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1 '" � European Trigonometry Comes of Age 
(1552–1613)

The subject we know today as trigonometry has a long, complex history that 
weaves through several major cultures and more than two millennia. Perhaps 
more than any other subject in the modern mathematics curriculum, trigo-
nometry has been shaped, has been reconfigured, and gone through metamor-
phoses several times. Born of needs in ancient astronomy, it has been repur-
posed by many scientific disciplines and worked to serve several cultural and 
religious perspectives. It has been a participant, active or passive, in many of 
humanity’s most significant scientific pursuits. The tidy, polished package 
found in today’s high school and university textbooks camouflages a tangled 
story that interacts with many themes in the history of science, often with 
implications for some of the most transformative moments in our and other 
cultures.

I told the first half of this story in The Mathematics of the Heavens and 
the Earth: The Early History of Trigonometry.1 This volume narrates the sec-
ond half, but we begin with a brief summary of what went before. Trigonom-
etry began with Greek astronomers such as Hipparchus of Rhodes, who had 
constructed geometric models of the motions of the sun and moon that re-
produced qualitatively the phenomena he witnessed in the sky. Converting 
these models into tools for prediction of events like eclipses required the trans-
lation of their geometric components into numerical measures. Since these 
components were lines and circles, it quickly became necessary to convert 
the magnitudes of circular arcs into lengths of line segments and vice versa. 
Hence the chord function was formulated,2 giving the astronomer the ability 
to compute the length of a chord within a circle given the magnitude of the 
arc that it spans. The earliest table of chords of which we are aware was con-
structed by Hipparchus; the earliest account of the construction of chord tables 
is in Claudius Ptolemy’s Almagest. The mathematical preparation for astron-
omy began with these chords and grew from there. However, since the geo-
metric arena was often the celestial sphere rather than a flat surface, plane 
trigonometry was only the beginning. Perhaps already from the time of 

1 �[Van Brummelen 2009].
2 �The term “function” has a long and complicated history. Properly speaking, according to the 
term’s modern usage, it is an anachronism to refer to functions at all before the modern period. 
However, there is an affinity at least between ancient numerical tables and our use of the term: 
ancient astronomers found the length of the chord of a given arc by inputting the numerical 
value of that arc into a table and treating the value obtained as an output. In this book the word 
“function” is used in this loose sense, unless stated otherwise.
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Hipparchus, astronomers quickly moved from the plane to the sphere, where 
much of the most important work was done.

The first major transformation occurred with the complicated and con-
troversial transmission of mathematical astronomy from Greece to India. The 
early Indian astronomers’ appropriation of the geometric models of the plan-
ets, much more than a simple transmission of knowledge (but a topic for an-
other book), also extended to many new ways of thinking in trigonometry. 
The most obvious effect of the transformation of trigonometry in India is the 
introduction of the sine function: a slightly less intuitive quantity from a geo-
metric point of view but a more efficient tool for astronomical computation. 
The versed sine followed quickly afterward. The inventions of new mathe-
matical methods to work with these functions, such as iterative solutions to 
equations and higher-order interpolation within numerical tables, greatly en-
riched mathematical astronomy. In the fourteenth and fifteenth centuries, 
astronomers even employed infinitesimal arguments that we recognize today 
as related to calculus to derive several powerful results beneficial to astron-
omy, most famously the Taylor series for the sine and cosine.

The reception and naturalization of trigonometry in medieval Islam is no 
less complicated. In the eighth and ninth centuries Indian astronomy found its 
way through Persia to Baghdad. As interest grew, a translation movement 
brought a fresh crop of Greek texts to Islamic scholars. This produced the curi-
ous circumstance that two approaches to astronomy, both of which contained at 
least some trace of Greek origin, were in opposition to each other. The Greek 
texts gradually took precedence during the ninth and tenth centuries, but many 
of the Indian advances (including the sine and iterative methods) were retained. 
Around the end of the tenth century several advances streamlined eastern 
Islamic trigonometry. The tangent, invented in the process of sundial construc-
tion, became part of the trigonometric toolkit. New theorems reformulated the 
foundations of spherical trigonometry and delivered greater power to both as-
tronomy and astrology. Trigonometry was also applied to new contexts, includ-
ing ritual needs like determining the beginning of the month of Ramadan and 
the direction of prayer toward Mecca. Some of the work done on the latter 
problem became a standard tool in mathematical geography, bringing trigo-
nometry down from the heavens to the earth for the first time.

From the tenth century onward, Islamic science gradually diversified ac-
cording to cultural subgroups spread across its vast geographical area. The 
most prominent division was between eastern Islam and al-Andalus, in what is 
now Spain. Andalusian mathematical astronomy retained Indian and Greek 
influences, but after AD 1000 it developed without much conversation with the 
East. Rather, their knowledge spread northward into Europe, especially through 
the Toledan and Alfonsine Tables. Some innovations in trigonometry occurred 
in medieval Europe, sometimes through interactions with practical geometry 
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and with astronomical instruments. However, the fifteenth century saw the be-
ginning of tremendous growth through the theoretical astronomy of people 
such as Giovanni Bianchini (ca. 1410–1469) and Regiomontanus (1436–1476). 
This period set in motion the events that we shall survey in this chapter.

It is a reflection of the richness of the history of trigonometry that after 
more than one and a half millennia of years of progress, in the year 1550 the 
word itself was still 50 years away from being coined. Indeed, triangles did 
not really emerge as the primitive objects of study until Regiomontanus’s De 
triangulis omnimodis (“Concerning Triangles of Every Kind”) became popu
lar in the mid-sixteenth century. This volume’s title, The Doctrine of Trian-
gles, is taken from one of the names that was given to trigonometry in the 
sixteenth and seventeenth centuries.

What’s in a Name?

By 1550, the central problem of trigonometry—determining lengths in geo-
metric diagrams from corresponding circular arcs and vice versa—had long 
been solved. European astronomers had within their grasp a somewhat com-
pact theory that allowed them to solve every problem that they needed to 
solve, both on the plane and on the sphere. Regiomontanus’s De triangulis 
omnimodis, written in the fifteenth century but published in 1533,3 provided 
a unified source for the mathematical methods and most (although not quite 
all) of the fundamental theorems. Sine tables composed by Regiomontanus 
and others provided a straightforward tool for working out the practical cal-
culations. Seemingly, there was not much left to do.

However, there was a great deal left to do. Over the next 50 years, the 
mathematical structure and even the basic notions of trigonometry were over-
hauled. New theorems were discovered, and more elegant and efficient ways 
of organizing the material were found. By the beginning of the seventeenth 
century, new ways to employ the subject, both within science and outside of 
it, were being devised with regularity. Even the basic functions, the funda-
mental building blocks of trigonometry, went through multiple reinventions. 
By 1613, the subject no longer looked much like Regiomontanus’s De trian-
gulis omnimodis.

We may begin to get a sense of the contrast by comparing basic defini-
tions in the works of two of the dominant figures in the mid-sixteenth century, 
Regiomontanus and Rheticus. We start with Regiomontanus’s De triangulis 
omnimodis.

3 �[Regiomontanus 1533]; see also the edition [Regiomontanus 1561]. De triangulis has been 
translated in [Regiomontanus (Hughes) 1967]. Finally, see [de Siebenthal 1993, chapter 5, 268–352] 
for an account of the mathematics in French.
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Text 1.1
Regiomontanus, Defining the Basic Trigonometric Functions
(from De triangulis omnimodis)

Definitions:
. . .
An arc is a part of the circumference of a circle.
The straight line coterminous with the arc is usually called its chord.
When the arc and its chord are bisected, we call that half-chord the right 

sine4 of the half-arc.
Furthermore, the complement of any arc is the difference between [the arc] 

itself and a quadrant.
The complement of an angle is the difference between [the angle] itself and 

a right angle.
Book I, Theorem 20: In every right triangle, one of whose acute vertices 

becomes the center of a circle and whose [hypotenuse] its radius, the side sub-
tending this acute angle is the right sine of the arc adjacent to that [side and] 
opposite the given angle, and the third side of the triangle is equal to the sine 
of the complement of the arc.5

K
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Figure 1.1 
Regiomontanus’s 
definitions of the 
primitive 
trigonometric 
functions.

4 �In Latin, sinum rectum.
5 �[Regiomontanus (Hughes) 1967, 31, 59].
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Explanation: In right-angled triangle ABC (figure 1.1), draw a circle centered 
at A with radius AB. Draw AK vertically, BC parallel to AK, and BH parallel 
to AC; and extend AC to E and BC to D. Several differences between Regio-
montanus’s structure and the modern definition are apparent. Firstly, follow-
ing his predecessors, he defines the trigonometric functions as lengths of line 
segments in the diagrams, not as ratios. Secondly, again following convention, 
he relies on the ancient Greek chord function by defining the sine BC (sinus 
rectus) as half the length of the chord BD. Thirdly, he allows the radius R of 
the base circle to be any chosen value. In the De triangulis Regiomontanus at 
times uses R = 60,000 but at other times uses R = 10,000,000. Such large radii 
were chosen to avoid having to work with decimal fractions.

Regiomontanus calls the circle’s radius R = AB the sinus totus, a term used 
already in medieval Islam that represents the greatest possible sine value. The 
right sine of BE  is BC; in modern terms, Sin(BE!) = RsinBE! = BC.6 This is 
the only function used in most of the De triangulis. What we call the cosine is 
called simply the sinus complementi, the sine of the complement of the given 
arc. Near the end of the book Regiomontanus uses the versed sine, the sinus 
versus EC, the difference between the sinus totus and the sinus rectus. This 
function originated in India.

Just like Ptolemy’s Almagest a millennium and a half earlier, the De 
triangulis lacks an equivalent to the tangent function. In I.28, Regiomonta-
nus describes how to find an angle in a right triangle if the ratio between two 
sides is known, a simple but nontrivial process if one does not have a tan-
gent. But Regiomontanus did not have long to wait. In his popular collection 
of tables for spherical astronomy, the Tabulae directionum (“Tables of 
directions”),7 he borrowed several tables from his predecessor Giovanni Bi-
anchini to solve stellar coordinate conversion problems.8 One of these tables, 
repeatedly borrowed in turn by various successors, was recognized as useful 
in many other calculations, hence the name bestowed on it by Regiomonta-
nus, the tabula fecunda (“fruitful table”). Mathematically equivalent to the 
tangent, it would become accepted gradually as a full-fledged trigonometric 
function on its own.

Regiomontanus was the most frequently quoted trigonometer of the six-
teenth century, and we shall see more of his influence later in this chapter. 
His definitions and terms, most of them not original to him but spread by him, 
became the foundation of the field. One of his early adopters was Erasmus 

6 �Here and throughout, we capitalize a trigonometric function if it is used with a circle with R ≠ 1.
7 �See [Van Brummelen 2009, 261–263], as well as [Delambre 1819, 292–293] and [Folkerts 1977, 
234–236].

8 �[Van Brummelen 2018].
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Reinhold (1511–1553), one of the best quantitative astronomers of his genera-
tion. A colleague of Georg Rheticus at the University of Wittenberg, Rein-
hold was one of the first to receive a copy of Copernicus’s work. Reinhold is 
most known for his very successful astronomical Prutenic Tables, but more 
relevant to us is his posthumous 1554 Tabularum directionum.9 This collec-
tion of tables is an expansion of Regiomontanus’s work of the same name and 
includes a tangent table (“canon fecundus”) greatly expanded from Regio-
montanus’s. This table gives values to at least seven places for every minute 
of arc from 0° to 89° and for every 10 seconds of arc between 89° and 90° 
where the values change rapidly from entry to entry.10 To give the reader a 
sense of calculations in typical astronomical work of the time, we provide a 
short passage of his commentary on Copernicus, one of many where Rein-
hold uses his tangent table.

Text 1.2
Reinhold, a Calculation in a Planetary Model Using Sines and Tangents
(from Reinhold’s commentary on Copernicus’s De revolutionibus)

Likewise, because angle FEN is 39°37′38″, therefore in right [triangle] EPL 
the remaining angle of LEP [that is, angle ELP] is 50°22′22″; and when EL is 
100,000, then LP is 63,779 and PE is 77,021. And now when EL is taken to be 
5,943, such that it is half the eccentricity, then LP is 3,790 and EP is 4,577. 
And from here, their doubles are DQ = 7,580 and EQ = 9,154, when EN . . . ​is 
100,000. Therefore, the whole of these, QEN, is 109,154. And with QN taken 
to be 10,000,000, then QD is 694,432. And from our table, angle DNQ is 
3°58′21″.11

Explanation: (See figure 1.2.) In the figure, D is the center of the universe 
and E is the center of the topmost eccentric deferent circle.

Reinhold knows that ∠FEN = 39°37′38″ and wants to find ∠QND. Firstly, 
since ∠FEN = ∠PEL and ∠EPL is a right angle, ∠ELP = 90° − 39°37′38″ = 
50°22′22″. Next, in right-angled triangle EPL, Reinhold sets the hypotenuse 
R = 100,000. This allows him to use his Sine table; he finds LP = Cos ∠ELP = R 
cos ∠ELP = 63779 and PE = Sin ∠ELP = R sin ∠ELP = 63779. But EL is a 
known parameter with value 5,943, so LP and EP are scaled downward to 
3,790 and 4,577, adjusting from the hypotenuse of 100,000 assumed by the 
Sine table to a hypotenuse of 5,943. Now, the astronomical model assumes 
that EL = LD, so the sides of triangle DQE are double those of ΔLPE, which 

9 �[Reinhold 1554]. The “canon fecundus” may be found on folios 17 through 51.
10 �The values in the table stray significantly away from the correct ones as the argument ap-

proaches 90°, a problem that plagued both medieval Islamic and especially early European 
table makers. See the account of Rheticus, Romanus, and Pitiscus in [Van Brummelen 2009, 
280–282]. See also the analysis of early European tangent tables in [Pritchard, forthcoming].

11 �[Nobis/Pastori 2002, 246–247]. Translated from the Latin.
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Figure 1.2 
Reinhold’s calculation with a 
planetary model using the 
tangent.
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make DQ = 2LP = 7,580 and EQ = 2EP = 9,154. But EN is the radius of the 
circle, previously set to 100,000; therefore QEN = 109,154. Finally, consider 
right triangle NQD. Reinhold’s Canon fecundus uses a radius of 10,000,000, 
so he sets QEN (the side adjacent to the angle we seek) equal to that value 
rather than 109,154. This requires him to adjust DQ’s value accordingly, 
from 7,580 upward to 694,432. He can now look up this value in the Canon 
fecundus (figure 1.3); we can see for ourselves that ∠QND is between 3°58′ 
and 3°59′.

Clearly the tangent has come a long way from its initial role as a helper to 
Bianchini and Regiomontanus in solving stellar coordinate problems. Rein-
hold is now using his Canon fecundus as a general purpose tool for dealing 
with arbitrary right triangles.

The approach shared by Regiomontanus and Reinhold, dominant in the 
sixteenth century, was opposed by Georg Rheticus (1514–1574). Known as 
the man who discovered Copernicus and convinced him to publish his helio-
centric theory, Rheticus hailed from the region of Rhaetia, which overlaps 
Austria, Switzerland, and Germany.12 In his mid-twenties he visited Coper-
nicus and became his student; he announced the heliocentric theory in his 

12 �We have already discussed Rheticus and Copernicus in [Van Brummelen 2009, 273–282]. For 
more on Rheticus, see [Burmeister 1967–1968] and [Danielson 2006].

Reinhold (1511–1553), one of the best quantitative astronomers of his genera-
tion. A colleague of Georg Rheticus at the University of Wittenberg, Rein-
hold was one of the first to receive a copy of Copernicus’s work. Reinhold is 
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9 �[Reinhold 1554]. The “canon fecundus” may be found on folios 17 through 51.
10 �The values in the table stray significantly away from the correct ones as the argument ap-

proaches 90°, a problem that plagued both medieval Islamic and especially early European 
table makers. See the account of Rheticus, Romanus, and Pitiscus in [Van Brummelen 2009, 
280–282]. See also the analysis of early European tangent tables in [Pritchard, forthcoming].

11 �[Nobis/Pastori 2002, 246–247]. Translated from the Latin.
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Narratio prima and helped Copernicus bring his De revolutionibus (and sep-
arately its trigonometry under the title De lateribus et angulis triangulorum, 
“On the Sides and Angles of Triangles”)13 to press.

Rheticus’s accomplishments after Copernicus’s death in 1543 are primar-
ily trigonometric, especially in the design and production of tables. His short 
1551 tract Canon doctrinae triangulorum (“Table of the Doctrines of 
Triangles”),14 consisting of nothing more than a short introductory poem, 
14 pages of tables, and a six-page dialogue, seems at first glance unassuming. 
But within its pages one finds not only tables of all six trigonometric func-

13 �[Copernicus 1542]. For an account of the trigonometry in this treatise (which is not very origi-
nal), see [Swerdlow/Neugebauer 1984, part 1, 99–104]. See also [Rosińska 1983], which argues 
that the sine table in this work was computed by Copernicus himself but corrected by Rheticus 
based on Regiomontanus’s tables.

14 �[Rheticus 1551]. This treatise has an unusual history. Since it was placed on the Index expurga-
torius (and since Rheticus’s later work, the Opus palatinum, rendered it obsolete), it dis
appeared from view after the sixteenth century. It was rediscovered by Augustus De Morgan in 
the mid-nineteenth century. See [De Morgan 1845], [Hunrath 1899], [Archibald 1949b], and 
[Archibald 1953]. [Roegel 2011d] contains a recomputation of all of its tables.

Figure 1.3 
A page from Reinhold’s 
Canon fecundus. This 
section gives tangents 
from 0° to 4°, and 
cotangents from 86° to 
90°. This page includes 
tangent values for arcs 
with minute values between 
30′ and 60′; the grid on the 
facing page gives values 
for arcs with minute values 
between 0′ and 30′.
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tions now considered standard (sine, cosine, secant, tangent, cosecant, and 
cotangent) but also a completely new and elegant set of terminology to de-
scribe them. Consider three “species” of right triangles (figure 1.4) described 
with respect to a given radius R.15 In the first species the hypotenuse is set 
equal to R; in the second, the base; and in the third, the perpendicular. Then:

in the first species, we have two functions, the perpendicular and 
the base (equivalent to Sine and Cosine respectively);
in the second species, we have the hypotenuse and the 
perpendicular (Secant and Tangent); and
in the third species, we have the hypotenuse and the base 
(Cosecant and Cotangent).

When Rheticus solves triangles, circles play no role. Thus, Rheticus’s system 
not only defines all six trigonometric functions compactly but also divorces 
them from circular arcs: the arguments are now simply angles within the tri-
angles, as they are today.

Rheticus found posthumous support for his design in the writings of the 
possibly the most well-known mathematician of the sixteenth century, Fran-
çois Viète (1540–1603). Viète’s career was in the French civil service—not 
mathematics, on which he worked in his spare time. As a Huguenot during a 
time of unrest between Catholics and Protestants in France, his position was 
often hardly stable. He lived through an authorized massacre of Huguenots 
(which claimed the life of his older colleague Peter Ramus) and five years of 

15 �In the Canon doctrinae triangulorum Rheticus sets R = 10,000,000; in the Opus palatinum, 
R = 10,000,000,000.

Figure 1.4 
Rheticus’s six trigonometric functions.
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banishment from Paris, during which he worked on his mathematics. His in-
terests were diverse, including astronomy and cryptography; but today he is 
recognized most for his contributions to the revolution of symbolic algebra, 
especially his In artem analyticam isagoge.16

While Viète’s role in transforming algebra was fundamental, he was also 
deeply involved in the evolution of trigonometry. His first mathematical work, 
Canon mathematicus seu ad triangula (“Mathematical Canon, or On Trian-

16 �For editions and translations of Viète’s mathematical treatises, see [Viète 1646; 1983] and 
[Viète/Girard/de Beaune 1986]; [van Egmond 1985] is a catalog of his works. None of these 
books contains Canon mathematicus seu ad triangula [Viète 1579], which occupies our atten-
tion here. See also [Ritter 1895] and [Reich/Gericke 1973]; the latter contains accounts of 
several of Viète’s works in algebra. The secondary literature on Viète’s role in the transforma-
tion of algebra is too large to be summarized here.

Figure 1.5 
A page from Viète’s Canon mathematicus seu ad triangula (1579), 
naming the sides and angles of a right triangle.
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gles,” 1579),17 is an unusual volume—as close as it comes to being a coffee 
table book on trigonometry. For instance, the first page of text (figure 1.5) lays 
out the names of the sides and angles of a right-angled triangle with an eye 
to filling the page in a pleasing way. The book begins with a set of trigono-
metric tables designed according to the methods of Rheticus’s Canon doctri-
nae triangulorum, with all six functions grouped according to the three tri-
angle species we saw in figure  1.4. Although his names for the various 
functions often vary (see figure 1.6) and borrow the term fecunda from Re-
giomontanus, the structure clearly imitates that of Rheticus.18

Most of Viète’s colleagues and contemporaries, however, were content to 
stick with the language of Regiomontanus.19 For instance, only eight years after 
the De triangulis omnimodis was published, the great German astronomical 

17 �See [Viète 1579], [Hunrath 1899], and [Rosenfeld 1988, 24–27]. See also [Roegel 2011g] for a 
recomputation of the tables.

18 �See page 16 of the Universalium inspectionum within [Viète 1579], and [Ritter 1895, 40]. Viète 
applies the term fecunda to several quantities.

19 �[Von Braunmühl 1900/1903, vol. 1, 183] suggests that Viète’s unique notation here and else-
where, brilliant as it was, may have contributed to his colleagues’ lack of appetite for his trigo-
nometric inventions. But Rheticus and Viète were not without followers; Adrianus Romanus’s 
Canon triangulorum [Romanus 1609], for instance, adopts some of Viéte’s structure and ter-
minology, including the terms “transsinuousae” for the secant and “prosinus” for the tangent 
(even though the standard terms are on the title page).

Figure 1.6 
Viète’s nomenclature for the six trigonometric functions, taken from page 16 of 
Universalium inspectionum of his Canon mathematicus seu ad triangula. The Roman 
numerals on the left refer to Rheticus’s triangle species.

Hypotenusa Perpendiculum Basis

I. Totus Sinus Anguli, vel
Peripheriae (sine) 

Sinus anguli Reliqui,
seu Residuae
peripheriae (cosine)

II. Hypotenusa
Faecundi Anguli, vel
Peripheriae (secant)

Faecundus Anguli, vel
Peripheriae (tangent)

Totus

III. Hypotenusa
Faecundi anguli
Reliqui, vel Residuae
peripheriae (cosecant)  

Totus Faecundus anguli
Reliqui, vel Residuae
peripheriae (cotangent)
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and geographical instrument maker Peter Apian (1495–1552)20 had followed 
with his 1541 Instrumentum sinuum seu primi mobilis, a well-known treatise 
on trigonometric instruments and their use in solving various astronomical 
problems, which we shall consider later. Apian uses names that would have 
been familiar to Regiomontanus and his colleagues: the sinus rectus primus 
for the sine and the sinus rectus secundus for the cosine.21 There is no refer-
ence to Regiomontanus’s tabula fecunda or indeed to anything resembling a 
tangent function.

Apian’s traditional names for the sine and cosine are found again in the 
1558 collection of works on spherical astronomy22 by Francesco Maurolico 
(1494–1575). A Sicilian priest, Maurolico held a variety of civil positions over 
the course of his life, including master of the mint, and was eventually ap-
pointed professor at the University of Messina. He was active in a wide vari-
ety of areas of mathematics and science, including optics and music; within 
astronomy he was especially prolific in spherical astronomy and edited sev-
eral Greek works on the subject. Although he does not define the tangent and 
cotangent directly in his book on spherics, they do appear as umbra versa 
and umbra recta in Book II, Proposition 30,23 as they often had before. These 
terms derive from ancient and medieval references to “shadows” in sundials, 
and Maurolico himself defines the umbra versa and umbra recta in this way 
in his astronomical treatise De sphaera, a work infamous for his vicious con-
demnation of Copernicus.24 However, as we noted earlier, it was not from the 
umbra versa and umbra recta that the modern tangent and cotangent evolved.

We do find one innovation in Maurolico’s work on spherics. Near the end 
he describes a new table as follows: “In imitation of the tabula fecunda of 
Johannes Regiomontanus, we made another table which we have named 
benefica, because certain calculations become easy by means of this table.”25 

20 �For a general introduction to Apian’s mathematics see [Kaunzner 1997]; for his trigonometry 
see [Folkerts 1997].

21 �See the third page of the first section of [Apian 1541], Instrumentum hoc primi mobilis 
componere.

22 �[Maurolico 1558] (on which see [Moscheo 1992] on editorial issues) includes Latin editions of 
Theodosius’s Spherics, Menelaus’s Spherics, Autolycus’s Spherics, Theodosius’s De habilita-
tionibus, and Euclid’s Phenomena as well as several small trigonometric tables (sine, tabula 
fecunda, tabula benefica, and declinations and ascensions) and a Compendium mathematicae. 
On Maurolico’s sources for his edition of Menelaus, see [Taha/Pinel 1997] or [Taha/Pinel 
2001]. See also [Napoli 1876] for an edition of Maurolico’s Geometricarum quaestionum. 
[Rose 1975, 159–184] is a good account of Maurolico’s life and work.

23 �[Maurolico 1558, f. 58].
24 �De sphaera is the first of a number of short treatises in Opuscula mathematica, [Maurolico 

1575]; the definitions of umbra versa and umbra recta may be found on page 13. For Mauroli-
co’s attack on Copernicus, see [Rosen 1957].

25 �[Maurolico 1558, f. 60], Demonstratio tabulae beneficae.
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Maurolico’s new table introduces what today we call the secant.26 A short table 
at the end of the book27 gives secant values, with R = 100,000, for integer ar-
guments from 1° to 89°. Rheticus, of course, had already published tables of 
all six trigonometric functions seven years earlier in his Canon doctrinae tri-
angulorum. But he had used his own unique terms and definitions, which 
make no appearance in Maurolico’s work.28 Instead, consider Maurolico’s fig-
ure 1.7: within right triangle ABC, segment BD is perpendicular to AC. Set 
AB equal to R =100,000. Then, given ∡A at the top of the diagram, we may 
find BD from a table of sines, BC from the tabula fecunda, and AC from the 
tabula benefica.

It took another quarter century for the tabula fecunda and tabula benefica 
to take on their modern names of tangent and secant in Danish scholar Thomas 
Fincke’s (1561–1656) Geometriae rotundi (“Geometry of Circles and 
Spheres”).29 Still a 22-year-old student in 1583 at its publication, Fincke 
switched to the study of medicine that same year. Over the course of his very 
long career, he held professorial positions in medicine, rhetoric, and mathe
matics and held a number of senior administrative posts (including rector and 

26 �Copernicus composed a table of secants by hand, but it was never published. See [Glowatzki/
Göttsche 1990, 190–192]. For an analysis of Maurolico’s table, see [Van Brummelen/Byrne, 
forthcoming].

27 �Folio 66. As we shall see later, a controversy arose over whether Maurolico’s table owed an 
unpaid debt to Rheticus.

28 �Here we differ from von Braunmuhl’s opinion that Maurolico was following Rheticus; see [von 
Braunmühl 1900/1903, I, 150–151].

29 �[Fincke 1583]. De Morgan first makes this identification in [De Morgan 1846]. See [Schönbeck 
2004] for a detailed account of Fincke’s life and a summary of the Geometriae rotundi.

Figure 1.7 
Maurolico’s trigonometric functions.
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dean of the medical school for over half a century) at the University of Co-
penhagen. But the Geometriae rotundi remains his most enduring legacy. In-
spired by Peter Ramus’s 1569 Geometria, in a way the book is a step back to 
an older time, with its emphasis on the ancient spherical Menelaus’s theorem.30 
However, it was found to be extremely clear and readable, and it was spoken 
of highly for several decades.

One of the Geometriae rotundi’s most lasting contributions was its cre-
ative use of language to simplify the presentation. Among his innovations 
were the inventions of the names “tangens” and “secans” for the tangent and 
secant functions respectively. In Proposition V.22 (figure 1.8), Fincke takes a 
semicircle of given radius, draws a vertical tangent from its rightmost point, 
and extends a diagonal at a given angle from center O until it touches the tan-
gent line at I. Then the length of AI, naturally, is the “tangent” of that angle. 
A few propositions later (V.27), Fincke calls OI the secant since it crosses 
the circle’s edge.31

The new names were instantly popular among Fincke’s colleagues; they 
are found already three years later in Christoph Clavius’s 1586 edition of The-

30 �See [Van Brummelen 2009, 56–61].
31 �[Fincke 1583, 73–74, 76].

Figure 1.8 
Defining the tangent in Fincke’s Geometria rotundi.
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odosius’s Spherics32 as well as in Antonio Magini’s 1592 De planis triangu-
lis (which also contains the terms tangens secunda and secans secunda for 
cotangent and cosecant, paralleling the earlier usages of sinus primus and 
sinus secundus for sine and cosine), among other works.33 The abbreviations 
for the words varied from one author to the next; well into the seventeenth 
century they had not yet become standardized. François Viète himself ob-
jected to the new terms, arguing that they could be too easily confused with 
other ways that the terms are used in geometry.34 But in this case at least, 
Viète’s opinion did not transform into practice.

32 �[Clavius 1586]. In addition to Theodosius’s Spherics, the book contains tables of tangents and 
secants (in which the name benefica also appears) and trigonometric treatises by Clavius 
himself.

33 �[Magini 1592]. [Cajori 1928–1929, vol. 2, 150–151] also refers to the use of these terms by 
Brahe, Lansberg, Blundeville, and Pitiscus.

34 �[Viète 1593, the third folio numbered 38] (“Immo vero artem confundunt, cum his vocibus 
necessae habeat uti Geometra abs relatione”); see also [Cajori 1928–1929, vol. 2, 150].

Figure 1.9 
Fincke’s expression of the relation cos c = cot A cot B for a right-angled spherical 
triangle, Geometria rotundi XIV.17. Book XIV contains the earliest appearances  
of the abbreviations “sin,” “tang,” and “sec”; the first two can be seen here.
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Book XIV, concluding Fincke’s Geometriae rotundi with some spherical 
trigonometric results, contains a significant notational development. Perhaps 
due to the length of text that would otherwise be required to state these theo-
rems, Fincke abbreviates the trigonometric functions in ways that we recog-
nize today. Here we find for the first time “sin.” for sine; “tan.” and “tang.” 
for tangent; “sec.” for secant; and “sin. comp.” or “sin. compl.” for cosine (and 
similarly for cotangent and cosecant). In figure 1.9, for instance, we see 
Fincke’s expression of the relation “R is to Cos ia as Tan a is to Cot i” in the 
right-angled spherical triangle at the bottom of the diagram, equivalent to our 
cos c = cot A cot B.

Trigonometric Tables Evolving

Until machines took over the world of computation, numerical tables were 
how trigonometry was used in the sciences, surveying, and navigation. Hip-
parchus’s invention of the trigonometric table to convert geometric statements 
into quantitative results was to extend far beyond his predictions of eclipses. 
In turn, the need for easily computed, yet accurate tables was the motive 
behind many of the theorems that are now taught in school. The basic for-
mulas of plane trigonometry—for instance, the sine and cosine sum and dif-
ference laws and the half-angle formulas—were invented to simplify compu-
tations of tables.35 And as we just saw, the tangent and the secant functions 
were introduced in Europe not as functions but as tables (the tabula fecunda 
and tabula benefica).

The late sixteenth century saw a spectacular rise in the production of trig-
onometric tables in terms of both the industry required to generate them and 
the quality of the results.36 Almost every author participated in the table-
making process (see figure 1.10); composing a table was a major part of what 
it meant to be a practitioner of the doctrine of triangles. Dealing with frac-
tional quantities outside of the astronomers’ traditional sexagesimal (base 60) 
arithmetic was not in the standard toolbox until late in the sixteenth century; 
table makers usually got around this problem by using a base circle radius 
equal to some large power of ten.37 Then, they could represent Sines, Cosines, 
and so on as large whole numbers.

35 �See [Van Brummelen 2009, 41–46, 70–77] for descriptions of trigonometric tables in ancient 
Greece and in multiple places elsewhere in the book for discussions of tables in medieval 
cultures.

36 �See [Glowatzki/Göttsche 1990] for a study of Regiomontanus’s trigonometric tables and those 
of his successors.

37 �At least one astronomer of the fifteenth century (Giovanni Bianchini) took some early steps 
toward decimal fractional notation, including the invention of the decimal point, which we 
shall describe shortly.
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A quick examination of figure 1.10 reveals several noteworthy facts. 
Firstly, it took almost no time for the tangent and the secant functions, under 
various names, to be accepted and tabulated along with the sine.38 Secondly, 
the increments between the arguments became smaller and smaller, achiev-
ing more accuracy at the cost of increased labor; the standard increment soon 
became 1′ or even smaller. Finally, often unaware of it, all authors struggled 
with the entries of a trigonometric table that are most difficult to compute ac-
curately: namely, values for the tangent and secant where the argument ap-
proaches 90°. These values were often calculated by dividing by a very small 
quantity such as the cosine of an angle near 90°.39 Small rounding errors in 

38 �In spherical trigonometry the function arcsin (sin x sin y). had currency through the sixteenth 
century and was often tabulated; see [Van Brummelen 2009, 263] on Regiomontanus’s table 
and [Glowatski/Göttsche 1990, 197–207] for a summary.

39 �See [Pritchard, forthcoming].

Figure 1.10 
Trigonometric tables from Regiomontanus to the eve of logarithms.

Author Work sin tan sec R Step size Worst case error 

��
60,000 (sine)

100,000 (tangent)
1’ (sine)

1º (tangent) 4th of 7 decimal places

� 100,000 1’

�
6,000,000;
10,000,000

1’

� 10,000,000 1’

� � � 10,000,000 10’ 5th of 10 decimal places

5th of 9 decimal places

6th of 12 decimal places

� 10,000,000
1’

(10’’ after 89º)

4th of 12 
decimal places  
(for 89º59´:5th of 

11 places) 

� � � 100,000 1º

� � � 100,000.000 1’

� � �
60 (three sexagesimal

places) 1º

� � � 10,000,000 1’

� � � 100,000 1’

� � � 1,000,000,000 10’

� 1,000,000,000,000,000 10’’

7th of 7 decimal places
(for 89º59´: 6th of 9

places)  

9th of 9 decimal places

3rd of 4 sexagesimal
places 

5th of 11 decimal
places

Regiomontanus

Apian

Regiomontanus

Copernicus

Rheticus

Reinhold

Maurolico

Viète

Bressieu

Fincke

Pitiscus

Van Roomen

Pitiscus (Rheticus)

Rheticus/Otho

Tabulae directionum (1490) 

Introductio geographica (1541) 

Tractatus Georgii 
Peurbachii… (1541) 

De lateribus triangulorum (1542) 

Canon doctrinae 
triangulorum (1551)

Tabularum directionum (1554)  

Theodosii sphaericorum (1558) 

Canon mathematicus seu 
ad triangula (1579)  

Metrices astronomicae (1581) 

Geometriae rotundi (1583) 

Trigonometriae (1600)

Canon triangulorum 
sphaericorum (1607)

Thesaurus mathematicus (1613)

Opus palatinum (1596) � � � 10,000,000,000 10’’
7thof 15 decimal places

(for 89º59´:9th of 
14 places)  
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the cosine values were thus magnified and became much larger errors in the 
tangent and secant values.40

Several sixteenth-century European authors discussed their methods for 
computing sines.41 Usually their methods did not go much beyond what one 
finds already in the chord table in Ptolemy’s Almagest along with those de-
veloped in early Islam and transmitted to Europe through al-Andalus. A typi-
cal early sixteenth-century text is Regiomontanus’s Compositio tabularum 
sinuum rectorum, published 65 years after his death in 1541.42 Regiomonta-
nus begins this work simply by stating that one can find the Sine of the com-
plement of an arc whose Sine is known, using the Pythagorean Theorem:

	 sin(90° − θ ) = R2 − Sin2θ . 	 (1.1)

He then determines the Sines of the kardajas, namely, the multiples of 15°, 
which can be obtained from the Sines of 30°, 45°, and 60°, a simple geomet-
ric argument deriving the Sine of 15°, and (1.1).43 This results in a small table 
of sines, listed in the order of their computation rather than in increasing order, 
with R = 600,000,000:

Arcus Sinus

90 600000000

30 300000000

60 519615242

45 424264069

15 155291427

75 579555496

40 �We have already discussed this problem with respect to Rheticus’s tables in the Opus palati-
num, their identification by Adriaan van Roomen, and the repairs to the table made by Pitiscus; 
see [Van Brummelen 2009, 280–282]. For the secant function, the alternative method 
sec2θ = 1 + tan2θ was much less prone to error (assuming one has an accurate tangent table) and 
used occasionally; see [Van Brummelen/Byrne, forthcoming].

41 �Occasionally they also discussed the computation of tangents and secants but usually only 
briefly and simply.

42 �Published as an appendix to [Peurbach 1541]; [Glowatzki/Göttsche 1990, 11–24] contains a 
reproduction of the manuscript and a translation to German. This is not the earliest sixteenth-
century publication describing the calculation of a sine table; Peter Apian’s Introductio geo-
graphica (1533) contains both a sine table (reprinted a year later in his Instrumentum sinuum 
seu primi mobilis) and a description. See [Folkerts 1997, 225–226] for a brief account. The 
Instrumentum sinuum seu primi mobilis also contains a small table of arc sines, the earliest 
such table of which I am aware with clearly trigonometric intent. An early description of the 
construction of a sine table, using similar methods and almost contemporaneous with Regio-
montanus, may be found in Oronce Fine’s 1542 De sinibus; see [Ross 1977].

43 �The kardajas, from the Persian for “sections,” are found in medieval India, Islam, and Europe. 
For a modern account of this and the following proposition, see [Zeller 1944, 33–34].
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Proposition 3 gives

	
1
2 R

Sinθ
= Sinθ
Vers 2θ

,	 (1.2)

an equivalent to the Sine half-angle formula. This gives Regiomontanus all 
the tools he needs to find the Sines of all the multiples of 3°45′, which he 
promptly does, in a table similar in form to the above. Proposition 4 uses 
constructions of the regular pentagon and decagon inscribed in a circle, as 
Ptolemy and many others had done, to determine the values of a couple of 
more difficult Sines.44 For instance, since the side of the inscribed penta-
gon is equal to the chord of a 72° arc, half of the side of the pentagon is the 
Sine of 36°. Once these values are known, proposition 5 allows Regiomon-
tanus to find the length of a side of a regular 15-gon inscribed in a circle, 
as follows (figure 1.11): in a quadrant of radius R, let AD = 30° and AE = 54°. 
Then EI = EG − IG = Sin 54° − Sin 30° = Sin(90° − 36°) − Sin 30° and ID =  
DH − HI = Sin 60° − Sin 36°, so we can calculate a value for ED = EI 2 + ID2 .  
But ED = 24° is one side of the regular 15-gon, so 12 ED = Sin12°. Now that  
we have a value for Sin 12°, apply the half-angle formula four times to get  
Sin 45′. Once Regiomontanus has this value under his belt, he needs only 
time, patience, and the Sine sum and difference laws to find the Sines of all 
multiples of 45′.

But all of this work is only a precursor to the most challenging problem 
in the calculation of Sine tables, namely that of finding the Sine values of 
multiples not of 45′ but of 1° (or 1′). The only Sines that can be found using 

44 �See [Van Brummelen 2009, 72–74].

Figure 1.11 
Regiomontanus’s calculation of the 
length of a side of a regular 15-gon.
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geometry alone are those whose arcs can be written in the form 3m/2n° for 
whole numbers m and n. To go beyond this set, mathematicians since Ptolemy 
had had to find a way somehow to break the bounds of the methods available 
to geometry. Regiomontanus proceeds as follows. Within the quadrant, cut 
six arcs of ¼° each: AB, BC, . . . ​, FG (figure 1.12); and drop a perpendicular 
from G onto AH. Then drop perpendiculars from B, C, D, E, and F to HG. 
HI, HK, . . . ​are then the Sines of the successive multiples of ¼°, up to 
HG = Sin1 1°

2 . By a lemma (omitted here, although one can see it is true by 
inspection), Regiomontanus knows that HI > IK > . . . > NG. Since he already 
knows from his table calculations that HL = Sin 3°

4 = 7,853,773  (in a circle 

of radius 600,000,000), he determines

	
Sin 1° = HM = HL + LM < 4

3
HL = 4

3
Sin

3

4

o

= 4

3
(7853773)

= 10,471,697.
	 (1.3)

Similarly, knowing also that HG = Sin1 1°
2 = 15,706,169,  he finds

	

Sin 1° = HM = HL + LM > HL + 1

3
LG =

Sin
3

4

o

+ 1

3
Sin 1

1

2

o

− Sin
3

4

o⎛
⎝⎜

⎞
⎠⎟
= 10,471,238. � (1.4)

The result is a narrow interval containing Sin 1°:

	 10,471,238 < Sin 1° < 10,471,697.	 (1.5)

Figure 1.12 
Regiomontanus’s method to calculate 
Sin 1°. I NMLK

H G

F

E

D
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From here Regiomontanus uses his half-angle formula to obtain45

	 5,235,818 < Sin 1
2
°< 5,236,044. 	 (1.6)

Since he wishes to compute a sine table with R = 6,000,000 rather than 
600,000,000, Regiomontanus divides by 100, leaving

	 52,358 < Sin 1
2
°< 52,360, 	 (1.7)

from which he concludes that Sin 1°
2 = 52,359. Armed with this approxima-

tion, the half-angle formula, the Sine sum and difference laws, and a lot of 
patience, he is able to fill in the Sines of all the multiples of ¼°.46

This technique is an enhancement on the approach used by Ptolemy in 
the Almagest, but it is essentially the same idea. Various eastern Arabic en-
hancements of Ptolemy’s procedure from the tenth and eleventh centuries had 
generated similar results.47 Curiously, only a few decades before Regiomon-
tanus wrote this treatise but far to the East in Samarqand, Jāmshīd al-Kāshī 
had overturned the rules of this problem by introducing algebra and an itera-
tive procedure that allows the determination of Sin 1° to as many places as 
one has the patience to calculate. However, his solution was not to find its 
way to Europe.48 Even more curiously and much closer to Regiomontanus’s 
home, his older colleague Giovanni Bianchini had done something similar, 
also with a method capable of generating arbitrary levels of precision, and 
we know that Regiomontanus became aware of it at some point.49 However, 
there is no trace of anything new on this topic in this work.

The divide over terminology that we saw in the previous section was 
about to make a reappearance in the context of tables. Rheticus’s new struc-
ture and his tables for all six trigonometric functions appeared only a decade 
after the publication of Regiomontanus’s book, in the 1551 Canon doctrinae 
triangulorum. While this latter work eventually became very difficult to find, 
clearly the word about it spread through the mathematical community; his 
name is mentioned frequently in the late sixteenth century in conjunction with 
the new trigonometric functions well before his massive Opus palatinum, 

45 �These two values are in error in the last two places, but this is about to become irrelevant.
46 �Regiomontanus goes on to describe how to enhance the process to work one’s way down to 

Sin 1′, which would allow him to build a table with an increment of 1′, but he does not provide 
the calculations.

47 �See [Van Brummelen 2009, 140–145].
48 �See [Van Brummelen 2009, 146–149].
49 �See [Gerl 1989, 265–268]. A marginal note by Regiomontanus in the margin of the manuscript 

Cracow BJ 558 (f.22v) states that Bianchini’s method is superior to Ptolemy’s.
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a full treatment of his trigonometry with gigantic tables, was published in 1596. 
In fact, although Maurolico published his table of secants under a different 
name (tabula benefica) imitating the style of Regiomontanus in 1558, Thomas 
Fincke asserted in his 1583 Geometriae rotundi that Maurolico had simply 
taken over Rheticus’s secant table. Magini, in his 1592 De planis triangulis, 
defended Maurolico, arguing that he had worked independently of Rheticus.

The question may be resolved by a closer inspection of Maurolico’s table, 
which gives the secant for R = 100,000 and for every degree up to 89°.50 Since 
the secant grows without bound as the argument approaches 90°, the last few 
values in any secant table are difficult to compute and are highly sensitive to 
rounding errors. For instance, the correct value of Sec 89° is 5,729,869. Mau-
rolico’s value is 5,729,868 while Rheticus’s is 5,729,838.51 Another example: 
immediately below Maurolico’s table, he gives a few values of Sec θ for ar-
guments greater than 89°, one of which (89°30′) has the same argument as 
an entry in Rheticus’s table. The correct value of Sec 89°30′ is 11,459,301; 
Maurolico’s is 11,459,309; Rheticus’s value is 11,459,348. In both cases (and 
in others) Maurolico’s value is much more accurate than Rheticus’s. There-
fore, he did not appropriate Rheticus’s table.52

François Viète dealt with the problem of finding Sine values for argu-
ments where geometry alone does not suffice, both early and late in his 
career. In his 1579 Canon mathematicus seu ad triangula, he determines 
sin 1′ as follows.53 Beginning with sin 30° = 0.5, he applies the sine half-
angle formula (in the form sin2(θ / 2) = 1

2 vers θ ) 11 times in a row. In his 
last two iterations he finds

	

sin2 45 ′0
256

⎛
⎝⎜

⎞
⎠⎟ = 0.000000261455205834 and 

sin2 22 ′5
256

⎛
⎝⎜

⎞
⎠⎟ = 0.000000065363805733. � (1.8)

50 �[Von Braunmühl 1900/1903, vol. 1, 151–152] reports on the controversy and mentions a 
table of secants by Maurolico with arguments up to 45°; this table is mentioned by several 
later writers, apparently taking their information from von Braunmühl. The manuscript in 
fact does contain a secant table as described by von Braunmühl but in two columns, the 
first of which ends at 45°. Perhaps von Braunmühl did not notice the second column and 
thus did not have the opportunity to compare the values in the two secant tables for argu-
ments near 90°.

51 �This entry cannot be a typographical error since Rheticus’s interpolation column confirms this 
value. Since Rheticus’s value for R is larger, it contains two more decimal places, suppressed 
here; likewise for the entry for sec 89°30′.

52 �For a full analysis and the background to the controversy, see [Van Brummelen/Byrne, 
forthcoming].

53 �See [Viète 1579, 62–67]. For the reader’s ease, we have converted Viète’s calculations to a base 
circle of R = 1.



	 European Trigonometry Comes of Age	 23

From these values Viète derives two estimates for sin 1′ as follows:

sin ′1 > 256

450
⎛
⎝⎜

⎞
⎠⎟
2

⋅ 0.000000261455205834 = 0.0002908881959 	 (1.9)

and

sin ′1 < 256

225
⎛
⎝⎜

⎞
⎠⎟
2

⋅ 0.000000065363805733 = 0.0002908882056. 	 (1.10)

The former comes from the assertion that 
sin 45 ′0

256( )
sin ′1

< 450 / 256
1 ; the latter  

comes from 
sin1′

sin 22 ′5
256( ) <

1
225/ 256 . As impressive as these calculations are, this  

inequality—the heart of Viète’s method—goes all the way back to Ptolemy’s  
Almagest. Now, since 22 ′5

256  is closer to 1′ than 45 ′0
256  is, Viète proposes (but  

does not carry out in the text) that the final value for Sin 1′ should be a weighted 
average favoring (1.10) over (1.9). This would result in Sin 1′ ≈ 0.0002908882042, 
a value that is completely accurate except for the last decimal place. Decades 
later, Viète would invent (but not carry out) a method that applies algebra to 
the problem in the spirit of al-Kāshī; we shall examine it later in this chapter.

Also in the Canon mathematicus, we find a very large and rather odd 
table, the Canonion triangulorum laterum rationalium.54 Within it, Viète pro-
vides 45 pages of over 1,400 Pythagorean triples, scaled so that one of the 
three sides of the triangle is exactly equal to 100,000. These triples are or-
dered sequentially so that they can be used as a trigonometric table. Their 
values can be quite complicated. For instance, the first entry is

	
19,988,480,000

49,942,416,589
and 99,999

49,942,376,589

49,942,416,589
;

and in fact, the square root of the sum of the squares of these two numbers is 
precisely 100,000. Viète himself states at the end of the Canon mathemati-
cus that the Canonion “is of very little use.”55 One wonders, then, why he put 
so much effort into it. Perhaps he was concerned about issues of roundoff error 
in conventional tables, or he wished not to stray from the realm of pure geom-
etry into approximation, or he thought of this work more as number theory 

54 �[Viète 1579], pages numbered separately as pp. 1–45. See also [Tanner 1977] for offshoots of 
this work by Torporley and Harriot, [Hutton 1811b, 5–6], [Zeller 1944, 73–74], and [Roegel 
2011h] for a reconstruction of Viète’s table.

55 �[Viète 1579, 75].
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than as support for astronomy. We shall encounter this “rational trigonometry” 
again in chapter 5.

Before we move on, it is also worth mentioning an unusual small trea-
tise by Nicolaus Raymarus Ursus (1551–1600), a German astronomer known 
primarily for his rivalry with Tycho Brahe over priority to the geoheliocen-
tric system for the motions of the planets. The work in which he propounded 
this model, his 1588 Fundamentum astronomicum,56 also contains some com-
putational mathematics, including discussions of the computation of sine 
tables. Here he refers, not entirely clearly, to a method developed by his teacher 
Joost Bürgi involving finite differences, which we shall discuss later.57 The 
method Ursus describes for finding sin 1′ is similar to those we have seen 
before. However, once he has it, he uses the identity

	 2 sin(A − x) cos x − sin A = sin(A − 2x)	 (1.11)

cleverly to fill in the remaining entries: starting with A = 90° and x = 1′ and 
the knowledge of sin 90° and sin 89°59′, he uses it to calculate sin 89°58′; and 
by decreasing A again and again by one minute, he is able to calculate the 
sines of 89°57′, 89°56′, and so forth.58 We shall see identities used in this way 
again, in chapter 3.

Meanwhile, Rheticus had died in 1574, but the massive tables of the Opus 
palatinum were finally published in 1596 by Valentin Otho. We have already 
described these tables elsewhere.59 The 700-page tables, the largest ever com-
piled up to that time, contain all six of the standard trigonometric functions. 
Computed for every 10˝ of arc to ten decimal places, they constitute one of 
the most intensive computational efforts in human history. However, the meth-
ods Rheticus used, although inventive, did not extend beyond the approxi-
mation methods we have seen in this section. In fact, in figure 1.10 we see 
that Rheticus encountered the same difficulties with numerically sensitive 
trigonometric values that plagued almost all of his colleagues. The errors in 
Rheticus’s tables were noticed by Romanus60 and repaired by Pitiscus in 1607. 
Six years later Pitiscus would release Thesaurus mathematicus, an even more 
precise set of tables based on some of Rheticus’s unpublished calculations.61

56 �[Ursus 1588]. On sine tables, see especially the second of the seven chapters.
57 �See [Delambre 1821, vol. 1, 289–291, 299–301].
58 �See an account in [Delambre 1821, vol. 1, 306–307].
59 �See [Van Brummelen 2009, 273–282]. Since then a recomputation of the entire set of tables 

has appeared ([Roegel 2011e]).
60 �See [Bockstaele 1992] for a Latin edition of the passage and a modern account of Romanus’s 

criticism.
61 �See the description in [Van Brummelen 2009, 281–282]. Since then [Roegel 2011c] has given a 

recomputation.
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Algebraic Gems by Viète

A tantalizing hint suggests that Rheticus was dissatisfied with existing meth-
ods for the construction of sine tables; he may have been aware that the 3m/2n° 
barrier could be broken by solving an appropriate cubic equation as al-Kāshī 
had done (unbeknownst to Rheticus) just over a century earlier. Rheticus vis-
ited Gerolamo Cardano in 1545, the year Cardano published his solution to 
the cubic in his Ars Magna, “hoping it would be of some use to me in grap-
pling with the science of triangles.”62 But he was sent away empty handed, 
and the Opus palatinum contains no hint of the use of a cubic equation. Its 
accomplishment, then, owes as much to industry as it does to creativity.

On the other hand, François Viète managed to make the transition to the 
algebraic problem, showed how to solve the relevant equations, and described 
how they could be used to generate sine tables—but he seems never to have 
implemented the solution. His methods appear in Ad angularium sectionum 
analyticen, published by Alexander Anderson in 1615 more than a decade 
after Viète’s death.63 The key to the solution comes early in this work where 
Viète determines recurrence relations for sin nθ and cos nθ.

Text 1.3
Viète, Finding a Recurrence Relation for sin nθ
(from Ad angularium sectionum analyticen)

Theorem IIII: If beginning as a point on the circumference of a circle any num-
ber of equal segments are laid off and straight lines are drawn [from the be-
ginning point] to the individual points marking the segments, as the shortest 
is to the one next to it, so any of the others above the shortest will be [to] the 
sum of the two nearest to it.

[A geometric proof follows.]
(After Theorem VII:) Cut the circumference of a circle into a number of 

equal parts beginning at any assumed point and from it draw straight lines to 
the ends of the equal arcs. Let the shortest of these lines be Z and the next 
shortest B. Hence, from Theorem IIII, the first is to the second as the second 
is to the sum of the first and the third. The third, therefore, will be (B2 − Z2) / Z. 
By the same method used in the preceding [theorem],

the fourth will be 
B3 − 2Z 2B

Z 2

62 �[Danielson 2006, 121].
63 �See [Viète 1615]; it also appears as “Theoremata ad sectiones angulares” in [Viète 1646]. See 

[Viète (Witmer) 1983, 418–450] for a translation.
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the fifth will be 
B4 − 3Z 2B2 + Z 4

Z 3

. . .

the tenth will be 
B9 − 8Z 2 + 21Z 4B5 − 20Z 6B3 + 5Z8B

Z8 .64

Figure 1.13 
Viète’s diagram for the sine multiple-angle recurrence relation 
(simplified). The dashed lines are used in our explanation but do not 
appear in Viète’s figure.

C

B

A

D

E

H

Explanation: (See figure 1.13.) First, we must understand Viète’s notation. 
Arcs AB , BC ,CD , and DE  are all equal; it is understood that AH has been 
divided into arbitrarily many arcs. AH is a diameter, which implies that the 
triangles ABH, ACH, and so forth are all right angled. Let θ be the angles 
∠AHB, ∠BHC, ∠CHD, and ∠DHE; by Elements III.20, they are equal to half 
the posited arcs AB , BC,  and so on. Then (assuming we are in a unit circle) 

64 �[Viète (Witmer) 1983, 426, 435–436]. Viète’s algebraic notation in the original differs somewhat  

from Witmer’s transcription; for instance, (B2−Z2)/Z is rendered as 

Bq.
−Zq.

Z
.
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chord Z = AB is equal to 2 sin θ while chord B = AC is equal to 2 sin 2θ. Viète 
asserts that

	
Z

B
= D

C + E
, 	 (1.12)

where D is the second-longest chord in the diagram, C is the third longest, and 
E is the longest. In modern notation, this turns out to be equivalent to the re-
currence relation

	 sinθ
sin2θ

=
sin(n − 1)θ

sin(n − 2)θ + sinnθ
. 	 (1.13)

Viète also determines a recurrence relation for cosines:

	
1

2cosθ
=

cos(n − 1)θ
cos(n − 2)θ + cosnθ

. 	 (1.14)

By increasing n successively by one and solving for sin nθ each time, Viète is 
able to generate formulas for sin nθ for any n, including an equivalent to the 
sine triple-angle formula used by al-Kāshī.65

Viète compiles a table of the coefficients in the formulas for cos nθ, going 
as far as n = 21.66 Clearly, this would have been virtually impossible without 
his symbolic notation.

Was Viète simply showing off by deriving higher and higher multiple-
angle formulas in this way? Perhaps. Certainly, he could hardly have illus-
trated more effectively the power of combining symbolic algebra with trigo-
nometry; higher-order formulas beyond the triple-angle formula had not been 
discovered anywhere else, even in the Islamic world. But there was more to 
it than demonstrating his prowess. He reveals at least part of his intent at the 
end of Ad angularium sectionum analyticen: to find a precise value for sin 1′ 
in order to construct a table of sines. He begins with a value for sin 18°, which 
is a value that one can compute using geometric theorems. From it, Viète ap-
plies his sine quintuple-angle formula, generating sin 3°36′. This requires 
solving a quintic equation, which Viète does not explain how to do; however, 

65 �It came to light in the nineteenth century that Joost Bürgi had followed a similar algebraic 
path; see [Wolf 1872–1876, 7–28; 1890, vol. 1, 169–175] and [von Braunmühl 1900/1903, vol. 
1, 205–208] for accounts and [Roegel 2010a, 5–7] for a discussion of his sine table. Unfortu-
nately, Bürgi’s failure to publish rendered his work a dead end.

66 �Viète also derives equivalents to multiple-angle sine and cosine formulas up to n = 5 in Propo-
sitions 48–51 of his Ad logisticem speciosam notae priores, published in 1631 with notes by 
Jean de Beaugrand; it is the second treatise in [Viète (van Schooten) 1646]. For an English 
translation see [Viète (Witmer) 1983, 72–74]; for a French translation see [Ritter 1868, 245–
276]. Witmer remarks (pp. 6–7) that Viète comes close to, but does not quite arrive at, general 
expressions for cos nθ and sin nθ.
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in another work he had shown how to approximate solutions to polynomial 
equations.67 Likewise, using the sine triple-angle formula (and solving a cubic), 
we may move from sin 60° to sin 20°. Trisect again to get sin 6°40′; then bi-
sect to get sin 3°20′. Apply the sine difference law to 3°36′ and 3°20′ to get 
sin 16′; finally, bisect four times, and we have sin 1′.68 Viète never did imple-
ment this method, but three decades later Henry Briggs would exploit it in 
the construction of massive trigonometric tables in his Trigonometria 
Britannica.

We are not yet finished with Viète’s algebra. Before applying his multiple-
angle formulas to sine tables in the Ad angularium, Viète shows how one 
may work sometimes in the other direction using trigonometry to solve prob
lems in algebra. His most spectacular example is his 1595 Ad problema quod 
omnibus mathematicis totius orbis construendum proposuit Adrianus Rom-
anus.69 This dramatic story begins two years earlier. In 1593 Romanus had 
proposed to the world an apparently unsolvable problem, to find roots of the 
45th-degree equation

45x − 3795x3 + 95634x5 − 1138500x7 + 7811375x9 − 34512075x11

	 + 105306075x13 − 232676280x15 + 384942375x17 − 488494125x19

	 + 483841800x21 − 378658800x23 + 236030652x25 − 117679100x27

	 + 46955700x29 − 14945040x31 + 3764565x33 − 740259x35 + 111150x37

	 −12300x39 + 945x41 − 41x43 + x45 = K.	 (1.15)

A quick examination reveals that this is no ordinary 45th-degree polynomial; 
for instance, all the powers of x are odd. However, at first glance it is a mys-
tery how, when presented this problem by a Dutch ambassador through the 
king of France, Viète was able to come up with one solution almost immedi-
ately, and 22 others by the next day.

67 �De numerosa potestatum purarum [Viète 1600]; also available in [Viète 1646, 163–228]. The 
method for the extraction of roots is based on finding an initial approximation a to the solution 
x of the polynomial, substituting a + b for x in the polynomial, and applying the binomial theo-
rem to expand the result. See also [Goldstine 1977, 66–68].

68 �[Viète 1615, 47]; an English translation is in [Viète (Witmer) 1983, 450].
69 �[Viète 1595]; also available in [Viète 1646, 305–324]. Our account is based on [Viète (Witmer) 1983, 

445n46], a translation of [Viète 1595, folio 12]. Viète deals with these issues in other treatises as 
well, including De aequationum recognitione and Supplementum geometriae, both available 
in [Viète 1646]. Viète’s calculus of triangles, appearing also in Ad logisticen speciosam notae 
priores and Zeteticorum, has drawn attention; some of its calculations are isomorphic to the 
use of arithmetic with complex numbers, although [Glushkov 1977] is careful to point out the 
danger of such “unhistorical analysis”; see also [Itard 1968], [Bekken 2001], and [Reich 1973, 
chapter 3]. Also, [Bachmakova/Slavutin 1977] argue that Viète’s calculations with triangles 
are dedicated to the solution of indeterminate equations.



	 European Trigonometry Comes of Age	 29

We illustrate with a (thankfully) simpler case, an example of the first 
“Theoremation” of Ad problema: the equation 3x − x3 = 1, an example of the 
irreducible (sometimes called “depressed”) cubic ax − x3 = b that Scipione del 
Ferro, Tartaglia, and Gerolamo Cardano had solved several decades earlier. 
Viète recognizes that the form of this cubic equation is related to the sine 
triple-angle formula that he expresses as 3R2x − x3 = R2B, where R is the base 
circle radius, x is the chord subtending angle θ in figure 1.14, and B is the chord 
subtending 3θ. If we are in a unit circle, then we may verify that B = 2 sin 3θ 
and x = 2 sin θ. For our example we have B = 1. This implies that sin3θ = 1

2 . 
Thus 3θ = 30° or 150°, so θ = 10° or 50°. Hence x = 2 sin 10° = 0.347296 or 
x = 2 sin 50° = 1.53208, and Viète has found two of the three roots of the cubic 
equation. (Since Viète can consider only angles between 0 and 180° he can-
not find the third root, which is negative.)

This remarkable use of trigonometry to solve the irreducible cubic can 
be extended to certain polynomials of higher powers using higher multiple-
angle formulas, thereby extending beyond Cardano’s solutions of the cubic 
and quartic equations. Of course, bringing in a sine table to solve a polyno-
mial alters the problem by expanding the set of tools permitted to generate a 
solution. Nevertheless, it is ingenious and, within its parameters, successful. 
One can see now how Viète upheld the honor of French mathematics by solv-
ing the 45th-degree polynomial so quickly: he recognized that it is the result 
of two angle trisections and a quintisection (3 × 3 × 5). He was able to gener-
ate only 23 of the 45 solutions for the same reason that we generated only 
two of the three solutions in our cubic; the other solutions are negative.70

Through this tour de force, Viète had clearly demonstrated the power of 
the new algebra. He ends the treatise, and we end our treatment of Viète’s 
contributions to trigonometry, as follows: “Embrace the new, lovers of knowl-
edge; farewell, and consult the just and the good.”71

70 �[Hollingdale 1984, 135–136] contains an account of how Viète might have gone about solving 
Romanus’s equation.

71 �[Viète 1595, unnumbered folio after folio 13].

Figure 1.14 
Viète’s solution of the irreducible 
cubic equation.
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New Theorems, Plane and Spherical

Complete solutions to all conceivable triangles, both plane and spherical, had 
existed in Europe since Regiomontanus’s De triangulis omnimodis, which re-
mained the dominant textbook for most of the sixteenth century. One might 
wonder, then, what there was left to do. But Regiomontanus’s book was writ-
ten before advances in the mid-sixteenth century made possible certain ways 
to streamline the theory. Primary among these was the advent of the new 
functions, especially the tangent and the secant. Regiomontanus, restricted 
to the sine, cosine (expressed as the sine of the complement of the angle), and 
the versed sine, naturally approached solutions of triangles with only these 
three functions in mind. As the tangent and secant (and their complements) 
gradually established themselves as members of an expanded set of primi-
tive functions, new and more attractive options for solving triangles became 
readily available.

Today, the most well known of the new sixteenth-century formulas is the 
planar Law of Tangents,72

	
a − b
a + b

=
tan  12 (A − B)
tan  12 (A + B)

. 	 (1.16)

Most modern sources assign the first European appearance of this formula 
to Thomas Fincke in proposition X.15 of his 1583 Geometriae rotundi.73 He 
introduces the law to solve triangles where two sides and the included angle 
are known. His first example illustrates how it works. Let a = 21, b = 13,  
and ∠C = 67°22′49″; then 1

2 (a + b) = 17 and 1
2 (a − b) = 4.74 We also know 

that 1
2 (A + B) = 1

2 (180° −C) = 56°1 ′8 3 ′′5 , so by the Law of Tangents, 
1
2 (A − B) = 19°2 ′6 2 ′′4 . Finally, A and B may be found as the sum and differ-
ence of 12 (A + B)  and 12 (A − B)  respectively, namely, 75°45′ and 36°52′11″.

Many other authors picked up the Law of Tangents shortly after its 
appearance in Fincke’s book.75 We find it used for the same purpose in, for 
instance, Christoph Clavius’s 1586 Triangula rectilinea,76 Philip van Lans-
berge’s 1591 Triangulorum geometriae,77 and Viète’s 1593 Variorum de 

72 �The theorem was known in medieval Islam, but (as far we know) it was not transmitted to 
Europe.

73 �[Fincke 1583, 292–293].
74 �Fincke expresses the left side of the Law of Tangents as 

1

2
(a − b) /

1

2
(a + b), which simplifies 

the calculations slightly.
75 �See [Tropfke 1903, vol. 2, 238] for a short discussion.
76 �In an appendix to his edition of Theodosius’s Spherics [Clavius 1586, 328–329].
77 �[Van Lansberge 1591, 162].

(continued...)
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