu|m)P(m):L(m|//la)q04a)- (1.5)

This expression leverages the law of total probability such that P denotes the posterior prob-
ability of the parameter given the data, p denotes the probability of the data, L denotes the
likelihood of the data given a parameter, and q denotes the prior probability of the param-
eter. Here P is the posterior probability and and L is the likelihood function of observing
a certain number of mutant colonies given a known mutation rate. This equation can be
rewritten as follows:

L(mlpa)q(Ha)

p(m)

where p(m) and q(u,) are probability distributions of the data and of the prior of the
parameter to be estimated, respectively. Now consider two values of the mutation rate—

P(ptalm) = (1.6)

Uq and u,—and ask: which is more compatible with observations? To answer this question
requires comparing the ratio of the posterior probabilities,

P(palm) _ L(m|ua)q(pa)p(m)
P(puglm)  L(mluz)q(ua)p(m)”

(1.7)

In the event there is no a priori reason to favor one mutation rate over another, then q( ;) =
q(u). This is what statisticians mean by uninformed priors. Using such uninformed priors

yields
P(pa|m) _ L(m|ua)

= . 1.8
P(yujfm) ~ L(mlul) (18)

In other words, to find the y, that is most likely, in a posterior sense, one should find the
value of i, that maximizes the likelihood. As shown in Figure 1.5, the likelihood function
has a zero derivative in y, at its maximum (more generally, this is true of both local minima
and maxima for functions of one variable). Hence, rather than simulating the likelihood
for every possible observation, it is possible to identify a general formula for the maximum
likelihood estimate, fi,. The technical appendix explains how to take a first derivative of this
likelihood, yielding the maximum likelihood estimate

fla=m/N. (1.9)

In this case, the value as inferred by the mean is the right choice. Caution: This equivalence
between the mean and maximum likelihood solution need not always be the case.
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But herein lies the problem. The variance of the Pois-
son distribution is equal to the mean. So we should expect
that estimated variances are similar to estimated means.
Moreover, we should expect that the standard deviation,
which is the square root of the variance, should be smaller
than the mean. For example, if there are 10 colonies on
average per plate, then the acquired heritable immunity
hypothesis predicts that plates will have nearby values,
eg., 5 12, 7, 9, and so on. Moreover, large deviations
should be very rare. This is not the case in the experiments
of LD (as seen in Table 1.1). Hence, although it may be
possible to estimate an acquired mutation rate through the
zero-colony or average-colony methods, the data already
suggests that these rates correspond to a quantitative fea-
ture of the incorrect mechanism. To consider another
mechanism requires that we evaluate the number of muta-
tions that would arise in different replicates if mutations
were independent of selection.

14 INDEPENDENT MUTATIONS:
A CONTINUOUS MODEL
14.1 Spontaneous mutations—dynamics

LD proposed a different approach to the origin
of resistant mutants in their experiment. Perhaps

Fluctuations and the Nature of Mutations 11
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108 1077

Acquired mutation rate, i1,

Figure 1.5: Likelihood, L(m|u.) from Eq. (1.2), given vari-
ation in s, from 107 to 1077 and the observation that
m=10 when N=10’. As expected, the maximum likeli-
hood corresponds to u, =m/N or i, =107, Note that
the dashed lines provide a visualization of the zero first
derivative corresponding to the value of fi,.

Growth Growth

Muy top,

resistance mutations in the bacteria did not arise
due to interactions with the virus. Instead, what
happens if the mutant bacteria were already there,

-

Sensitive, S Resistant, m

waiting, as it were, to be revealed through the pro-
cess of interacting with viruses that would other-
wise kill them? This is the core idea of mutations
being independent of selection—and of the Dar-
winian concept of evolution via natural selection.
But how many mutants should there be? This is

Figure 1.6: Population model of the growth of susceptible bac-
teria, S, and resistant bacterial mutants, m. Here the S popula-
tion divides, sometimes yielding mutant bacteria that are resis-
tant to viral infection. The m population also divides and back-
mutations leading to virus sensitivity are ignored.

where theory becomes essential. If mutants arise independent of selection, then in prin-
ciple they could have arisen very early in the experiment or perhaps near the end, in the
very last generation of bacteria to divide before viruses were added to the agar plate. If they
arose early, then a single resistant cell could divide many times before being plated on a
lawn covered in viruses. Such an experiment would yield a very large number of resistant

colonies. This possibility is worth exploring in detail.

To address this possibility, LD proposed a continuous model of bacterial population
dynamics including two populations: sensitive cells and resistant mutants (Figure 1.6).
(In practice, it was Delbriick who proposed the mathematical model.) In this continuous
model, susceptible bacteria grow at a rate r, but a small fraction of the offspring, u, mutate
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to become resistant. These mutant bacteria also grow, and in the absence of other evidence
that there is a link between resistance and growth rates, then LD assume that mutants also
grow at a rate r. This model defines a linear dynamical system involving two population
types S and m, the number of susceptible and mutant individuals in the population:

growth of sensitives

ds ﬁ (1.10)
_ = 1. — .
dt g
new mutations  growth of mutants
dm s N —=
i S+ rm (1.11)

This model seems simple in many ways. However, it contains subtleties both in terms
of the biology and in terms of the dynamical system itself. First, the model assumes that
mutations occur during reproduction. Similar results could hold if mutations occur at any
moment. Second, for biologists, writing equations in this way is not necessarily intuitive. In
my experience, the instinct of most biologists when asked to translate a mechanism into a
model is to think in terms of update rules, i.e., the value of the population at the next time,
x(t+1) =..., rather than in the changes in the population at the current time, dx/d¢t. Hence,
if you share that instinct, consider taking a diversion to the technical appendix for how to
move between the update perspective and the dynamical systems perspective. Finally, the
text sometimes uses the notation dx/dt to denote the derivative of a population/variable
with time, and sometimes uses the notation X to denote the same thing.

The next challenge is to solve this dynamical system to quantify both the sensitive and
mutant cells as a function of time given the mutation rate u. Try to solve by stepping away
from the text with a blank piece of paper and keeping in mind only these two rules: (i)
Susceptibles divide and sometimes generate mutants. (ii) Mutants also divide.

Now, if you tried and got stuck, keep in mind that there is a helpful trick: add the two
derivatives together to find that § + 1= (S + m). In other words, the entire population N=
S+ m is growing at a rate r, while the balance of individuals shifts between S and m. The
solution to this exponential growth problem for total cells is N(¢) = Npe'. There is another
observation: the mutants—despite being far more rare—are actually growing faster in a per
capita sense than the residents. This is true even before selection was applied! Returning to
the equations and solving the § equation yields the following (where m(t) = N(t) — S(¢)):

S(t) = Noe" 171, (1.12)
m(t) =Noe" (1-e™"). (1.13)
The length of the experiment is on the order of 10-20 generations, i.e., the product rt is a
dimensionless number of that magnitude. Hence, we can approximate e”"#! ~ 1 — rut given
that y <1, such that the number of mutants is predicted to grow faster than exponentially:

m(t) = Noe" urt. (1.14)

Note at this point that it is important to reconcile this finding with the objective of LD: to
determine whether large fluctuations are consistent with mutations being independent of or
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dependent on selection. The notion of consistency implies a particular experimental design
in which LD performed a series of replicates—many, but certainly not infinite, a point that
we will revisit later in the chapter. Hence, to begin to compare theory and experiment, it is
worth generalizing this model to apply not only to E. coli and phage but to a larger class of
problems. Thus far we have retained the growth rate r. A generalization is enabled by noting
that the rate r and time over which the experiment is conducted t also appear together—
suggesting that the growth rate is not a particularly important feature of the phenomena.
The key is that r, as measured in inverse time, and t, as measured in time, must share the
same units—hours, minutes, etc. If they do, then their product will remain the same even
if we change units. That gives another clue. The value of r doesn’t matter that much; it is the
product of r and t that matters. If r is the effective inverse of the division period, then rt is
simply a measure of the effective number of divisions in this growing population. Hence,
it would seem that we would be better oft developing a general theory, rather than one
tuned for a particular value of r. The fact that LD could manipulate bacteria over dozens
of generations reinforces their prudence in working with bacteria and not giraffes for this
particular class of problems.

To formally work in this direction, denote a rescaled time, 7 =rt, such that dr =rdt.
Hence, 7=1 is effectively one division, 7 =10 is effectively 10 divisions, and so on. The
dynamical equations can be written initially as

ds

—=rS(1- 1.15

3 =S -u) (1.15)

(ii—r::yr8+rm (1.16)
while dividing both sides by r yields

ds

—=5(1- 1.17

=50 -n) (1.17)

dm

—=uS . 1.18

o HsEm (1.18)
Next, replace dr = rdt, yielding

B _sa-p (1.19)

dr

d—m:uS+m (1.20)

dr

This last set of equations implies that, irrespective of the growth rate, the sensitive popula-
tion will grow more slowly than that of the mutation population of resistant bacteria. Using
the same logic as before, albeit forgoing the explicit inclusion of the growth rate, yields a
prediction for the number of resistant mutants expected after a dimensionless time 7:

m(7) =Noe' ut. (1.21)
Therefore, at the final time, the number of mutants is expected to be

m(zf) = Nputy (1.22)
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where Ny=Noe™ is the total number of bacteria exposed to viruses. This is, in modern terms,
equivalent to Eq. (6) of LD’s paper. This equation can be put into practice. Given an obser-
vation of the average number of mutants in replicate experiments, then it is possible to

estimate the mutation rate:
Mops

Nf’tf

ji= (1.23)
There are two key caveats here. The first caveat is that this estimate of a mutation rate simply
becomes an alternative estimate to that obtained assuming the acquired immunity hypoth-
esis. It may be right, but the fact that we can make such an estimate does not provide the
necessary evidence in favor of the hypothesis. The second caveat is that the approach to
solving this problem is somewhat nonintuitive, i.e., involving mathematical tricks that tend
to obscure the key biological drivers of the variation. Let’s try another way, hopefully one
that helps build intuition.

14.2 Spontaneous mutations—a cohort perspective

According to the spontaneous mutation hypothesis, mutants emerge in the growing bac-
terial culture before viruses are added. Hence, if a single resistant mutant appeared five
generations before bacteria were mixed with viruses, then that single mutant would have
given rise to 2% =32 new mutants, each of which corresponds to an observed, resistant
colony on the agar plate. Likewise, if a single resistant mutant appeared seven generations
before bacteria were mixed with viruses, then that single mutant would have given rise to
27 =128 new mutants. Hence, the older a mutant is, the more daughter cells appear in that
lineage. Yet there is also a counterbalancing force. Given that the population is growing,
it is far more likely that mutants will appear near the end of the experiment, even if those
mutants have less time to reproduce. It is possible to formalize this by moving from non-
overlapping generations to continuous dynamics and by estimating the number of mutants
in terms of cohorts, grouped by their age of first appearance.

To do so, it is essential to recognize that the rate of appearance of mutants is uS(7).
Hence, in a small interval of time dz, a total of uS(7)dz mutants will emerge (at least on
average). Each of these cohorts of new mutants will grow exponentially, reaching a final
size """ greater by the end of the experiment. Hence, given that mutants can appear at any
time, we can write

new mutant cohort growth of mutant cohort
—

f
m= fo dr  (uS(z)) - o
:[fdryNoe(lf”)TeTfﬁ
0
f
_ druNe™ " (I-p)7 757
/(; TuNpe e e
—fffdr N #7
= o HuNe

=[-Ne ]

=[-Np(e"7-1)] (1.24)
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and using the approximation e* ~ 1 + x for |x| < 1 yields
m= puteNy, (1.25)

precisely what was derived in the dynamical systems approach in the prior section! This is
the same answer, but with less mathematical trickery and more intuition.

Now, of course, there is a problem. Working with continuous dynamics also risks
unwittingly creating a “continuous fallacy” The continuous fallacy assumes implic-
itly that fractions of organisms can grow. But fractional organisms do not grow;
they don’t even exist! Yet the continuous model

Independent mutation model

15

described above suggests they do (Figure 1.7). 1010 : : :

For example, what does it mean if at some point Sensitive

m=0.0001? There is not one-ten-thousandth of Mutants—continuous

a mutant proliferating in the flask before viruses Mutants—discrete

are added. Hence, a deterministic model that 10° 1

assumes the growth of fractional organisms may
pose problems when trying to compare results
to experiments in which rare events matter. One
way to address this issue would be to transform
the model from a continuous framework to an
entirely stochastic framework (in fact, later work
did that (Lea and Coulson 1949)). That approach 105k
is one that is amenable to the use of a fully
stochastic treatment as well as to computation—
as realized through the homework problems rec-

10°

Population number

ommended for this chapter. However, such anal- 10710 0 : '

5 10 15 20
ysis is mathematically far more difficult (Lea Dimensionless time, T
and Coulson 1949; Kessler and Levine 2013).
Instead, another way to address this issue is to Figure 1.7: Contrasting dynamics of mutants given continuous

use a continuous model, albeit to incorporate the
stochastic nature of the appearance of mutants

dynamics and “discrete” approximations. The continuous model
assumes that mutants are continuously generated, even at frac-
tional levels. The discrete model assumes that mutants grow con-

by applying a deterministic growth model only tinuously only after a single first mutant appears. The variation in
to periods in which at least one mutant is likely timing of the appearance of the first mutant underlies the “jackpot”
to be present. That is the tack taken in the next effect described earlier. Dynamics are simulated assuming No =1
section. and =10""

1.5 MODELING THE GROWTH OF (DISCRETE) MUTANTS

Understanding the implications of the independent mutation hypothesis requires build-
ing upon the continuous model while recognizing that mutants are discrete. For example,
consider beginning an experiment with approximately 1000 bacteria founded by a sin-
gle susceptible cell. If the mutation rate is of the order 1078, it would seem highly
unlikely that one of those cells is resistant, indeed with odds on the order of 1/100,000.
Yet, in the continuous model, the mutant population is immediately generated, albeit
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fractionally, and allowed to grow. This may lead to an overestimate of the expected size of
the mutant population, and, by extension, biases in estimating the actual mutation rate (see
Figure 1.7).

Instead, to overcome the continuous fallacy, it is imperative to estimate the time 7
where the first mutant is likely to appear. In this model, rather than assuming that frac-
tional mutants grow, we expect there should not be mutants, i.e., m(z) =0, for 7 <7y and
otherwise:

S(z) = Nyyell-1 (=70) (1.26)
m(7) :NTOe(T_TO),u (t—10) (1.27)

Connecting theory and experiments requires estimating the realized number of mutants at
the end of the experiment, i.e., when 7 = 75 and given a final number of cells Ny=Ny, e(ff ’TO).
Hence, we can write

m(Tf):Nf/l (Tf—T()) (1.28)

Now recall also that z¢— 79 =log(Ny/Ny, ), which is a feature of the exponential growth of
cells. It would seem that we are nearly there in terms of incorporating the discrete nature of
mutations in the estimation procedure for . Altogether, the experiment yields an observed
number of mutants m, a total number of bacteria Ny, as well as the duration of growth zs. If
we only knew the approximate time at which resistant mutants appear, we would be able to
also estimate . That time is related to Ny,. This is where the final puzzle is solved.

If one in a million offspring yielded a resistant bacteria, then one would expect to wait
until there were on the order of one million bacteria before finding a mutant. In other
words, the time of the first mutant appearance should satisfy Ny u & 1 or alternatively that
Ny, =1/ u—this is the circular gray point noted in the demonstration example in Figure 1.7.
The time (on the x axis), 7, of this point corresponds to the moment when it is likely that
a mutant first appears. The number of mutants (on the y axis) is set to 1. The smaller
u is, the larger the population must get before the first mutant appears, and therefore
there is less time for this clonal population of mutants to grow exponentially. Substitut-
ing this time yields a new estimate of the expected number of mutants at the end of the
experiment:

m(zf) = Nyplog(Np). (1.29)

Note that if there are C multiple replicates, then the first time a mutant would appear in one
of the replicates would be of the order 1/(Cp) such that

m(zf) = Nyulog(CNyu). (1.30)

Eq. (1.30) can be put into practice. Given an observed average number of mutants m
as well as the number of replicates C and population size Ny, it can be used to identify a
unique value of y. This equation is implicit. Nonetheless, it can be “inverted” so as to solve
the problem numerically. But even if we have an estimate, this doesn’t answer the deeper
question: is there sufficient evidence to accept the independent mutation hypothesis and
reject the hypothesis that mutations are dependent on selection?
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Figure 1.8: The number of expected mutants as a function of unknown mutation size. Here, Eq. (1.30) and
Eq. (1.31) are used for the independent and acquired hypotheses, respectively. For the independent hypoth-
esis, the average number of mutants increases logarithmically with C, the number of replicate cultures.
Hence, given an observation, it is possible to “invert” the curves and find an estimate of yy or u, given an
observation of m, and the values Nyand C. Here Ny = 10°. The circles denote estimated mutation rates given
an observation of 25 for the average number of mutants, solved using a nonlinear zero finding method for
the independent mutation case.

Favoring one hypothesis over another requires not just alternative estimates but evi-
dence of the incompatibility of one hypothesis to explain the observed data. Thus far, the
theory presented here only utilizes the mean number of colonies to provide two alternative
estimates of the mutation rate. Eq. (1.30) links data to an estimate of the mutation rate when
mutations are independent of selection. Yet we already derived an alternative equation for
the estimated mutation rate when mutations are dependent on selection:

m(zf) = Nipq. (1.31)

Figure 1.8 shows the expected number of mutants as a function of y for three cases of C
for the independent mutation hypothesis in contrast to the expected number of mutants
in the acquired mutation hypothesis. The same figure also shows how the estimate of
u varies with C and the underlying mutational mechanism given the same observation.
That is, if 25 resistant colonies were observed on average, then using the mean informa-
tion alone would simply lead to distinct estimates of the mutation rate but would not be
sufficient to distinguish between the two classes of hypotheses. One measurement, mul-
tiple estimates. Distinguishing them requires going beyond means, all the way to the
variation.
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1.6 VARIANCE OF MUTANTS WHEN MUTATIONS ARE
INDEPENDENT OF SELECTION

How much variation is expected among resistant colonies if mutations arise spontaneously,
independent of selection? We have already shown that mutants arise in different cohorts,
e.g,. from time 7y to 7y. Earlier cohorts may be less likely to arise, but when they do, they lead
to alarger number of mutants. Later cohorts are more likely to arise, and when they do, they
lead to a smaller number of mutants. Altogether, these cohorts contribute to the expected
variation in outcomes across replicate experiments. For example, if there were only mutants
at 7o and at some other point 71, then the total variance in the number of mutants would be

Var(m) = Var(m|zy) + Var(m|ry), (1.32)

which is to say that expected variances add! There are two contributions to the variance of a
cohort. First, the number of new mutants generated in a given generation is itself a Poisson
random number whose expected value is N(7)u. However, this Poisson random number
is multiplied by an exponential factor, corresponding to the proliferation of the cohort. If
x~ Poisson(N, ), then the variance of that random variable multiplied by a constant factor
is Var(ax) = @®Var(x) where « is a constant. In other words, if the cohort grows by a factor
of 16, its mean increases that much, but the variance (involving squared values) goes up by
a factor of 256! This hints at the possibility that variation in the emergence of early mutants
in a growing population before exposure to viruses could underlie the large variation in
observed outcomes.

It is possible to assess the variance expected in outcomes by focusing on the case where
there are only two potential times when mutants arise:

Var(m) = (e77°)” uN(zo) + (77 ) uN(z). (1.33)

However, recall that the numbers of cells are themselves growing exponentially, such that
N(z;) :Nfe’(ff’fo), and so

Var(m) = uNs [e’f_f" + eff_”] ) (1.34)

We can generalize this idea to any value of 7; between 7y and 7, i.e., moving to the
continuum limit, such that

Var(m) = ,ufoTf dre”™"
70
= uNy[e" ™ - 1] (1.35)
for which we should recall that T =T~ log CuNf. Finally, we can write
2
Var(m) = uNy(CuNj—1) ~ C(uNy)". (1.36)

This equation implies that the variance grows faster than the mean, unlike in the case of
mutations that are dependent on selection.
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Figure 1.9: Comparison of the expected distribution of mutants assuming the acquired mutation hypoth-
esis to the realized number of mutations given an independent mutation hypothesis. The black solid line
denotes the Poisson fit assuming mutation depends on selection. The gray circles denote the results of an
LD simulation, with final population size of ~ 5.4 x 10% given = 1075, The right panel denotes the large
number of jackpots, including four cases where there are far more than 200 mutants in a single experiment
out of 100 experiments. As is apparent, such jackpots are wholly unexpected given the Poisson assumption
that would arise if mutations were dependent on selection.

Table 1.2: Hallmark features of the acquired mutation hypothesis and spontaneous resistance hypotheses

Acquired Spontaneous continuous Spontaneous discrete
Mean MaNf uNrlog Ny uNslog CuNy
Variance HalNf uN; Cu*N;
Variance 1 Ny CuNy
Mean log Ny log CuNy

Note: The terms continuous and discrete refer to whether mutant cohorts are assumed tobeginat z = 0 or 7 = 7y; see text
for details. As is apparent, the independent case leads to variance:mean ratios far above 1.

Summarizing these findings requires a focus on the qualitative differences implied
by the link between the expected variance and the mean number of resistant colonies.
Table 1.2 compares and contrasts the mean, variance, and ratio of variance to mean for both
hypotheses. The variance as estimated for the case of mutations independent of selection is

C ( MNf)Z, whereas the mean is uNylog CuNy such that the ratio is

Var CMNf
Mean log CuNy

(1.37)

This ratio includes a relatively large number over its log, which should yield a ratio much
larger than 1. In the case of mutations that are independent of selection, the bulk of the
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variation stems from the very earliest of mutant cohorts, because when they do occur, they
grow exponentially, leading to jackpots and large variation. These large jackpots are incom-
patible with the acquired immunity hypothesis (Figure 1.9). The finding and interpretation
of large variances in repeated experiments of phage lysis of bacteria has remained a salient
example of the integration of quantitative reasoning of a living system given uncertainty—
and such work continues to inspire. As but one example, the interested reader may want
to explore recent work showing how delays between the onset of a mutation and change in
phenotype impact the population-level mutant distribution (Sun et al. 2018).

It is now up to you to work computationally to help build your intuition as to whether
the fluctuations observed are large enough to reject the mechanism that mutations are
dependent on selection in favor of the mechanism that mutations are independent of selec-
tion. In doing so, a full stochastic framework is used in the homework problems to test
the limits of both the simple models and the theoretical predictions—which come with a
caveat. The scaling presented in the last column of Table 1.2 differs from the scaling found
in a fully stochastic treatment (Lea and Coulson 1949; Zheng 1999). The reason is that cor-
recting for the appearance of the first mutant applies to the sample statistics with a finite
number of replicates and not necessarily to the expected mean and variance in the limit of
infinite replicates. This claim is equivalent to considering the limit that CNou < 1 or equiv-
alently that CNy < %, i.e., a mutant is unlikely to have already been present at the start of
the experiment. As C gets very large then it is more and more likely that a mutant will be
present at the very start of one of the C replicates—and the continuous fallacy stops being a
fallacy. Problem 6 in this chapter explores how the mean and variance increase with muta-
tion rate given sufficiently small C. Although the quantitative details differ, the fluctuations
remain large.

1.7  ON(IN)DIRECT INFERENCE

This chapter has explored a key concept in modern biology. The work of LD is particu-
larly notable for its integration of mathematical theory, physical intuition, and model-data
integration as a means to understand the nature of mutation. The conceptual notion of
spontaneous mutation versus acquired hereditary immunity can be seen in the schematic
in Figure 1.10. As is apparent, the possibility for jackpots is enhanced when lineages (i.e., a
bacterium and its descendants) all have the property of resistance. This possibility of jack-
pots is to be expected when mutations arise spontaneously during the growth process and
are unrelated to the selection pressure. Hence, irreproducibility is a hallmark of a particular
biological mechanism. The work of LD showed that mutations arose independent of selec-
tion and were not acquired as a result of interaction with a selective pressure. Their 1943
paper and its findings were cited when Luria and Delbriick received their Nobel Prize in
Physiology or Medicine along with Alfred Hershey in 1969.

We now accept this paper as having established the independence of mutation from
selection. It informs not just foundational work but interpretation of the emergence of
the frequency and variation in cancer cells (Fidler and Kripke 1977). Yet it took a decade
for the “biometric” approach of Luria and Delbriick (sensu Esther Lederberg and Joshua
Lederberg) to be accepted. The acceptance was not just because of a gradual increase in
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Al. Growth of a bacterial population B1. Growth of a bacterial population
from a single ancestor from a single ancestor

Ancestor Ancestor Ancestor
§=0 ) §=0

A2. Exposure of population to viruses B2. Exposure of population to viruses
A3. Subpopulation of bacteria acquire B3A. Subset of resistant bacteria already B3B. No resistant bacteria present;
resistance and survive viral infection. present and survive viral infection (jackpot). all are infected and lysed by viruses.

Acquired immunity Spontaneous mutation
(small variation) (large variation)

Figure 1.10: Schematic illustration of the acquired heritable immunity mechanism (left) and the sponta-
neous mutation mechanism (right), including differencesin the number of resistant colonies—adapted from
J.S. Weitz, Quantitative Viral Ecology (with permission) (Weitz 2015).

quantitative rigor in cellular and molecular biology. Indeed, the subject of understanding
the basis for the “Luria-Delbriick” distribution continues even now (Kessler and Levine
2013). Instead, fellow researchers were eventually convinced by the dissemination of the
elegant replica plating method of Esther Lederberg and Joshua Lederberg (1952), likely even
more so than by beautiful mathematics (Figure 1.11; note that Esther Lederberg has been
underappreciated for the scope of her contributions (see Schaechter (2014)). The idea of
the replica plating method is that a bacterial lawn, likely with preexisting resistant mutants,
can be transferred to multiple plates. The transfer is meant to preserve the existing spa-
tial structure of bacteria, including bacterial mutants. These multiple replicate plates are
then exposed to a phage lysate. Hence, if the position of the resistant mutants in each
replicate plate were similar, that would show—visually—that the property of phage resis-
tance was already present before the interaction with the virus. The numbered colonies
in Figure 1.11 demonstrate this very point—many appear in exactly the same position in
at least two plates—and are an example of how much a beautiful experiment design can
offer.

Despite this chapter’s singular focus on evidence building toward a conclusion that
mutations are independent of selection, there is a caveat to this seminal discovery.
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This caveat is shaped by new research into
the origins of genetic variation in microbes.
To understand the caveat, it is worth consider-
ing the Gedankén experiment: what would have
happened to the history of molecular biology if
Luria and Delbriick had used Streptococcus ther-
mophilus and its phage rather than E. coli B and
phage T1? The S. thermophilus strain utilizes

’ an acquired immune defense system known as
CRISPR (clustered regularly interspaced palin-
dromic repeats) or CRISPR-Cas (Barrangou
et al. 2007; Makarova et al. 2011). Although
CRISPR-Cas is known as the basis for a revo-
lution in genome engineering and biotechnol-
ogy, at its heart the CRISPR system is a de
facto adaptive immune system in bacteria and
archaea that enables microbes that survive an
¢ P infection to become heritably resistant. These
Figure 1.11: Replica plating method to demonstrate viral-resistant microorganisms seem, in some sense, akin to
mutants are independent of selection. The original plate is shown giraffes reaching for acacia leaves and passing on
in A. Colonies’ cells resistant to phage T1 are numbered in replica their longer necks to their offspring (Koonin and
plates B, C, and D. As noted in the original caption, the colocation Wolf 2009). A strange world, but it is the one we
of resistant colonies in the same location implies they are “derived live in.
from small clones of resistant mutants already present at corre-
sponding sites on the plain agar plate, A.” Reproduced from Figure 2
of Lederberg and Lederberg (1952). 1.8 TAKE-HOME MESSAGES

1.9

Mutations are the generative driver of variation in the evolutionary process.

Prior to the work of Luria and Delbriick, there was a major unanswered question:
are mutations independent of or dependent on selection? Afterward, the consensus
shifted: mutations are independent of selection.

Experimental evidence using phage and bacteria showed that the number of muta-
tional events varied significantly between experiments.

This large variation, i.e., a lack of reproducibility, was a key hallmark of the inde-
pendent mutation hypothesis, and counter to predictions of the acquired mutation
hypothesis.

Solving for the Luria and Delbriick distribution is non-trivial; nonetheless, the
central concepts of proliferation and mutations among clones is readily analyzed,
simulated, and compared to data.

Although exceptions abound (including CRISPR-Cas immunity), the concept that
mutations are independent of selection remains the paradigm in biology.

HOMEWORK PROBLEMS

A central goal of this book is to help readers develop practical skills to quantitatively rea-
son about living systems given uncertainty. However, each chapter is only part of this

process (just like listening to lectures, paper discussions, and in-class work help solidify
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understanding). Moreover, for many readers, the mathematical and biological insights pro-
vide a partial guide. If seeing is believing, then coding and simulation are a central path to
build intuition and insight on the themes developed in this and subsequent chapters. The
following homework operates in that spirit and is best approached after working through
the exercises in the accompanying computational lab guide. The laboratory guides—in
MATLAB, Python, and R—provide insights into how to:

o Sample from random distributions

o Utilize the properties of uniform random distributions to generate random distri-
butions that are nonuniform, e.g., exponential distribution

o Compare and contrast the Poisson with the binomial distribution

o Develop stochastic simulations of growing populations

The homework helps leverage this “toolkit” in order to build intuition on the core ideas of
Luria and Delbriick’s seminal paper.

The overall objective of these problems is to reproduce the “irreproducibility” of the
number of resistant mutants, as observed by LD, and to begin to reach tentative conclusions
regarding the confidence on estimated mutation rates and mechanisms in inferring the basis
of mutation from resistant colony data. The problems utilize a common set of assumptions
initially. That is, in these problems, consider an experiment with C cultures, each of which
has N sensitive cells. Every time a cell divides there is a probability i that one, and only one,
of the daughter cells mutates to a resistant form. We assume that the offspring of resistant
cells are also resistant, i.e., there are no “back-mutations” Good luck. And remember, you
can do it!

PROBLEM1. Simulating the Luria-Delbriick Experiment over One Generation

Write a program to simulate just one generation of the LD experiment—stochastically.
Simulate C = 500 cultures, each of which has N = 1000 cellsand u = 1072, i.e., a very high
mutation rate. What is the distribution of resistant mutants that you observe across all
the cultures? Are they similar or dissimilar to each other? Specify your measurement
of ¢(m), i.e., the number of cultures with m resistant mutants. Is this distribution well
fit by a Poisson distribution? If so, what is the best fit shape parameter of the Poisson
density function and how does that relate to the microscopic value of the mutation
you used to generate the output? Finally, to what extent are the fluctuations “large” or
“small”?

PROBLEM2. Simulating the Luria-Delbriick Experiment Forward One Generation

ataTime

Extend the program in Problem 1 by setting C=1000, N=400, and u = 1077, while
having the population grow over g=15 generations. What choice did you make with
respect to modeling the population? If you decided to model each individual cell in
each individual culture, explain your rationale. Next, develop a model that represents
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the emergence of new resistant cells in each generation in each culture en masse (that
is, all at once). (Hint: Think about how prudent use of the Poisson random genera-
tion function could help.) The objective here is to develop a working simulation that
is both accurate and efficient—in doing so, compare the speed when you use Poisson
versus binomial random number generating functions.

PROBLEM 3. Characterizing the Mutant Distribution

Using the simulation in Problem 2, report and describe the shape of ¢(m)—the num-
ber of cultures with m resistant mutants. Describe and characterize the shape of this
distribution and contrast it to that expected under the acquired hypothesis. What is the
mean and variance? Are fluctuations large or small? Finally, to what extent are there
jackpot cultures? Can you define a principled way to identify those jackpots? To what
extent do fluctuations become small when jackpots are excluded?

PROBLEM 4. Why Are There Jackpots?

Characterize the “age” of each mutant using your LD simulation. That is, if you have
not already done so, keep track of the first appearance of each mutant and characterize
the relative importance of mutants of different “ages” to the total number at the end.
Do early/late mutants contribute disproportionately to the total number? Do early/late
mutants more strongly influence variation?

PROBLEMS. Moving Backward like Luria and Delbriick from Observations to

Estimates

Take the results from the first 100 of your experiments in Problem 2, that is, the number
of resistant mutants, my, m,, ..., mygo. Lreat these 100 numbers as data. Now write
a program that leverages results of new simulations to infer the most likely value of
u, the mutation rate, and (if possible) a 95% confidence interval for it—in doing so,
pretend that you do not know what y is in advance. Consider using two pieces of evi-
dence: (i) the number of cultures with no resistant mutants; (i) the mean number of
resistant mutants. Finally, ask: is your data also consistent with the acquired resistance
hypothesis? Why or why not?

PROBLEMG6. Scaling of the Mean and Variance of Mutants with y

Using a stochastic simulation of the LD problem (ideally, using a Poisson approxi-
mation to the mutant generation at each step), simulate the expansion of a bacterial
population with zero mutants at ¢ = 0 and Ny = 1000 over 18 generations so that the final
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population has more than two billion cells. Upon division of a wild-type cell, there is
a p probability that one of the daughter cells will be a mutant—both mutant and wild-
type cells divide each generation. Modulate the mutation rate from y =102 to = 107>
and use a value of C=20. If your model works, it should look like the following:

0 Mean, given C = 20 replicates o Variance, given C = 20 replicates

3

(¢]
O

o O
O

Number of mutants
= =
Variance in mutants
—
<

O Stochastic simulation
— UNlog CNu
10! 10?
10-® 107 10-¢ 10-° 10 107 10-¢ 10-°
Mutation rate, i Mutation rate, i

O Stochastic simulation
U2N?

Using your model, explore lower and higher values of C, e.g., C=10 and C=40.
Compare and contrast your findings with the scaling in Table 1.2, accounting for the
emergence of mutants after the start of the experiment. Using these same settings,
compare the LD estimates, assuming mutants grow deterministically from the start.
In discussing your results, provide a rationale for gaps between theory and simulation.

110 TECHNICAL APPENDIX

One of the key features of a compelling theory and model is that it is often easy to understand
in retrospect but hard to complete in the absence of the solution. Such theories are like
puzzles and any good solver has a repertoire of techniques. This appendix reviews basic
techniques and provides additional information to help fill in the gaps in the main text.
These reviews may be of particular value to readers with strong biological training who may
not have seen these mathematical methods used in concert with the analysis of biological
problems. Indeed, why remember how to do a Taylor expansion or calculate the binomial
coeflicient if it is never called upon in your research?

Factorials The term N! denotes a factorial, or NX (N-1) X (N-2) X---x2X 1.

Binomial coefficients The binomial coeflicient counts the number of ways to permute

the location of k events of N trials. Formally, the coefficient can be written as (I]\f )

such that
Nl_ N (1.38)
k] (N-k)k! ’

For example, consider the case where N =5 and k = 2, for which there are 5!/ (3! x2!) =
10 distinct combinations of arranging two positive events out of 5 trials. The bino-
mial coefficient can be understood as follows. First, consider the way in which k
events can be selected out of N trials in a particular sequence. The first event has N
options, the second N — 1, the third N - 2, and so on, so that the total number of events
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is N(N-1)(N-2)---(N-(k—1)). However, the resulting placement overcounts the
number of unique configurations; e.g., for N=5 and k=2, it is possible to first select
trial 1 and then trial 2 or to first select trial 2 and then trial 1. The degree of overcounting
can be calculated by counting the combinations of the identity of the positive events;
i.e., the first event has k options, the second has k— 1, and so on. That is to say, there
are k! ways to permute the identity of the positive events. Hence, the total number of
ways to permute the location of k positive events in N trials is

N(N-1)(N-2)...(N- (k1)) NI

k! C(N-K)!k! (1.39)

precisely the binomial coefficient listed above.

From the binomial to Poisson Consider the probability that k events take place, each with
probability u, out of N trials, i.e,

p(kIN, p) = uE (1= ) N0 (1.40)

N!
(N—k)!k!
In the Luria experiments, there are many bacteria (N>> 1) and the probability of muta-
tion is rare, y# << 1. Denote the average number of events as 7 = Ny. In the limit of large
bacterial populations and rare acquisition of virus resistance, then

pl. ) = HO SR 00
:Nkyk(l—I/N)(l—Zk/!N)...(l_(k_l)/N)(l_M)(Nk)
m k-1 .
k.( (1_01) )_m(lwk)
ﬁ,lke—fn
¥ Th (1.41)

Note that this approximation utilizes a Taylor expansion of exponentials, ie., e~
1-x and ¢*~ 1 +x for small values of x, and also ignores small terms, e.g., those in
which a number is divided by N or multiplied by a factor of y. The resulting Eq. (1.41)
corresponds to the Poisson distribution with an expected value of 7 for the number of
successful events given N trials.

Taylor expansion A Taylor expansion represents a formal mechanism to approximate the
values of arbitrary functions near a reference point using a sequence of polynomials. It
is easiest to illustrate the concept of Taylor expansions for functions of one variable, like
f(x), but the concepts can be extended to multiple dimensions, e.g., g(x, ¥). In the one-
dimensional case, the value of f(x) near the reference point x( can be approximated as

2
o) ftxo) + B )+ | e (142)
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In essence, the Taylor expansion assumes that function values near a reference point
can be approximated by starting at the function value of the reference and then fit-
ting a tangent to it. The slope of the tangent defines the “rise” of the function, i.e.,
df/dx evaluated at x = xp, and the “run” is the difference between the point of interest
and the reference, i.e., (x— xg). The linear approximation can be extended using the
curvature—the second derivative—multiplied by the difference squared, i.e., (x - xo)>.
As a result, the Taylor expansion approximates arbitrary functions as a combination of
polynomials. In practice, we will rarely utilize Taylor expansions other than to first (i.e.,
linear) or second (i.e., quadratic) order. For example, e* for values of x near 0 can be
represented as 1+ x+x*/2+---. Similarly, log(1 + x) for values of x near 0 can be rep-
resented as x — x*/2 + ---. Note that retaining higher-order terms can sometimes prove
essential (as will be shown in later chapters).

Solving the exponential growth equation Consider the dynamical system

dx

m =7X. (1.43)

This exponential growth equation can be solved, first by dividing both sides by x and
multiplying both sides by dt, and then by integrating:

f%=[rdt
X

logx=rt+C (1.44)

such that

where Cis a constant of integration. Exponentiating both sides leads to the relationship
x(t) = Ce' where C=eC. Given the initial conditions, x(¢=0) = xo, then one can write
the complete solutions x(t) = xqe".

Maximum likelihood of the Poisson distribution Consider the Poisson distribution, with
expected mean A= uN, such that
AMe=4

p(m|N, A) = -

(1.45)

The most likely value of 4 given an observation of m corresponds to a maximum in p.
To find such a maximum, first take a derivative with respect to A, set the derivative to
zero, and then double-check that the second derivative at this point is negative (which
it will be). The derivative of Eq. (1.45) yields

m)(mflefll /1m€7/1

m' m!

(1.46)
Canceling factors on both sides yields

m
—=1 1.47
1 (1.47)
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Recall that A = uN, so that if m = my,, then

A Mpps
= 9% 1.48
k== (1.48)
where /i is the most likely estimate of the mutation rate. This maximum likelihood
estimate of the mutation rate is the ratio of the observed number of mutants to the total

number of cells. Technically, one should double-check that this value is the maximum
likelihood—it is.

Law of total probability Consider the joint probability of two variables, p(x, y). This joint

probability can be written in two ways: p(x[y)p(y) or p(y|x)p(x). The equivalence of
these two forms is the basis for Bayes’ rule.

From updates to derivatives Consider a population x, which experiences changes due to

interactions with other populations and environmental factors. Denote the rate of
change as f(x) such that the rate of change depends on parameters but also on the
population level x. How can we build a model that describes the trajectory of the pop-
ulation over time? To do so, consider changes that occur over some interval At. In

that case,

next value  current value  increment
—— —_——~

—
x(t+Af)=  x(t) +f(x)xXAt. (1.49)
Yet the value x(f+ Af) can be thought of as a function, the value of x changing over
time. A Taylor expansion can be used to approximate the future value of this function
given the current value, i.e.,

d
x(t+At)zx(t)+(d—);)At. (1.50)
Substituting in this expansion to the update rule yields

x(t)+(j—):)At:x(t) +f(x)At, (1.51)

which after canceling terms yields

dx =f(x). (1.52)

dr

Hence, the continuous rate of change of a population can be expressed in terms
of a series of small increments. The usual way to obtain the dynamical systems
representation is to note that the derivative is the limit of the finite differences
of x, i.e.,

dx _ lim x(t+ At) —x(t)

dt  At=0 At
Nonetheless, it has been my experience in teaching that biologists prefer to begin with
the concept of an update rule and reduce to the continuous limit from there, rather
than formally beginning the other way around.

. (1.53)
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