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CHAPTER 1

OCEAN WORLDS ON 
EARTH AND BEYOND

If we have learned anything from life on Earth, it is that where you find 
liquid  water, you generally find life.  Water is essential to all life as we know 
it. It is the solvent, the watery broth that makes pos si ble all the chemistry in 
our cells.  Water dissolves many of the compounds that life, large and small, 
needs to grow and metabolize.  Every living cell is a tiny bag of  water in 
which the complex operations of life take place. Thus, as we search for life 
elsewhere in the solar system, we are primarily searching for places where 
liquid  water can be found  today or where it might have existed in the past.

The story of the search for life beyond Earth is, in part, the story of 
our planet, the pale blue dot,1 reaching out into space, seeking signs of 
life on other worlds. Like a plant stretching vines out into its environment, 
our  little planet has been sending its robotic emissaries out in spiral ten-
drils that circle other planets, probing for answers and sending back 
information.

We  humans have been exploring our solar system with robotic vehi-
cles for over 55 years. The first robotic mission to another planet was the 
flyby of Venus by the Mari ner 2 spacecraft on December 14, 1962. Since 
then, we have sent an armada of spacecraft to study the Sun and a variety 
of planets, moons, asteroids, and comets, most of which are in the inner 
reaches of our solar system. Over that same period, we have sent only 
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eight spacecraft beyond the asteroid  belt to study the many worlds in the 
outer reaches of the solar system.

Spacecraft that have gone beyond the asteroid  belt— Pioneer, Voyager, 
Galileo, Cassini, New Horizons, and Juno— have revealed something pro-
found about what it means for a world to be habitable. The data returned 
from  those missions have served to revolutionize our understanding of 
where liquid  water exists in our solar system, and by extension, where 
life might find a home.

We now have good reason to predict that at least six moons of the outer 
solar system likely harbor liquid  water oceans beneath their icy crusts. 
 These are oceans that exist  today, and in several cases we have good rea-
son to predict that they have been in existence for much of the history 
of the solar system. Three of  these ocean worlds— Europa, Ganymede, 
and Callisto— orbit Jupiter. They are three of the four large moons first 
discovered in 1610 by Galileo. The fourth moon, Io, is the most volcani-
cally active body in the solar system and does not have  water. At least 
two more ocean worlds, Titan and Enceladus, orbit Saturn. Neptune’s 
curious moon Triton, with an orbit opposite to the direction it rotates, 
also shows hints of an ocean below.

 These are only the worlds for which  we’ve been able to collect con-
siderable data and evidence. Many more worlds could well harbor oceans. 
Pluto may hide a liquid mixture of  water, ammonia, and methane, creat-
ing a bizarrely cold ocean of truly alien chemistry. The odd assembly of 
moons around Uranus— such as Ariel and Miranda— might also have 
subsurface oceans.

Fi nally, throughout the history of the solar system, ocean worlds may 
have come and gone; for example, the large asteroid Ceres likely had a 
liquid  water ocean for much of its early history. Mars and Venus may also 
have had oceans previously. Early in our solar system’s history, oceans 
might have been commonplace, be they on the surface of worlds like 
Venus, Earth, and Mars, or deep beneath icy crusts of worlds in the as-
teroid  belt and beyond.  Today, however, it is the outer solar system that 
harbors the most liquid  water.

This distinction— between liquid  water in the past and liquid  water in 
the pre sent—is impor tant. If we  really want to understand what makes 
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any alien organism tick, then we need to find life that is alive  today and 
that requires the presence and per sis tence of liquid  water.

The molecules of life (e.g., DNA and RNA)  don’t last long in the rock 
rec ord; they break down within thousands to millions of years, which, 
geologically speaking, is a short amount of time. Bones and other min-
eral structures of life can stick around much longer and form fossils. 
Fossils are  great, but they only tell you so much about the organisms 
from which they formed.

As an example, Mars may have been very habitable roughly 3.5 billion 
years ago. Robotic vehicles, including the rovers Spirit, Opportunity, and 
Curiosity, have revealed that chemically rich lakes, and possibly vast 
oceans, populated the Martian surface. If life did arise within  those liq-
uid  water environments, then some chemical or structural “fossils” might 
remain preserved within rocks from  those ancient times. We would not, 
however, be able to extract any large molecules like DNA from  those fos-
sils. Our search for life on Mars is largely focused on scouring the rocks 
for any signs of ancient life that went extinct long ago.

Make no  mistake, if we  were to find rocks on Mars that showed signs 
of ancient life, it would be an extraordinary discovery. However, I would 
be left wanting more. I want to find life that is alive  today, life that is ex-
tant as opposed to extinct.

This is impor tant  because I  really want to understand how life works. 
What is the biochemistry that drives life on another world? On Earth, 
every thing runs on DNA, RNA, ATP, and proteins. Darwinian evolution 
through natu ral se lection has led to our amazing biosphere. The same 
fundamental biochemistry connects all of life’s wild diversity. From the 
most extreme microbe to the craziest rock- and- roll star, we all have the 
DNA, RNA, ATP, and protein paradigm at our root. I want to know if 
 there could be another way.

Can life work with some other fundamental biochemistry? Is it easy 
or hard for life to begin? Does the biochemistry of the origin of life con-
verge  toward DNA and RNA? Or  were  there contingencies that made 
 these the best molecules for life on Earth but perhaps not on other 
worlds? If we  were to find extant life in an ocean world, we could begin 
to truly answer  these questions.
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At an even higher level, consider the big picture of  human 
knowledge.

When Galileo first turned his telescope  toward the night sky and began 
charting the faint points of light he saw around Jupiter, he set in motion 
a revolution in physics. Night  after night he drew Jupiter and the arrange-
ment of  these points of light. At first, he concluded that they must be 
stars that he could not see with the naked eye. He even named them the 
“stars of Medici” in honor of the Medici  family since they  were funding 
his research (Galileo was no idiot).

But through his diligent charting of  these points of light, Galileo soon 
realized that they  were not stars; they  were moons orbiting Jupiter. His 
discovery got him into deep trou ble with the Spanish Inquisition, and he 
ended up  under  house arrest. The idea that a celestial body would orbit 
anything other than the Earth was heretical. The world view at the time 
was framed around Aristotelian cosmology— the Earth is at the center of 
the universe and every thing revolves around the Earth. Galileo’s discovery 
put him at odds with this world view and provided strong evidence for the 
growing Copernican Revolution, the idea that the planets orbit the Sun 
and that the stars we see could well be suns with planets of their own.

In the de cades that followed Galileo, advances in math and physics 
would lead to an appreciation that the laws of physics work beyond Earth. 
Gravity, energy, and momentum govern objects  here on Earth as well as 
on worlds and won ders beyond.

In the  century that followed  these developments, the field of chem-
istry would grow and expand, eventually yielding instruments that could 
tell us the composition of the Sun, stars, and planets. The ele ments of the 
periodic  table made up every thing on Earth and beyond. Chemistry, too, 
works beyond Earth.

In the twentieth  century, with the advent of the space age, our  human 
and robotic explorers to the Moon, Venus, Mars, Mercury, and a host of 
asteroids would reveal that the princi ples of geology work beyond Earth. 
Rocks, minerals, mountains, and volcanoes populate our solar system and 
beyond.

But when it comes to biology, we have yet to make that leap. Does biol-
ogy work beyond Earth? Does the phenomenon we know and love and 
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call life work beyond Earth? It is the phenomenon that defines us, and 
yet we do not know  whether it is a universal phenomenon. It is a  simple 
but central question that lies at the heart of who we are, where we come 
from, and what kind of universe we live in.

Is biology an incredibly rare phenomenon, or does life arise wherever 
the conditions are right? Do we live in a biological universe?

We  don’t yet know. But for the first time in the history of humanity, 
we can do this  great experiment. We have the tools and technology to 
explore and see  whether life has taken hold within the distant oceans of 
our solar system.

SEARCHING FOR A SECOND ORIGIN

To answer  these questions, we need to explore places where life could 
be alive  today, and where the ingredients for life have had enough time 
to catalyze a second, in de pen dent origin of life.

This aspect of a second, in de pen dent origin is key. Take Mars again. 
Even if we  were to find signs of life on Mars,  there are limits to what we’d 
be able to conclude about that life form, and about life more generally. 
Mars and Earth are simply too close and too friendly, trading rocks since 
early childhood. When the solar system and planets  were relatively young, 
large asteroids and comets bombarded Earth and Mars with regularity, 
scooping out craters and spraying ejecta into space. Some of this debris 
would have escaped Earth’s gravity and may have ended up on a trajec-
tory that eventually impacted Mars (or vice versa).

We know that life was abundant on Earth during many of  these im-
pact events, and thus it is not unreasonable to expect that some of the 
ejecta  were vehicles for microbial hitchhikers— some few of which could 
(with a small probability) have survived the trip through space and the 
impact on Mars. Even if just a few microbes per rock survived,  there  were 
enough impacts and enough ejecta that the total number of Earth mi-
crobes delivered to Mars has been calculated to be in the range of tens of 
billions of cells over the history of the solar system. If one of  those Earth 
rocks came careening through the Martian atmosphere about 3 billion 
years ago, it could have dropped into an ocean or lake on Mars, and any 
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surviving microbes on board might have found themselves a nice new 
home on the red planet.

This possibility, however remote, would make it difficult to be com-
pletely confident that any life we discovered on Mars arose separately and 
independently—in other words, that it was  really Martian. Life on Mars 
could be from Earth, and vice versa.

If we found fossils of microbes in ancient rocks on Mars, we would not 
be able to determine if that life used DNA or some other biochemistry. 
Lacking strong evidence for the more extraordinary claim of a second, 
in de pen dent origin of life on Mars, we would potentially have to conclude 
that Martian life came from Earth.

Indeed, even if we found extant life in the Martian surface or subsur-
face,  there would still be significant potential for confusion as to where 
that life came from. Imagine that we found living microbes in the 
Martian permafrost or in some deep aquifer, and imagine even further 
that we discovered that  those organisms also used DNA- based bio-
chemistry. Even if we  were unable to connect it to our tree of life, this 
shared biochemistry would force us to consider that Earth life and Mar-
tian life may have shared a common origin,  whether life was trans-
ported from Earth to Mars or the other way around.

Although it’s pos si ble that such DNA- based life on Mars arose 
through convergent biochemical evolution, it would be hard to differ-
entiate that scenario, and ultimately we would still not have conclusive 
evidence for a second origin. The only truly robust support for a second 
origin of life on Mars would be the discovery of extant life with a non- 
DNA- based biochemistry. Even then,  there would still be a few sce-
narios to consider, and discard, that could implicate the Earth as the 
place of origin.

The ocean worlds of the outer solar system do not suffer  these pitfalls. 
First, by focusing on worlds with liquid  water oceans, we are focusing on 
worlds that could harbor extant life; and thus we could study their bio-
chemistry in detail. Second, the “seeding prob lem” is almost negligible. 
Very few rocks ejected from the Earth could make it all the way to Jupi-
ter and Saturn. In a computer simulation done by the planetary scientist 
Brett Gladman at the University of British Columbia, six million “rocks” 
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 were ejected from the Earth and sent on random, gravitationally de-
termined trajectories around the Sun. Of  those six million, only about a 
half dozen crashed into the surface of Europa. Slightly more make it 
onto the surface of Titan.

The rocks that do impact Europa do so at a speed that would cause 
them to vaporize on impact; none would be big enough to break a hole 
through Europa’s ice shell. Therefore, any material that managed to sur-
vive the impact would be left on Europa’s surface, exposed to harsh ra-
diation. The energetic electrons and ions that pummel Europa’s surface 
like rain from Jupiter’s magnetic field would cook and kill any last sur-
viving microbes.

In summary, it would be darn hard to seed Europa, or any of the ocean 
worlds of the outer solar system, with Earth life. Thus, even if we discov-
ered DNA- based life  there, we could reasonably conclude that  those 
organisms represented a second, in de pen dent origin of life.

I should clarify that when it comes to looking for a separate, second 
origin of life and biochemistries that could be diff er ent from ours, I am 
not referring to what I call “weird life”— that is, life that does not use  water 
as its primary solvent and carbon as its primary building block. We ex-
amine this topic in more detail when we explore Titan’s surface, but for 
now, when I refer to “alternative biochemistries,” I am still referring to 
water-  and carbon- based life. What is “alternative”  here is the prospect 
of finding diff er ent molecules that run the show, that is, an alternative to 
DNA.

In our efforts to see if biology works beyond Earth, we start with what 
we know works. Water-  and carbon- based life works on Earth, and thus 
we look for similar environments beyond Earth.

But that is not to say that understanding the nature of water-  and 
carbon- based life on Earth came easy. Earth’s ocean has always been cen-
tral to the story of life on Earth and how our planet balances ecosystems 
on a global scale. As Jacques- Yves Cousteau said at the beginning of his 
Ocean World book series, “The ocean is life.” For millennia, the creatures 
of our ocean have populated our imaginations and guided our scientific 
pursuit of piecing together the tree of life on Earth.
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OUR OWN ALIEN OCEAN

The story of the search for life beyond Earth is also the story of our growing 
understanding of our own oceans’ depths, and our discovery of the secrets 
they hold. You may have seen old maps, maps where sea monsters,  giant 
squid, and dragons dot the vast expanse of the seas yet to be explored. 
One globe from 1510 bears the phrase that has become synonymous with 
unknown dangers and risks: Hic sunt dracones; “ Here be dragons.”2

The ocean has long been the source of myths and legends. It was— 
and continues to be— home to aliens of a closer kind. How did we come 
to explore our own ocean and its many secrets?

The Challenger expedition, departing  England December 1872 and re-
turning home four years  later, was the first to survey the biology of the 
deep ocean. The expedition’s Royal Navy ship, the HMS Challenger, car-
ried its crew around the world’s oceans, covering a distance equivalent 
to a third of the way to our Moon. It was, and remains to this day, one 
of the most impor tant and pioneering scientific expeditions to set sail.

Chief scientist of the expedition, Charles Wyville Thomson, was 
given permission from the Royal Navy to overhaul the ship, removing 
much of the weaponry on board and replacing it with instruments and 
labs. One instrument was  little more than a fancy spool of line with a 
weight on the end.  Simple as it was, this instrument would prove key 
to a  great discovery.

In March 1875, the HMS Challenger was located southwest of Guam 
and dropped this line to a depth of 5.1 miles (8.2 km)— deeper than any 
line had been dropped into an ocean. Subsequent expeditions would re-
veal that the Challenger expedition had found the Earth’s deepest ocean 
trench, the Mariana Trench, nearly 7 miles (11 km) at its deepest point.

The team on board the Challenger used nets and dredges to haul up 
what ever serendipity provided. Many of the creatures came up as ge-
latinous blobs, invertebrates whose form and function could be truly 
appreciated only in their native environment. The ethereal, alien beauty 
of a jellyfish, when hauled onto the deck of a ship, is reduced to color-
less goo.
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Long frustrated with their inability to directly observe creatures of the 
deep, explorers have worked throughout the ages to get firsthand access 
to the deep ocean. Diving bells  were the original solution. If you have ever 
tipped over a canoe and swum under neath to breathe the air trapped by 
the canoe, you have experienced the basic operation of a diving bell. 
Imagine that a canoe has been weighted to sink to the bottom of a lake 
or river. The trapped pocket of air is the breathing space for anyone brave 
enough to take the trip down to the bottom.

According to paintings and reports, diving bell contraptions date as 
far back as Alexander the  Great, a few centuries before the common era 
(BCE).3 In a fun twist of the stars and seas, none other than Edmund 
Halley, discoverer of Halley’s comet, innovated on the diving bell, creat-
ing a version in which the air could be cycled out and replaced with 
fresh air from the surface, carried by weighted canisters on a line.

In 1691, less than a de cade  after his observations of the comet that 
would come to bear his name, Halley and five colleagues descended in 
his diving bell to 60 feet (nearly 20 meters) in the River Thames. It was 
a small but significant step in getting  humans deeper and opening our 
eyes to life in the depths.

The real leap in deep ocean exploration came in the late 1920s and 
early 1930s, when the engineering and science team of Otis Barton and 
William Beebe created and deployed their bathysphere— a hollow, steel 
sphere only 4 feet, 9 inches (1.5 meters) in dia meter, with 3- inch- thick 
quartz win dows. This sphere was connected to a cable on a ship’s winch 
that could lower it down and haul it up. Electrical cables also enabled 
communication to the surface and provided power for lights.

In 1934 the pair of explorers— along with the support of their team 
from the New York Zoological Society, including naturalists Gloria Hol-
lister and Jocelyn Crane, and engineer John Tee- Van— achieved their 
long- sought goal of reaching a depth of more than a half mile (nearly 
1 km).

The team made many dives off the coast of Nonsuch Island in north 
Bermuda, and the creatures they saw filled cata logs of new and never- 
before- captured species. Beebe and the team  were the first to study life 
in the deep ocean in its natu ral environment.
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Beebe’s description of a dive to 2,500 feet in early August 1934 captures 
his surreal experience: “ There are certain nodes of emotion in a descent 
such as this, the first of which is the initial flash. This came at 670 feet, and 
it seemed to close a door upon the upper world. Green, the world- wide 
color of plants, had long since dis appeared from our new cosmos, just as 
the last plants of the sea themselves had been left  behind far overhead.” 4

On numerous occasions Beebe’s writings and radio broadcasts linked 
the dark sea, peppered with bioluminescent creatures, to the twinkling 
stars of the night sky.  After his successful dive with Barton to 3028 feet, 
Beebe wrote: “The only other place comparable to  these marvelous 
nether regions, must surely be naked space itself, out far beyond atmo-
sphere, between the stars, where sunlight has no grip upon the dust and 
rubbish of planetary air, where the blackness of space, the shining plan-
ets, comets, suns, and stars must  really be closely akin to the world of life 
as it appears to the eyes of an awed  human being, in the open ocean, one 
half mile down.”5

The connection between sea and space appears time and again in ex-
ploration. Indeed, when NASA launched the first planetary spacecraft 
 toward Venus in 1962, it was not given a name of astronomical significance 
but one that was connected to our ocean: Mari ner.

And just two years before Mari ner flew by Venus,  humans themselves 
would make the plunge to the deepest part of the ocean for the first time, 
seven miles down in the Challenger Deep region of the Mariana Trench. 
In 1960 the Trieste, a 100- ton vehicle consisting of a sphere that fit two 
 people ( Jacques Piccard and Don Walsh) and a  giant, buoyant carafe of 
gasoline, dropped to the deepest point in our ocean.

The dive of the Trieste bathyscaphe6 marked what some hoped would 
be the beginning of an ambitious program to explore the deepest regions 
of our ocean. Designed by a Swiss inventor (Auguste Piccard,  father of 
Jacques), built in its namesake region in Italy, and purchased by the 
United States Navy, it was the culmination of centuries of ocean explo-
ration that sought to answer the question of what lies below not what lies 
above and beyond.

On that historic dive  little was actually seen, as sediment that stirred 
up from the seafloor clouded much of the view, and Piccard and Walsh 
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could not stay on the bottom for long. The deep ocean remained largely 
unseen.

But seventeen years  after the Trieste landed in the Mariana Trench, in 
the spring of 1977, the abyss would give way to new insights into how 
life works in some of the most extreme environments on planet Earth. 
The veritable aliens within our own ocean would fi nally be revealed.

At that time, it was hard to imagine that  there  were still entire ecosystems 
on our planet yet to be discovered: the continents had been mapped; the 
poles had been reached;  humans had touched down in the deepest point 
within Earth’s ocean; the footprints of 12  humans even dotted the landscape 
of the Moon. What game- changing discoveries were left to be made?

Plenty, it turns out.
In that spring of 1977, a team of scientists set off to explore the Galápagos 

Rift, a region of the seafloor near the Galápagos Islands. They wanted to 
find out what was causing temperature anomalies in the region. Previous 
expeditions had mea sured  these anomalies with instruments dropped 
down on cables and dragged around the ocean. The thinking at the time 
was that the plate tectonics of the spreading Galápagos Rift was creating a 
lot of localized heat; hot rocks  were creating hot  water,  simple enough.

As part of the expedition, the team used Alvin, a US submersible, 
expecting to make impor tant observations and discoveries about how 
geology works. But what they saw instead called into question how biol-
ogy works.

At a depth of over 6,500 feet (2,000 meters), the lights on Alvin re-
vealed structures that resembled tall and tortuous chimneys, billowing 
out “smoke” like active smelting plants from the Industrial Revolution. 
This was not smoke but clouds of fluids jetting out into the ocean at tem-
peratures well beyond boiling— nearly 750 °F (400 °C).  These fluids do 
not boil  because they  can’t: the pressure is too high at  those depths.  These 
“superheated” fluids contain gases like hydrogen, methane, and hydro-
gen sulfide, as well as minerals that dissolve in the high- temperature and 
high- pressure fluids. The Alvin team had come across what we now call 
a hydrothermal vent— essentially a power ful, gushing hot spring at the 
bottom of the ocean.
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The surprise was not so much the vents, but rather the bizarre and 
beautiful ecosystem surrounding the vent chimneys. Like a deep ocean 
version of animals congregating at a watering hole in the African savanna, 
the chimneys  were host to never- before- seen creatures— red tube worms, 
stark white eel- like fish, and golden mounds of mussels— that  were thriv-
ing in this extreme environment where conventional wisdom had said 
no animals should exist. And yet  there they  were.

How  were  these creatures surviving? What was sustaining this aston-
ishing ecosystem?

On the surface of the Earth, the base of the food chain is driven by 
photosynthesis. Algae and plants harness the Sun’s energy, breathing in 
carbon dioxide, extracting the carbon to build the structures of life, and 
then exhaling oxygen. Small organisms and animals eat the photosyn-
thetic organisms, and then larger organisms eat  those, and so on.

At the bottom of the ocean, however, the Sun is nowhere to be seen, 
and the food chain as we know it breaks down. Light from the Sun pen-
etrates about 1,000 feet (300 meters) down, but beyond that, photosyn-
thesis is not an option.

What was the base of the food chain at  these hydrothermal vents? This 
is where the chemistry of the vents come in to play, offering essential nu-
trients and forming oases for life on the seafloor. The vents erupt hydro-
gen, methane, hydrogen sulfide, and a host of metals, many of which turn 
out to be tasty treats for microbes. The microbes utilize chemosynthesis 
instead of photosynthesis.  Here the prefix “chemo” denotes that the mi-
crobes are synthesizing what they need for life with chemicals from the 
chimneys instead of photons from the Sun.

Chemosynthesis forms the base of the food chain at the vents. Mi-
crobes survive off the fluids and gases from the hydrothermal vents, and 
then larger organisms eat them, followed by larger creatures that eat  those 
organisms, and so on. In some cases, the larger organisms  were found to 
have also developed symbiotic relationships with the microbes— hosting 
the microbes within their bodies in exchange for the microbes detoxify-
ing the  water. All in all, a new and very surprising type of ecosystem had 
been discovered on that historic dive to the Galápagos Rift in 1977. 



24 C h a p t e r   1 

Life— large and small— was found to thrive in a region where most 
would have said it was not pos si ble.

Only two years  later, in March and July 1979, twin Voyager spacecraft 
would fly past Jupiter, capturing the first close-up images of Europa and 
Jupiter’s other large moons.  Those images would lay the foundation for 
thinking  there might exist oceans of liquid  water in a region where most 
would have said it was not pos si ble.

In  those brief years of the late 1970s, two seemingly disparate but phe-
nomenal discoveries helped pave the way for a new approach to the 
search for life beyond Earth. The prospect of a liquid  water ocean within 
Europa was all the more exciting once it became clear, through the dis-
covery of the hydrothermal vents, that life could thrive in the dark regions 
of our ocean, cut off from the Sun, in a manner perhaps similar to that 
of an ice- covered ocean.

Our own alien ocean, hidden in the abyss, provided a glimmer of hope 
that distant oceans beyond Earth might also harbor life. In the chapters 
ahead, we dive deep into how we think we know  these oceans beyond 
Earth exist and why we think they could be habitable. But first, we need 
to understand the sweet spot for habitability and why some of  these ice- 
covered moons might reside in that sweet spot. To develop that under-
standing, we begin with the classic story of Goldilocks.
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