Contents

To the Reader xiii

Part I / A Century of Valves 1

1 The Discrete Revolution 3
 1.1 My Golden Age of Garbage 3
 1.2 Nostalgia and the Aesthetics of Technology 4
 1.3 Some Terminology 6

2 What’s Wrong with Analog? 10
 2.1 Signals and Noise 10
 2.2 Reproduction and Storage 11
 2.3 The Origins of Noise 11
 2.4 Thermal Noise in Electronics 12
 2.5 Other Noise in Electronics 13
 2.6 Digital Immunity 17
 2.7 Analog Rot 19
 2.8 Caveats 20

3 Signal Standardization 22
 3.1 A Reminiscence 22
 3.2 Ones and Zeros 22
 3.3 Directivity of Control 24
 3.4 Gates 24
 3.5 The Electron 25
 3.6 Edison’s Lightbulb Problems 26
viii / CONTENTS

3.7 De Forest’s Audion 27
3.8 The Vacuum Tube as Valve 30
3.9 The Rest of Logic 33
3.10 Clocks and Doorbells 34
3.11 Memory 35
3.12 Other Ways to Build Valves 36

4 Consequential Physics 43
4.1 When Physics Became Discrete 43
4.2 The Absolute Size of Things 46
4.3 The Heisenberg Uncertainty Principle 47
4.4 Explaining Wave-Particle Duality 49
4.5 The Pauli Exclusion Principle 50
4.6 Atomic Physics 53
4.7 Semiconductors 54
4.8 The P-N Junction 56
4.9 The Transistor 58
4.10 Quantum Tunneling 59
4.11 Speed 60

5 Your Computer Is a Photograph 62
5.1 Room at the Bottom 62
5.2 The Computer as Microphotograph 64
5.3 Heisenberg in the Chip Foundry 66
5.4 Moore’s Law and the Time of Silicon: ca. 1960–? 68
5.5 The Exponential Wall 74

Part II / Sound and Pictures 77

6 Music from Bits 79
6.1 The Monster in 1957 79
6.2 A Chance Encounter with a D-to-A Converter 81
6.3 Sampling and Monsieur Fourier 82
6.4 Nyquist’s Sampling Principle 83
6.5 Another Win for Digital 86
6.6 Another Isomorphism 88

7 Communication in a Noisy World 90
7.1 Claude Shannon’s 1948 Paper 90
7.2 Measuring Information 91
7.3 Entropy 94
7.4 Noisy Channels 96
7.5 Coding 97
7.6 The Noisy Coding Theorem 101
7.7 Another Win for Digital 102

Part III / Computation 105

8 Analog Computers 107
8.1 From the Ancient Greeks 107
8.2 More Ingenious Devices 111
8.3 Deeper Questions 117
8.4 Computing with Soap Films 119
8.5 Local and Global 121
8.6 Differential Equations 123
8.7 Integration 125
8.8 Lord Kelvin’s Research Program 126
8.9 The Electronic Analog Computer 129

9 Turing’s Machine 132
9.1 The Ingredients of a Turing Machine 132
9.2 The All-Analog Machine 133
9.3 The Partly Digital Computer 134
9.4 A Reminiscence: The Stored-Program Loom in New Jersey 135
9.5 Monsieur Jacquard’s Loom 136
9.6 Charles Babbage 138
10 Intrinsic Difficulty

10.1 Being Robust 148
10.2 The Polynomial/Exponential Dichotomy 149
10.3 Turing Equivalence 151
10.4 Two Important Problems 153
10.5 Problems with Easily Checked Certificates (NP) 154
10.6 Reducing One Problem to Another 156
10.7 Yes/No Problems 157
10.8 Cook’s Theorem: 3-SAT Is NP-Complete 158
10.9 Thousands More NP-Complete Problems 160

11 Searching for Magic

11.1 Analog Attacks on NP-Complete Problems 164
11.2 The Missing Law 169
11.3 The Church-Turing Thesis 170
11.4 The Extended Church-Turing Thesis 171
11.5 Locality: From Einstein to Bell 172
11.6 Behind the Quantum Curtain 176
11.7 Quantum Hacking 178
11.8 The Power of Quantum Computers 179
11.9 Life Itself 180
11.10 The Uncertain Limits of Computation 182

Part IV / Today and Tomorrow

12 The Internet, Then the Robots

12.1 Ideas 185
12.2 The Internet: Packets, Not Circuits 187
12.3 The Internet: Photons, Not Electrons 189
12.4 Enter Artificial Intelligence 193
12.5 Deep Learning 194
12.6 Obstacles 196
12.7 Enter Robots 202
12.8 The Problem of Consciousness 204
12.9 The Question of Values 206

Epilogue 209
Notes 211
Bibliography 221
Index 229
1 The Discrete Revolution

1.1 My Golden Age of Garbage

What is usually called the “computer revolution” is really about much more—it’s about a radical conversion of our view of the world from continuous to discrete. As for your author, my entrance into this world couldn’t have been timed better to observe the apparently sudden transformation. I arrived in 1939, a few months before Hitler invaded Poland. At that time the stage had been set, rather subtly and gradually, for the development of things digital, and the pressure of the ensuing war years propelled us all, not so subtly and not so gradually, into what we now know as the Digital Age. This book is about the most basic ideas and principles behind the change. Why did the world change in such a fundamental way from analog to digital, and where might we humans—a species itself built along both analog and digital lines—be headed?

I apologize for the rather dark beginning, but it’s a fact that the dirty fingers of war have never failed to leave their prints on the annals of what we term “progress.” The dawn of the computer age is closely linked to decryption efforts in World War II, as well as to the development of the atomic bomb.

On August 6, 1945, I was only dimly aware of the fact that I was in New Jersey and not Japan, where bombardier Thomas Ferebee was watching Hiroshima’s Aioi Bridge in the crosshairs of his Norden bombsight. The bombsight, which subsequently released the first uranium-fission atomic bomb and began the end of World War II, was an analog computer. It solved the equations of motion that determined the path of the bomb, using things like cams and gears, a gyroscope, and a telescope, all mechanical devices. But it was a computer nevertheless, although applying the term to a mess of moving steel parts might surprise some people today.
Well into the 1950s there were two kinds of computers: analog and digital. In fact, analog computers of the electronic sort were the only way to solve certain kinds of complicated problems, and were, in a handful of situations, very useful. Electronic analog computers were programmed by plugging wires into a patch panel, which was like a telephone switchboard (you may have seen one in an old movie), and by the time any interesting problem was running, the patch panel was a rat’s nest.

But before the mid-twentieth century everything was analog; digital just hadn’t been invented. The most important piece of information technology I knew as a child was the radio, very analog at the time, and it was my remarkable piece of good fortune when the postwar engines of production turned to consumer goods, and consumers bought new, streamlined, plastic radios. Garbage night meant that the monstrous mahogany console radios of the 1930s could often be found curbside—with booming bass, hardly any treble because of the limitations of AM broadcasting, and all manner of interesting electronic parts inside. That was how I learned to love the glow of vacuum tubes and the aroma of hot rosin-core solder congealing around the twisted leads of condensers (as capacitors were called), resistors, coils, and other more exotic components. Sometimes it was an autopsy that I performed on these found radios, but often it was a vivisection, since many of them worked, or could be made to work, excellently. Some of these lucky finds even had shortwave bands, and garbage night turned out to be my gateway to the world at large.

It was all analog. When television came, that, too, was all analog. So were telephones. There just wasn’t anything else.

1.2 Nostalgia and the Aesthetics of Technology

Video and audio signals fly in and out of our brains all day long, and devices that process those signals—radio, television, recorded film and music players, telephones—were all digitized in the latter half of the twentieth century; that is, within my lifetime. One consequence is that the devices we use every day for what is now called digital signal processing have more or less converged
to the same, rather dull-looking machine—essentially a small chip behind a screen, in a plastic case, occasionally with a couple of wires hanging out. In contrast, in the good old days radios were *radios*, television sets were *television sets*, cameras *cameras*, telephones *telephones*. You could tell what a device did by looking at it. And sometimes you would need an elephant to make it portable: the Stromberg Carlson console radio I lugged home with the help of my friends was crafted with a sturdy wooden cabinet, housing a loudspeaker with a huge electromagnet, a large lit dial, and hefty knobs that gave the operator the feeling of controlling an important piece of equipment—to a child, and perhaps to a grown-up as well, a spaceship.

My favorite effect was the *magic eye* tuning indicator, usually a 6E5 vacuum tube that had a fluorescent screen at its end, visible in a circular hole on the front panel of the radio. It glowed green with a dark crescent that contracted in proportion to the signal strength. Carefully tuning a station to reduce the crescent to a narrow slit was a joyful experience, especially in a dark room where the eerie glow did seem magical for sure. Punching in the frequency (or URL) of a radio station just does not provide the same tactile and visual pleasure. If your childhood came after such electronic apparatus, you don’t know what I’m talking about; such is the nature of nostalgia. No doubt the iPhone will stimulate similar feelings fifty years from now, when signals may very well go directly to our brains without the need for any beautiful little intermediary machines.

Of course there is a lively market for retro style and retro devices; certain cults have grown around the disappearance of, for example, shellac, vinyl, and analog tape recordings, or film cameras and the once pervasive technology of chemical-based photography. It’s common to hear that vacuum-tube amplifiers have a “warmer” sound, although it’s not certain how much of the warmth is due to distortion from the inherent nonlinearity of the vacuum-tube analog technology, or the psychological glow from the hot tubes themselves.

Sometimes the nostalgic longing approaches the mystical. Water Lily Acoustics produces superb recordings of Indian classical music, and they go through great pains to keep the sound
recording free of the digital taint until the very last step in the process. For example, the booklet for a compact disc recording of Ustad Imrat Khan offers the following assurance:

This is a pure analog recording done exclusively with custom-built vacuum-tube electronics. The microphone set-up was the classic Blumlein arrangement. No noise reduction, equalization, compression, or limiting of any sort was used in the making of this recording.

The booklet goes on to describe the microphones (which use tubes), recorder (Ampex MR70, half-inch, two-track, 15-inch-per-second tape, using vacuum tubes called *nuvistors*), and so on.

Spiritual values aside, a good analog sound recording, or, for that matter, a good analog photograph taken with film and printed well, can be, technically, a lot better than a bad digital recording or a bad digital photograph. We have much more to say about the ultimate and practical limitations of analog and digital technology as we go along.

1.3 Some Terminology

So far, we've been using the terms *digital* and *analog* rather loosely. Before going further, we need to clarify this terminology. For our purposes, *digital* means that a signal of interest is being represented by a sequence or array of numbers; *analog* means that a signal is represented by the value of some continuously variable quantity. This variable can be the voltage or current in an electrical circuit, say, or the brightness of a scene at some point, or temperature, pressure, velocity, and so on, as long as its value is continuously variable. All the possible values of a digital signal can be *counted*, and there is a definite gap between them; those of an analog variable cannot be counted, and there is no definite gap between them. Generally, we use *discrete* (actually “discrete-valued”) to mean digital and *continuous* (actually “continuous-valued”) to mean analog, although this overlooks some distinctions that are not important at this point.

When you buy a wristwatch or a clock, for example, you have a choice between an “analog display” and a “digital display.” This is
exactly the sense in which we use the terms—but take note of the fact that we refer to the *display* and not the internal mechanism of the timekeeper. A clock with an analog display has hands that can move continuously, whereas a digital display shows numbers that change discontinuously, which is another way to say suddenly. The hands of a clock actually represent time by the rotational position of gears. These days, the usual clock with an analog display has an internal timekeeping mechanism that is digital (except for old-fashioned windup clocks). But at one point there were the opposite kinds of clocks, with analog mechanisms and digital displays—usually using gears and cams to flip displays with numbers printed on them.

On the morning of “Pi Day” (March 14) of 2015, there was a moment a bit after 9:26 and 53 seconds when the time could be written \(3.14159265358979\ldots\); that is, \(\pi\). The moment was fleeting to say the least; it was infinitesimally brief. And it will never occur again. Ever. If you were watching the hands of a clock with an analog display, you might have tried to take a photo at the exact moment of \(\pi\), but the photo would have taken some finite time, and you would have necessarily blurred the second hand. That is an inevitable consequence of measuring an analog quantity of any kind.

Very commonly, audio and video signals are represented by voltages, either in a computer, smartphone, copper cable, or some kind of electrical circuit like those in an amplifier. This is the usual way that such signals are recorded by microphones and video cameras, and the resulting signals are transmitted and reproduced using voltages in electrical circuits. A microphone converts a sound pressure wave in the air to a time-varying voltage. A video camera converts a light image into an array of time-varying voltages. These audio and video signals usually start their lives out as analog signals and are converted to digital form after their initial capture, assuming that they are going to be processed in some way in digital form.

The device that converts an analog signal to digital form is called, naturally, an *analog-to-digital converter* (*A-to-D converter*), and the opposite operation is performed by a *digital-to-analog converter* (*D-to-A converter*). Thus, for example, the light-sensitive
screen in a digital camera is really an A-to-D converter, whereas your computer monitor is really a D-to-A converter.

I’ll try to be clear about what I mean when we use the terms digital, analog, discrete, and continuous, but I should mention some possible sources of confusion. First, it often happens that it is time itself that is thought of as discrete or continuous, rather than the values of a signal. When there is any possible confusion, I will state explicitly that time is being considered. Second, there is the awkward fact that standard mathematical terminology uses the term continuous in a slightly different way. Mathematically speaking, a curve is “continuous” if it does not jump suddenly from one value to another but rather changes “smoothly.” The reader who has studied calculus will be aware of this alternate interpretation, but will not be confused by it.

Finally, the term discrete is used by physicists in another sense. A most important example of this usage comes up when we ask the question, “What is light?” The question has puzzled scientists for centuries. Sometimes light behaves like waves; this is evident when we observe diffraction rings, for example. If we aim a narrow light beam (say, from a laser) through a pinhole, and project the result on a screen, we get concentric rings that die out in intensity as we travel from the center. It turns out that this result is easy to explain if we treat light as a wave but very difficult to explain if we treat light as particles. On the other hand, if we aim a light at a detector and gradually decrease its intensity, eventually the light does not become dimmer and dimmer without limit. At some point the light begins to arrive in chunks: Click! …Click! You can hear such clicks if you receive the light with a sensitive detection device connected to an amplifier and speaker. This experiment and many others provide evidence that light consists of particles; a wave would fade out, diminishing in intensity indefinitely. The particle of light, called a photon, is indivisible. There is no such thing as half a photon or half a click. A click occurs or it doesn’t. All the clicks are the same. In such cases we say that light is discrete; it occurs as discrete particles.

All chunks of matter—atoms, molecules, electrons, protons, and so on—also behave in this same seemingly paradoxical way. The puzzle, sometimes known as wave-particle duality, was ultimately
explained after a great deal of hard work by some very smart people about a hundred years ago. The explanation is called quantum mechanics, which not only revolutionized physics but changed the way we think about the world.

Quantum mechanics, and physics in general, plays an important part in our story, and we return to it often. It is the science of the very small. As put by Jean-Louis Basdevant, “Bill Gates, the richest man in the world, made his fortune because he was able to use [micro- and nanotechnologies]; quantum mechanics accounts for at least 30% of each of his dollars.”

More about quantum mechanics later. We next turn to the fundamental role of physical noise in limiting the performance of analog devices, and the way in which digital devices circumvent the problem.
Index

A-to-D converter, 7, 17, 79, 86–88, 138
Aaronson, S., 168, 215, 218
AI, 193–194
depth learning, 194–195
and neural nets, 193–195
obstacles, 196–202
strong, 205–206
algorithm
complexity of, 148–149
polynomial-time, 149–150
quantum, 176–178
RSA, 179
Shor’s quantum, 178–179
aliasing (of frequencies), 85–88
analog computer
Antikythera mechanism, 108–111, 133, 168
differential in, 109–111
Feynman and, 111
attacks on NP-complete problems, 164–169
for differential equations, 124
electronic, 129, 130
equation solver
of Kelvin, 112
of Püttmann, 215
of Wilbur, 113
Financephalograph, 112
magic (possibility of), xiii, 200–201
slide rule, 111
soap film, 121
analog-to-digital converter, see A-to-D converter
android, see robot
Antikythera mechanism, see analog computer
Applegate, D. L., 217
Archimedes, 125
Arons, A. B., 213
Arora, S., 217, 218
artificial intelligence, see AI
Asimov, I., 73, 206, 213
audion (triode)
as amplifier, 29
De Forest patent for, 28
Avarguès-Weber, A., 220
Babbage, C., 132, 138–147, 186, 211, 216
analytical engine, 140, 141
difference engine, 139
invents
arithmetic unit, 142
automatic error detection, 143
branching, 132
conditional execution, 132
looping, 142
offline printing, 142
sequential programming, 141
and Jacquard’s portrait, 141
and Lovelace, 140, 143–144
Turin meeting, 143
Baker, T., 218
Bar-Lev, A., 57, 59
Basdevant, J.-L., 9
Bell, Alexander Graham, 189
Bell, J. S., 174, 175
Bell Laboratories, 81, 85, 86, 90
Bell’s inequality, see Bell’s theorem
Bell’s theorem, 172–175
Ben-Naim, A., 214
Benenson, Y., 219
Bennett, C. H., 218, 219
Berra, Yogi, 197
binary digit, see bit
binary symmetric channel, 98
explains Brownian motion, 12
and nonlocality of quantum mechanics, 172–175
proposes discreteness of light, 45
electron
and Heisenberg uncertainty principle, 49
as particle or wave, 49–50
in p-n junction, 56–58
quantum tunneling of, 59–60
in semiconductor, 54–56
size of, 48, 49
in transistor, 58–59
in vacuum tube, 25–26
embroidery machine, see Jacquard loom
entangled photon, see photon
entropy of message, 94
EPR pair, 175
equivalent (machine)
polynomially, 151
polynomially Turing-, 151
Turing-, 151
Essinger, J., 216
Euler, L., 121
exclusion principle, see Pauli exclusion principle
exponential growth
and Grand Vizier Sissa Ben Dahir, 71, 73
and Keck’s law (fiber speed), 189, 190
and Moore’s law, 68–74
vs. polynomial growth, 149–150
extended Church-Turing thesis, see Church-Turing thesis
fan-out, see gate (logic)
Ferebee, T., 3
Fermat, P., 120
Feynman, R. P., xvi, 62–64, 84, 111, 169, 171–175, 185, 186, 212–215, 218 and Antikythera mechanism, 111
argument violating Bell’s inequality, 174–175
and discreteness of universe, 212
and extended Church-Turing thesis, 171
and information in DNA, 64
and phasor, 84
proposes nanotechnology, 62
proposes quantum computing, 173
Financephalograph, see analog computer
Flanagan, O. J., 220
Fleming, J. A., 26
diode, 26
Fourier analysis, xiv, 14–15, 127
and JPEG, 127
synthesis, 127
for music, 127
for tide prediction, 127
transform, 83
via lens, 83
Fourier, J., 82, 83
Frame, J. S., 215
Freeth, T., 109
Freire, O., 218
Freund, T. F., 219
Friedrichs, H. P., 59
Gallager, R. G., 102, 214
Gamow, G., xvi, 71, 73, 126, 213, 214
Gardner, M., 211
Garey, M. R., 161, 217
gate (logic), 24–25
AND, 33
and clocks, 34–35
fan-out, 128
and memory, 35–36
NOT, 33
number on chip, see Moore’s law
OR, 33
from valves, 33–34
gate (of transistor), 58
Gillespie, D. T., 213
Gödel, K., 43, 170
Goldberg, E., 62
Goldstine, H. H., 212
Gomes, L., 197
Günther, G., 213
Hameroff, S. R., 201, 220
Hamilton circuit problem (HC), see problem
HC, see problem
Hecht, J., 189–191
Heisenberg uncertainty principle, 47–49, 66–68
Hermann, A., 212
Herschel, John, 139, 140
heterodyning, see mixing
Horowitz, P., 14, 211
Hutt, D. L., 219
Hwang, F. K., 215
hybrid computer, 117
Hyman, A., 216
IBM 704 (computer), 79–81
IBM World Headquarters, 79
information theory, 90
integro, 125–127
wheel-and-disk, 127–128
wheel-ball-cylinder, 127
internet
dangers of, 191–193
optical fiber for, 189–191
packet switching for, 187–188
Irwin, W., 128
Isenberg, C., 121
isomorphism
analog/digital, 88
time/frequency, 83
Israel Institute of Technology, see Technion
portrait in silk, 136–138
Jacquard loom, 136–138
as embroidery machine, 135
as stored-program machine, 132, 136
influence on Babbage, 141
punched cards in, 136
Johnson, J. B., 15, 211
Karp, R. M., 160–217
Keck’s law (fiber speed), see exponential growth
Kelvin (Lord) (W. Thomson), 113–119, 126–128, 215
anticipates hybrid computer, 117
collaboration with James (brother), 127
Lagrange, J.-L., 121
Lavington, S. H., 38, 212
Lee, F., 168, 169, 218
Leibniz, G. H., 125
Leighton, R., xvi
Levey, D., 117
Levin, L., 217
Lo, A., 22, 212
Lord Byron, see Byron, George Gordon
Lord Kelvin, see Kelvin
Lovelace, Ada, 140, 143–144, 216
at Babbage soirées, 140
notes on analytical engine, 144
translation of Menabrea’s paper, 144
and Wheatstone, 144
magic
and extended Church-Turing thesis, 201
possibility in brain, 200–202
possibility of analog, see analog computer
The Magic Flute, 209
Main, M. G., 168, 218
Malthus, T. R., 124
Malthusian law, 124–125
Markland, E., 39
Markov, I. L., 218
McCulloch, W. S., 219
memory (from valves), 35–36
Menabrea, L., 143–144, 216
paper on analytical engine, 143
Meton of Athens, 108
Metonic cycle, 108, 109
microdot, 63
microphotography (and computer chip), 62–66
INDEX / 233

microtubule (in neuron), see neuron
Miller, K. S., 216
Milotti, E., 16, 211
MIT, 114, 126, 129
museum, 115, 117, 215
newsletter, 117
mixing (of signals), 165, 218
moire effect, 88
Monod, J., 205, 220
Moore, G. E., 68–70, 185, 192, 213
Moore’s law, xiv, 68–75, 88, 103, 117, 119, 129, 150, 152, 185–186, 189–190, 192, 195
Mozart, W. A., 209

Nabokov, V., 218
Napier, J., 112
neural nets, 193–195
training of, 194–195
neuromorphic computing, see AI
neuron
both digital and analog, 198
flow of information in, 197–199
microtubule in, 201, 205
in neural nets, 193–194
number in brain, 71, 194
as valve, 180–181
“new physics” (and AI), 205
Newburgh, R., 211
Newton, I., 125
Nieman, H. W., 128
noise, 10
1/f, 14
burst, 14
in communication channels, 90
flicker (1/f), 14
Johnson (thermal), 211
origins of, 11
pink (1/f), 14
popcorn (burst), 14
shot, 13
thermal, 12
white, 14
noisy coding theorem, see Shannon
Norden bombsight, 3
NP, see problem
NP-complete, see problem
Nyquist

frequency, 85, 87–88
sampling principle, xiv, 83–86, 88, 185–186
Nyquist, H., 83–86, 90, 192, 211
Nyquist-Shannon sampling theorem, 86

Olszewski, A., 218
Oltean, M., 169
optical fiber, see internet
orrery, 134

P, see problem
P ≠ NP conjecture, 159–163
packet switching, see internet
Pakkenberg, B., 198
Papadimitriou, C. H., 217, 218
parity bit, 99–100
PARTITION, see problem
Pauli exclusion principle, 50–53, 58
Peebles, P. J. E., 218
Peel, R., 140
Penrose, R., 201, 220
Perrin, J. B., 12
Phillips, A. W., 215
photon
diffraction of, 66, 67
entangled, 174, 175
EPR pair, 175
in optical cable, 189–191
as particle, 8
as wave, 45, 174
pigeon
carrier, 63
to guide bomb, 195–196
“pixie dust,” 205
Plana, G., 143
Planck, M., 44–45
Planck’s constant, 47
Plateau, J., 121
p-n junction
as diode, 57
operation of, 56–58
Podolsky, B., 175
polynomial/exponential dichotomy, 149–150
and Church-Turing thesis, 171
polynomial-time, see problem
polynomially equivalent, see equivalent (machine)
Post, E. L., 170
Preskill, J., 176, 218
Press, W. H., 16, 211
Price, D. J., 215
Princeton University
computer music at, 17, 81, 138
Computer Science Building, 162, 163
principle
of directivity of control, 22
Heisenberg uncertainty, xiv, 47–49, 66–68
of modularity, 25
Nyquist sampling, xiv, 83–86, 88, 185–186
Pauli exclusion, 50–53, 58
of signal standardization, 22
Pristin, T., 216
problem
Hamilton circuit (HC), 156
intrinsic difficulty of, 154
nondeterministic polynomial-time (NP), 154–155
NP-complete, 158
analog attacks on, 164–169
PARTITION, 165–167
polynomial-time (P), 155
reducing to another, 156–157
size of instance, 149
Steiner, 120–122, 149, 164–165
local minimum in, 121–123
solution with soap film, 122, 164–165
SUBSET SUM, 169
3-SATISFIABILITY (3-SAT), 154
traveling salesman (TSP), 156
2-SATISFIABILITY (2-SAT), 154
yes/no, 154
Püttmann, T., 114, 116, 118, 215
equation solver of, 114

QED, xvi, 84
quantum computing, 176–180
and cryptography, 178–179
power of, 179–180
quantum mechanics
in brain, 201–202

and chip manufacture, 66–68
discreteness of, 43–46
explains wave-particle duality,
49–50
Heisenberg uncertainty principle,
47–49
importance of, 9
nonlocality of, 172–175
Pauli exclusion principle, 50–53
and p-n junction, 56–58
and semiconductors, 53–56
and size of transistors, 59–60
superposition in, 177
and transistor, 58–59, 66–68

Raisbeck, G., 214
Randall, J. K., 81
relay (as valve), 37–39
relay computer, see Zuse
Ridley, M., 220
ripple carry, 142
The Rite of Spring, 43, 207
Rivest, R. L., 218
robots
and AI, 202–204
consciousness of, 204–206
and human values, 206–207
in science fiction, 203–204
Rosen, N., 175
Rosenberger, G. B., 216
Rosser, J. Barkley, 170
Rothganger, F., 219
Roy, S., 41
RSA, see algorithm
R.U.R., 203
Russell, B., xvi

sampling, see D-to-A converter
sampling principle, see Nyquist
satisfiability problem, see problem
Schaffer, C., 31, 212
schiffli embroidery machine, 135–136
Searle, J., 205, 206, 220
semiconductor, 54–56
and chip manufacture, 64–66
Shannon, C. E., xv, 86, 129, 90–215, 217
and analog computer, 129
entropy of message, 94

For general queries, contact webmaster@press.princeton.edu
INDEX / 235

invents information theory, 90
measure of information, 91
noisy coding theorem, xv, 101
Nyquist-Shannon sampling
theorem, 86
silicon, see semiconductor
Sinden, F. W., 215
the Singularity, 182
Sipser, M., 217
Skinner, B. F., 195–196, 202, 219
slide rule, see analog computer
soap film, see analog computer
Steiglitz, K., 213, 214, 218, 219
Steiner, J. (problem), 120
Stevens, G. W. W., 213
Stewart, I., 215
Stravinsky, Igor, 43, 207
Swade, D., 215
synapse
excitatory, 181
inhibitory, 181
number in brain, 198–199

Technion, Israel Institute of
Technology, 62, 63, 213
Thomson, James, 127, 128
Thomson, Joseph John, 25–26, 212
Thomson, William, see Kelvin
3-SAT, see problem
transistor
as capacitor (speed limit), 60–61
field-effect (FET), 41
life before, 30
as microphotograph, 64–66
and Moore’s law, 68–74
operation of, 58–59
and quantum mechanics, 58–59,
66–68
quantum tunneling in (size limit),
59–60
as valve, 40–42
traveling salesman problem (TSP), see problem
Traversa, F. L., 169, 218
triode, see vacuum tube
TSP, see problem
tunneling (quantum), see transistor

Turing, 218
Turing, A. M., xv, 132, 136, 138, 141,
144–148, 150, 156, 170, 181, 186,
192, 202, 216
Turing machine, xv, 132, 144–147
relation to cellular automaton, 146
2-SAT, see problem

vacuum tube, 25–32, 36, 64–65
diode, 27
magic eye (6E5), 5
triode, 27
twin triode (6SN7), 30
as valve, 30
valve, 25
as universal building block, 25
electromechanical (relay), 37
electronic (vacuum tube), 30
fluidic, 39
mechanical, 32
neuron as, 180
symbol for, 31
transistor as, 40
Vergis, A., 168, 172, 218
Verhulst, P., 124
Vicentini, M., 109, 110
Voigt-Kampff empathy test, 204
von Neumann, J., 146, 216, 218

Weisberg, J., 220
Wheatstone, Charles, 144
Whittaker, J. M., 214
Wigner, E., 218
equation solver of, 113
machine in Japan, 117
Winham, G. C., 81, 138, 212
Wolfram, S., 216
Wood, R. W., 212
Woolley, B., 216
World War II, 3, 38, 41, 101, 117, 129,
185, 219

Yao, A. C.-C., 171
Yu, F. T. S., 213

Zuse, K., 38–39, 212
Z3 relay computer, 38