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Chapter One

Critical Embedded Software
Control Software Development and V&V

Cyber-physical systems (CPS) is a kind of buzzword capturing the set of
physical devices controlled by an onboard computer, an embedded system.
Critical embedded systems are a subset of these for which failure is not accept-
able. Typically this covers transportation systems such as cars, aircraft, railway
systems, space systems, or evenmedical devices, all of them either for the expected
harmfulness for people, or for the huge cost associated with their failure.

A large part of these systems are controllers. They are built as a large run-
ning loop which reads sensor values, computes a feedback, and applies it to the
controlled system through actuators. For most systems, at least in the aerospace
industry, the time schedule for controllers is so tight that these systems have to
be “real time.” The way these systems have been designed requires the execu-
tion of the loop body to be performed within some time to maintain the system
in a reasonable state. In the civil aircraft industry, the controller itself is rather
complex, but is built as a composition of simpler controllers. Furthermore, the
global system accounts for potential failures of components: sensors, networks,
computers, actuators, etc., and adapts the control to these discrepancies.

The increase of computer use in those systems has led to huge benefits but
also an exponential growth in complexity. Computer based systems compared to
analog circuits enable more efficient behaviors, as well as size and weight reduc-
tions. For example, aircraft manufacturers are building control laws for their
aircraft that maintain them at the limit of instability, allowing more fuel effi-
cient behavior;1 Rockwell Collins implemented a controller for a fighter aircraft
able to recover controllability when the aircraft loses, in flight, from 60 to 80%
of one of its wings;2 United Technology has been able to replace huge and heavy

1In an A380, fuel is transferred between tanks to move the center of gravity to the aft
(backward). This degrades natural stability but reduces the need for lift surfaces and therefore
improves fuel efficiency by minimizing total weight and drag. See the book Airbus A380:
Superjumbo of the 21st Century by Noris and Wagner [58].

2Search for Damage Tolerance Flight Test video, e.g., at https://www.youtube.com
/watch?v=PTMpq 8SSCI
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4 CHAPTER 1

power electric systems with their electronic counterpart, with a huge reduction
in size and weight.3

The drawback of this massive introduction of computers to control systems is
the lack of predictability for both computer and software. While the industry has
been accustomed to having access to the precise characteristic of its components,
e.g., a failure rate for a physical device running in some specific conditions, these
figures are hardly computable for software, because of the intrinsic complexity
of computer programs.

Still, all of us are now used to accepting software licenses where the software
vendor assumes nothing related to the use of the software and its possible impact.
These kinds of licenses would be unacceptable for any other industry.

To conclude with this brief motivation, the aerospace industry, and more gen-
erally critical embedded systems industries, is are now facing a huge increase in
the software size in their systems. This is motivated first by system complex-
ity increases because of safety or performance objectives, but also by the need
to integrate even more advanced algorithms to sustain autonomy and energy
efficiency.

Guaranteeing the good behavior of those systems is essential to
enable their use.

Until now, classical means to guarantee good behavior were mainly relying
on tests. In the aerospace industry the development process is strictly con-
strained by norms such as the DO-178C [104] specifying how to design software
and perform its verification and validation (V&V). This document shapes the
V&V activities and requires the verification to be specification-driven. For each
requirement expressed in the design phases, a set of tests has to be produced
to argue that the requirement is satisfied. However, because of the increase in
complexity of the current and future systems, these test-based verifications are
reaching their limit. As a result the cost of V&V for systems has exploded and
the later a bug is found, the more expensive it is to solve.4

Last, these certification documents such as DO-178C have been recently
updated, accounting for the recent applicability of formal methods to argue about
the verification of a requirement. Despite their possible lack of results in a gen-
eral setting, these techniques, in cases of success, provide an exhaustive result,
i.e., they guarantee that the property considered is valid for all uses, including
systems admitting infinite behaviors.

All the works presented in this book are motivated by this context. We
present formal methods sustaining the verification of controller properties at
multiple stages of their development. The goal is to define new means of verifi-
cation, specific to controller analysis.

3E.g., Active EMI filtering for inverters used at Pratt andWhitney, Patent US20140043871.
4USA NIST released in 2002 an interesting survey, “The Economic Impacts of Inade-

quate Infrastructure for Software Testing,” detailing the various costs of verification and bugs.
Chapter 6 is focused on the transportation industry.
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CRITICAL EMBEDDED SOFTWARE 5

Current limits & Objectives

The objectives of the presented works are restricted to the definition of formal
methods-based analyses to support the verification of controller programs.

More specifically we can identify the following limits in the current state of
the art:

Need to compute invariants of dynamical systems New advances
in formal methods are often not specialized for a particular kind of program.
They rather try to handle a large set of programming language constructs and
deal with scalability issues. In specific cases, such as the application of static
analysis to Airbus programs [54], dedicated analyses, like the second-order fil-
ter abstraction [47], have been defined. But the definition of these domains is
tailored to the program for which they are defined.

Lack of means to compute nonlinear invariants As we will see in this
book, the simplest properties of controllers are often based on at least quadratic
properties. Again, because of efficiency and scalability, most analyses are bound
to linear properties. We claim that more expressive yet more costly analyses
are required in specific settings such as the analysis of control software. The
scalability issues have to be addressed by carefully identifying the local part of
the program on which to apply these more costly analyses.

Expressivity of static analysis properties Formal methods applied at
model or code level are hardly used to express or analyze system-level properties.
In practice, static analysis is mainly bound to numerical invariants while deduc-
tive methods or model-checking can manipulate more expressive first-order logic
formulas. However, computer scientists are usually not aware of the system-
level properties satisfied or to be satisfied by the control program they are
analyzing. An important research topic is therefore the use of these formalisms
(first-order logic and numerical invariants) to express and analyze system-level
properties.

Scope of current analyses In the current state of the practice, concerns
are split and analyzed locally. For example the control-level properties such as
stability are usually analyzed by linearizing the plant and the controller descrip-
tion. At the code level this can be compared to the analysis of a simplified
program without if-then-else or nonlinear computations. Similarly, the complete
fault-tolerant architecture, which is part of the implemented embedded program,
is abstracted away when analyzing system-level properties. A last example of
such—potentially unsound—simplifications, is the assumption of a real seman-
tics when performing analyses, while the actual implementation will be executed
with floating-point semantics and the associated errors. The vision supported
by the book is that more integrated analyses should address the study of the
global system.
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6 CHAPTER 1

The proposal is mainly developed in two complementary directions:

• nonlinear invariant synthesis mainly based on the use of convex optimization
techniques;

• consideration of system-level properties on discrete representation, at code
level, with floating-point semantics.

This book is structured in four parts:

Part I introduces formal methods and controller design. It is intended to be
readable both by a control scientist unaware of formal methods, and by a
computer scientist unaware of controller design. References are provided for
more scholastic presentations.

Part II focuses on invariant synthesis for discrete dynamical systems, assum-
ing a real semantics. All techniques are based on the computation of an
inductive invariant as the resolution of a convex optimization problem.

Part III revisits basic control-level properties as numerical invariants. These
properties are typically expressed on the so-called closed-loop representa-
tion. In these chapters we assume that the system description is provided
as a discrete dynamical system, without considering its continuous repre-
sentation with ordinary differential equations (ODEs).

Part IV extends the previous contributions by considering floating-point com-
putations. A first part considers that the program analyzed is executed with
floating-point semantics and searches for an inductive invariant consider-
ing the numerical errors produced. A second part ensures that the use of
convex optimization, a numerical technique, does not suffer from similar
floating-point errors.
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