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1 3% European Trigonometry Comes of Age
(1552-1613)

The subject we know today as trigonometry has a long, complex history that
weaves through several major cultures and more than two millennia. Perhaps
more than any other subject in the modern mathematics curriculum, trigo-
nometry has been shaped, has been reconfigured, and gone through metamor-
phoses several times. Born of needs in ancient astronomy, it has been repur-
posed by many scientific disciplines and worked to serve several cultural and
religious perspectives. It has been a participant, active or passive, in many of
humanity’s most significant scientific pursuits. The tidy, polished package
found in today’s high school and university textbooks camouflages a tangled
story that interacts with many themes in the history of science, often with
implications for some of the most transformative moments in our and other
cultures.

I told the first half of this story in The Mathematics of the Heavens and
the Earth: The Early History of Trigonometry.' This volume narrates the sec-
ond half, but we begin with a brief summary of what went before. Trigonom-
etry began with Greek astronomers such as Hipparchus of Rhodes, who had
constructed geometric models of the motions of the sun and moon that re-
produced qualitatively the phenomena he witnessed in the sky. Converting
these models into tools for prediction of events like eclipses required the trans-
lation of their geometric components into numerical measures. Since these
components were lines and circles, it quickly became necessary to convert
the magnitudes of circular arcs into lengths of line segments and vice versa.
Hence the chord function was formulated,? giving the astronomer the ability
to compute the length of a chord within a circle given the magnitude of the
arc that it spans. The earliest table of chords of which we are aware was con-
structed by Hipparchus; the earliest account of the construction of chord tables
is in Claudius Ptolemy’s Almagest. The mathematical preparation for astron-
omy began with these chords and grew from there. However, since the geo-
metric arena was often the celestial sphere rather than a flat surface, plane
trigonometry was only the beginning. Perhaps already from the time of

!'[Van Brummelen 2009].

2The term “function” has a long and complicated history. Properly speaking, according to the
term’s modern usage, it is an anachronism to refer to functions at all before the modern period.
However, there is an affinity at least between ancient numerical tables and our use of the term:
ancient astronomers found the length of the chord of a given arc by inputting the numerical
value of that arc into a table and treating the value obtained as an output. In this book the word
“function” is used in this loose sense, unless stated otherwise.
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Chapter 1

Hipparchus, astronomers quickly moved from the plane to the sphere, where
much of the most important work was done.

The first major transformation occurred with the complicated and con-
troversial transmission of mathematical astronomy from Greece to India. The
early Indian astronomers’ appropriation of the geometric models of the plan-
ets, much more than a simple transmission of knowledge (but a topic for an-
other book), also extended to many new ways of thinking in trigonometry.
The most obvious effect of the transformation of trigonometry in India is the
introduction of the sine function: a slightly less intuitive quantity from a geo-
metric point of view but a more efficient tool for astronomical computation.
The versed sine followed quickly afterward. The inventions of new mathe-
matical methods to work with these functions, such as iterative solutions to
equations and higher-order interpolation within numerical tables, greatly en-
riched mathematical astronomy. In the fourteenth and fifteenth centuries,
astronomers even employed infinitesimal arguments that we recognize today
as related to calculus to derive several powerful results beneficial to astron-
omy, most famously the Taylor series for the sine and cosine.

The reception and naturalization of trigonometry in medieval Islam is no
less complicated. In the eighth and ninth centuries Indian astronomy found its
way through Persia to Baghdad. As interest grew, a translation movement
brought a fresh crop of Greek texts to Islamic scholars. This produced the curi-
ous circumstance that two approaches to astronomy, both of which contained at
least some trace of Greek origin, were in opposition to each other. The Greek
texts gradually took precedence during the ninth and tenth centuries, but many
of the Indian advances (including the sine and iterative methods) were retained.
Around the end of the tenth century several advances streamlined eastern
Islamic trigonometry. The tangent, invented in the process of sundial construc-
tion, became part of the trigonometric toolkit. New theorems reformulated the
foundations of spherical trigonometry and delivered greater power to both as-
tronomy and astrology. Trigonometry was also applied to new contexts, includ-
ing ritual needs like determining the beginning of the month of Ramadan and
the direction of prayer toward Mecca. Some of the work done on the latter
problem became a standard tool in mathematical geography, bringing trigo-
nometry down from the heavens to the earth for the first time.

From the tenth century onward, Islamic science gradually diversified ac-
cording to cultural subgroups spread across its vast geographical area. The
most prominent division was between eastern Islam and al-Andalus, in what is
now Spain. Andalusian mathematical astronomy retained Indian and Greek
influences, but after AD 1000 it developed without much conversation with the
East. Rather, their knowledge spread northward into Europe, especially through
the Toledan and Alfonsine Tables. Some innovations in trigonometry occurred
in medieval Europe, sometimes through interactions with practical geometry

For general queries contact webmaster@press.princeton.edu.
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and with astronomical instruments. However, the fifteenth century saw the be-
ginning of tremendous growth through the theoretical astronomy of people
such as Giovanni Bianchini (ca. 1410-1469) and Regiomontanus (1436—-1476).
This period set in motion the events that we shall survey in this chapter.

It is a reflection of the richness of the history of trigonometry that after
more than one and a half millennia of years of progress, in the year 1550 the
word itself was still 50 years away from being coined. Indeed, triangles did
not really emerge as the primitive objects of study until Regiomontanus’s De
triangulis omnimodis (“Concerning Triangles of Every Kind”) became popu-
lar in the mid-sixteenth century. This volume’s title, The Doctrine of Trian-
gles, is taken from one of the names that was given to trigonometry in the
sixteenth and seventeenth centuries.

What’s in a Name?

By 1550, the central problem of trigonometry—determining lengths in geo-
metric diagrams from corresponding circular arcs and vice versa—had long
been solved. European astronomers had within their grasp a somewhat com-
pact theory that allowed them to solve every problem that they needed to
solve, both on the plane and on the sphere. Regiomontanus’s De triangulis
omnimodis, written in the fifteenth century but published in 1533, provided
a unified source for the mathematical methods and most (although not quite
all) of the fundamental theorems. Sine tables composed by Regiomontanus
and others provided a straightforward tool for working out the practical cal-
culations. Seemingly, there was not much left to do.

However, there was a great deal left to do. Over the next 50 years, the
mathematical structure and even the basic notions of trigonometry were over-
hauled. New theorems were discovered, and more elegant and efficient ways
of organizing the material were found. By the beginning of the seventeenth
century, new ways to employ the subject, both within science and outside of
it, were being devised with regularity. Even the basic functions, the funda-
mental building blocks of trigonometry, went through multiple reinventions.
By 1613, the subject no longer looked much like Regiomontanus’s De trian-
gulis omnimodis.

We may begin to get a sense of the contrast by comparing basic defini-
tions in the works of two of the dominant figures in the mid-sixteenth century,
Regiomontanus and Rheticus. We start with Regiomontanus’s De triangulis
omnimodis.

3[Regiomontanus 1533]; see also the edition [Regiomontanus 1561]. De triangulis has been
translated in [Regiomontanus (Hughes) 1967]. Finally, see [de Siebenthal 1993, chapter 5, 268—352]
for an account of the mathematics in French.
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Text 1.1
Regiomontanus, Defining the Basic Trigonometric Functions
(from De triangulis omnimodis)

Definitions:

An arc is a part of the circumference of a circle.

The straight line coterminous with the arc is usually called its chord.

When the arc and its chord are bisected, we call that half-chord the right
sine* of the half-arc.

Furthermore, the complement of any arc is the difference between [the arc]
itself and a quadrant.

The complement of an angle is the difference between [the angle] itself and
aright angle.

Book I, Theorem 20: In every right triangle, one of whose acute vertices
becomes the center of a circle and whose [hypotenuse] its radius, the side sub-
tending this acute angle is the right sine of the arc adjacent to that [side and]
opposite the given angle, and the third side of the triangle is equal to the sine
of the complement of the arc.’
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Regiomontanus’s
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functions.

4In Latin, sinum rectum.
3 [Regiomontanus (Hughes) 1967, 31, 59].
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Explanation: In right-angled triangle ABC (figure 1.1), draw a circle centered
at A with radius AB. Draw AK vertically, BC parallel to AK, and BH parallel
to AC; and extend AC to E and BC to D. Several differences between Regio-
montanus’s structure and the modern definition are apparent. Firstly, follow-
ing his predecessors, he defines the trigonometric functions as lengths of line
segments in the diagrams, not as ratios. Secondly, again following convention,
he relies on the ancient Greek chord function by defining the sine BC (sinus
rectus) as half the length of the chord BD. Thirdly, he allows the radius R of
the base circle to be any chosen value. In the De triangulis Regiomontanus at
times uses R =60,000 but at other times uses R=10,000,000. Such large radii
were chosen to avoid having to work with decimal fractions.

Regiomontanus calls the circle’s radius R =AB the sinus totus, a term used
already in medieval Islam that represents the greatest possible sine value. The
right sine of BE is BC; in modern terms, Sin(l/?l\f) = Rsin BE = BC.5 This is
the only function used in most of the De triangulis. What we call the cosine is
called simply the sinus complementi, the sine of the complement of the given
arc. Near the end of the book Regiomontanus uses the versed sine, the sinus
versus EC, the difference between the sinus totus and the sinus rectus. This
function originated in India.

Just like Ptolemy’s Almagest a millennium and a half earlier, the De
triangulis lacks an equivalent to the tangent function. In .28, Regiomonta-
nus describes how to find an angle in a right triangle if the ratio between two
sides is known, a simple but nontrivial process if one does not have a tan-
gent. But Regiomontanus did not have long to wait. In his popular collection
of tables for spherical astronomy, the Tabulae directionum (“Tables of
directions™),” he borrowed several tables from his predecessor Giovanni Bi-
anchini to solve stellar coordinate conversion problems.® One of these tables,
repeatedly borrowed in turn by various successors, was recognized as useful
in many other calculations, hence the name bestowed on it by Regiomonta-
nus, the tabula fecunda (“fruitful table”). Mathematically equivalent to the
tangent, it would become accepted gradually as a full-fledged trigonometric
function on its own.

Regiomontanus was the most frequently quoted trigonometer of the six-
teenth century, and we shall see more of his influence later in this chapter.
His definitions and terms, most of them not original to him but spread by him,
became the foundation of the field. One of his early adopters was Erasmus

®Here and throughout, we capitalize a trigonometric function if it is used with a circle with R# 1.

7See [Van Brummelen 2009, 261-263], as well as [Delambre 1819, 292-293] and [Folkerts 1977,
234-236].

8[Van Brummelen 2018].
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Reinhold (1511-1553), one of the best quantitative astronomers of his genera-
tion. A colleague of Georg Rheticus at the University of Wittenberg, Rein-
hold was one of the first to receive a copy of Copernicus’s work. Reinhold is
most known for his very successful astronomical Prutenic Tables, but more
relevant to us is his posthumous 1554 Tabularum directionum.® This collec-
tion of tables is an expansion of Regiomontanus’s work of the same name and
includes a tangent table (“canon fecundus”) greatly expanded from Regio-
montanus’s. This table gives values to at least seven places for every minute
of arc from 0° to 89° and for every 10 seconds of arc between 89° and 90°
where the values change rapidly from entry to entry.' To give the reader a
sense of calculations in typical astronomical work of the time, we provide a
short passage of his commentary on Copernicus, one of many where Rein-
hold uses his tangent table.

Text 1.2
Reinhold, a Calculation in a Planetary Model Using Sines and Tangents
(from Reinhold’s commentary on Copernicus’s De revolutionibus)

Likewise, because angle FEN is 39°37°38”, therefore in right [triangle] EPL
the remaining angle of LEP [that is, angle ELP] is 50°22"22”; and when EL is
100,000, then LP is 63,779 and PE is 77,021. And now when EL is taken to be
5,943, such that it is half the eccentricity, then LP is 3,790 and EP is 4,577.
And from here, their doubles are DQ =7,580 and EQ=9,154, when EN . . . is
100,000. Therefore, the whole of these, QEN, is 109,154. And with QN taken
to be 10,000,000, then QD is 694,432. And from our table, angle DNQ is
3058721”7.11

Explanation: (See figure 1.2.) In the figure, D is the center of the universe
and E is the center of the topmost eccentric deferent circle.

Reinhold knows that ZFEN =39°37'38” and wants to find ZQND. Firstly,
since ZFEN = ZPEL and ZEPL is a right angle, ZELP =90°—39°37'38" =
50°22722”. Next, in right-angled triangle EPL, Reinhold sets the hypotenuse
R =100,000. This allows him to use his Sine table; he finds LP=Cos ZELP=R
cos ZELP=63779 and PE=Sin LZELP =R sin ZELP=63779. But EL is a
known parameter with value 5,943, so LP and EP are scaled downward to
3,790 and 4,577, adjusting from the hypotenuse of 100,000 assumed by the
Sine table to a hypotenuse of 5,943. Now, the astronomical model assumes
that EL=LD, so the sides of triangle DQF are double those of ALPE, which

°[Reinhold 1554]. The “canon fecundus” may be found on folios 17 through 51.

0The values in the table stray significantly away from the correct ones as the argument ap-
proaches 90° a problem that plagued both medieval Islamic and especially early European
table makers. See the account of Rheticus, Romanus, and Pitiscus in [Van Brummelen 2009,
280-282]. See also the analysis of early European tangent tables in [Pritchard, forthcoming].

' [Nobis/Pastori 2002, 246-247]. Translated from the Latin.
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Figure 1.2

Reinhold’s calculation with a
planetary model using the
tangent.

make DQ=2LP=7,580 and EQ=2EP=9,154. But EN is the radius of the
circle, previously set to 100,000; therefore QEN =109,154. Finally, consider
right triangle NOD. Reinhold’s Canon fecundus uses a radius of 10,000,000,
so he sets QEN (the side adjacent to the angle we seek) equal to that value
rather than 109,154. This requires him to adjust DQ’s value accordingly,
from 7,580 upward to 694,432. He can now look up this value in the Canon
fecundus (figure 1.3); we can see for ourselves that ZOND is between 3°58’
and 3°59".

Clearly the tangent has come a long way from its initial role as a helper to
Bianchini and Regiomontanus in solving stellar coordinate problems. Rein-
hold is now using his Canon fecundus as a general purpose tool for dealing
with arbitrary right triangles.

The approach shared by Regiomontanus and Reinhold, dominant in the
sixteenth century, was opposed by Georg Rheticus (1514-1574). Known as
the man who discovered Copernicus and convinced him to publish his helio-
centric theory, Rheticus hailed from the region of Rhaetia, which overlaps
Austria, Switzerland, and Germany.'? In his mid-twenties he visited Coper-
nicus and became his student; he announced the heliocentric theory in his

12We have already discussed Rheticus and Copernicus in [Van Brummelen 2009, 273-282]. For
more on Rheticus, see [Burmeister 1967-1968] and [Danielson 2006].
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Narratio prima and helped Copernicus bring his De revolutionibus (and sep-
arately its trigonometry under the title De lateribus et angulis triangulorum,
“On the Sides and Angles of Triangles™)' to press.

Rheticus’s accomplishments after Copernicus’s death in 1543 are primar-
ily trigonometric, especially in the design and production of tables. His short
1551 tract Canon doctrinae triangulorum (“Table of the Doctrines of
Triangles™),' consisting of nothing more than a short introductory poem,
14 pages of tables, and a six-page dialogue, seems at first glance unassuming.
But within its pages one finds not only tables of all six trigonometric func-

13 [Copernicus 1542]. For an account of the trigonometry in this treatise (which is not very origi-
nal), see [Swerdlow/Neugebauer 1984, part 1, 99-104]. See also [Rosifska 1983], which argues
that the sine table in this work was computed by Copernicus himself but corrected by Rheticus
based on Regiomontanus’s tables.

4 [Rheticus 1551]. This treatise has an unusual history. Since it was placed on the Index expurga-
torius (and since Rheticus’s later work, the Opus palatinum, rendered it obsolete), it dis-
appeared from view after the sixteenth century. It was rediscovered by Augustus De Morgan in
the mid-nineteenth century. See [De Morgan 1845], [Hunrath 1899], [Archibald 1949b], and
[Archibald 1953]. [Roegel 2011d] contains a recomputation of all of its tables.
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Figure 1.4

Rheticus’s six trigonometric functions.

tions now considered standard (sine, cosine, secant, tangent, cosecant, and
cotangent) but also a completely new and elegant set of terminology to de-
scribe them. Consider three “species” of right triangles (figure 1.4) described
with respect to a given radius R.!"* In the first species the hypotenuse is set
equal to R; in the second, the base; and in the third, the perpendicular. Then:

= in the first species, we have two functions, the perpendicular and
the base (equivalent to Sine and Cosine respectively);

= in the second species, we have the hypotenuse and the
perpendicular (Secant and Tangent); and

= in the third species, we have the hypotenuse and the base
(Cosecant and Cotangent).

When Rheticus solves triangles, circles play no role. Thus, Rheticus’s system
not only defines all six trigonometric functions compactly but also divorces
them from circular arcs: the arguments are now simply angles within the tri-
angles, as they are today.

Rheticus found posthumous support for his design in the writings of the
possibly the most well-known mathematician of the sixteenth century, Fran-
cois Viete (1540-1603). Viete’s career was in the French civil service—not
mathematics, on which he worked in his spare time. As a Huguenot during a
time of unrest between Catholics and Protestants in France, his position was
often hardly stable. He lived through an authorized massacre of Huguenots
(which claimed the life of his older colleague Peter Ramus) and five years of

51n the Canon doctrinae triangulorum Rheticus sets R=10,000,000; in the Opus palatinum,
R=10,000,000,000.

For general queries contact webmaster@press.princeton.edu.



© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher.
10  Chapter 1

32 FRANCISCI VIETA£I, VNIVERSALIVM INSPECTIONVM
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Figure 1.5
A page from Viete’s Canon mathematicus seu ad triangula (1579),
naming the sides and angles of a right triangle.

banishment from Paris, during which he worked on his mathematics. His in-
terests were diverse, including astronomy and cryptography; but today he is
recognized most for his contributions to the revolution of symbolic algebra,
especially his In artem analyticam isagoge.'®

While Viete’s role in transforming algebra was fundamental, he was also
deeply involved in the evolution of trigonometry. His first mathematical work,
Canon mathematicus seu ad triangula (“Mathematical Canon, or On Trian-

1o For editions and translations of Viete’s mathematical treatises, see [Viete 1646; 1983] and
[Viete/Girard/de Beaune 1986]; [van Egmond 1985] is a catalog of his works. None of these
books contains Canon mathematicus seu ad triangula [Viete 1579], which occupies our atten-
tion here. See also [Ritter 1895] and [Reich/Gericke 1973]; the latter contains accounts of
several of Viete’s works in algebra. The secondary literature on Viéte’s role in the transforma-
tion of algebra is too large to be summarized here.
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Hypotenusa Perpendiculum Basis
. | Totus Sinus Anguli, vel Sinus anguli Reliqui,
Peripheriae (sine) seu Residuae

peripheriae (cosine)

IIl. | Hypotenusa Faecundus Anguli, vel Totus
Faecundi Anguli, vel Peripheriae (tangent)
Peripheriae (secant)

lll. | Hypotenusa Totus Faecundus anguli
Faecundi anguli Reliqui, vel Residuae
Reliqui, vel Residuae peripheriae (cotangent)

peripheriae (cosecant)

Figure 1.6

Viete’s nomenclature for the six trigonometric functions, taken from page 16 of
Universalium inspectionum of his Canon mathematicus seu ad triangula. The Roman
numerals on the left refer to Rheticus’s triangle species.

gles,” 1579),"7 is an unusual volume—as close as it comes to being a coffee
table book on trigonometry. For instance, the first page of text (figure 1.5) lays
out the names of the sides and angles of a right-angled triangle with an eye
to filling the page in a pleasing way. The book begins with a set of trigono-
metric tables designed according to the methods of Rheticus’s Canon doctri-
nae triangulorum, with all six functions grouped according to the three tri-
angle species we saw in figure 1.4. Although his names for the various
functions often vary (see figure 1.6) and borrow the term fecunda from Re-
giomontanus, the structure clearly imitates that of Rheticus.'®

Most of Viete’s colleagues and contemporaries, however, were content to
stick with the language of Regiomontanus.' For instance, only eight years after
the De triangulis omnimodis was published, the great German astronomical

17See [Viete 1579], [Hunrath 1899], and [Rosenfeld 1988, 24-27]. See also [Roegel 2011g] for a
recomputation of the tables.

18 See page 16 of the Universalium inspectionum within [Viete 1579], and [Ritter 1895, 40]. Victe
applies the term fecunda to several quantities.

19[Von Braunmiihl 1900/1903, vol. 1, 183] suggests that Vite’s unique notation here and else-
where, brilliant as it was, may have contributed to his colleagues’ lack of appetite for his trigo-
nometric inventions. But Rheticus and Viéte were not without followers; Adrianus Romanus’s
Canon triangulorum [Romanus 1609], for instance, adopts some of Viéte’s structure and ter-
minology, including the terms “transsinuousae” for the secant and “prosinus” for the tangent
(even though the standard terms are on the title page).

For general queries contact webmaster@press.princeton.edu.



12

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher.
Chapter 1

and geographical instrument maker Peter Apian (1495-1552)* had followed
with his 1541 Instrumentum sinuum seu primi mobilis, a well-known treatise
on trigonometric instruments and their use in solving various astronomical
problems, which we shall consider later. Apian uses names that would have
been familiar to Regiomontanus and his colleagues: the sinus rectus primus
for the sine and the sinus rectus secundus for the cosine.?! There is no refer-
ence to Regiomontanus’s tabula fecunda or indeed to anything resembling a
tangent function.

Apian’s traditional names for the sine and cosine are found again in the
1558 collection of works on spherical astronomy?? by Francesco Maurolico
(1494-1575). A Sicilian priest, Maurolico held a variety of civil positions over
the course of his life, including master of the mint, and was eventually ap-
pointed professor at the University of Messina. He was active in a wide vari-
ety of areas of mathematics and science, including optics and music; within
astronomy he was especially prolific in spherical astronomy and edited sev-
eral Greek works on the subject. Although he does not define the tangent and
cotangent directly in his book on spherics, they do appear as umbra versa
and umbra recta in Book II, Proposition 30,2 as they often had before. These
terms derive from ancient and medieval references to “shadows” in sundials,
and Maurolico himself defines the umbra versa and umbra recta in this way
in his astronomical treatise De sphaera, a work infamous for his vicious con-
demnation of Copernicus.?* However, as we noted earlier, it was not from the
umbra versa and umbra recta that the modern tangent and cotangent evolved.

We do find one innovation in Maurolico’s work on spherics. Near the end
he describes a new table as follows: “In imitation of the tabula fecunda of
Johannes Regiomontanus, we made another table which we have named
benefica, because certain calculations become easy by means of this table.”?

20For a general introduction to Apian’s mathematics see [Kaunzner 1997]; for his trigonometry
see [Folkerts 1997].

2I'See the third page of the first section of [Apian 1541), Instrumentum hoc primi mobilis
componere.

22 [Maurolico 1558] (on which see [Moscheo 1992] on editorial issues) includes Latin editions of
Theodosius’s Spherics, Menelaus’s Spherics, Autolycus’s Spherics, Theodosius’s De habilita-
tionibus, and Euclid’s Phenomena as well as several small trigonometric tables (sine, tabula
fecunda, tabula benefica, and declinations and ascensions) and a Compendium mathematicae.
On Maurolico’s sources for his edition of Menelaus, see [Taha/Pinel 1997] or [Taha/Pinel
2001]. See also [Napoli 1876] for an edition of Maurolico’s Geometricarum quaestionum.
[Rose 1975, 159—-184] is a good account of Maurolico’s life and work.

23 [Maurolico 1558, f. 58].

%4 De sphaera is the first of a number of short treatises in Opuscula mathematica, [Maurolico
1575]; the definitions of umbra versa and umbra recta may be found on page 13. For Mauroli-
co’s attack on Copernicus, see [Rosen 1957].

25 [Maurolico 1558, f. 60], Demonstratio tabulae beneficae.
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Maurolico’s new table introduces what today we call the secant.?® A short table
at the end of the book?’ gives secant values, with R=100,000, for integer ar-
guments from 1° to 89°. Rheticus, of course, had already published tables of
all six trigonometric functions seven years earlier in his Canon doctrinae tri-
angulorum. But he had used his own unique terms and definitions, which
make no appearance in Maurolico’s work.?® Instead, consider Maurolico’s fig-
ure 1.7: within right triangle ABC, segment BD is perpendicular to AC. Set
AB equal to R=100,000. Then, given A at the top of the diagram, we may
find BD from a table of sines, BC from the tabula fecunda, and AC from the
tabula benefica.

It took another quarter century for the tabula fecunda and tabula benefica
to take on their modern names of tangent and secant in Danish scholar Thomas
Fincke’s (1561-1656) Geometriae rotundi (“Geometry of Circles and
Spheres”).? Still a 22-year-old student in 1583 at its publication, Fincke
switched to the study of medicine that same year. Over the course of his very
long career, he held professorial positions in medicine, rhetoric, and mathe-
matics and held a number of senior administrative posts (including rector and

26 Copernicus composed a table of secants by hand, but it was never published. See [Glowatzki/
Gottsche 1990, 190-192]. For an analysis of Maurolico’s table, see [Van Brummelen/Byrne,
forthcoming].

?TFolio 66. As we shall see later, a controversy arose over whether Maurolico’s table owed an
unpaid debt to Rheticus.

28 Here we differ from von Braunmuhl’s opinion that Maurolico was following Rheticus; see [von
Braunmiihl 1900/1903, 1, 150-151].

2 [Fincke 1583]. De Morgan first makes this identification in [De Morgan 1846]. See [Schénbeck
2004] for a detailed account of Fincke’s life and a summary of the Geometriae rotundi.
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‘22, Tangenseit dterminoperipheria alteroperpends-
cularss in radium extra per religuum terminum conti-
nuatum. - .
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Figure 1.8
Defining the tangent in Fincke’s Geometria rotundi.

dean of the medical school for over half a century) at the University of Co-
penhagen. But the Geometriae rotundi remains his most enduring legacy. In-
spired by Peter Ramus’s 1569 Geometria, in a way the book is a step back to
an older time, with its emphasis on the ancient spherical Menelaus’s theorem.
However, it was found to be extremely clear and readable, and it was spoken
of highly for several decades.

One of the Geometriae rotundi’s most lasting contributions was its cre-
ative use of language to simplify the presentation. Among his innovations
were the inventions of the names “fangens” and “secans” for the tangent and
secant functions respectively. In Proposition V.22 (figure 1.8), Fincke takes a
semicircle of given radius, draws a vertical tangent from its rightmost point,
and extends a diagonal at a given angle from center O until it touches the tan-
gent line at /. Then the length of A/, naturally, is the “tangent” of that angle.
A few propositions later (V.27), Fincke calls OI the secant since it crosses
the circle’s edge.!

The new names were instantly popular among Fincke’s colleagues; they
are found already three years later in Christoph Clavius’s 1586 edition of The-

30See [Van Brummelen 2009, 56—-61].
31 [Fincke 1583, 73-74, 76].
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Figure 1.9

Fincke’s expression of the relation cos c=cot A cot B for a right-angled spherical
triangle, Geometria rotundi XIV.17. Book XIV contains the earliest appearances
of the abbreviations “sin,” “tang,” and “sec”; the first two can be seen here.

odosius’s Spherics®* as well as in Antonio Magini’s 1592 De planis triangu-
lis (which also contains the terms fangens secunda and secans secunda for
cotangent and cosecant, paralleling the earlier usages of sinus primus and
sinus secundus for sine and cosine), among other works.** The abbreviations
for the words varied from one author to the next; well into the seventeenth
century they had not yet become standardized. Francois Viete himself ob-
jected to the new terms, arguing that they could be too easily confused with
other ways that the terms are used in geometry.>* But in this case at least,
Viete’s opinion did not transform into practice.

32 [Clavius 1586]. In addition to Theodosius’s Spherics, the book contains tables of tangents and
secants (in which the name benefica also appears) and trigonometric treatises by Clavius
himself.

33 [Magini 1592]. [Cajori 1928-1929, vol. 2, 150-151] also refers to the use of these terms by
Brahe, Lansberg, Blundeville, and Pitiscus.

34 [Viete 1593, the third folio numbered 38] (“Immo vero artem confundunt, cum his vocibus
necessae habeat uti Geometra abs relatione”); see also [Cajori 1928-1929, vol. 2, 150].
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Book XIV, concluding Fincke’s Geometriae rotundi with some spherical
trigonometric results, contains a significant notational development. Perhaps
due to the length of text that would otherwise be required to state these theo-
rems, Fincke abbreviates the trigonometric functions in ways that we recog-
nize today. Here we find for the first time “sin.” for sine; “tan.” and “tang.”
for tangent; “sec.” for secant; and “‘sin. comp.” or “sin. compl.” for cosine (and
similarly for cotangent and cosecant). In figure 1.9, for instance, we see
Fincke’s expression of the relation “R is to Cos ia as Tan a is to Cot i’ in the
right-angled spherical triangle at the bottom of the diagram, equivalent to our
cos c=cot A cot B.

Trigonometric Tables Evolving

Until machines took over the world of computation, numerical tables were
how trigonometry was used in the sciences, surveying, and navigation. Hip-
parchus’s invention of the trigonometric table to convert geometric statements
into quantitative results was to extend far beyond his predictions of eclipses.
In turn, the need for easily computed, yet accurate tables was the motive
behind many of the theorems that are now taught in school. The basic for-
mulas of plane trigonometry—for instance, the sine and cosine sum and dif-
ference laws and the half-angle formulas—were invented to simplify compu-
tations of tables.>> And as we just saw, the tangent and the secant functions
were introduced in Europe not as functions but as tables (the tabula fecunda
and tabula benefica).

The late sixteenth century saw a spectacular rise in the production of trig-
onometric tables in terms of both the industry required to generate them and
the quality of the results.>® Almost every author participated in the table-
making process (see figure 1.10); composing a table was a major part of what
it meant to be a practitioner of the doctrine of triangles. Dealing with frac-
tional quantities outside of the astronomers’ traditional sexagesimal (base 60)
arithmetic was not in the standard toolbox until late in the sixteenth century;
table makers usually got around this problem by using a base circle radius
equal to some large power of ten.’” Then, they could represent Sines, Cosines,
and so on as large whole numbers.

¥ See [Van Brummelen 2009, 41-46, 70-77] for descriptions of trigonometric tables in ancient
Greece and in multiple places elsewhere in the book for discussions of tables in medieval
cultures.

3 See [Glowatzki/Géttsche 1990] for a study of Regiomontanus’s trigonometric tables and those
of his successors.

37 At least one astronomer of the fifteenth century (Giovanni Bianchini) took some early steps
toward decimal fractional notation, including the invention of the decimal point, which we
shall describe shortly.
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Author Work sin | tan | sec R Step size Worst case error
. L 60,000 (sine) 1’ (sine)
v v i
Regiomontanus Tabulae directionum (1490) 100,000 (tangent) 10 (tangent) 4 of 7 decimal places
Apian Introductio geographica (1541) v 100,000 1
. Tractatus Georgii 6,000,000;
v ,000,000; '
Regiomontanus Peurbachii... (1541) 10,000,000 !
Copernicus De lateribus triangulorum (1542) v 10,000,000 1
. Canon doctrinae
v v v 4 i
Rheticus triangulorum (1551) 10,000,000 10 5t of 10 decimal places
4t of 12
1 i
Reinhold Tabularum directionum (1554) v 10,000,000 . decimal p!aces
(10" after 89°) (for 890595t of
11 places)
7t of 7 decimal places
Maurolico Theodosii sphaericorum (1558) v v v 100,000 10 (for 89°59: 6t"of 9
places)
Canon mathematicus seu
. v vl ' .
Viete ad triangula (1579) 100,000.000 1 9% of 9 decimal places
Bressieu Metrices astronomicae (1581) v | v | v |60 (three sexagesimal 10 31of 4 sexagesimal
places) places
Fincke Geometriae rotundi (1583) v vV 10,000,000 v 5"of 11 decimal
places
7tof 15 decimal places
Rheticus/Otho Opus palatinum (1596) v v | v 10,000,000,000 10” (for 89°59":9t of
14 places)
Pitiscus Trigonometriae (1600) v v | v 100,000 1 5% of 9 decimal places
Canon triangulorum
v v v 4 i
Van Roomen sphaericorum (1607) 1,000,000,000 10 6" of 12 decimal places
Pitiscus (Rheticus) Thesaurus mathematicus (1613) v 1,000,000,000,000,000 10"

Figure 1.10

Trigonometric tables from Regiomontanus to the eve of logarithms.

A quick examination of figure 1.10 reveals several noteworthy facts.
Firstly, it took almost no time for the tangent and the secant functions, under
various names, to be accepted and tabulated along with the sine.*® Secondly,
the increments between the arguments became smaller and smaller, achiev-
ing more accuracy at the cost of increased labor; the standard increment soon
became 1” or even smaller. Finally, often unaware of it, all authors struggled
with the entries of a trigonometric table that are most difficult to compute ac-
curately: namely, values for the tangent and secant where the argument ap-
proaches 90°. These values were often calculated by dividing by a very small
quantity such as the cosine of an angle near 90°.3° Small rounding errors in

3 In spherical trigonometry the function arcsin (sin x sin y). had currency through the sixteenth
century and was often tabulated; see [Van Brummelen 2009, 263] on Regiomontanus’s table
and [Glowatski/Gottsche 1990, 197-207] for a summary.

% See [Pritchard, forthcoming].
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the cosine values were thus magnified and became much larger errors in the
tangent and secant values.*

Several sixteenth-century European authors discussed their methods for
computing sines.*! Usually their methods did not go much beyond what one
finds already in the chord table in Ptolemy’s Almagest along with those de-
veloped in early Islam and transmitted to Europe through al-Andalus. A typi-
cal early sixteenth-century text is Regiomontanus’s Compositio tabularum
sinuum rectorum, published 65 years after his death in 1541.*> Regiomonta-
nus begins this work simply by stating that one can find the Sine of the com-
plement of an arc whose Sine is known, using the Pythagorean Theorem:

sin(90° — 0) = ,/R? — Sin?6. (L.1)

He then determines the Sines of the kardajas, namely, the multiples of 15°
which can be obtained from the Sines of 30°, 45° and 60°, a simple geomet-
ric argument deriving the Sine of 15°, and (1.1).** This results in a small table
of sines, listed in the order of their computation rather than in increasing order,
with R=600,000,000:

Arcus Sinus

90 600000000
30 300000000
60 519615242
45 424264069
15 155291427
75 579555496

40We have already discussed this problem with respect to Rheticus’s tables in the Opus palati-
num, their identification by Adriaan van Roomen, and the repairs to the table made by Pitiscus;
see [Van Brummelen 2009, 280-282]. For the secant function, the alternative method
sec’0=1+tan’0 was much less prone to error (assuming one has an accurate tangent table) and
used occasionally; see [ Van Brummelen/Byrne, forthcoming].

4 Occasionally they also discussed the computation of tangents and secants but usually only
briefly and simply.

4 Published as an appendix to [Peurbach 1541]; [Glowatzki/Géttsche 1990, 11-24] contains a
reproduction of the manuscript and a translation to German. This is not the earliest sixteenth-
century publication describing the calculation of a sine table; Peter Apian’s Introductio geo-
graphica (1533) contains both a sine table (reprinted a year later in his Instrumentum sinuum
seu primi mobilis) and a description. See [Folkerts 1997, 225-226] for a brief account. The
Instrumentum sinuum seu primi mobilis also contains a small table of arc sines, the earliest
such table of which I am aware with clearly trigonometric intent. An early description of the
construction of a sine table, using similar methods and almost contemporaneous with Regio-
montanus, may be found in Oronce Fine’s 1542 De sinibus; see [Ross 1977].

4 The kardajas, from the Persian for “sections,” are found in medieval India, Islam, and Europe.
For a modern account of this and the following proposition, see [Zeller 1944, 33-34].
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Figure 1.11 G
Regiomontanus’s calculation of the
length of a side of a regular 15-gon.

Proposition 3 gives

1R Sin6
Sin@ Vers 260’

(1.2)

an equivalent to the Sine half-angle formula. This gives Regiomontanus all
the tools he needs to find the Sines of all the multiples of 3°45’, which he
promptly does, in a table similar in form to the above. Proposition 4 uses
constructions of the regular pentagon and decagon inscribed in a circle, as
Ptolemy and many others had done, to determine the values of a couple of
more difficult Sines.** For instance, since the side of the inscribed penta-
gon is equal to the chord of a 72° arc, half of the side of the pentagon is the
Sine of 36°. Once these values are known, proposition 5 allows Regiomon-
tanus to find the length of a side of a regular 15-gon inscribed in a circle,
as follows (figure 1.11): in a quadrant of radius R, let AD=30° and AE =54°.
Then EI=EG —1G = Sin 54° — Sin 30° = Sin(90° — 36°) — Sin 30° and ID =
DH — HI=Sin 60°—Sin 36°, so we can calculate a value for ED = \/EI* + ID?.
But ED = 24° is one side of the regular 15-gon, so 4 ED = Sin 12°. Now that
we have a value for Sin 12°, apply the half-angle formula four times to get
Sin 45”. Once Regiomontanus has this value under his belt, he needs only
time, patience, and the Sine sum and difference laws to find the Sines of all
multiples of 45’

But all of this work is only a precursor to the most challenging problem
in the calculation of Sine tables, namely that of finding the Sine values of
multiples not of 45" but of 1° (or 1). The only Sines that can be found using

44 See [Van Brummelen 2009, 72-74].
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Figure 1.12
Regiomontanus’s method to calculate G
Sin 1°. K L M N

geometry alone are those whose arcs can be written in the form 3m/2™ for
whole numbers m and n. To go beyond this set, mathematicians since Ptolemy
had had to find a way somehow to break the bounds of the methods available
to geometry. Regiomontanus proceeds as follows. Within the quadrant, cut
six arcs of 14° each: AB, BC, . . ., FG (figure 1.12); and drop a perpendicular
from G onto AH. Then drop perpendiculars from B, C, D, E, and F to HG.
HI, HK, . ..are then the Sines of the successive multiples of “°, up to
HG =Sinl¥. By a lemma (omitted here, although one can see it is true by
inspection), Regiomontanus knows that HI>IK> . . . > NG. Since he already
knows from his table calculations that HL = Sin% =7,853,773 (in a circle

of radius 600,000,000), he determines

Sin1°= HM = HL + LM <§HL:§Sin% :%(7853773)

=10,471,697. (1.3
Similarly, knowing also that HG = Sin 1{ =15,706,169, he finds
Sin1°=HM=HL+LM>HL+%LG=
Sin%o+%(8in1%0—Sin%0]:10,471,238. (14
The result is a narrow interval containing Sin 1°:
10,471,238 < Sin 1° < 10,471,697. (1.5)
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From here Regiomontanus uses his half-angle formula to obtain®
. 1°
5,235,818 <Sln5<5,236,044. (1.6)

Since he wishes to compute a sine table with R=6,000,000 rather than
600,000,000, Regiomontanus divides by 100, leaving

52,358 < Sin% <52,360, (L7

from which he concludes that Sin-=352,359. Armed with this approxima-
tion, the half-angle formula, the Sine sum and difference laws, and a lot of
patience, he is able to fill in the Sines of all the multiples of ¥4°.4

This technique is an enhancement on the approach used by Ptolemy in
the Almagest, but it is essentially the same idea. Various eastern Arabic en-
hancements of Ptolemy’s procedure from the tenth and eleventh centuries had
generated similar results.*” Curiously, only a few decades before Regiomon-
tanus wrote this treatise but far to the East in Samarqand, Jamshid al-Kasht
had overturned the rules of this problem by introducing algebra and an itera-
tive procedure that allows the determination of Sin 1° to as many places as
one has the patience to calculate. However, his solution was not to find its
way to Europe.*® Even more curiously and much closer to Regiomontanus’s
home, his older colleague Giovanni Bianchini had done something similar,
also with a method capable of generating arbitrary levels of precision, and
we know that Regiomontanus became aware of it at some point.*> However,
there is no trace of anything new on this topic in this work.

The divide over terminology that we saw in the previous section was
about to make a reappearance in the context of tables. Rheticus’s new struc-
ture and his tables for all six trigonometric functions appeared only a decade
after the publication of Regiomontanus’s book, in the 1551 Canon doctrinae
triangulorum. While this latter work eventually became very difficult to find,
clearly the word about it spread through the mathematical community; his
name is mentioned frequently in the late sixteenth century in conjunction with
the new trigonometric functions well before his massive Opus palatinum,

4 These two values are in error in the last two places, but this is about to become irrelevant.

46 Regiomontanus goes on to describe how to enhance the process to work one’s way down to
Sin 1’, which would allow him to build a table with an increment of 1’, but he does not provide
the calculations.

47See [Van Brummelen 2009, 140-145].

48 See [Van Brummelen 2009, 146—149].

4 See [Gerl 1989, 265-268]. A marginal note by Regiomontanus in the margin of the manuscript
Cracow BJ 558 (f.22v) states that Bianchini’s method is superior to Ptolemy’s.
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a full treatment of his trigonometry with gigantic tables, was published in 1596.
In fact, although Maurolico published his table of secants under a different
name (fabula benefica) imitating the style of Regiomontanus in 1558, Thomas
Fincke asserted in his 1583 Geometriae rotundi that Maurolico had simply
taken over Rheticus’s secant table. Magini, in his 1592 De planis triangulis,
defended Maurolico, arguing that he had worked independently of Rheticus.

The question may be resolved by a closer inspection of Maurolico’s table,
which gives the secant for R=100,000 and for every degree up to 89°.%° Since
the secant grows without bound as the argument approaches 90°, the last few
values in any secant table are difficult to compute and are highly sensitive to
rounding errors. For instance, the correct value of Sec 89° is 5,729,869. Mau-
rolico’s value is 5,729,868 while Rheticus’s is 5,729,838.%! Another example:
immediately below Maurolico’s table, he gives a few values of Sec 6 for ar-
guments greater than 89°, one of which (89°30”) has the same argument as
an entry in Rheticus’s table. The correct value of Sec 89°30” is 11,459,301,
Maurolico’s is 11,459,309; Rheticus’s value is 11,459,348. In both cases (and
in others) Maurolico’s value is much more accurate than Rheticus’s. There-
fore, he did not appropriate Rheticus’s table.>

Frangois Viete dealt with the problem of finding Sine values for argu-
ments where geometry alone does not suffice, both early and late in his
career. In his 1579 Canon mathematicus seu ad triangula, he determines
sin 1” as follows.>® Beginning with sin 30°=0.5, he applies the sine half-
angle formula (in the form sin?(8/2)=1vers 0) 11 times in a row. In his
last two iterations he finds

sin2 (45 0 ): 0.000000261455205834 and
256
(225
sin?| Z | =0.000000065363805733. (1.8)

30[Von Braunmiihl 1900/1903, vol. 1, 151-152] reports on the controversy and mentions a
table of secants by Maurolico with arguments up to 45°; this table is mentioned by several
later writers, apparently taking their information from von Braunmiihl. The manuscript in
fact does contain a secant table as described by von Braunmiihl but in two columns, the
first of which ends at 45°. Perhaps von Braunmiihl did not notice the second column and
thus did not have the opportunity to compare the values in the two secant tables for argu-
ments near 90°.

3! This entry cannot be a typographical error since Rheticus’s interpolation column confirms this
value. Since Rheticus’s value for R is larger, it contains two more decimal places, suppressed
here; likewise for the entry for sec 89°30".

2For a full analysis and the background to the controversy, see [Van Brummelen/Byrne,
forthcoming].

3 See [Viete 1579, 62—67]. For the reader’s ease, we have converted Viéte’s calculations to a base
circle of R=1.
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From these values Viéte derives two estimates for sin 1” as follows:

2
sin I’ > \/(%) -0.000000261455205834 = 0.0002908881959 (1.9)

and

2
sin I’ < \/(iizg) -0.000000065363805733 = 0.0002908882056. (1.10)

- (4507
s1n( 256) < 450/256

The former comes from the assertion that T — ; the latter
sin

225
256

inequality—the heart of Viete’s method—goes all the way back to Ptolemy’s

1 225" ; ’ 450" N
Almagest. Now, since 5z is closer to 1” than 33 is, Viete proposes (but

does not carry out in the text) that the final value for Sin 1” should be a weighted
average favoring (1.10) over (1.9). This would resultin Sin 1" = 0.0002908882042,
a value that is completely accurate except for the last decimal place. Decades
later, Viete would invent (but not carry out) a method that applies algebra to
the problem in the spirit of al-Kashi; we shall examine it later in this chapter.

Also in the Canon mathematicus, we find a very large and rather odd
table, the Canonion triangulorum laterum rationalium.>* Within it, Viete pro-
vides 45 pages of over 1,400 Pythagorean triples, scaled so that one of the
three sides of the triangle is exactly equal to 100,000. These triples are or-
dered sequentially so that they can be used as a trigonometric table. Their
values can be quite complicated. For instance, the first entry is

sinl’ . . . .
comes from (7) < 33555z . As impressive as these calculations are, this

19,988,480,000 and 99’99949,942,376,589;
49,942,416,589 49,942,416,589

and in fact, the square root of the sum of the squares of these two numbers is
precisely 100,000. Viete himself states at the end of the Canon mathemati-
cus that the Canonion “is of very little use.”> One wonders, then, why he put
so much effort into it. Perhaps he was concerned about issues of roundoff error
in conventional tables, or he wished not to stray from the realm of pure geom-
etry into approximation, or he thought of this work more as number theory

>4 [Viete 1579], pages numbered separately as pp. 1-45. See also [Tanner 1977] for offshoots of
this work by Torporley and Harriot, [Hutton 1811b, 5-6], [Zeller 1944, 73-74], and [Roegel
2011h] for a reconstruction of Viete’s table.

3 [Viete 1579, 75].
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than as support for astronomy. We shall encounter this “rational trigonometry”
again in chapter 5.

Before we move on, it is also worth mentioning an unusual small trea-
tise by Nicolaus Raymarus Ursus (1551-1600), a German astronomer known
primarily for his rivalry with Tycho Brahe over priority to the geoheliocen-
tric system for the motions of the planets. The work in which he propounded
this model, his 1588 Fundamentum astronomicum,’® also contains some com-
putational mathematics, including discussions of the computation of sine
tables. Here he refers, not entirely clearly, to a method developed by his teacher
Joost Biirgi involving finite differences, which we shall discuss later.’” The
method Ursus describes for finding sin 1” is similar to those we have seen
before. However, once he has it, he uses the identity

2 sin(A —x) cos x—sin A =sin(A —2x) (1.11)

cleverly to fill in the remaining entries: starting with A=90° and x=1" and
the knowledge of sin 90° and sin 89°59’, he uses it to calculate sin 89°58”; and
by decreasing A again and again by one minute, he is able to calculate the
sines of 89°57’, 89°56’, and so forth.>® We shall see identities used in this way
again, in chapter 3.

Meanwhile, Rheticus had died in 1574, but the massive tables of the Opus
palatinum were finally published in 1596 by Valentin Otho. We have already
described these tables elsewhere.” The 700-page tables, the largest ever com-
piled up to that time, contain all six of the standard trigonometric functions.
Computed for every 10” of arc to ten decimal places, they constitute one of
the most intensive computational efforts in human history. However, the meth-
ods Rheticus used, although inventive, did not extend beyond the approxi-
mation methods we have seen in this section. In fact, in figure 1.10 we see
that Rheticus encountered the same difficulties with numerically sensitive
trigonometric values that plagued almost all of his colleagues. The errors in
Rheticus’s tables were noticed by Romanus®® and repaired by Pitiscus in 1607.
Six years later Pitiscus would release Thesaurus mathematicus, an even more
precise set of tables based on some of Rheticus’s unpublished calculations.®!

% [Ursus 1588]. On sine tables, see especially the second of the seven chapters.

37 See [Delambre 1821, vol. 1, 289-291, 299-301].

38 See an account in [Delambre 1821, vol. 1, 306-307].

% See [Van Brummelen 2009, 273-282]. Since then a recomputation of the entire set of tables
has appeared ([Roegel 2011e]).

%0 See [Bockstaele 1992] for a Latin edition of the passage and a modern account of Romanus’s
criticism.

oI See the description in [Van Brummelen 2009, 281-282]. Since then [Roegel 2011¢] has given a
recomputation.
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Algebraic Gems by Viéte

A tantalizing hint suggests that Rheticus was dissatisfied with existing meth-
ods for the construction of sine tables; he may have been aware that the 3m/2"
barrier could be broken by solving an appropriate cubic equation as al-Kashit
had done (unbeknownst to Rheticus) just over a century earlier. Rheticus vis-
ited Gerolamo Cardano in 1545, the year Cardano published his solution to
the cubic in his Ars Magna, “hoping it would be of some use to me in grap-
pling with the science of triangles.”®> But he was sent away empty handed,
and the Opus palatinum contains no hint of the use of a cubic equation. Its
accomplishment, then, owes as much to industry as it does to creativity.

On the other hand, Francois Viete managed to make the transition to the
algebraic problem, showed how to solve the relevant equations, and described
how they could be used to generate sine tables—but he seems never to have
implemented the solution. His methods appear in Ad angularium sectionum
analyticen, published by Alexander Anderson in 1615 more than a decade
after Viete’s death.® The key to the solution comes early in this work where
Viete determines recurrence relations for sin n6 and cos n6.

Text 1.3
Viete, Finding a Recurrence Relation for sin 76
(from Ad angularium sectionum analyticen)

Theorem IIII: If beginning as a point on the circumference of a circle any num-
ber of equal segments are laid off and straight lines are drawn [from the be-
ginning point] to the individual points marking the segments, as the shortest
is to the one next to it, so any of the others above the shortest will be [to] the
sum of the two nearest to it.

[A geometric proof follows.]

(After Theorem VII:) Cut the circumference of a circle into a number of
equal parts beginning at any assumed point and from it draw straight lines to
the ends of the equal arcs. Let the shortest of these lines be Z and the next
shortest B. Hence, from Theorem IIII, the first is to the second as the second
is to the sum of the first and the third. The third, therefore, will be (B>—Z%)/Z.
By the same method used in the preceding [theorem],

B3-27°B

the fourth will be 72

%2 [Danielson 2006, 121].
63 See [Viete 1615]; it also appears as “Theoremata ad sectiones angulares” in [Viete 1646]. See
[Viete (Witmer) 1983, 418—450] for a translation.
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4 372B2+ 74

the fifth will be 73

—82%+21Z*B°>-20Z°B3 +5Z%B o

the tenth will be

ZS

Figure 1.13

Viete’s diagram for the sine multiple-angle recurrence relation
(simplified). The dashed lines are used in our explanation but do not
appear in Viete’s figure.

Explanatlon (See ﬁgure 1.13.) First, we must understand Viete’s notation.
Arcs AB, BC,CD,and DE are all equal; it is understood that AH has been
divided into arbitrarily many arcs. AH is a diameter, which implies that the
triangles ABH, ACH, and so forth are all right angled. Let 8 be the angles
ZAHB, Z/BHC, ZCHD, and ZDHE; by Elements 111.20, they are equal to half
the posited arcs @, BC., , and so on. Then (assuming we are in a unit circle)

%4 [Viete (Witmer) 1983, 426, 435-436]. Viete’s algebraic notation in the original differs somewhat
Bq.

from Witmer’s transcription; for instance, (B>~Z?)/Z is rendered as
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chord Z=AB is equal to 2 sin 8 while chord B=AC is equal to 2 sin 26. Viete
asserts that

Z_ D

B C+E’

(1.12)

where D is the second-longest chord in the diagram, C is the third longest, and
E is the longest. In modern notation, this turns out to be equivalent to the re-
currence relation

sinf sin(n—1) 0 (1.13)
sin20  sin(n—2) 6 +sinnd’

Viete also determines a recurrence relation for cosines:

I cos(n—1)0
2c080 cos(n—2)0 + cosnd’

(1.14)

By increasing n successively by one and solving for sin n6 each time, Viete is
able to generate formulas for sin 76 for any n, including an equivalent to the
sine triple-angle formula used by al-Kashi.®®

Viete compiles a table of the coefficients in the formulas for cos n 6, going
as far as n=21.5¢ Clearly, this would have been virtually impossible without
his symbolic notation.

Was Viete simply showing off by deriving higher and higher multiple-
angle formulas in this way? Perhaps. Certainly, he could hardly have illus-
trated more effectively the power of combining symbolic algebra with trigo-
nometry; higher-order formulas beyond the triple-angle formula had not been
discovered anywhere else, even in the Islamic world. But there was more to
it than demonstrating his prowess. He reveals at least part of his intent at the
end of Ad angularium sectionum analyticen: to find a precise value for sin 1’
in order to construct a table of sines. He begins with a value for sin 18°, which
is a value that one can compute using geometric theorems. From it, Viete ap-
plies his sine quintuple-angle formula, generating sin 3°36". This requires
solving a quintic equation, which Viete does not explain how to do; however,

91t came to light in the nineteenth century that Joost Biirgi had followed a similar algebraic
path; see [Wolf 1872-1876, 7-28; 1890, vol. 1, 169-175] and [von Braunmiihl 1900/1903, vol.
1, 205-208] for accounts and [Roegel 2010a, 5-7] for a discussion of his sine table. Unfortu-
nately, Biirgi’s failure to publish rendered his work a dead end.

% Vigte also derives equivalents to multiple-angle sine and cosine formulas up to n=>5 in Propo-
sitions 48—51 of his Ad logisticem speciosam notae priores, published in 1631 with notes by
Jean de Beaugrand,; it is the second treatise in [Viete (van Schooten) 1646]. For an English
translation see [Viete (Witmer) 1983, 72-74]; for a French translation see [Ritter 1868, 245—
276]. Witmer remarks (pp. 6-7) that Viete comes close to, but does not quite arrive at, general
expressions for cos n6and sin n6.
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in another work he had shown how to approximate solutions to polynomial
equations.®” Likewise, using the sine triple-angle formula (and solving a cubic),
we may move from sin 60° to sin 20°. Trisect again to get sin 6°40"; then bi-
sect to get sin 3°20”. Apply the sine difference law to 3°36" and 3°20’ to get
sin 16’; finally, bisect four times, and we have sin 1’.%% Viete never did imple-
ment this method, but three decades later Henry Briggs would exploit it in
the construction of massive trigonometric tables in his Trigonometria
Britannica.

We are not yet finished with Viete’s algebra. Before applying his multiple-
angle formulas to sine tables in the Ad angularium, Viete shows how one
may work sometimes in the other direction using trigonometry to solve prob-
lems in algebra. His most spectacular example is his 1595 Ad problema quod
omnibus mathematicis totius orbis construendum proposuit Adrianus Rom-
anus.® This dramatic story begins two years earlier. In 1593 Romanus had
proposed to the world an apparently unsolvable problem, to find roots of the
45th-degree equation

45x—3795x3 +95634x° — 1138500x” + 7811375x° — 34512075x"!
+105306075x"3 — 232676280x" +384942375x!7 — 488494125x1°
+483841800x%' — 378658800x% +236030652x% — 117679100x%"
+46955700x2° — 149450403 + 3764565x% — 740259x% + 111150x"
—12300x%° +945x* — 41x¥ +x* =K. (1.15)

A quick examination reveals that this is no ordinary 45th-degree polynomial;
for instance, all the powers of x are odd. However, at first glance it is a mys-
tery how, when presented this problem by a Dutch ambassador through the
king of France, Viete was able to come up with one solution almost immedi-
ately, and 22 others by the next day.

7 De numerosa potestatum purarum [Viete 1600]; also available in [Victe 1646, 163-228]. The
method for the extraction of roots is based on finding an initial approximation a to the solution
x of the polynomial, substituting a + b for x in the polynomial, and applying the binomial theo-
rem to expand the result. See also [Goldstine 1977, 66—68].

%8 [Viete 1615, 47]; an English translation is in [Viete (Witmer) 1983, 450].

9 [Vigte 1595]; also available in [Viete 1646, 305-324]. Our account is based on [ Viete (Witmer) 1983,
445n46], a translation of [Viete 1595, folio 12]. Viete deals with these issues in other treatises as
well, including De aequationum recognitione and Supplementum geometriae, both available
in [Viete 1646]. Viete’s calculus of triangles, appearing also in Ad logisticen speciosam notae
priores and Zeteticorum, has drawn attention; some of its calculations are isomorphic to the
use of arithmetic with complex numbers, although [Glushkov 1977] is careful to point out the
danger of such “unhistorical analysis™; see also [Itard 1968], [Bekken 2001], and [Reich 1973,
chapter 3]. Also, [Bachmakova/Slavutin 1977] argue that Viete’s calculations with triangles
are dedicated to the solution of indeterminate equations.
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Figure 1.14
Viete’s solution of the irreducible
cubic equation.

We illustrate with a (thankfully) simpler case, an example of the first
“Theoremation” of Ad problema: the equation 3x—x*=1, an example of the
irreducible (sometimes called “depressed”) cubic ax—x*= b that Scipione del
Ferro, Tartaglia, and Gerolamo Cardano had solved several decades earlier.
Viete recognizes that the form of this cubic equation is related to the sine
triple-angle formula that he expresses as 3R%x — x> =R?B, where R is the base
circle radius, x is the chord subtending angle €1in figure 1.14, and B is the chord
subtending 36. If we are in a unit circle, then we may verify that B=2 sin 36
and x=2 sin 6. For our example we have B= 1. This implies that sin36 =% .
Thus 36=30° or 150°, so 8=10° or 50°. Hence x=2 sin 10°=0.347296 or
x =2 sin 50°=1.53208, and Viete has found two of the three roots of the cubic
equation. (Since Viete can consider only angles between 0 and 180° he can-
not find the third root, which is negative.)

This remarkable use of trigonometry to solve the irreducible cubic can
be extended to certain polynomials of higher powers using higher multiple-
angle formulas, thereby extending beyond Cardano’s solutions of the cubic
and quartic equations. Of course, bringing in a sine table to solve a polyno-
mial alters the problem by expanding the set of tools permitted to generate a
solution. Nevertheless, it is ingenious and, within its parameters, successful.
One can see now how Viete upheld the honor of French mathematics by solv-
ing the 45th-degree polynomial so quickly: he recognized that it is the result
of two angle trisections and a quintisection (3 X3 x 5). He was able to gener-
ate only 23 of the 45 solutions for the same reason that we generated only
two of the three solutions in our cubic; the other solutions are negative.”

Through this tour de force, Viete had clearly demonstrated the power of
the new algebra. He ends the treatise, and we end our treatment of Viete’s
contributions to trigonometry, as follows: “Embrace the new, lovers of knowl-
edge; farewell, and consult the just and the good.””!

O [Hollingdale 1984, 135-136] contains an account of how Viéte might have gone about solving
Romanus’s equation.
71 [Viete 1595, unnumbered folio after folio 13].
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New Theorems, Plane and Spherical

Complete solutions to all conceivable triangles, both plane and spherical, had
existed in Europe since Regiomontanus’s De triangulis omnimodis, which re-
mained the dominant textbook for most of the sixteenth century. One might
wonder, then, what there was left to do. But Regiomontanus’s book was writ-
ten before advances in the mid-sixteenth century made possible certain ways
to streamline the theory. Primary among these was the advent of the new
functions, especially the tangent and the secant. Regiomontanus, restricted
to the sine, cosine (expressed as the sine of the complement of the angle), and
the versed sine, naturally approached solutions of triangles with only these
three functions in mind. As the tangent and secant (and their complements)
gradually established themselves as members of an expanded set of primi-
tive functions, new and more attractive options for solving triangles became
readily available.

Today, the most well known of the new sixteenth-century formulas is the
planar Law of Tangents,””

a—-b _tan J(A-B)

- , (1.16)
a+b tan J(A+B)

Most modern sources assign the first European appearance of this formula
to Thomas Fincke in proposition X.15 of his 1583 Geometriae rotundi.”* He
introduces the law to solve triangles where two sides and the included angle
are known. His first example illustrates how it works. Let a=21, b=13,
and ZC=67°22'49"; then 1(a+b)=17 and +(a—b)=4."* We also know
that 1(A+ B)=1(180°—-C)=56°18"35", so by the Law of Tangents,
1(A- B)=19°26"24". Finally, A and B may be found as the sum and differ-
ence of $(A+ B) and 1(A - B) respectively, namely, 75°45’ and 36°52’11”.

Many other authors picked up the Law of Tangents shortly after its
appearance in Fincke’s book.”> We find it used for the same purpose in, for
instance, Christoph Clavius’s 1586 Triangula rectilinea,’® Philip van Lans-
berge’s 1591 Triangulorum geometriae,” and Viete’s 1593 Variorum de

2The theorem was known in medieval Islam, but (as far we know) it was not transmitted to
Europe.

73 [Fincke 1583, 292-293]. | |

" Fincke expresses the left side of the Law of Tangents as —(a — b)/—(a + b), which simplifies
the calculations slightly. 2 2

> See [Tropfke 1903, vol. 2, 238] for a short discussion.

76In an appendix to his edition of Theodosius’s Spherics [Clavius 1586, 328-329].

77[Van Lansberge 1591, 162].
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rebus mathematicis responsorum, liber VIII.’® So the theorem was integrated
quickly into the standard corpus of plane trigonometry and has remained there
ever since.

It comes as a mild surprise that the Law of Tangents does not appear di-
rectly in Viete’s earlier Canon mathematicus seu ad triangula (1579), for
that work is full of new identities, most of which have fallen out of common
use today.”” Some of the more interesting of Viete’s new theorems are equiv-
alents in his notation to

tan(45°+ 6/ 2)=2 tan 6+tan(45°—-0/2) (1.17)

and
1 1
secO = 5tan(45°+9/2) + 5tan(45°—9/2). (1.18)

The first allows a tangent table to be computed quickly (using only additions)
once the entries up to an argument of 45° have been found; the second allows
the easy completion of a secant table once a tangent table has been completed.
Others of Viete’s theorems include

a+f  sino-—sinf

- 1.19
2 coso — cos 3 (L19)

cot

and

oa+p . .
tan—" _sino +sinf8

5= —> (1.20)

tan?;?  sina—sinf
with the latter being related to the Law of Tangents. As part of his work on
solving planar oblique triangles, Viete also presents the sine and cosine
difference-to-product identities,

+ —
singt — sinf= 2c0s 2B n &= (1.21)
2 2
and
+ —
cosoc—cosﬂz—Zsina ﬂsinazﬁ. (1.22)

[ Viete 1593, 32].

7 See [Delambre 1821, vol. 2, 19] on the identities useful for computing tables. For a survey of
the new identities in the Canon mathematicus seu ad triangula, see [Ritter 1895, 48-53].

80There are corresponding formulas for the sums of sines and cosines.
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These two equations are close cousins of the product-to-difference (or just
product) identities

singsin f = %[cos(a — B) —cos(a + B)] (1.23)
and
cosocosff= %[cos(a — B)+cos(a + B)], (1.24)

which were of considerable interest. They were studied intensely, first by Jo-
hann Werner in the early sixteenth century and then in the 1580s by Nicolai
Ursus and the group led by Tycho Brahe.®! Their attraction lay in the fact that
they could be used to transform the need to multiply two trigonometric quan-
tities, a tedious process common in spherical trigonometry and astronomy,
into the much easier task of adding or subtracting—essentially the same ben-
efit that would be associated later with logarithms. This became known as
prosthaphairesis; we already discussed its history in the previous volume.%?

Spherical trigonometry also saw its share of new theorems; in fact, the
subject underwent a metamorphosis during the sixteenth century. We begin
where the theory itself begins, with right-angled triangles. The modern treat-
ment reduces to these ten identities:

sin b=tan a cot A sin a=sin A sin ¢
cos c=cot A cot B cos A=sin B cos a
sin a=cot B tan b cos B=cos b sin A
cos A=tan b cot ¢ sin b=sin ¢ sin B
cos B=cotctana COS ¢=C0S a cos b

Many of these results had been known already to ancient and medieval as-
tronomers, especially those in the right column consisting entirely of sines
and cosines. In various forms, some of them may be found buried in texts as
old as Ptolemy’s Almagest, embedded in the language of chords and often
presented within solutions to problems in spherical astronomy. The second
and third identities on the right are known as Geber’s theorem, named after
the twelfth-century Andalusian astronomer. But neither the ancient Greek
nor the medieval eastern Islamic astronomers dealt solely with the triangle as
the fundamental figure of spherical trigonometry; the Greeks worked with
Menelaus’s theorem, and in eastern Islam after the tenth century the emphasis

81'We do not suggest that the later interest in these formulas came from Viéte.
82[Van Brummelen 2009, 264-265].
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was on the Rule of Four Quantities.®? Our ordered list of identities would not
have been familiar to either culture.

The idea of gathering the ten fundamental identities into a unified whole
is first hinted at by Georg Rheticus in a six-page dialogue at the end of his
1551 Canon doctrinae triangulorum.®* Explicitly rejecting both Ptolemy and
Geber, Rheticus claims to have a new approach to spherical trigonometry that
requires knowledge of only ten identities applied to a right triangle. One can
hardly imagine what else he may have meant, other than these. But in this
dialogue, he does not elaborate or even state what they are.

Rheticus’s comprehensive theory of spherical trigonometry would not ap-
pear until 22 years after his death in the 1596 Opus palatinum with Valentin
Otho. In the meantime, several authors had beaten him to publication. The
first was Frangois Viete in his 1579 Canon mathematicus seu ad triangula.
Viete lists all ten of the basic identities in a table as follows:??

Totus Sinus Sinus Sinus Totus Fecundus Fecundus Sinus
I C AB A CB VI C AC B CB
II C AB B AC VII C CB X AC
111 C K A B vilr  C KB CB B
mr cC B B K X C KB AC X
\% C K¢ (B KB X C B X KB

The table may be read as follows. Under “Totus” the C represents the sine
of the right angle at C, in other words, the radius of the base circle. “Sinus”
represents the sine; “fecundus” represents the tangent. A pair of letters repre-
sents the side we would represent by the missing letter (i.e., AB represents c).
A strikethrough represents the complementary function of that quantity.
Each row expresses an equality of ratios. Thus the first row represents

sin90° sinA

sinc  sina
identities; for instance, rows III and IIII are Geber’s Theorem, and row V is
the spherical Pythagorean Theorem. As we shall see, the ten identities exhibit
an extraordinary structure when arranged appropriately, but Viete’s arrange-
ment does not reflect this structure. Viete proceeds to rearrange the identities
in various ways corresponding to his version of Rheticus’s scheme for

or sin a=sin A sin c¢. The other rows give the remaining nine

8 1n two nested right-angled triangles sharing the angles on the bases, the ratio of the sines of the
altitudes is equal to the ratio of the sines of the hypotenuses.

84 [Rheticus 1551, third and fourth pages of the dialogue].

8 [Viete 1579, 36-37].
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grouping right-angled triangles in three species. This results in another 50
mathematically trivial variations of the ten identities. He does not prove any
of them; his interest here (and elsewhere in the Canon) is to present the
theorems compactly and systematically so that the reader may apply them
easily to any triangle problem—provided that Viete’s unique notation is
mastered.

A couple of pages later, Viete presents another table of 60 identities.
The first ten are as follows:

Sinus Sinus Sinus Sinus Sinus Faecundus Faecundus Sinus
I B X KCZ KB VI A B AC AB
11 A B B KB VII B X CB AB
m «¢B X AB AC Vil A CB KB Y. 4%
I X< B AB CB IX B AC KB ZB
\% A CB B AC X CB K B y.q%

The notation is identical to the preceding table, so for instance, the first
identity should be read as sin B/cos A =cos b/cos c. Each of these ten identi-
ties may be derived by solving for the same term in two of the original ten
theorems and setting them equal to each other; for example, this one may be
found by solving for cos a in cos A =sin B cos a and cos c=cos a cos b. Hence
these new results are not particularly interesting here. But Viete’s thorough-
ness occasionally leads him to stumble upon theorems that had had currency
in medieval Islam; for instance, the third identity is cos a/cos b=sin c¢/sin b,
which had appeared three centuries earlier in Nasir al-Din al-TasT’s
thirteenth-century Treatise on the Quadrilateral ¥’

Viete seemed to realize that such a surfeit of formulas could be confus-
ing to the reader. Later, in his 1593 Variorum de rebus mathematicis respon-
sorum, following the textbook writers of the previous decade, he selected and
reported on the identities most useful for solving triangles according to which
of the triangle’s elements are known and which are to be found.3® As we
shall see, the theory was streamlined between 1580 and 1609; Simon Stevin
has been credited with the conclusion that the original ten identities are suf-
ficient for all right triangles in his 1608 book Driehouckhandel.®®

86 [Viete 1579, 40—41]

87See [ Van Brummelen 2009, 190].

88 [Viete 1593, folios 32-35].

8 Within [Stevin 1608a]; a Latin version may be found at the beginning of the first volume of
[Stevin 1608b]; the credit is given in [von Braunmiihl 1900/1903, vol. 1, 227]. Here and else-
where, he and some other writers sometimes refer to six rather than ten identities; this reflects
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As for oblique spherical triangles, many authors continued to treat
them simply by dropping a perpendicular from one of the vertices onto the
opposite side and working with the resulting pair of right triangles, an ap-
proach that would later pay dividends in the age of logarithms. But others
treated oblique triangles directly. The two fundamental results are the Law
of Sines,

sina sinb sinc

—=——=— (1.25)
sinA sinB sinC

and the Law of Cosines,
cos ¢c=cos a cos b+sin a sin b cos C. (1.26)

Both had been stated and proved already in Regiomontanus’s De triangulis
omnimodis.® However, Regiomontanus’s expression of the Law of Cosines
is in a form that might not be recognized immediately today. It refers not to
cosines but rather to versed sines:

vers C 1 127)

vers ¢ — vers(a —b) sinasinb

The Law of Cosines refers to all three sides of the triangle but only one angle.
There is another spherical Law of Cosines, this one referring to three angles
and one side:

cos C=—cos A cos B+sin A sin B cos c. (1.28)

This theorem did not appear in Regiomontanus or anywhere else for some
time; it is stated for the first time in print (but not proven), again in a form
that applies the versed sine rather than the cosine, in IV.16 of Phillipp van
Lansberge’s 1591 Triangulorum geometricae.® It seems that it was known
earlier to Brahe®? and possibly others. In both van Lansberge’s book and in
its next appearance in Viete’s 1593 Variorum de rebus mathematicis respon-
sorum (the latter using cosines rather than versed sines), it is placed in direct

the fact that four of the identities are identical to four others, up to switching the As with the Bs
and the as with the bs.

“The Law of Sines is theorem IV.17, [Regiomontanus (Hughes) 1967, 225-227]; the Law of
Cosines is theorem V.2, [Regiomontanus (Hughes) 1967, 271-275].

°'[Van Lansberge 1591, 196-197]. In later editions it appears as IV.17. Lansberge claims the
theorem as his own and inserts a proof, on which we shall comment shortly, in the second edi-
tion, [van Lansberge 1631, 158-161].

92[Von Braunmiihl 1900, vol. 1, 181] notes its appearance in one of Brahe’s unpublished
manuscripts.
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Figure 1.15

The construction of the polar triangle. For each side S, of the original triangle,
draw the pole P, on the side of S, that contains the interior of the triangle; then join
the P,s.

parallel with the Law of Cosines.”® The earliest proof may be found a couple
of years later, in Pitiscus’s 1595 edition of the Trigonometriae.**

The correspondence between the two Laws of Cosines is no coincidence;
they are linked by a duality relation. If one considers each side of a given
spherical triangle to be an equator and draws the pole of that equator on the
side of the triangle’s interior, then joins the three poles, the resulting polar
triangle has some remarkable properties (figure 1.15). In particular, the polar
triangle of the polar triangle is the original triangle, the sides of the polar tri-
angle are the supplements of the angles of the original, and the angles of the
polar triangle are the supplements of the sides of the original. Applying this

9 [Viete 1593, 36].
94[Zeller 1944, 103].
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latter statement to the Law of Cosines immediately gives the Law of Cosines
for Angles and vice versa.

The polar triangle had been discovered centuries earlier by astronomer
Abu Nasr Mansur ibn ‘Iraq around the turn of the millennium,’ but it (along
with most other trigonometric innovations from eastern Islam) does not seem
to have found its way to Europe. The story of its rediscovery is more compli-
cated. We find something like the polar triangle first in the creative hands of
Francois Viete in his 1593 Variorum de rebus mathematicis responsorum
where he refers somewhat obscurely to sides and angles of triangles being re-
ciprocal.’® Later in the same chapter Viete constructs diagrams of triangles
with great circles connecting all six poles of the three sides of the original
triangle; the polar triangle is one of the triangles in these figures.’” Later in
the same text, Viete gives a series of eight theorems about spherical triangles
that happen to be aligned in four pairs, a theorem along with its dual result
through the polar triangle. This has been taken as evidence that Viete was in
fact using polar triangles as a device to convert theorems to their dual part-
ners. In any case, Viete’s presentation is sufficiently vague that it appears not
to have spread far; until Viete’s work was reexamined much later, credit went
instead to Willebrord Snell.’® The expression of polar triangles in the latter’s
1627 Doctrinae triangulorum canonicae is certainly much clearer and gives
a good sense as to how they can be used.

Text 1.4
Snell on Reciprocal Triangles
(from Doctrinae triangulorum canonicae)

Book III: PROPOSITION 8&: If from the three given angles of the triangles
[taken as] poles, great circles are described, the sides and angles of the trian-
gle will be expressed, [and] the remaining sides and angles are first found
reciprocally.””

9 See [Van Brummelen 2009, 184-185].

% The tenth statement on spherical triangles in [Viete 1593, folio 41], which reads: “Si sub apici-
bus singulia propositi Tripleuri sphaerici describantur maximi circuli, Tripleurum ita descrip-
tum Tripleuri primum propositi lateribus et angulis est reciprocum.”

97 [Viete 1593, folios 42—45]. See an exposition of one of the examples of this section in [Zeller
1944, 83-84].

%8 [Delambre 1819, 478—479] argues that Viete’s words are not sufficiently clear to be certain that
he was referring specifically to the polar triangle; [Ritter 1895, 56] disagrees. [ Von Braunmiihl
1898] and [1900/1903, vol. 1, 182-183] pay special attention to the problem, noting the se-
quence of theorems in polar pairs as evidence. [Tropfke 1923, vol. 5, 125] notes that Viete’s
sparse presentation likely led to the public credit passing to Snell.

% [Snell 1627, 120].
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Figure 1.16

The polar triangle in
Snell’s Doctrinae
triangulorum
canonicae.

Explanation: (See figure 1.16) The diagram represents a sphere; the original
triangle is aei. Snell instructs us to draw the equator sdy with pole a; equator
rfl with pole e; and equator tdgb with pole i. Snell’s construction is a little dif-
ferent than how it is usually done today; it begins by considering the poles of
the original triangle and constructs equators rather than the other way around.
The relation between spherical triangles and their polar duals implies that there
is no difference in the final result as long as one selects the correct triangle
among those formed by the intersections of the three equators.

There is one other candidate for the discovery of the polar triangle in
Europe. As noted above, the Law of Cosines for Angles is stated in Philip van
Lansberge’s 1591 Triangulorum geometricae. It seems a natural inference that
he might have used polar triangles to arrive at the statement of this theorem.!%
In his second edition, published four years after Snell’s book in 1631, van
Lansberge inserts a proof based on the idea of the polar triangle, introducing
it as follows: “the second part of the [Law of Cosines for Angles], which we
have the right to claim that we were the first to discover, is proved in the same
way as the first, if first we describe a new triangle by means of the poles of
the sides of the given triangle.”'”! This is a claim for the discovery of the Law

190 The suggestion is made in [von Braunmiihl 1900/1903, vol. 1, 192-193].
101 ['Van Lansberge 1631, 158]. The description and diagram in [Zeller 1944, 97] are from the
1631 edition and are not found in the 1591 first edition.
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of Cosines for Angles but not quite for polar triangles. Nevertheless Simon
Stevin credits van Lansberge in his 1608 Hypomnemata mathematica (the
Latin version of his Dreihouckhandel)'%> and provides essentially the same
proof of the complementarity of sides and angles. Perhaps van Lansberge had
circulated his ideas privately.

Consolidating the Solutions of Triangles

Francois Viete’s 1579 Canon mathematicus seems to have triggered a period
of about three decades of textbook writing. There were enough new trigono-
metric functions, theorems, and approaches to solving triangles that a book
to replace Regiomontanus’s universal triangle solver De triangulis omnimodis
was sorely needed, and a number of authors attempted to fill the gap. Neither
Viete’s notation nor the structure of his 1579 Canon mathematicus conformed
to Regiomontanus’s style, which most of his contemporaries were used to
reading. Thus, while clearly most mathematicians read Viete and profited by
his work, many continued to approach trigonometry within Regiomontanus’s
tradition (soon to be augmented by Fincke’s 1583 introduction of the “tan-
gent” and “secant”). Perhaps the earliest of these textbooks was Maurice Bres-
sieu’s 1581 Metrices astronomicae,'® written and titled to position the sci-
ence of triangles as a computational foundation for astronomy. Bressieu
presents various different kinds of triangles and in each case outlines how to
solve it, often presenting alternate methods he credits to Ptolemy and some-
times to Regiomontanus; following this he provides a numerical example. Fig-
ure 1.17 shows his solution to a plane right triangle where the two sides ad-
joining the right angle are known and the beginning of a numerical example.'%
Note the hash marks drawn on the given segments; Bressieu seems to have
been the first of a number of authors to indicate the givens in the diagram in
this way.'%

One of the most influential of the early texts, Thomas Fincke’s 1583 Geo-
metriae rotundi appeared two years later. The book itself was not especially
innovative mathematically, relying especially on Menelaus’s theorem for its
spherical results (although, as we saw, it does contain the first appearance of
the planar Law of Tangents). However, it came recommended by Clavius,
Pitiscus, and Napier for its exceptional clarity. Fincke’s presentation (Book X
for plane triangles, Book XIV for spherical) is organized around theorems

102 [Stevin 1608b, vol. 1, 223-224].

103 Little has been written about Bressieu; see [de Merez 1880] for a short biography.

104 For readers attempting to translate the Latin, the “canone adscriptarum” refers to a tangent
table.

105[Zeller 1944, 87].
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: NOSTRA METHODVS,

Repetaturtertium & vitimumantecedentis propofitionisdia-
gramma. Quiaigitur as & scin iifdem partibus datz funt, Qua-
lium as,ve radius, cftr fex. T, talium dabitur sc, & ex canone ad-
eriptarum arcus 3D , angulufque sac. per arcum vero s dabitur
hypotenufa ac earundem partium atque as. Itaratione asad ac
data, Qualium anex hypothefi data cft partium ,talium dabitur
acper19lib, 7 clem, Ex angulo autem sac dato,dabitur &rei
reliquus acp,

Exemplum,Cum as fitad Bcvt 9 ad 8, qualium as eft 1fex.T,ta-
fium sc erit§3 §.20 M.perig lib.7 elem.& arcus so,anguléifuc sac .
eritex can.adfcriptarum 41 g, 38 M. actantaerit latitudo vrbis Romz , quemadmodum
etiam 2 Prolemzo in Geographia ponitur, Reftabit angulus 49 §.321. a¢ autem hypore-

Figure 1.17
The beginning of Maurice Bressieu’s solution of a right-angled triangle. The word
“adscriptum” refers to his version of a tangent.

rather than triangles: that is, he presents a theorem and afterward describes
how it may be used to solve a certain kind of triangle rather than the other
way around. Christoph Clavius’s 1586 text'% similarly emphasizes theorems
and proofs, interspersing them with “problems” that demonstrate how to use
the theorems to solve certain triangles. Pitiscus’s famous 1595 Trigonome-
triae'®’ follows Regiomontanus’s model in De triangulis omnimodis: he
states all the theorems first and then uses them to solve various kinds of
triangles. For spherical triangles he begins with four results, calling them
“axioms”: the Rule of Four Quantities, the Law of Tangents, the Law of Sines,
and the Law of Cosines.

However, perhaps driven by the increasing use of trigonometry in appli-
cations such as surveying, navigation, and science, some texts started to em-
phasize an algorithmic approach based on the presentation of triangles rather
than theorems: if the triangle has such and such a property, then follow this
path; if it does not, then the triangle does not exist; and so forth. Some of the
books we have just mentioned had an inkling of such schemes in short in-
dexes that list the various types of triangles in sequence and indicate where
one should go in the text to solve them. The index in Phillip van Lansberge’s

106 pyblished as a supplement to his edition of Theodosius’s Sphaerica; see [Clavius 1586).

107 Pitiscus’s Trigonometriae first appeared at the end of Scultetus’s Sphaericorum in 1595 and
was published separately in a revised edition five years later [Pitiscus 1600]. For Handson’s
translation, see [Pitiscus (Handson) 1614]; the frontispiece is reproduced in the preface of this
book. For a summary of the various editions and translations of the Trigonometriae and Pitis-
cus’s other works, see [Archibald 1949a]. See also [Delambre 1821, vol. 2, 28-35]; [Gravelaar
1898] in Dutch, mostly on the computation of tables; [Hellmann 1997] for some discussion of
the mathematics; and [Miura 1986] on the applications.
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1591 Triangulorum geometriae is elaborate; figure 1.18, for instance, shows
the first of three pages of his index for right-angled spherical triangles, group-
ing the various identities according to what element is sought and what ele-
ments are known.'”® Antonio Magini’s 1609 Primum mobile goes further
with similar classifications, grouping different types of spherical triangle
in a 16-page-long scheme'” and elsewhere providing grids showing which
problem in his treatise solves which type of triangle."'® Simon Stevin’s Drie-
houckhandel (Trigonometry), published as part of his 1608 Wisconstighe
Ghedachtenissen (Mathematical Memoirs),'"' divides the discussions of
both planar and spherical triangles into three distinct parts: (a) preliminary
theorems, (b) identities, and (c) solutions of triangles. This structure endured
for hundreds of years; it is found in Todhunter’s Spherical Trigonometry,
the dominant textbook of the late nineteenth and early twentieth centuries.!!?

108 [Van Lansberge 1591, 202].

109 [Magini 1609, folios 38—45].

10 Magini 1609, folios 47, 68]. Several other grids in this work explain how to handle certain
cases of problem.

11 [Stevin 1608a]. The book, written in Dutch, was translated several times. See, for instance, the
Latin edition by Snell [Stevin 1608b], and a French translation with supplements by Albert
Girard [Stevin (Girard) 1634]. A selection from the treatise appears in Struik’s The Principal
Works of Simon Stevin [Struik 1958, vol. IIB, 757-761].

12 The original edition is [Todhunter 1859]; it was revised and expanded in [Todhunter/Leathem
1901].
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Figure 1.19 shows part of the index from Albert Girard’s French edition of
the Driehouckhandel, illustrating the classification of spherical triangles (in-
cluding a special category of quadrantal triangles).!3

But when it came to algorithmic thinking, no one went further than Adri-
anus Romanus in his 1609 Canon triangulorum sphaericorum. Other than
its tables and a section describing how to compute them, the entire book is a
270-page-long detailed algorithm for solving spherical triangles with dozens
of examples. Book II begins with a detailed nine-page classification of tri-
angles into various genera, followed by 40 pages of examples and diagrams
of each genus. The remaining 200 pages are divided into six problems: the
first dealing with triangles where two sides are given as well as one of the
angles not included between the given sides, the second dealing with two
given angles and one of the sides not included between the given angles, and
so on. In each case Romanus provides an algorithm for solving the triangle
and for handling the various cases that arise. At the bottom of figure 1.20,

113 [Stevin 1634, vol. 2, 87]. A quadrantal triangle has a side (not an angle) equal to 90°.
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the beginning of his algorithm for the first problem, Romanus solves it (as
many others did) by dropping a perpendicular from a vertex to the opposite
side, thereby dividing it into two right triangles. He then applies (but does
not prove) the right-angled triangle identities to the two right triangles.!'*

One of the most eccentric, yet remarkable methods ever developed to
solve spherical triangles appears in Christoph Clavius’s lengthy treatise, the
Astrolabium.'"> This mostly astronomical treatise works extensively with the
technique for spherical geometry known as the analemma.''® Dating back to
ancient Greece, the analemma deals with a problem in spherical geometry
by rotating one or more circles on the sphere into the plane of a particular
great circle, thereby reducing it to a problem in plane geometry.

The central topic of the Astrolabium is stereographic projection, which
maps a sphere onto the plane through its equator as follows. In figure 1.21

14 Romanus 1609, 100]. We should mention Nathaniel Torporley’s bizarre 1602 Diclides Coelo-
metricae, which we saw before. Its unique approach reduces the six cases of right spherical
triangles to two, but its obscurity renders it close to impenetrable. See [Delambre 1821, vol. 2,
37-40], [von Braunmiihl 1900/1903, vol. 1, 183-186], [Zeller 1944, 106—107], and [Silverberg
2009].

5 [Clavius 1593]. For an account of Clavius’s interactions with Ptolemy’s and Copernicus’s cos-
mological theories, see [Lattis 1994]. For a survey of Clavius’s mathematics, see [Naux 1983].

116 See [Van Brummelen 2009, 66—67].

For general queries contact webmaster@press.princeton.edu.

43



© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher.
44  Chapter 1

Figure 1.21
From Clavius’s Astrolabium, illustrating stereographic projection.

the south pole is A, and a plane is drawn through equator BFDT. For any point
M on the sphere, a line is drawn from M to A. Point S, where the line crosses
the plane through the equator, is considered to be the projection of M onto
the plane.!"” Stereographic projection has two advantages: circles on the sphere
map to circles or lines on the plane and the angle between two great circles
is mapped to the same angle on the plane. The ancient astronomical instru-
ment, the astrolabe, is simply a physical realization of a stereographic pro-
jection of the celestial sphere.

Clavius’s approach to solving spherical triangles begins by positioning
the sphere so that some side of the triangle is placed along the equator (called
by later authors the primitive circle) or so that one vertex is at the north pole.
Using the given quantities, as much as possible of the projected triangle is
drawn on the primitive circle. Once this is done, the remaining elements are
constructed geometrically, if possible. Sometimes other great circles are ro-
tated onto the plane, taking the place of the primitive circle. Once the pro-
jected triangle has been drawn, the sought angles and sides are measured with
a ruler or protractor. Finally, these data are used as inputs into a mathemati-
cal process that reconstructs the values of the sought elements of the original
spherical triangle.!'8

7 Points on the sphere below the equator are mapped to points on the plane outside the equator;
for instance, G maps to N.

118 Clavius’s methods, as well as related work by Dutch mathematician Adrian Metius (1571—
1635) in Book V of De astrolabio catholico (1633), are described in [Haller 1899].

For general queries contact webmaster@press.princeton.edu.



© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher.
European Trigonometry Comes of Age

This method, ingenious as it is, was not seen as very practical even by
some of its adherents; the famous instrument maker Benjamin Martin, intro-
ducing the subject in his 1736 Young Trigonometer’s Compleat Guide, states
that “this way is (generally speaking) more artful than useful”; but he goes
on to say that “by a little use, [it] is very practicable and easy.”''® It had cur-
rency in some textbooks until as late as the nineteenth century, appearing
alongside more conventional solutions as a legitimate alternative.!?

Widening Applications

Through the fifteenth century and into the sixteenth, trigonometry had been
a handmaid to astronomy; Regiomontanus himself called it “the foot of the
ladder to the stars.”'?! In medieval Islam, spherical trigonometry had come
to be applied to finding distances and directions on the surface of the earth,
originally through the determination of the direction of Mecca. But even these
calculations had taken place on the celestial rather than the terrestrial sphere.
This makes the sixteenth century one of the most remarkable periods in the
history of mathematics, for it was during the latter part of this century that
trigonometry started to become genuinely applicable to the physical world:
not just for determining distances and directions in the heavens but also on
the earth and sea. Raphe Handson’s 1614 translation of Pitiscus’s Trigonome-
triae presents a transformed view of trigonometry, liberated from its servant-
hood to astronomy by linking to many other earthly activities:

All arts are in themselves so infinite, that the life of man is first con-
sumed before he comes to know; yet, the pleasure is such (espe-
cially in the mathematics) that the more a man understandeth, the
less he thinks to know; as still covetous of more, and never satisfied.
And amongst all the sciences mathematical, this trigonometry, or di-
mension of triangles, is copious in the contemplation of it, and more
profitable in the practice: For thereby all heights, depths, distances,
questions of the map, globe, sphere, or astrolabe, may be more truly
supputated [calculated], than by any instrument whatsoever; besides

19 Martin 1736, vol. 2, 150]. See pp. 150-160 for his treatment of the subject and [Van Brum-
melen 2013, 133-139] for a modern mathematical explanation based on Martin’s text. See also
[von Braunmiihl 1900/1903, vol. 1, 189-191], who expresses admiration but also reserves
doubts about its efficacy.

120 See for instance [Wilson 1720] and [Keith 1826]. Other graphical methods were invented to
solve spherical triangles, and interest continued (especially in educational circles) as late as
the 1950s, at which point interest in spherical trigonometry itself faded away. [Bradley 1920]
contains a useful bibliography of references up to that date.

121 [Regiomontanus (Hughes) 1967, 28-29].
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the infinite use thereof in geometry, astronomy, cosmography, etc.
Wherefore I have adventured thereon, as a subject, which generally
in its own nature carrieth much reputation amongst the sincere lov-
ers of those sciences.!??

Modern students may dispute Handson’s characterization of the pleasure of
the subject but perhaps not its practical value.

The most obvious places for trigonometry to spread its wings were still
with mathematics—in particular, to measurement within geometry, for which
there was a healthy tradition dating back to ancient times. From the sixteenth
century onward, a number of authors were interested in questions of goni-
ometry and cyclometry. These related subjects dealt with measurements of
various lengths, angles, and areas of certain geometric figures, especially reg-
ular polygons and circles. Trigonometry can of course be applied to such
questions, but it can also benefit from such study. For instance, the study of
the lengths of regular polygons is related to the determination of the sines of
small arcs (such as sin 1°, which is half the length of a side of a 180-gon in-
scribed in a unit circle). Cyclometry in particular is intimately related to ap-
proximations for 7. It was at this time that Adrianus Romanus, Ludolph van
Ceulen, and Philip van Lansberge derived their values of 7 accurate to 16,
35, and 28 digits respectively.'?3

Genuine applications of trigonometry outside of mathematics were more
difficult to find at first. There was of course no end to the uses of trigonom-
etry in astronomy: they had been present since the birth of the subject, espe-
cially models of the motions of the planets, spherical astronomy, and solar
timekeeping. However, earthly applications were much rarer.>* From the thir-
teenth century, the genre of “practical geometry” had dealt with questions
related to altimetry, stereometry, and mensuration. This subject was defined
by its interaction with the physical world and often involved the use of mea-
surements made by instruments. Its audience consisted of surveyors, archi-
tects, cartographers, observational astronomers, navigators, the military, and
artists, among others.!?> A few of these treatises made some small use of trig-

122 [Pitiscus (Handson) 1614, beginning of the dedicatory epistle].

123 Romanus’s text is the incomplete Ideae mathematicae pars prima [Romanus 1593]; van Ceu-
len’s is Arithmetische en Geometrische Fondamenten [van Ceulen 1615] (which contains 33
digits; his final value appears in [Snell 1621]); van Lansberge’s is the Cycometriae novae [van
Lansberge 1616].

124 One must not forget the determination of the gibla in medieval Islam; but even here, correct
solutions relied primarily on spherical astronomy. Some other uses of trigonometry in geogra-
phy in Islam do exist; see [ Van Brummelen 2009, 215-217].

125The literature on practical geometry and its history is too extensive to be described exhaus-
tively here; we refer only to a few texts. See [Victor 1979] for a description of its origins in
medieval Europe; [Busard 1998, 7-12] for a survey of practical geometry to the mid-sixteenth
century; [Taylor 1954] for a history of practical mathematics in England from 1485 to 1715;
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Figure 1.22
Finding the altitude of a tower in Bressieu’s Metrices astronomicae.

onometry, but most were devoid of it, sticking to basic geometric tools like
similar triangles and the Pythagorean theorem.!?¢

Prior to 1580, texts devoted to trigonometry had stayed within the con-
fines of mathematics and astronomy. This changed dramatically with the con-
solidation movement of the 1580s and beyond. What one might consider to
be the first practical “story problem” in a trigonometry textbook appears at
the end of the chapter on planar trigonometry in Maurice Bressieu’s 1581 Me-
trices astronomicae.'”’

Bressieu seems hesitant to introduce the world of practice into his trigo-
nometry, separating the problem from his main text and introducing it with
the phrase, “Hoping it will not be unwelcome to the reader.” His goal is to
find the height of a tower (figure 1.22) where the distance BC from the base
is given and the angle of altitude from the observer at C of the top of the tower
is measured. This elementary problem had been solved previously in practi-
cal geometry textbooks but not with trigonometry. Bressieu replaces the

and several of Jim Bennett’s publications, especially [Bennett 1998], a survey of the relation
between instruments and practical geometry.

126 See [Van Brummelen 2009, 224-230, 239-240], where the works of Abraham bar Hiyya, Fi-
bonacci, and John of Murs are considered.

127 [Bressieu 1581, 49].
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Figure 1.23
From Book XI of
Fincke’s

Geometriae
rotundi.

shadow square and similar triangles with an angle measurement and a tan-
gent table, eventually finding the height as an equivalent to 50 tan 6, where 6
is the altitude. In the example calculation Bressieu has an angle of elevation
of 60.5° and the distance to the tower of 50 paces, which makes the height of
the tower an impressive 88.5 paces.

Bressieu’s tentative foray into practical geometry seems not to have had
the feared effect of deterring readers, for several texts over the next decade
traversed similar ground but with much more commitment. Only two years
later, Thomas Fincke’s Geometriae rotundi devoted the entire 11th book (out
of 14) to problems involving altitudes and distances.!?® Its mathematics is
straightforward; it consists of applying similar triangles and (often) the tan-
gent function to measurements obtained with a quadrant and other simple in-
struments to determine various heights, distances, and lengths. Fincke’s text
and images would have appealed to surveyors, the military, and architects (see
figure 1.23). Pitiscus’s Trigonometriae goes even further; it includes chapters
on geodesy, altimetry, geography, gnomometry (sundials), and astronomy and
in a later edition another chapter on architecture (especially military). These
applications take up over half of his text (aside from the tables).'*

128 [Fincke 1583, 296-322].
129 [Mliura 1986] contains a brief account of the applications chapters in Pitiscus’s Trigonometriae.
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Trigonometry and practical geometry truly came together in a meaning-
ful way with Christopher Clavius’s revolutionary new Geometria practica in
1604. Near the beginning of this book Clavius presents a full summary of
the solutions of planar triangles via trigonometry, although with no proofs as
befitted a practical work."*® Armed with these new tools, he goes on to solve
the usual surveying problems (heights of castles, etc.), but using plane trigo-
nometry rather than the usual tools of practical geometry.

Text 1.5
Clavius on a Problem in Surveying
(from Geometria practica)

On the distance along the ground, whether it is accessible or inaccessible, by
means of quadrant measurements at two stations in the same plane, when at
its endpoint some perpendicular altitude is erected, even if [the base] is not
seen at its lowest extreme. And here we determine the height.

Let the distance, or the sought length be AB, in plane CB, and erected at
the endpoint B is some perpendicular altitude BG, although the endpoint B is
not visible. Let the height of the measurer, from the eye to the feet, be DA. . . .
Extend through D a parallel EF to CB, starting in the first station D and end-
ing in the second station E, the furthest point; and line DE, the distance be-
tween the stations, is known by an ordinary measurement. Then, guided by
the side of the quadrant HK that has the sights, . . . set the sights so that the
peak G may be seen, dropping perpendicular HI. And . . . angle GDF in min-
utes, equal to arc /L, may be seen on the quadrant, clearly the complement of
arc IK. For when thread HI is perpendicular to line DF, angle GDF, the com-
plement of angle DHI, clearly will be equal to angle /HL, which is itself the
complement of angle DHI. And we will call this angle GDF the angle of obser-
vation. In the same way angle GEF is observed at the second station, by rays
from the eye, through the quadrant’s sights to the peak at G. Taking EM equal
to DN, erect perpendiculars M<H>and NO. .. . Therefore, if we set EM and
DN as the sinus toti, MH and NO will be tangents of the angles of observation
at £ and D. Also draw DQ parallel to EG, crossing NO at P. Angle NDP is equal
to angle E. Therefore, the two angles N and D in triangle NDP are equal to two
angles M and E, . . . and sides DN and EM, which are adjacent, are equal. Sides
NP and MH will be equal, so OP will be the difference between the tangents of
the angles of observation. Because of this, as OP is to PN, so is GQ to QF. And
as GQ is to QF, sois ED to DF. . . . Hence if [the following] is done:

As OP, the difference between the tangents of the angles of observation is
to PN (or HM), tangent of the smaller [angle], so is ED, the distance between
the noted stations in a common measure to the other, that is, to DF,

130 [Clavius 1604, 45-52].
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[it] produces the sought distance, DF or AB, the same measure of the distance
to the station; and if it is added to the distance ED between the stations, we
will also learn the distance EF, or CB, to the furthest station.!’!

l KA o ]
E = f
c & A © B

Figure 1.24
Finding the altitude of a tower if the base is inaccessible, from Clavius’s 1604
Geometria practica.

Explanation: (See figure 1.24.) The goal is to determine the distance to a tower
when its base F is inaccessible or hidden from view. Observers at two stations
in a direct line from the tower, at D and E, measure the altitude of the pin-
nacle of the tower G (the “angles of observation” 6, = ZGDF and 6,= ZGEF)
with their quadrants. Slide AEMH to the right so that ZF is at D, defining N
and P; extend DP to Q. Then ON=DN tan 6, and MH=NP=DN tan 6,.

So OP=0ON-NP=DN(tan 6,—tan 6,), and hence @:M_

NP tan 6,
Bt@—@—@' d ED is th d dist hile DF is th
ut up OF DF’ an is the measured distance while is the
sought distance from the first station to the base of the tower. So
DF =ED - % .
tan6, — tan6,

Bl [Clavius 1604, 54-55].
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Figure 1.25
Gemma Frisius on surveying, from the
1540 edition of Apian’s Cosmographia.

The merger of trigonometry with practical needs in geodesy and altim-
etry provided practitioners with much more powerful and precise mathemat-
ical tools. However, without corresponding improvements in the instruments
used to measure distances and angles, the extra precision would be superflu-
ous. The new methods were not adopted very widely at their outset. The power
of geometry had been revealed to surveyors as early as 1533, with Gemma
Frisius’s introduction of the notion of triangulation on the surface of the earth
(figure 1.25).13% Although his techniques had required angle measurements,
they had not employed trigonometry. Various instruments were invented for
use in surveying through the sixteenth century, including a device called a
“trigonometer,” which formed with its arms a triangle similar to the triangle
being measured on the ground. However, only the simple theodolite, measur-
ing azimuths but not altitudes, seems to have gained much traction in prac-
tice. It would not be until the first half of the seventeenth century that the
power of geometry in general and trigonometry in particular would become
generally accepted in surveying practice.'?® This late adoption may have been
aided at least in part by the wave of surveying applications in the trigonometry

132 This appears first in Gemma Frisius’s 1533 edition of Peter Apian’s Cosmographia [Apian
1533a]. See analyses of Gemma Frisius’s, Brahe’s, and Snell’s approaches to triangulation in
[Haasbroeck 1968]. On triangulation in Gemma Frisius’s work, see also [Taylor 1927] and
[Pogo 1935]; the latter contains a facsimile edition.

133 [Bennett 1991b], especially pp. 348-354.
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Figure 1.26
Frontispiece of Aaron
Rathborne’s 1616 The Surveyor.

textbooks but may have had more to do with logarithms, which we shall see
in chapter 2. A notable step forward was Aaron Rathborne’s 1616 The Sur-
veyor (figure 1.26), which introduces trigonometry in certain contexts and
even mentions Pitiscus and Napier in one of the earliest references to loga-
rithms outside of mathematics and astronomy.'3* Rathborne was a member
of the peculiarly English trade of “mathematical practitioner.” These men
earned their living, at least in part, through tutoring mathematics useful for
purposes such as engineering and gunnery rather than the higher pursuits of
natural philosophy.'3

134[Rathborne 1616, 142].

135 Much has been written about the culture of the English mathematical practitioners. For a start
on the literature, see [Taylor 1954] and [Taylor 1966]. A more recent account, arguing (in part)
that the upper classes were not entirely separate from the trade, is [Feingold 1984]. See also
[Bennett 1982], [Bennett 1991a], [Johnston 1994], [Neal 1999], [Hackmann 2000], and [Cor-
mack 2006], among others.
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It is thus no surprise that England took the lead in the integration of trigo-
nometry with navigation. This had not yet begun in the mid-sixteenth
century, with European trigonometry still in its infancy and still firmly at-
tached to astronomy; as Leonard Digges in his 1553 Prognostication had la-
mented, “but those who have tried [to introduce trigonometry] know how far
this passes the capacity of the common man.”!*¢ However, in 1581, surely be-
fore he had seen the flood of trigonometry textbooks that was just starting to
appear, naval officer William Borough advocated using trigonometric tables
to calculate the sun’s azimuth, referring to Regiomontanus and the tables of
Copernicus, Reinhold, and Rheticus, although apparently he had not seen
Viete’s Canon mathematicus.'3’

Trigonometry was circulating in England, but it did not really enter into
English publications until its use in navigation became clearer near the end
of the century as awareness of the practical value of the subject was grow-
ing."*® An appendix to Thomas Blundeville’s popular 1594 Exercises dedi-
cated to astronomy, geography, and navigation,'* larger than the rest of the
book, contained the first trigonometric tables published in England (explic-
itly borrowed from Clavius). Blundeville illustrated the use of these tables to
solve astronomical problems important for navigation and printed them in a
compact size helpful for use at sea.!*0

Two major navigational books, both published in 1614, solidified the
union of trigonometry with navigation. The first was a partial translation of
Pitiscus’s Trigonometriae by Ralph Handson, a friend of Aaron Rathborne
and a student of Henry Briggs, of whom we shall say more in chapter 2. Hand-
son added a section on navigation, “wherein is manifested, the disagreement
betwixt the ordinarie sea-Chart, and the globe, and the agreement betwixt the
globe, and a true sea-chart: made after Mercator’s way, or Mr. Edw. Wright’s
projection: whereby the excellency of the art of triangles will be the more
perspicuous.”!*! (We shall discuss this projection shortly.) Among Handson’s

136 Quoted in [Taylor 1954, 52].

137 Quoted in [Taylor 1957, 211]. Borough speaks of completing for himself the second half of
Rheticus’s Canon doctrinae triangulorum (Rheticus had calculated the table for arguments
up to 45°), either unaware that one may simply read the columns backward to generate the
entries for arguments greater than 45° (although Rheticus had provided arguments working
backward on the right side of his table for this purpose) or hoping to provide tables with argu-
ments up to 90° for easier use in “Navigation and Cosmographie.”

138 John Blagrave’s The Mathematical Jewel [Blagrave 1585], a description of a new mathemati-
cal instrument, contains definitions of trigonometric functions; however, he solves triangles
not with the functions but with his new instrument.

139 Blundeville 1594]; see also the facsimile edition [Blundeville 1971].

140 'Waters 1958, 355-356].

141 [Pitiscus (Handson) 1614, nautical section, 1].
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Figure 1.27
The title page of Peter Apian’s
1541 Instrumentum sinuum, seu

primi mobilis.

Norimberge apud lohan.Perreium, anno M, D, XLl

contributions was the “mid-latitude formula,” which allowed sailors to deter-
mine, from the longitudes and latitudes of two places, their bearing and dis-
tance from one another. Ease of calculation, important for navigators, was
important to Handson; he emphasizes the benefits of prosthaphairesis to con-
vert multiplications to additions in the same year that his Scottish colleague
John Napier was to render it obsolete.'*> Handson’s book was aided into pub-
lication by his colleague John Tapp, who the same year published a new
edition of Robert Norman’s The Newe Attractive and William Borough’s
Discourse on the Variation of the Cumpas, to which he appended a set of
navigational techniques for use with trigonometric tables.'** Tapp’s intent was
to promote the “arithmetical sailing,” that is, trigonometric methods with
tables. The computational barriers to these methods, not inconsiderable in
practice, were to become much more benign before the year was out.
However, in the meantime, the need to calculate—especially multiplica-
tion and division with trigonometric quantities—was a near-fatal disadvan-
tage; while seamen might have been capable of the task, it was cumbersome

192 For an account see [Waters 1958, 393-399].
143 [Norman 1614]. See [Waters 1958, 559-562] for an account of Tapp’s trigonometric navigation.
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when required on a regular basis and, more seriously, prone to error. The al-
ternative to calculation with trigonometric tables was the use of mathemati-
cal instruments, which worked much more quickly and easily, and the loss of
precision caused by the use of a physical device was insignificant for naviga-
tion. Several such instruments had existed for centuries; see for instance the
sine quadrant on the title page of Peter Apian’s 1541 Instrumentum sinuum
seu primi mobilis (figure 1.27). However, the needs of tradesmen and naviga-
tors in the context of the new practical mathematics seems to have brought
instruments freshly into the discussion; in 1598 Thomas Hood and Galileo
independently invented “sectors” with multiple uses that were predecessors
to the slide rule.'**

However, the sector that really made arithmetical navigation accessible
was invented by Edmund Gunter around 1606. A young recent graduate of
Oxford, Gunter would become associated with Henry Briggs and Edward
Wright at Gresham College several years later. His fame rests on his instru-
ments, especially the sector and a quadrant also named for him. Indeed, his
connection with instruments and hence the class of mathematical practition-
ers seems at least once to have decreased his reputation. John Aubrey re-
counted his interview with Henry Savile for the first Savilian chair of geo-
metry at Oxford:

[Gunter] came and brought with him his sector and quadrant, and
fell to resolving of triangles and doing a great many fine things. Said
the grave knight, “Do you call this reading of Geometry? This is
showing of tricks, man!” and so dismissed him with scorn, and sent
for Briggs from Cambridge.'®

It took Gunter until two years before his death to publish a book on his
invention, the De sector et radio (1624), but his work had circulated widely in
manuscript long before that.'*® Likely inspired by Hood’s device, Gunter’s sec-
tor is a simpler instrument honed for the purpose of calculation (figure 1.28).

144 The origins of the sector are not entirely clear; see [Williams/Tomash 2003] for a survey and
adescription of the other lines on the instrument. On Hood and his sector, see [Johnston 1991]
and [Taylor 2013]. On Galileo’s sector see [Galileo 1978]. [Drake 1977] demonstrates that
Hood and Galileo worked independently. For the contribution of Antwerp mathematician
Michiel Coignet, see [Meskens 1997].

145 [Aubrey 1982, 117]; see [Higton 2001] for a discussion of the context of the issue. Even today
the attitude persists; the Dictionary of Scientific Biography entry says that “the tools he pro-
vided were of immense value long afterward,” but that his contributions were “essentially of a
practical nature,” and that he was merely a “competent but unoriginal mathematician” [Pepper
1972, 593].

146 [Gunter 1624]; see [Higton 2013] on the illustrations and diagrams in this work. On Gunter’s
sector and other contributions to navigation, see [Waters 1958, 358-392] and [Cotter 1981].

For general queries contact webmaster@press.princeton.edu.

55



56

© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical

means without prior written permission of the publisher.
Chapter 1

Figure 1.28
Gunter’s sector, from his 1636 Description and Use of the Sector,
Crosse-Staffe and Other Instruments.

It has two arms fixed with a hinge at one end and various scales marked on
both sides of each arm. Scales for the sine, tangent, and secant allow the de-
vice to solve any triangle, plane or spherical. For instance, the sine scale is
marked so that the distance of any point from the hinge corresponds to the sine
of the angle indicated at that point. The arms open outward, and with a pair
of compasses the user is able to form similar triangles that correspond to
various ratios such as those that arise in the solutions of right-angled spherical
triangles.

Text 1.6
Gunter on Solving a Right-Angled Spherical Triangle with His Sector
(from De Sectore et Radio)

In a rectangle triangle: To find a side by knowing the base, and the angle op-
posite to the required side.

As the Radius

is to the sine of the base;

So the sine of the opposite angle

to the sine of the side required.

As in the rectangle ACB, having the base AB, the place of the Sun 30° from
the equinoctial point, and the angle BAC of 23°30” the greatest declination, if
it were required to find the side BC the declination of the Sun.

Take either the lateral sine of 23°30” and make it a parallel radius; so the
parallel sine of 30° taken and measured in the side of the Sector; shall give
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the side required 11°30". Or take the sine of 30° and make it a parallel radius;
so the parallel sine of 23°30” taken and measured in the lateral sines, shall be
11°30” as before.'*’

>

A=90°

Sin 23930’

Figure 1.29
Finding the declination using Gunter’s sector.

Explanation: (See figure 1.29) By “base,” Gunter means the hypotenuse of
the spherical triangle. Gunter’s first example is a standard astronomical prob-
lem: find the sun’s declination ¢ from its ecliptic longitude A. The solution is
sin d=sin A sin € (Where € =23°30" is the obliquity of the ecliptic), equivalent
to the modern formula sin a =sin A sin ¢ for a right triangle. But Gunter
Sin90° _ SinA
Sine  Sind
The “line of sines” is the unequally marked scale near the middle in fig-
ure 1.28, ending at 90°, displayed on both arms of the sector. Set a compass

expresses it as for good reason.

147 [Gunter 1624, 76)].
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along the line of sines so that the distance between the two tips is equal to
Sin 23°30’, that is, the distance along the line of sines from zero to 23°30". Move
the compass to the end of the sector, and spread the sector’s arms so that their
ends touch both ends of the compass. Without changing the angle of the pivot,
move the compass inward (narrowing the gap between its tips) so that its two
ends touch the two locations on the sector corresponding to 30°. We now have
two similar triangles; from them, we have sin 90°/sin 23°30’=sin 30°/x,
where x is the new distance between the compass tips. From Gunter’s ratio
above, we know that x is equal to sin 6. Move the compass so that one of its
tips is at the pivot. On the line of sines, the point corresponding to the other
tip (11°30") is 6.8

One of the scales on Gunter’s instrument is entitled “meridional parts,”
and therein lies the final episode of this chapter. The shortest voyage between
two ports is of course the great circle arc between them. However, traveling
along this course is difficult because one’s bearing changes continuously and
so frequent course corrections are required. A simpler choice (although a
slightly longer journey) is to travel along a path with a constant bearing, called
a loxodrome or rhumb line. It would be helpful for a navigator to have in his
possession a map with the property that a straight line on the map corresponds
to a rhumb line on the ocean. A straight line drawn on the map, say, at a 45°
angle upward and to the right, would follow a northeast bearing at every point.
Pedro Nufiez had discovered the difference between great circles and rhumb
lines in 1533. The first to construct a map with the desired property (in 1569)
was none other than Gerard Mercator, a former pupil of Gemma Frisius.'*
For a map to achieve the required property, it turns out that the lines corre-
sponding to latitude circles must be spaced not at equal intervals but at ever
greater distances from each other as one moves from the equator to a pole
(figure 1.30). Although this notion is at the heart of the Mercator projection,

148 The reader may object that the arms cannot be spread far enough apart to fit R (the length of
the sector) between the two 23°30” indicators. However, elsewhere in the treatise Gunter ex-
plains how one may scale quantities up and down using linear scales (the “line of lines,”
marked from zero to ten printed on the other side of the sector. Using similar triangles as
above, one may use compass distances of R/10 and sin 30°/10. On the “line of sines” side of
the sector, separate the 23°30” indicators by R/10. Then insert the compass points separated by
sin 30°10 at the appropriate place on the line of sines to find § as before.

149 [Mercator 1961]. The literature on Mercator is enormous; we point out only a few recent items.
[Crane 2002] and [Taylor 2004] are two of the most recent biographies while [Monmonier
2004] is a social history of the projection, including the early history but also the modern de-
bate with the alternative Peters projection. [D’Hollander 2005] deals with the projection itself.
[Delevsky 1942] also considers the possible sources of Mercator’s ideas. There also have been
more than a few volumes of collected papers over the past two decades on Mercator and his
historical context.
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60°

30°
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180° 920° 0° 90° 180°

Figure 1.30
Longitude and latitude lines in Mercator’s projection.

Mercator’s latitude circles on his own map were not very accurately placed,
and it is unclear what process he invoked to place them.

The first published solution to the problem of the spacing of the latitude
lines is due to Edward Wright in his 1599 Certaine Errors in Navigation (fig-
ure 1.31).15° Also known for his translation of Napier’s Mirifici logarithmorum
canonis descriptio in 1618 (published the year after Napier died), Wright also
collaborated with Henry Briggs for many years; Wright, Briggs, and Edmund
Gunter were together at Gresham College in 1615. Wright’s interest in loga-
rithms and mathematical instruments was practical—for the service of navi-

150 ['Wright 1599], although some of his table of meridional parts had previously appeared mul-
tiple times, first in [Blundeville 1594]. Indeed, the whole book nearly appeared under some-
one else’s name before Wright was compelled to publish; clearly the demand for Wright’s
ideas was strong. In addition to various scholarly treatments (including within some of the
books on Mercator we mentioned previously), the method has been described in several popu-
lar articles; see for instance [Rickey/Tuchinsky 1980], [Fernandez Garcia/Jiménez Alc6n/
Muiioz Prieto 2001], and [Maor 2002, 174—177]. On Wright and his work, see [Parsons/
Morris 1939] and [Waters 1958, especially pp. 219-229].
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Figure 1.31

The frontispiece of the
second edition (1610) of
Edward Wright’s
Certaine Errors in
Navigation.

gation. His Certaine Errors became a landmark, if one may put it that way,
for finding one’s way at sea.

The idea behind Wright’s solution to the problem of the spacing of the
latitude circles is straightforward. The latitude circles in figure 1.30 are all
drawn as if they have the same length, but on the globe their lengths vary in
proportion to cos @, where ¢ is the latitude. Therefore, horizontal distances
(longitudes) have been stretched relative to the equator by a factor of the re-
ciprocal of cos @, that is, sec ¢. To preserve bearings, the vertical distances
AA (where A is the northward distance on the map from the equator to the
latitude line corresponding to @) must be stretched by the same ratio. So, at
latitude ¢, AA should be proportional to sec ¢- AA (at latitude 0°), but since
there is no stretching at the equator, at latitude 0° AA is equal to A¢. Hence
AA=ksec ¢-Ag.

The modern calculus student will notice immediately that this is the same

as A(p)= kfg sec® dg, but at Wright’s time calculus was still many decades
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away. So, to construct his table of meridional parts, Wright was forced into an
onerous calculation (which he described as “an easy way laid open”):

For . . . by perpetuall addition of the secantes answerable to the lati-
tudes of each point or parallel unto the summe compounded of all
the former secants, beginning with the secans of the first parallel’s
latitude, and thereto adding the secans of the second parallel’s lati-
tude, and to the summe of both of these adjoyning the secans of the
third parallel’s latitude, and so forth in all the rest, we may make a
table which shall shew the sections and points of latitude in the me-
ridians of the nautical planisphere: by which sections, the parallels
are to be drawne.

Effectively, then, Wright uses a Riemann sum to compute A(¢). He chooses
A¢= 1" but helpfully refers readers to Rheticus’s Opus palatinum should some-
one wish to take on the thankless task of improving the accuracy of the cal-
culation by decreasing A¢ to 10”.15!

Wright was not the only English navigator working on the problem of
meridional parts. John Dee (1527-1609), a friend of Mercator and Nufiez and
a student of Gemma Frisius, had produced tables that predated Mercator’s
1569 map, although the method he used to calculate them is unknown.'>
Later, Dee’s colleague Thomas Harriot (1560—1621) (who himself served on
an ocean-going expedition to Virginia with Sir Walter Raleigh in the 1580s)
would also venture in this direction. Harriot’s highly innovative work in
mathematics and science never saw a printing press during his life. Today it
exists only in manuscripts, notes, and modern scholarly editions. In mathe-
matics he is known especially for his contribution to the theory of equations;
closer to our interests here, he also was the first to state the area of a spherical
triangle (although he did not prove his result). Harriot constructed tables of
meridional parts in the 1580s or 1590s, not long after his voyage with Ra-
leigh. He revisited the topic late in his life and in 1614 constructed a large
table of meridional parts with the aid of finite difference interpolation.'>® We
shall discuss this topic in chapter 2.

51 [Wright 1599, chapter entitled “Faults in the common sea chart,” from the 17th to the
19th page].

12 The literature devoted to Dee is extensive, but not much attention has been paid to his interest
in navigation; see [Taylor 1955], [Taylor 1957, 195-207], [Alexander 2005], and [Baldwin
2006]. For his table of meridional parts see [Taylor 1963, 415-433].

153 The history of Harriot’s contribution to the problem of meridional parts has been controversial.
See [Taylor/Sadler 1953], [George 1956], [Lohne 1965/66], [Pepper 1967a], [Pepper 1967b],
[George 1968], and especially [Pepper 1968] and [Pepper 1976]. [Taylor/Sadler 1953] and
[Pepper 1967b, 23-25] reveal that Harriot somehow knew some formula for meridional parts.
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