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1

1 '" � European Trigonometry Comes of Age 
(1552–1613)

The subject we know today as trigonometry has a long, complex history that 
weaves through several major cultures and more than two millennia. Perhaps 
more than any other subject in the modern mathematics curriculum, trigo-
nometry has been shaped, has been reconfigured, and gone through metamor-
phoses several times. Born of needs in ancient astronomy, it has been repur-
posed by many scientific disciplines and worked to serve several cultural and 
religious perspectives. It has been a participant, active or passive, in many of 
humanity’s most significant scientific pursuits. The tidy, polished package 
found in today’s high school and university textbooks camouflages a tangled 
story that interacts with many themes in the history of science, often with 
implications for some of the most transformative moments in our and other 
cultures.

I told the first half of this story in The Mathematics of the Heavens and 
the Earth: The Early History of Trigonometry.1 This volume narrates the sec-
ond half, but we begin with a brief summary of what went before. Trigonom-
etry began with Greek astronomers such as Hipparchus of Rhodes, who had 
constructed geometric models of the motions of the sun and moon that re-
produced qualitatively the phenomena he witnessed in the sky. Converting 
these models into tools for prediction of events like eclipses required the trans-
lation of their geometric components into numerical measures. Since these 
components were lines and circles, it quickly became necessary to convert 
the magnitudes of circular arcs into lengths of line segments and vice versa. 
Hence the chord function was formulated,2 giving the astronomer the ability 
to compute the length of a chord within a circle given the magnitude of the 
arc that it spans. The earliest table of chords of which we are aware was con-
structed by Hipparchus; the earliest account of the construction of chord tables 
is in Claudius Ptolemy’s Almagest. The mathematical preparation for astron-
omy began with these chords and grew from there. However, since the geo-
metric arena was often the celestial sphere rather than a flat surface, plane 
trigonometry was only the beginning. Perhaps already from the time of 

1 �[Van Brummelen 2009].
2 �The term “function” has a long and complicated history. Properly speaking, according to the 
term’s modern usage, it is an anachronism to refer to functions at all before the modern period. 
However, there is an affinity at least between ancient numerical tables and our use of the term: 
ancient astronomers found the length of the chord of a given arc by inputting the numerical 
value of that arc into a table and treating the value obtained as an output. In this book the word 
“function” is used in this loose sense, unless stated otherwise.
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	 2	 Chapter 1

Hipparchus, astronomers quickly moved from the plane to the sphere, where 
much of the most important work was done.

The first major transformation occurred with the complicated and con-
troversial transmission of mathematical astronomy from Greece to India. The 
early Indian astronomers’ appropriation of the geometric models of the plan-
ets, much more than a simple transmission of knowledge (but a topic for an-
other book), also extended to many new ways of thinking in trigonometry. 
The most obvious effect of the transformation of trigonometry in India is the 
introduction of the sine function: a slightly less intuitive quantity from a geo-
metric point of view but a more efficient tool for astronomical computation. 
The versed sine followed quickly afterward. The inventions of new mathe-
matical methods to work with these functions, such as iterative solutions to 
equations and higher-order interpolation within numerical tables, greatly en-
riched mathematical astronomy. In the fourteenth and fifteenth centuries, 
astronomers even employed infinitesimal arguments that we recognize today 
as related to calculus to derive several powerful results beneficial to astron-
omy, most famously the Taylor series for the sine and cosine.

The reception and naturalization of trigonometry in medieval Islam is no 
less complicated. In the eighth and ninth centuries Indian astronomy found its 
way through Persia to Baghdad. As interest grew, a translation movement 
brought a fresh crop of Greek texts to Islamic scholars. This produced the curi-
ous circumstance that two approaches to astronomy, both of which contained at 
least some trace of Greek origin, were in opposition to each other. The Greek 
texts gradually took precedence during the ninth and tenth centuries, but many 
of the Indian advances (including the sine and iterative methods) were retained. 
Around the end of the tenth century several advances streamlined eastern 
Islamic trigonometry. The tangent, invented in the process of sundial construc-
tion, became part of the trigonometric toolkit. New theorems reformulated the 
foundations of spherical trigonometry and delivered greater power to both as-
tronomy and astrology. Trigonometry was also applied to new contexts, includ-
ing ritual needs like determining the beginning of the month of Ramadan and 
the direction of prayer toward Mecca. Some of the work done on the latter 
problem became a standard tool in mathematical geography, bringing trigo-
nometry down from the heavens to the earth for the first time.

From the tenth century onward, Islamic science gradually diversified ac-
cording to cultural subgroups spread across its vast geographical area. The 
most prominent division was between eastern Islam and al-Andalus, in what is 
now Spain. Andalusian mathematical astronomy retained Indian and Greek 
influences, but after AD 1000 it developed without much conversation with the 
East. Rather, their knowledge spread northward into Europe, especially through 
the Toledan and Alfonsine Tables. Some innovations in trigonometry occurred 
in medieval Europe, sometimes through interactions with practical geometry 
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and with astronomical instruments. However, the fifteenth century saw the be-
ginning of tremendous growth through the theoretical astronomy of people 
such as Giovanni Bianchini (ca. 1410–1469) and Regiomontanus (1436–1476). 
This period set in motion the events that we shall survey in this chapter.

It is a reflection of the richness of the history of trigonometry that after 
more than one and a half millennia of years of progress, in the year 1550 the 
word itself was still 50 years away from being coined. Indeed, triangles did 
not really emerge as the primitive objects of study until Regiomontanus’s De 
triangulis omnimodis (“Concerning Triangles of Every Kind”) became popu
lar in the mid-sixteenth century. This volume’s title, The Doctrine of Trian-
gles, is taken from one of the names that was given to trigonometry in the 
sixteenth and seventeenth centuries.

What’s in a Name?

By 1550, the central problem of trigonometry—determining lengths in geo-
metric diagrams from corresponding circular arcs and vice versa—had long 
been solved. European astronomers had within their grasp a somewhat com-
pact theory that allowed them to solve every problem that they needed to 
solve, both on the plane and on the sphere. Regiomontanus’s De triangulis 
omnimodis, written in the fifteenth century but published in 1533,3 provided 
a unified source for the mathematical methods and most (although not quite 
all) of the fundamental theorems. Sine tables composed by Regiomontanus 
and others provided a straightforward tool for working out the practical cal-
culations. Seemingly, there was not much left to do.

However, there was a great deal left to do. Over the next 50 years, the 
mathematical structure and even the basic notions of trigonometry were over-
hauled. New theorems were discovered, and more elegant and efficient ways 
of organizing the material were found. By the beginning of the seventeenth 
century, new ways to employ the subject, both within science and outside of 
it, were being devised with regularity. Even the basic functions, the funda-
mental building blocks of trigonometry, went through multiple reinventions. 
By 1613, the subject no longer looked much like Regiomontanus’s De trian-
gulis omnimodis.

We may begin to get a sense of the contrast by comparing basic defini-
tions in the works of two of the dominant figures in the mid-sixteenth century, 
Regiomontanus and Rheticus. We start with Regiomontanus’s De triangulis 
omnimodis.

3 �[Regiomontanus 1533]; see also the edition [Regiomontanus 1561]. De triangulis has been 
translated in [Regiomontanus (Hughes) 1967]. Finally, see [de Siebenthal 1993, chapter 5, 268–352] 
for an account of the mathematics in French.
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Text 1.1
Regiomontanus, Defining the Basic Trigonometric Functions
(from De triangulis omnimodis)

Definitions:
. . .
An arc is a part of the circumference of a circle.
The straight line coterminous with the arc is usually called its chord.
When the arc and its chord are bisected, we call that half-chord the right 

sine4 of the half-arc.
Furthermore, the complement of any arc is the difference between [the arc] 

itself and a quadrant.
The complement of an angle is the difference between [the angle] itself and 

a right angle.
Book I, Theorem 20: In every right triangle, one of whose acute vertices 

becomes the center of a circle and whose [hypotenuse] its radius, the side sub-
tending this acute angle is the right sine of the arc adjacent to that [side and] 
opposite the given angle, and the third side of the triangle is equal to the sine 
of the complement of the arc.5

K

Sinus complementi
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B H

Figure 1.1 
Regiomontanus’s 
definitions of the 
primitive 
trigonometric 
functions.

4 �In Latin, sinum rectum.
5 �[Regiomontanus (Hughes) 1967, 31, 59].
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Explanation: In right-angled triangle ABC (figure 1.1), draw a circle centered 
at A with radius AB. Draw AK vertically, BC parallel to AK, and BH parallel 
to AC; and extend AC to E and BC to D. Several differences between Regio-
montanus’s structure and the modern definition are apparent. Firstly, follow-
ing his predecessors, he defines the trigonometric functions as lengths of line 
segments in the diagrams, not as ratios. Secondly, again following convention, 
he relies on the ancient Greek chord function by defining the sine BC (sinus 
rectus) as half the length of the chord BD. Thirdly, he allows the radius R of 
the base circle to be any chosen value. In the De triangulis Regiomontanus at 
times uses R = 60,000 but at other times uses R = 10,000,000. Such large radii 
were chosen to avoid having to work with decimal fractions.

Regiomontanus calls the circle’s radius R = AB the sinus totus, a term used 
already in medieval Islam that represents the greatest possible sine value. The 
right sine of BE  is BC; in modern terms, Sin(BE!) = RsinBE! = BC .6 This is 
the only function used in most of the De triangulis. What we call the cosine is 
called simply the sinus complementi, the sine of the complement of the given 
arc. Near the end of the book Regiomontanus uses the versed sine, the sinus 
versus EC, the difference between the sinus totus and the sinus rectus. This 
function originated in India.

Just like Ptolemy’s Almagest a millennium and a half earlier, the De 
triangulis lacks an equivalent to the tangent function. In I.28, Regiomonta-
nus describes how to find an angle in a right triangle if the ratio between two 
sides is known, a simple but nontrivial process if one does not have a tan-
gent. But Regiomontanus did not have long to wait. In his popular collection 
of tables for spherical astronomy, the Tabulae directionum (“Tables of 
directions”),7 he borrowed several tables from his predecessor Giovanni Bi-
anchini to solve stellar coordinate conversion problems.8 One of these tables, 
repeatedly borrowed in turn by various successors, was recognized as useful 
in many other calculations, hence the name bestowed on it by Regiomonta-
nus, the tabula fecunda (“fruitful table”). Mathematically equivalent to the 
tangent, it would become accepted gradually as a full-fledged trigonometric 
function on its own.

Regiomontanus was the most frequently quoted trigonometer of the six-
teenth century, and we shall see more of his influence later in this chapter. 
His definitions and terms, most of them not original to him but spread by him, 
became the foundation of the field. One of his early adopters was Erasmus 

6 �Here and throughout, we capitalize a trigonometric function if it is used with a circle with R ≠ 1.
7 �See [Van Brummelen 2009, 261–263], as well as [Delambre 1819, 292–293] and [Folkerts 1977, 
234–236].

8 �[Van Brummelen 2018].
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Reinhold (1511–1553), one of the best quantitative astronomers of his genera-
tion. A colleague of Georg Rheticus at the University of Wittenberg, Rein-
hold was one of the first to receive a copy of Copernicus’s work. Reinhold is 
most known for his very successful astronomical Prutenic Tables, but more 
relevant to us is his posthumous 1554 Tabularum directionum.9 This collec-
tion of tables is an expansion of Regiomontanus’s work of the same name and 
includes a tangent table (“canon fecundus”) greatly expanded from Regio-
montanus’s. This table gives values to at least seven places for every minute 
of arc from 0° to 89° and for every 10 seconds of arc between 89° and 90° 
where the values change rapidly from entry to entry.10 To give the reader a 
sense of calculations in typical astronomical work of the time, we provide a 
short passage of his commentary on Copernicus, one of many where Rein-
hold uses his tangent table.

Text 1.2
Reinhold, a Calculation in a Planetary Model Using Sines and Tangents
(from Reinhold’s commentary on Copernicus’s De revolutionibus)

Likewise, because angle FEN is 39°37′38″, therefore in right [triangle] EPL 
the remaining angle of LEP [that is, angle ELP] is 50°22′22″; and when EL is 
100,000, then LP is 63,779 and PE is 77,021. And now when EL is taken to be 
5,943, such that it is half the eccentricity, then LP is 3,790 and EP is 4,577. 
And from here, their doubles are DQ = 7,580 and EQ = 9,154, when EN . . . ​is 
100,000. Therefore, the whole of these, QEN, is 109,154. And with QN taken 
to be 10,000,000, then QD is 694,432. And from our table, angle DNQ is 
3°58′21″.11

Explanation: (See figure 1.2.) In the figure, D is the center of the universe 
and E is the center of the topmost eccentric deferent circle.

Reinhold knows that ∠FEN = 39°37′38″ and wants to find ∠QND. Firstly, 
since ∠FEN = ∠PEL and ∠EPL is a right angle, ∠ELP = 90° − 39°37′38″ = 
50°22′22″. Next, in right-angled triangle EPL, Reinhold sets the hypotenuse 
R = 100,000. This allows him to use his Sine table; he finds LP = Cos ∠ELP = R 
cos ∠ELP = 63779 and PE = Sin ∠ELP = R sin ∠ELP = 63779. But EL is a 
known parameter with value 5,943, so LP and EP are scaled downward to 
3,790 and 4,577, adjusting from the hypotenuse of 100,000 assumed by the 
Sine table to a hypotenuse of 5,943. Now, the astronomical model assumes 
that EL = LD, so the sides of triangle DQE are double those of ΔLPE, which 

9 �[Reinhold 1554]. The “canon fecundus” may be found on folios 17 through 51.
10 �The values in the table stray significantly away from the correct ones as the argument ap-

proaches 90°, a problem that plagued both medieval Islamic and especially early European 
table makers. See the account of Rheticus, Romanus, and Pitiscus in [Van Brummelen 2009, 
280–282]. See also the analysis of early European tangent tables in [Pritchard, forthcoming].

11 �[Nobis/Pastori 2002, 246–247]. Translated from the Latin.
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Figure 1.2 
Reinhold’s calculation with a 
planetary model using the 
tangent.
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make DQ = 2LP = 7,580 and EQ = 2EP = 9,154. But EN is the radius of the 
circle, previously set to 100,000; therefore QEN = 109,154. Finally, consider 
right triangle NQD. Reinhold’s Canon fecundus uses a radius of 10,000,000, 
so he sets QEN (the side adjacent to the angle we seek) equal to that value 
rather than 109,154. This requires him to adjust DQ’s value accordingly, 
from 7,580 upward to 694,432. He can now look up this value in the Canon 
fecundus (figure 1.3); we can see for ourselves that ∠QND is between 3°58′ 
and 3°59′.

Clearly the tangent has come a long way from its initial role as a helper to 
Bianchini and Regiomontanus in solving stellar coordinate problems. Rein-
hold is now using his Canon fecundus as a general purpose tool for dealing 
with arbitrary right triangles.

The approach shared by Regiomontanus and Reinhold, dominant in the 
sixteenth century, was opposed by Georg Rheticus (1514–1574). Known as 
the man who discovered Copernicus and convinced him to publish his helio-
centric theory, Rheticus hailed from the region of Rhaetia, which overlaps 
Austria, Switzerland, and Germany.12 In his mid-twenties he visited Coper-
nicus and became his student; he announced the heliocentric theory in his 

12 �We have already discussed Rheticus and Copernicus in [Van Brummelen 2009, 273–282]. For 
more on Rheticus, see [Burmeister 1967–1968] and [Danielson 2006].

Reinhold (1511–1553), one of the best quantitative astronomers of his genera-
tion. A colleague of Georg Rheticus at the University of Wittenberg, Rein-
hold was one of the first to receive a copy of Copernicus’s work. Reinhold is 
most known for his very successful astronomical Prutenic Tables, but more 
relevant to us is his posthumous 1554 Tabularum directionum.9 This collec-
tion of tables is an expansion of Regiomontanus’s work of the same name and 
includes a tangent table (“canon fecundus”) greatly expanded from Regio-
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short passage of his commentary on Copernicus, one of many where Rein-
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100,000, then LP is 63,779 and PE is 77,021. And now when EL is taken to be 
5,943, such that it is half the eccentricity, then LP is 3,790 and EP is 4,577. 
And from here, their doubles are DQ = 7,580 and EQ = 9,154, when EN . . . ​is 
100,000. Therefore, the whole of these, QEN, is 109,154. And with QN taken 
to be 10,000,000, then QD is 694,432. And from our table, angle DNQ is 
3°58′21″.11

Explanation: (See figure 1.2.) In the figure, D is the center of the universe 
and E is the center of the topmost eccentric deferent circle.

Reinhold knows that ∠FEN = 39°37′38″ and wants to find ∠QND. Firstly, 
since ∠FEN = ∠PEL and ∠EPL is a right angle, ∠ELP = 90° − 39°37′38″ = 
50°22′22″. Next, in right-angled triangle EPL, Reinhold sets the hypotenuse 
R = 100,000. This allows him to use his Sine table; he finds LP = Cos ∠ELP = R 
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9 �[Reinhold 1554]. The “canon fecundus” may be found on folios 17 through 51.
10 �The values in the table stray significantly away from the correct ones as the argument ap-

proaches 90°, a problem that plagued both medieval Islamic and especially early European 
table makers. See the account of Rheticus, Romanus, and Pitiscus in [Van Brummelen 2009, 
280–282]. See also the analysis of early European tangent tables in [Pritchard, forthcoming].
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Narratio prima and helped Copernicus bring his De revolutionibus (and sep-
arately its trigonometry under the title De lateribus et angulis triangulorum, 
“On the Sides and Angles of Triangles”)13 to press.

Rheticus’s accomplishments after Copernicus’s death in 1543 are primar-
ily trigonometric, especially in the design and production of tables. His short 
1551 tract Canon doctrinae triangulorum (“Table of the Doctrines of 
Triangles”),14 consisting of nothing more than a short introductory poem, 
14 pages of tables, and a six-page dialogue, seems at first glance unassuming. 
But within its pages one finds not only tables of all six trigonometric func-

13 �[Copernicus 1542]. For an account of the trigonometry in this treatise (which is not very origi-
nal), see [Swerdlow/Neugebauer 1984, part 1, 99–104]. See also [Rosińska 1983], which argues 
that the sine table in this work was computed by Copernicus himself but corrected by Rheticus 
based on Regiomontanus’s tables.

14 �[Rheticus 1551]. This treatise has an unusual history. Since it was placed on the Index expurga-
torius (and since Rheticus’s later work, the Opus palatinum, rendered it obsolete), it dis
appeared from view after the sixteenth century. It was rediscovered by Augustus De Morgan in 
the mid-nineteenth century. See [De Morgan 1845], [Hunrath 1899], [Archibald 1949b], and 
[Archibald 1953]. [Roegel 2011d] contains a recomputation of all of its tables.

Figure 1.3 
A page from Reinhold’s 
Canon fecundus. This 
section gives tangents 
from 0° to 4°, and 
cotangents from 86° to 
90°. This page includes 
tangent values for arcs 
with minute values between 
30′ and 60′; the grid on the 
facing page gives values 
for arcs with minute values 
between 0′ and 30′.
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tions now considered standard (sine, cosine, secant, tangent, cosecant, and 
cotangent) but also a completely new and elegant set of terminology to de-
scribe them. Consider three “species” of right triangles (figure 1.4) described 
with respect to a given radius R.15 In the first species the hypotenuse is set 
equal to R; in the second, the base; and in the third, the perpendicular. Then:

in the first species, we have two functions, the perpendicular and 
the base (equivalent to Sine and Cosine respectively);
in the second species, we have the hypotenuse and the 
perpendicular (Secant and Tangent); and
in the third species, we have the hypotenuse and the base 
(Cosecant and Cotangent).

When Rheticus solves triangles, circles play no role. Thus, Rheticus’s system 
not only defines all six trigonometric functions compactly but also divorces 
them from circular arcs: the arguments are now simply angles within the tri-
angles, as they are today.

Rheticus found posthumous support for his design in the writings of the 
possibly the most well-known mathematician of the sixteenth century, Fran-
çois Viète (1540–1603). Viète’s career was in the French civil service—not 
mathematics, on which he worked in his spare time. As a Huguenot during a 
time of unrest between Catholics and Protestants in France, his position was 
often hardly stable. He lived through an authorized massacre of Huguenots 
(which claimed the life of his older colleague Peter Ramus) and five years of 

15 �In the Canon doctrinae triangulorum Rheticus sets R = 10,000,000; in the Opus palatinum, 
R = 10,000,000,000.

Figure 1.4 
Rheticus’s six trigonometric functions.
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banishment from Paris, during which he worked on his mathematics. His in-
terests were diverse, including astronomy and cryptography; but today he is 
recognized most for his contributions to the revolution of symbolic algebra, 
especially his In artem analyticam isagoge.16

While Viète’s role in transforming algebra was fundamental, he was also 
deeply involved in the evolution of trigonometry. His first mathematical work, 
Canon mathematicus seu ad triangula (“Mathematical Canon, or On Trian-

16 �For editions and translations of Viète’s mathematical treatises, see [Viète 1646; 1983] and 
[Viète/Girard/de Beaune 1986]; [van Egmond 1985] is a catalog of his works. None of these 
books contains Canon mathematicus seu ad triangula [Viète 1579], which occupies our atten-
tion here. See also [Ritter 1895] and [Reich/Gericke 1973]; the latter contains accounts of 
several of Viète’s works in algebra. The secondary literature on Viète’s role in the transforma-
tion of algebra is too large to be summarized here.

Figure 1.5 
A page from Viète’s Canon mathematicus seu ad triangula (1579), 
naming the sides and angles of a right triangle.
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gles,” 1579),17 is an unusual volume—as close as it comes to being a coffee 
table book on trigonometry. For instance, the first page of text (figure 1.5) lays 
out the names of the sides and angles of a right-angled triangle with an eye 
to filling the page in a pleasing way. The book begins with a set of trigono-
metric tables designed according to the methods of Rheticus’s Canon doctri-
nae triangulorum, with all six functions grouped according to the three tri-
angle species we saw in figure  1.4. Although his names for the various 
functions often vary (see figure 1.6) and borrow the term fecunda from Re-
giomontanus, the structure clearly imitates that of Rheticus.18

Most of Viète’s colleagues and contemporaries, however, were content to 
stick with the language of Regiomontanus.19 For instance, only eight years after 
the De triangulis omnimodis was published, the great German astronomical 

17 �See [Viète 1579], [Hunrath 1899], and [Rosenfeld 1988, 24–27]. See also [Roegel 2011g] for a 
recomputation of the tables.

18 �See page 16 of the Universalium inspectionum within [Viète 1579], and [Ritter 1895, 40]. Viète 
applies the term fecunda to several quantities.

19 �[Von Braunmühl 1900/1903, vol. 1, 183] suggests that Viète’s unique notation here and else-
where, brilliant as it was, may have contributed to his colleagues’ lack of appetite for his trigo-
nometric inventions. But Rheticus and Viète were not without followers; Adrianus Romanus’s 
Canon triangulorum [Romanus 1609], for instance, adopts some of Viéte’s structure and ter-
minology, including the terms “transsinuousae” for the secant and “prosinus” for the tangent 
(even though the standard terms are on the title page).

Figure 1.6 
Viète’s nomenclature for the six trigonometric functions, taken from page 16 of 
Universalium inspectionum of his Canon mathematicus seu ad triangula. The Roman 
numerals on the left refer to Rheticus’s triangle species.

Hypotenusa Perpendiculum Basis

I. Totus Sinus Anguli, vel
Peripheriae (sine) 

Sinus anguli Reliqui,
seu Residuae
peripheriae (cosine)

II. Hypotenusa
Faecundi Anguli, vel
Peripheriae (secant)

Faecundus Anguli, vel
Peripheriae (tangent)

Totus

III. Hypotenusa
Faecundi anguli
Reliqui, vel Residuae
peripheriae (cosecant)  

Totus Faecundus anguli
Reliqui, vel Residuae
peripheriae (cotangent)
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and geographical instrument maker Peter Apian (1495–1552)20 had followed 
with his 1541 Instrumentum sinuum seu primi mobilis, a well-known treatise 
on trigonometric instruments and their use in solving various astronomical 
problems, which we shall consider later. Apian uses names that would have 
been familiar to Regiomontanus and his colleagues: the sinus rectus primus 
for the sine and the sinus rectus secundus for the cosine.21 There is no refer-
ence to Regiomontanus’s tabula fecunda or indeed to anything resembling a 
tangent function.

Apian’s traditional names for the sine and cosine are found again in the 
1558 collection of works on spherical astronomy22 by Francesco Maurolico 
(1494–1575). A Sicilian priest, Maurolico held a variety of civil positions over 
the course of his life, including master of the mint, and was eventually ap-
pointed professor at the University of Messina. He was active in a wide vari-
ety of areas of mathematics and science, including optics and music; within 
astronomy he was especially prolific in spherical astronomy and edited sev-
eral Greek works on the subject. Although he does not define the tangent and 
cotangent directly in his book on spherics, they do appear as umbra versa 
and umbra recta in Book II, Proposition 30,23 as they often had before. These 
terms derive from ancient and medieval references to “shadows” in sundials, 
and Maurolico himself defines the umbra versa and umbra recta in this way 
in his astronomical treatise De sphaera, a work infamous for his vicious con-
demnation of Copernicus.24 However, as we noted earlier, it was not from the 
umbra versa and umbra recta that the modern tangent and cotangent evolved.

We do find one innovation in Maurolico’s work on spherics. Near the end 
he describes a new table as follows: “In imitation of the tabula fecunda of 
Johannes Regiomontanus, we made another table which we have named 
benefica, because certain calculations become easy by means of this table.”25 

20 �For a general introduction to Apian’s mathematics see [Kaunzner 1997]; for his trigonometry 
see [Folkerts 1997].

21 �See the third page of the first section of [Apian 1541], Instrumentum hoc primi mobilis 
componere.

22 �[Maurolico 1558] (on which see [Moscheo 1992] on editorial issues) includes Latin editions of 
Theodosius’s Spherics, Menelaus’s Spherics, Autolycus’s Spherics, Theodosius’s De habilita-
tionibus, and Euclid’s Phenomena as well as several small trigonometric tables (sine, tabula 
fecunda, tabula benefica, and declinations and ascensions) and a Compendium mathematicae. 
On Maurolico’s sources for his edition of Menelaus, see [Taha/Pinel 1997] or [Taha/Pinel 
2001]. See also [Napoli 1876] for an edition of Maurolico’s Geometricarum quaestionum. 
[Rose 1975, 159–184] is a good account of Maurolico’s life and work.

23 �[Maurolico 1558, f. 58].
24 �De sphaera is the first of a number of short treatises in Opuscula mathematica, [Maurolico 

1575]; the definitions of umbra versa and umbra recta may be found on page 13. For Mauroli-
co’s attack on Copernicus, see [Rosen 1957].

25 �[Maurolico 1558, f. 60], Demonstratio tabulae beneficae.
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Maurolico’s new table introduces what today we call the secant.26 A short table 
at the end of the book27 gives secant values, with R = 100,000, for integer ar-
guments from 1° to 89°. Rheticus, of course, had already published tables of 
all six trigonometric functions seven years earlier in his Canon doctrinae tri-
angulorum. But he had used his own unique terms and definitions, which 
make no appearance in Maurolico’s work.28 Instead, consider Maurolico’s fig-
ure 1.7: within right triangle ABC, segment BD is perpendicular to AC. Set 
AB equal to R =100,000. Then, given ∡A at the top of the diagram, we may 
find BD from a table of sines, BC from the tabula fecunda, and AC from the 
tabula benefica.

It took another quarter century for the tabula fecunda and tabula benefica 
to take on their modern names of tangent and secant in Danish scholar Thomas 
Fincke’s (1561–1656) Geometriae rotundi (“Geometry of Circles and 
Spheres”).29 Still a 22-year-old student in 1583 at its publication, Fincke 
switched to the study of medicine that same year. Over the course of his very 
long career, he held professorial positions in medicine, rhetoric, and mathe
matics and held a number of senior administrative posts (including rector and 

26 �Copernicus composed a table of secants by hand, but it was never published. See [Glowatzki/
Göttsche 1990, 190–192]. For an analysis of Maurolico’s table, see [Van Brummelen/Byrne, 
forthcoming].

27 �Folio 66. As we shall see later, a controversy arose over whether Maurolico’s table owed an 
unpaid debt to Rheticus.

28 �Here we differ from von Braunmuhl’s opinion that Maurolico was following Rheticus; see [von 
Braunmühl 1900/1903, I, 150–151].

29 �[Fincke 1583]. De Morgan first makes this identification in [De Morgan 1846]. See [Schönbeck 
2004] for a detailed account of Fincke’s life and a summary of the Geometriae rotundi.

Figure 1.7 
Maurolico’s trigonometric functions.

A

B CTabula fecunda

Tabula bene�caSi
nu

s t
ot

us
Sinus rectus D

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



	 14	 Chapter 1

dean of the medical school for over half a century) at the University of Co-
penhagen. But the Geometriae rotundi remains his most enduring legacy. In-
spired by Peter Ramus’s 1569 Geometria, in a way the book is a step back to 
an older time, with its emphasis on the ancient spherical Menelaus’s theorem.30 
However, it was found to be extremely clear and readable, and it was spoken 
of highly for several decades.

One of the Geometriae rotundi’s most lasting contributions was its cre-
ative use of language to simplify the presentation. Among his innovations 
were the inventions of the names “tangens” and “secans” for the tangent and 
secant functions respectively. In Proposition V.22 (figure 1.8), Fincke takes a 
semicircle of given radius, draws a vertical tangent from its rightmost point, 
and extends a diagonal at a given angle from center O until it touches the tan-
gent line at I. Then the length of AI, naturally, is the “tangent” of that angle. 
A few propositions later (V.27), Fincke calls OI the secant since it crosses 
the circle’s edge.31

The new names were instantly popular among Fincke’s colleagues; they 
are found already three years later in Christoph Clavius’s 1586 edition of The-

30 �See [Van Brummelen 2009, 56–61].
31 �[Fincke 1583, 73–74, 76].

Figure 1.8 
Defining the tangent in Fincke’s Geometria rotundi.
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odosius’s Spherics32 as well as in Antonio Magini’s 1592 De planis triangu-
lis (which also contains the terms tangens secunda and secans secunda for 
cotangent and cosecant, paralleling the earlier usages of sinus primus and 
sinus secundus for sine and cosine), among other works.33 The abbreviations 
for the words varied from one author to the next; well into the seventeenth 
century they had not yet become standardized. François Viète himself ob-
jected to the new terms, arguing that they could be too easily confused with 
other ways that the terms are used in geometry.34 But in this case at least, 
Viète’s opinion did not transform into practice.

32 �[Clavius 1586]. In addition to Theodosius’s Spherics, the book contains tables of tangents and 
secants (in which the name benefica also appears) and trigonometric treatises by Clavius 
himself.

33 �[Magini 1592]. [Cajori 1928–1929, vol. 2, 150–151] also refers to the use of these terms by 
Brahe, Lansberg, Blundeville, and Pitiscus.

34 �[Viète 1593, the third folio numbered 38] (“Immo vero artem confundunt, cum his vocibus 
necessae habeat uti Geometra abs relatione”); see also [Cajori 1928–1929, vol. 2, 150].

Figure 1.9 
Fincke’s expression of the relation cos c = cot A cot B for a right-angled spherical 
triangle, Geometria rotundi XIV.17. Book XIV contains the earliest appearances  
of the abbreviations “sin,” “tang,” and “sec”; the first two can be seen here.
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Book XIV, concluding Fincke’s Geometriae rotundi with some spherical 
trigonometric results, contains a significant notational development. Perhaps 
due to the length of text that would otherwise be required to state these theo-
rems, Fincke abbreviates the trigonometric functions in ways that we recog-
nize today. Here we find for the first time “sin.” for sine; “tan.” and “tang.” 
for tangent; “sec.” for secant; and “sin. comp.” or “sin. compl.” for cosine (and 
similarly for cotangent and cosecant). In figure 1.9, for instance, we see 
Fincke’s expression of the relation “R is to Cos ia as Tan a is to Cot i” in the 
right-angled spherical triangle at the bottom of the diagram, equivalent to our 
cos c = cot A cot B.

Trigonometric Tables Evolving

Until machines took over the world of computation, numerical tables were 
how trigonometry was used in the sciences, surveying, and navigation. Hip-
parchus’s invention of the trigonometric table to convert geometric statements 
into quantitative results was to extend far beyond his predictions of eclipses. 
In turn, the need for easily computed, yet accurate tables was the motive 
behind many of the theorems that are now taught in school. The basic for-
mulas of plane trigonometry—for instance, the sine and cosine sum and dif-
ference laws and the half-angle formulas—were invented to simplify compu-
tations of tables.35 And as we just saw, the tangent and the secant functions 
were introduced in Europe not as functions but as tables (the tabula fecunda 
and tabula benefica).

The late sixteenth century saw a spectacular rise in the production of trig-
onometric tables in terms of both the industry required to generate them and 
the quality of the results.36 Almost every author participated in the table-
making process (see figure 1.10); composing a table was a major part of what 
it meant to be a practitioner of the doctrine of triangles. Dealing with frac-
tional quantities outside of the astronomers’ traditional sexagesimal (base 60) 
arithmetic was not in the standard toolbox until late in the sixteenth century; 
table makers usually got around this problem by using a base circle radius 
equal to some large power of ten.37 Then, they could represent Sines, Cosines, 
and so on as large whole numbers.

35 �See [Van Brummelen 2009, 41–46, 70–77] for descriptions of trigonometric tables in ancient 
Greece and in multiple places elsewhere in the book for discussions of tables in medieval 
cultures.

36 �See [Glowatzki/Göttsche 1990] for a study of Regiomontanus’s trigonometric tables and those 
of his successors.

37 �At least one astronomer of the fifteenth century (Giovanni Bianchini) took some early steps 
toward decimal fractional notation, including the invention of the decimal point, which we 
shall describe shortly.
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A quick examination of figure 1.10 reveals several noteworthy facts. 
Firstly, it took almost no time for the tangent and the secant functions, under 
various names, to be accepted and tabulated along with the sine.38 Secondly, 
the increments between the arguments became smaller and smaller, achiev-
ing more accuracy at the cost of increased labor; the standard increment soon 
became 1′ or even smaller. Finally, often unaware of it, all authors struggled 
with the entries of a trigonometric table that are most difficult to compute ac-
curately: namely, values for the tangent and secant where the argument ap-
proaches 90°. These values were often calculated by dividing by a very small 
quantity such as the cosine of an angle near 90°.39 Small rounding errors in 

38 �In spherical trigonometry the function arcsin (sin x sin y). had currency through the sixteenth 
century and was often tabulated; see [Van Brummelen 2009, 263] on Regiomontanus’s table 
and [Glowatski/Göttsche 1990, 197–207] for a summary.

39 �See [Pritchard, forthcoming].

Figure 1.10 
Trigonometric tables from Regiomontanus to the eve of logarithms.

Author Work sin tan sec R Step size Worst case error 

��
60,000 (sine)

100,000 (tangent)
1’ (sine)

1º (tangent) 4th of 7 decimal places

� 100,000 1’

�
6,000,000;
10,000,000

1’

� 10,000,000 1’

� � � 10,000,000 10’ 5th of 10 decimal places

5th of 9 decimal places

6th of 12 decimal places

� 10,000,000
1’

(10’’ after 89º)

4th of 12 
decimal places  
(for 89º59´:5th of 

11 places) 

� � � 100,000 1º

� � � 100,000.000 1’

� � �
60 (three sexagesimal

places) 1º

� � � 10,000,000 1’

� � � 100,000 1’

� � � 1,000,000,000 10’

� 1,000,000,000,000,000 10’’

7th of 7 decimal places
(for 89º59´: 6th of 9

places)  

9th of 9 decimal places

3rd of 4 sexagesimal
places 

5th of 11 decimal
places

Regiomontanus

Apian

Regiomontanus

Copernicus

Rheticus

Reinhold

Maurolico

Viète

Bressieu

Fincke

Pitiscus

Van Roomen

Pitiscus (Rheticus)

Rheticus/Otho

Tabulae directionum (1490) 

Introductio geographica (1541) 

Tractatus Georgii 
Peurbachii… (1541) 

De lateribus triangulorum (1542) 

Canon doctrinae 
triangulorum (1551)

Tabularum directionum (1554)  

Theodosii sphaericorum (1558) 

Canon mathematicus seu 
ad triangula (1579)  

Metrices astronomicae (1581) 

Geometriae rotundi (1583) 

Trigonometriae (1600)

Canon triangulorum 
sphaericorum (1607)

Thesaurus mathematicus (1613)

Opus palatinum (1596) � � � 10,000,000,000 10’’
7thof 15 decimal places

(for 89º59´:9th of 
14 places)  
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the cosine values were thus magnified and became much larger errors in the 
tangent and secant values.40

Several sixteenth-century European authors discussed their methods for 
computing sines.41 Usually their methods did not go much beyond what one 
finds already in the chord table in Ptolemy’s Almagest along with those de-
veloped in early Islam and transmitted to Europe through al-Andalus. A typi-
cal early sixteenth-century text is Regiomontanus’s Compositio tabularum 
sinuum rectorum, published 65 years after his death in 1541.42 Regiomonta-
nus begins this work simply by stating that one can find the Sine of the com-
plement of an arc whose Sine is known, using the Pythagorean Theorem:

	 sin(90° − θ ) = R2 − Sin2θ . 	 (1.1)

He then determines the Sines of the kardajas, namely, the multiples of 15°, 
which can be obtained from the Sines of 30°, 45°, and 60°, a simple geomet-
ric argument deriving the Sine of 15°, and (1.1).43 This results in a small table 
of sines, listed in the order of their computation rather than in increasing order, 
with R = 600,000,000:

Arcus Sinus

90 600000000

30 300000000

60 519615242

45 424264069

15 155291427

75 579555496

40 �We have already discussed this problem with respect to Rheticus’s tables in the Opus palati-
num, their identification by Adriaan van Roomen, and the repairs to the table made by Pitiscus; 
see [Van Brummelen 2009, 280–282]. For the secant function, the alternative method 
sec2θ = 1 + tan2θ was much less prone to error (assuming one has an accurate tangent table) and 
used occasionally; see [Van Brummelen/Byrne, forthcoming].

41 �Occasionally they also discussed the computation of tangents and secants but usually only 
briefly and simply.

42 �Published as an appendix to [Peurbach 1541]; [Glowatzki/Göttsche 1990, 11–24] contains a 
reproduction of the manuscript and a translation to German. This is not the earliest sixteenth-
century publication describing the calculation of a sine table; Peter Apian’s Introductio geo-
graphica (1533) contains both a sine table (reprinted a year later in his Instrumentum sinuum 
seu primi mobilis) and a description. See [Folkerts 1997, 225–226] for a brief account. The 
Instrumentum sinuum seu primi mobilis also contains a small table of arc sines, the earliest 
such table of which I am aware with clearly trigonometric intent. An early description of the 
construction of a sine table, using similar methods and almost contemporaneous with Regio-
montanus, may be found in Oronce Fine’s 1542 De sinibus; see [Ross 1977].

43 �The kardajas, from the Persian for “sections,” are found in medieval India, Islam, and Europe. 
For a modern account of this and the following proposition, see [Zeller 1944, 33–34].

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



	 European Trigonometry Comes of Age	 19

Proposition 3 gives

	
1
2 R

Sinθ
= Sinθ
Vers 2θ

,	 (1.2)

an equivalent to the Sine half-angle formula. This gives Regiomontanus all 
the tools he needs to find the Sines of all the multiples of 3°45′, which he 
promptly does, in a table similar in form to the above. Proposition 4 uses 
constructions of the regular pentagon and decagon inscribed in a circle, as 
Ptolemy and many others had done, to determine the values of a couple of 
more difficult Sines.44 For instance, since the side of the inscribed penta-
gon is equal to the chord of a 72° arc, half of the side of the pentagon is the 
Sine of 36°. Once these values are known, proposition 5 allows Regiomon-
tanus to find the length of a side of a regular 15-gon inscribed in a circle, 
as follows (figure 1.11): in a quadrant of radius R, let AD = 30° and AE = 54°. 
Then EI = EG − IG = Sin 54° − Sin 30° = Sin(90° − 36°) − Sin 30° and ID =  
DH − HI = Sin 60° − Sin 36°, so we can calculate a value for ED = EI 2 + ID2 .  
But ED = 24° is one side of the regular 15-gon, so 12 ED = Sin12°. Now that  
we have a value for Sin 12°, apply the half-angle formula four times to get  
Sin 45′. Once Regiomontanus has this value under his belt, he needs only 
time, patience, and the Sine sum and difference laws to find the Sines of all 
multiples of 45′.

But all of this work is only a precursor to the most challenging problem 
in the calculation of Sine tables, namely that of finding the Sine values of 
multiples not of 45′ but of 1° (or 1′). The only Sines that can be found using 

44 �See [Van Brummelen 2009, 72–74].

Figure 1.11 
Regiomontanus’s calculation of the 
length of a side of a regular 15-gon.
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geometry alone are those whose arcs can be written in the form 3m/2n° for 
whole numbers m and n. To go beyond this set, mathematicians since Ptolemy 
had had to find a way somehow to break the bounds of the methods available 
to geometry. Regiomontanus proceeds as follows. Within the quadrant, cut 
six arcs of ¼° each: AB, BC, . . . ​, FG (figure 1.12); and drop a perpendicular 
from G onto AH. Then drop perpendiculars from B, C, D, E, and F to HG. 
HI, HK, . . . ​are then the Sines of the successive multiples of ¼°, up to 
HG = Sin1 1°

2 . By a lemma (omitted here, although one can see it is true by 
inspection), Regiomontanus knows that HI > IK > . . . > NG. Since he already 
knows from his table calculations that HL = Sin 3°

4 = 7,853,773  (in a circle 

of radius 600,000,000), he determines

	
Sin1° = HM = HL + LM < 4

3
HL = 4

3
Sin

3

4

o

= 4

3
(7853773)

= 10,471,697.
	 (1.3)

Similarly, knowing also that HG = Sin1 1°
2 = 15,706,169,  he finds

	

Sin1° = HM = HL + LM > HL + 1

3
LG =

Sin
3

4

o

+ 1

3
Sin 1

1

2

o

− Sin
3

4

o⎛
⎝⎜

⎞
⎠⎟
= 10,471,238. � (1.4)

The result is a narrow interval containing Sin 1°:

	 10,471,238 < Sin 1° < 10,471,697.	 (1.5)

Figure 1.12 
Regiomontanus’s method to calculate 
Sin 1°. I NMLK
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F
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From here Regiomontanus uses his half-angle formula to obtain45

	 5,235,818 < Sin 1
2
°< 5,236,044. 	 (1.6)

Since he wishes to compute a sine table with R = 6,000,000 rather than 
600,000,000, Regiomontanus divides by 100, leaving

	 52,358 < Sin 1
2
°< 52,360, 	 (1.7)

from which he concludes that Sin 1°
2 = 52,359. Armed with this approxima-

tion, the half-angle formula, the Sine sum and difference laws, and a lot of 
patience, he is able to fill in the Sines of all the multiples of ¼°.46

This technique is an enhancement on the approach used by Ptolemy in 
the Almagest, but it is essentially the same idea. Various eastern Arabic en-
hancements of Ptolemy’s procedure from the tenth and eleventh centuries had 
generated similar results.47 Curiously, only a few decades before Regiomon-
tanus wrote this treatise but far to the East in Samarqand, Jāmshīd al-Kāshī 
had overturned the rules of this problem by introducing algebra and an itera-
tive procedure that allows the determination of Sin 1° to as many places as 
one has the patience to calculate. However, his solution was not to find its 
way to Europe.48 Even more curiously and much closer to Regiomontanus’s 
home, his older colleague Giovanni Bianchini had done something similar, 
also with a method capable of generating arbitrary levels of precision, and 
we know that Regiomontanus became aware of it at some point.49 However, 
there is no trace of anything new on this topic in this work.

The divide over terminology that we saw in the previous section was 
about to make a reappearance in the context of tables. Rheticus’s new struc-
ture and his tables for all six trigonometric functions appeared only a decade 
after the publication of Regiomontanus’s book, in the 1551 Canon doctrinae 
triangulorum. While this latter work eventually became very difficult to find, 
clearly the word about it spread through the mathematical community; his 
name is mentioned frequently in the late sixteenth century in conjunction with 
the new trigonometric functions well before his massive Opus palatinum, 

45 �These two values are in error in the last two places, but this is about to become irrelevant.
46 �Regiomontanus goes on to describe how to enhance the process to work one’s way down to 

Sin 1′, which would allow him to build a table with an increment of 1′, but he does not provide 
the calculations.

47 �See [Van Brummelen 2009, 140–145].
48 �See [Van Brummelen 2009, 146–149].
49 �See [Gerl 1989, 265–268]. A marginal note by Regiomontanus in the margin of the manuscript 

Cracow BJ 558 (f.22v) states that Bianchini’s method is superior to Ptolemy’s.
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a full treatment of his trigonometry with gigantic tables, was published in 1596. 
In fact, although Maurolico published his table of secants under a different 
name (tabula benefica) imitating the style of Regiomontanus in 1558, Thomas 
Fincke asserted in his 1583 Geometriae rotundi that Maurolico had simply 
taken over Rheticus’s secant table. Magini, in his 1592 De planis triangulis, 
defended Maurolico, arguing that he had worked independently of Rheticus.

The question may be resolved by a closer inspection of Maurolico’s table, 
which gives the secant for R = 100,000 and for every degree up to 89°.50 Since 
the secant grows without bound as the argument approaches 90°, the last few 
values in any secant table are difficult to compute and are highly sensitive to 
rounding errors. For instance, the correct value of Sec 89° is 5,729,869. Mau-
rolico’s value is 5,729,868 while Rheticus’s is 5,729,838.51 Another example: 
immediately below Maurolico’s table, he gives a few values of Sec θ for ar-
guments greater than 89°, one of which (89°30′) has the same argument as 
an entry in Rheticus’s table. The correct value of Sec 89°30′ is 11,459,301; 
Maurolico’s is 11,459,309; Rheticus’s value is 11,459,348. In both cases (and 
in others) Maurolico’s value is much more accurate than Rheticus’s. There-
fore, he did not appropriate Rheticus’s table.52

François Viète dealt with the problem of finding Sine values for argu-
ments where geometry alone does not suffice, both early and late in his 
career. In his 1579 Canon mathematicus seu ad triangula, he determines 
sin 1′ as follows.53 Beginning with sin 30° = 0.5, he applies the sine half-
angle formula (in the form sin2(θ / 2) = 1

2 vers θ ) 11 times in a row. In his 
last two iterations he finds

	

sin2 45 ′0
256

⎛
⎝⎜

⎞
⎠⎟ = 0.000000261455205834 and 

sin2 22 ′5
256

⎛
⎝⎜

⎞
⎠⎟ = 0.000000065363805733. � (1.8)

50 �[Von Braunmühl 1900/1903, vol. 1, 151–152] reports on the controversy and mentions a 
table of secants by Maurolico with arguments up to 45°; this table is mentioned by several 
later writers, apparently taking their information from von Braunmühl. The manuscript in 
fact does contain a secant table as described by von Braunmühl but in two columns, the 
first of which ends at 45°. Perhaps von Braunmühl did not notice the second column and 
thus did not have the opportunity to compare the values in the two secant tables for argu-
ments near 90°.

51 �This entry cannot be a typographical error since Rheticus’s interpolation column confirms this 
value. Since Rheticus’s value for R is larger, it contains two more decimal places, suppressed 
here; likewise for the entry for sec 89°30′.

52 �For a full analysis and the background to the controversy, see [Van Brummelen/Byrne, 
forthcoming].

53 �See [Viète 1579, 62–67]. For the reader’s ease, we have converted Viète’s calculations to a base 
circle of R = 1.
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From these values Viète derives two estimates for sin 1′ as follows:

sin ′1 > 256

450
⎛
⎝⎜

⎞
⎠⎟
2

⋅ 0.000000261455205834 = 0.0002908881959 	 (1.9)

and

sin ′1 < 256

225
⎛
⎝⎜

⎞
⎠⎟
2

⋅ 0.000000065363805733 = 0.0002908882056. 	 (1.10)

The former comes from the assertion that 
sin 45 ′0

256( )
sin ′1

< 450 / 256
1 ; the latter  

comes from 
sin1′

sin 22 ′5
256( ) <

1
225/ 256 . As impressive as these calculations are, this  

inequality—the heart of Viète’s method—goes all the way back to Ptolemy’s  
Almagest. Now, since 22 ′5

256  is closer to 1′ than 45 ′0
256  is, Viète proposes (but  

does not carry out in the text) that the final value for Sin 1′ should be a weighted 
average favoring (1.10) over (1.9). This would result in Sin 1′ ≈ 0.0002908882042, 
a value that is completely accurate except for the last decimal place. Decades 
later, Viète would invent (but not carry out) a method that applies algebra to 
the problem in the spirit of al-Kāshī; we shall examine it later in this chapter.

Also in the Canon mathematicus, we find a very large and rather odd 
table, the Canonion triangulorum laterum rationalium.54 Within it, Viète pro-
vides 45 pages of over 1,400 Pythagorean triples, scaled so that one of the 
three sides of the triangle is exactly equal to 100,000. These triples are or-
dered sequentially so that they can be used as a trigonometric table. Their 
values can be quite complicated. For instance, the first entry is

	
19,988,480,000

49,942,416,589
and 99,999

49,942,376,589

49,942,416,589
;

and in fact, the square root of the sum of the squares of these two numbers is 
precisely 100,000. Viète himself states at the end of the Canon mathemati-
cus that the Canonion “is of very little use.”55 One wonders, then, why he put 
so much effort into it. Perhaps he was concerned about issues of roundoff error 
in conventional tables, or he wished not to stray from the realm of pure geom-
etry into approximation, or he thought of this work more as number theory 

54 �[Viète 1579], pages numbered separately as pp. 1–45. See also [Tanner 1977] for offshoots of 
this work by Torporley and Harriot, [Hutton 1811b, 5–6], [Zeller 1944, 73–74], and [Roegel 
2011h] for a reconstruction of Viète’s table.

55 �[Viète 1579, 75].
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than as support for astronomy. We shall encounter this “rational trigonometry” 
again in chapter 5.

Before we move on, it is also worth mentioning an unusual small trea-
tise by Nicolaus Raymarus Ursus (1551–1600), a German astronomer known 
primarily for his rivalry with Tycho Brahe over priority to the geoheliocen-
tric system for the motions of the planets. The work in which he propounded 
this model, his 1588 Fundamentum astronomicum,56 also contains some com-
putational mathematics, including discussions of the computation of sine 
tables. Here he refers, not entirely clearly, to a method developed by his teacher 
Joost Bürgi involving finite differences, which we shall discuss later.57 The 
method Ursus describes for finding sin 1′ is similar to those we have seen 
before. However, once he has it, he uses the identity

	 2 sin(A − x) cos x − sin A = sin(A − 2x)	 (1.11)

cleverly to fill in the remaining entries: starting with A = 90° and x = 1′ and 
the knowledge of sin 90° and sin 89°59′, he uses it to calculate sin 89°58′; and 
by decreasing A again and again by one minute, he is able to calculate the 
sines of 89°57′, 89°56′, and so forth.58 We shall see identities used in this way 
again, in chapter 3.

Meanwhile, Rheticus had died in 1574, but the massive tables of the Opus 
palatinum were finally published in 1596 by Valentin Otho. We have already 
described these tables elsewhere.59 The 700-page tables, the largest ever com-
piled up to that time, contain all six of the standard trigonometric functions. 
Computed for every 10˝ of arc to ten decimal places, they constitute one of 
the most intensive computational efforts in human history. However, the meth-
ods Rheticus used, although inventive, did not extend beyond the approxi-
mation methods we have seen in this section. In fact, in figure 1.10 we see 
that Rheticus encountered the same difficulties with numerically sensitive 
trigonometric values that plagued almost all of his colleagues. The errors in 
Rheticus’s tables were noticed by Romanus60 and repaired by Pitiscus in 1607. 
Six years later Pitiscus would release Thesaurus mathematicus, an even more 
precise set of tables based on some of Rheticus’s unpublished calculations.61

56 �[Ursus 1588]. On sine tables, see especially the second of the seven chapters.
57 �See [Delambre 1821, vol. 1, 289–291, 299–301].
58 �See an account in [Delambre 1821, vol. 1, 306–307].
59 �See [Van Brummelen 2009, 273–282]. Since then a recomputation of the entire set of tables 

has appeared ([Roegel 2011e]).
60 �See [Bockstaele 1992] for a Latin edition of the passage and a modern account of Romanus’s 

criticism.
61 �See the description in [Van Brummelen 2009, 281–282]. Since then [Roegel 2011c] has given a 

recomputation.
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Algebraic Gems by Viète

A tantalizing hint suggests that Rheticus was dissatisfied with existing meth-
ods for the construction of sine tables; he may have been aware that the 3m/2n° 
barrier could be broken by solving an appropriate cubic equation as al-Kāshī 
had done (unbeknownst to Rheticus) just over a century earlier. Rheticus vis-
ited Gerolamo Cardano in 1545, the year Cardano published his solution to 
the cubic in his Ars Magna, “hoping it would be of some use to me in grap-
pling with the science of triangles.”62 But he was sent away empty handed, 
and the Opus palatinum contains no hint of the use of a cubic equation. Its 
accomplishment, then, owes as much to industry as it does to creativity.

On the other hand, François Viète managed to make the transition to the 
algebraic problem, showed how to solve the relevant equations, and described 
how they could be used to generate sine tables—but he seems never to have 
implemented the solution. His methods appear in Ad angularium sectionum 
analyticen, published by Alexander Anderson in 1615 more than a decade 
after Viète’s death.63 The key to the solution comes early in this work where 
Viète determines recurrence relations for sin nθ and cos nθ.

Text 1.3
Viète, Finding a Recurrence Relation for sin nθ
(from Ad angularium sectionum analyticen)

Theorem IIII: If beginning as a point on the circumference of a circle any num-
ber of equal segments are laid off and straight lines are drawn [from the be-
ginning point] to the individual points marking the segments, as the shortest 
is to the one next to it, so any of the others above the shortest will be [to] the 
sum of the two nearest to it.

[A geometric proof follows.]
(After Theorem VII:) Cut the circumference of a circle into a number of 

equal parts beginning at any assumed point and from it draw straight lines to 
the ends of the equal arcs. Let the shortest of these lines be Z and the next 
shortest B. Hence, from Theorem IIII, the first is to the second as the second 
is to the sum of the first and the third. The third, therefore, will be (B2 − Z2) / Z. 
By the same method used in the preceding [theorem],

the fourth will be 
B3 − 2Z 2B

Z 2

62 �[Danielson 2006, 121].
63 �See [Viète 1615]; it also appears as “Theoremata ad sectiones angulares” in [Viète 1646]. See 

[Viète (Witmer) 1983, 418–450] for a translation.
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the fifth will be 
B4 − 3Z 2B2 + Z 4

Z 3

. . .

the tenth will be 
B9 − 8Z 2 + 21Z 4B5 − 20Z 6B3 + 5Z8B

Z8 .64

Figure 1.13 
Viète’s diagram for the sine multiple-angle recurrence relation 
(simplified). The dashed lines are used in our explanation but do not 
appear in Viète’s figure.

C

B

A

D

E

H

Explanation: (See figure 1.13.) First, we must understand Viète’s notation. 
Arcs AB , BC ,CD , and DE  are all equal; it is understood that AH has been 
divided into arbitrarily many arcs. AH is a diameter, which implies that the 
triangles ABH, ACH, and so forth are all right angled. Let θ be the angles 
∠AHB, ∠BHC, ∠CHD, and ∠DHE; by Elements III.20, they are equal to half 
the posited arcs AB , BC,  and so on. Then (assuming we are in a unit circle) 

64 �[Viète (Witmer) 1983, 426, 435–436]. Viète’s algebraic notation in the original differs somewhat  

from Witmer’s transcription; for instance, (B2−Z2)/Z is rendered as 

Bq.
−Zq.

Z
.
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chord Z = AB is equal to 2 sin θ while chord B = AC is equal to 2 sin 2θ. Viète 
asserts that

	
Z

B
= D

C + E
, 	 (1.12)

where D is the second-longest chord in the diagram, C is the third longest, and 
E is the longest. In modern notation, this turns out to be equivalent to the re-
currence relation

	 sinθ
sin2θ

=
sin(n − 1)θ

sin(n − 2)θ + sinnθ
. 	 (1.13)

Viète also determines a recurrence relation for cosines:

	
1

2cosθ
=

cos(n − 1)θ
cos(n − 2)θ + cosnθ

. 	 (1.14)

By increasing n successively by one and solving for sin nθ each time, Viète is 
able to generate formulas for sin nθ for any n, including an equivalent to the 
sine triple-angle formula used by al-Kāshī.65

Viète compiles a table of the coefficients in the formulas for cos nθ, going 
as far as n = 21.66 Clearly, this would have been virtually impossible without 
his symbolic notation.

Was Viète simply showing off by deriving higher and higher multiple-
angle formulas in this way? Perhaps. Certainly, he could hardly have illus-
trated more effectively the power of combining symbolic algebra with trigo-
nometry; higher-order formulas beyond the triple-angle formula had not been 
discovered anywhere else, even in the Islamic world. But there was more to 
it than demonstrating his prowess. He reveals at least part of his intent at the 
end of Ad angularium sectionum analyticen: to find a precise value for sin 1′ 
in order to construct a table of sines. He begins with a value for sin 18°, which 
is a value that one can compute using geometric theorems. From it, Viète ap-
plies his sine quintuple-angle formula, generating sin 3°36′. This requires 
solving a quintic equation, which Viète does not explain how to do; however, 

65 �It came to light in the nineteenth century that Joost Bürgi had followed a similar algebraic 
path; see [Wolf 1872–1876, 7–28; 1890, vol. 1, 169–175] and [von Braunmühl 1900/1903, vol. 
1, 205–208] for accounts and [Roegel 2010a, 5–7] for a discussion of his sine table. Unfortu-
nately, Bürgi’s failure to publish rendered his work a dead end.

66 �Viète also derives equivalents to multiple-angle sine and cosine formulas up to n = 5 in Propo-
sitions 48–51 of his Ad logisticem speciosam notae priores, published in 1631 with notes by 
Jean de Beaugrand; it is the second treatise in [Viète (van Schooten) 1646]. For an English 
translation see [Viète (Witmer) 1983, 72–74]; for a French translation see [Ritter 1868, 245–
276]. Witmer remarks (pp. 6–7) that Viète comes close to, but does not quite arrive at, general 
expressions for cos nθ and sin nθ.
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in another work he had shown how to approximate solutions to polynomial 
equations.67 Likewise, using the sine triple-angle formula (and solving a cubic), 
we may move from sin 60° to sin 20°. Trisect again to get sin 6°40′; then bi-
sect to get sin 3°20′. Apply the sine difference law to 3°36′ and 3°20′ to get 
sin 16′; finally, bisect four times, and we have sin 1′.68 Viète never did imple-
ment this method, but three decades later Henry Briggs would exploit it in 
the construction of massive trigonometric tables in his Trigonometria 
Britannica.

We are not yet finished with Viète’s algebra. Before applying his multiple-
angle formulas to sine tables in the Ad angularium, Viète shows how one 
may work sometimes in the other direction using trigonometry to solve prob
lems in algebra. His most spectacular example is his 1595 Ad problema quod 
omnibus mathematicis totius orbis construendum proposuit Adrianus Rom-
anus.69 This dramatic story begins two years earlier. In 1593 Romanus had 
proposed to the world an apparently unsolvable problem, to find roots of the 
45th-degree equation

45x − 3795x3 + 95634x5 − 1138500x7 + 7811375x9 − 34512075x11

	 + 105306075x13 − 232676280x15 + 384942375x17 − 488494125x19

	 + 483841800x21 − 378658800x23 + 236030652x25 − 117679100x27

	 + 46955700x29 − 14945040x31 + 3764565x33 − 740259x35 + 111150x37

	 −12300x39 + 945x41 − 41x43 + x45 = K.	 (1.15)

A quick examination reveals that this is no ordinary 45th-degree polynomial; 
for instance, all the powers of x are odd. However, at first glance it is a mys-
tery how, when presented this problem by a Dutch ambassador through the 
king of France, Viète was able to come up with one solution almost immedi-
ately, and 22 others by the next day.

67 �De numerosa potestatum purarum [Viète 1600]; also available in [Viète 1646, 163–228]. The 
method for the extraction of roots is based on finding an initial approximation a to the solution 
x of the polynomial, substituting a + b for x in the polynomial, and applying the binomial theo-
rem to expand the result. See also [Goldstine 1977, 66–68].

68 �[Viète 1615, 47]; an English translation is in [Viète (Witmer) 1983, 450].
69 �[Viète 1595]; also available in [Viète 1646, 305–324]. Our account is based on [Viète (Witmer) 1983, 

445n46], a translation of [Viète 1595, folio 12]. Viète deals with these issues in other treatises as 
well, including De aequationum recognitione and Supplementum geometriae, both available 
in [Viète 1646]. Viète’s calculus of triangles, appearing also in Ad logisticen speciosam notae 
priores and Zeteticorum, has drawn attention; some of its calculations are isomorphic to the 
use of arithmetic with complex numbers, although [Glushkov 1977] is careful to point out the 
danger of such “unhistorical analysis”; see also [Itard 1968], [Bekken 2001], and [Reich 1973, 
chapter 3]. Also, [Bachmakova/Slavutin 1977] argue that Viète’s calculations with triangles 
are dedicated to the solution of indeterminate equations.
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We illustrate with a (thankfully) simpler case, an example of the first 
“Theoremation” of Ad problema: the equation 3x − x3 = 1, an example of the 
irreducible (sometimes called “depressed”) cubic ax − x3 = b that Scipione del 
Ferro, Tartaglia, and Gerolamo Cardano had solved several decades earlier. 
Viète recognizes that the form of this cubic equation is related to the sine 
triple-angle formula that he expresses as 3R2x − x3 = R2B, where R is the base 
circle radius, x is the chord subtending angle θ in figure 1.14, and B is the chord 
subtending 3θ. If we are in a unit circle, then we may verify that B = 2 sin 3θ 
and x = 2 sin θ. For our example we have B = 1. This implies that sin3θ = 1

2 . 
Thus 3θ = 30° or 150°, so θ = 10° or 50°. Hence x = 2 sin 10° = 0.347296 or 
x = 2 sin 50° = 1.53208, and Viète has found two of the three roots of the cubic 
equation. (Since Viète can consider only angles between 0 and 180° he can-
not find the third root, which is negative.)

This remarkable use of trigonometry to solve the irreducible cubic can 
be extended to certain polynomials of higher powers using higher multiple-
angle formulas, thereby extending beyond Cardano’s solutions of the cubic 
and quartic equations. Of course, bringing in a sine table to solve a polyno-
mial alters the problem by expanding the set of tools permitted to generate a 
solution. Nevertheless, it is ingenious and, within its parameters, successful. 
One can see now how Viète upheld the honor of French mathematics by solv-
ing the 45th-degree polynomial so quickly: he recognized that it is the result 
of two angle trisections and a quintisection (3 × 3 × 5). He was able to gener-
ate only 23 of the 45 solutions for the same reason that we generated only 
two of the three solutions in our cubic; the other solutions are negative.70

Through this tour de force, Viète had clearly demonstrated the power of 
the new algebra. He ends the treatise, and we end our treatment of Viète’s 
contributions to trigonometry, as follows: “Embrace the new, lovers of knowl-
edge; farewell, and consult the just and the good.”71

70 �[Hollingdale 1984, 135–136] contains an account of how Viète might have gone about solving 
Romanus’s equation.

71 �[Viète 1595, unnumbered folio after folio 13].

Figure 1.14 
Viète’s solution of the irreducible 
cubic equation.

x

B

3θ

θ
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New Theorems, Plane and Spherical

Complete solutions to all conceivable triangles, both plane and spherical, had 
existed in Europe since Regiomontanus’s De triangulis omnimodis, which re-
mained the dominant textbook for most of the sixteenth century. One might 
wonder, then, what there was left to do. But Regiomontanus’s book was writ-
ten before advances in the mid-sixteenth century made possible certain ways 
to streamline the theory. Primary among these was the advent of the new 
functions, especially the tangent and the secant. Regiomontanus, restricted 
to the sine, cosine (expressed as the sine of the complement of the angle), and 
the versed sine, naturally approached solutions of triangles with only these 
three functions in mind. As the tangent and secant (and their complements) 
gradually established themselves as members of an expanded set of primi-
tive functions, new and more attractive options for solving triangles became 
readily available.

Today, the most well known of the new sixteenth-century formulas is the 
planar Law of Tangents,72

	
a − b
a + b

=
tan  12 (A − B)
tan  12 (A + B)

. 	 (1.16)

Most modern sources assign the first European appearance of this formula 
to Thomas Fincke in proposition X.15 of his 1583 Geometriae rotundi.73 He 
introduces the law to solve triangles where two sides and the included angle 
are known. His first example illustrates how it works. Let a = 21, b = 13,  
and ∠C = 67°22′49″; then 1

2 (a + b) = 17 and 1
2 (a − b) = 4 .74 We also know 

that 1
2 (A + B) = 1

2 (180° −C) = 56°1 ′8 3 ′′5 , so by the Law of Tangents, 
1
2 (A − B) = 19°2 ′6 2 ′′4 . Finally, A and B may be found as the sum and differ-
ence of 12 (A + B)  and 12 (A − B)  respectively, namely, 75°45′ and 36°52′11″.

Many other authors picked up the Law of Tangents shortly after its 
appearance in Fincke’s book.75 We find it used for the same purpose in, for 
instance, Christoph Clavius’s 1586 Triangula rectilinea,76 Philip van Lans-
berge’s 1591 Triangulorum geometriae,77 and Viète’s 1593 Variorum de 

72 �The theorem was known in medieval Islam, but (as far we know) it was not transmitted to 
Europe.

73 �[Fincke 1583, 292–293].
74 �Fincke expresses the left side of the Law of Tangents as 

1

2
(a − b) /

1

2
(a + b), which simplifies 

the calculations slightly.
75 �See [Tropfke 1903, vol. 2, 238] for a short discussion.
76 �In an appendix to his edition of Theodosius’s Spherics [Clavius 1586, 328–329].
77 �[Van Lansberge 1591, 162].
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rebus mathematicis responsorum, liber VIII.78 So the theorem was integrated 
quickly into the standard corpus of plane trigonometry and has remained there 
ever since.

It comes as a mild surprise that the Law of Tangents does not appear di-
rectly in Viète’s earlier Canon mathematicus seu ad triangula (1579), for 
that work is full of new identities, most of which have fallen out of common 
use today.79 Some of the more interesting of Viète’s new theorems are equiv-
alents in his notation to

	 tan(45° + θ  /  2) = 2 tan θ + tan(45° − θ  /  2)	 (1.17)

and

	 secθ = 1

2
tan(45° + θ / 2) + 1

2
tan(45° − θ / 2).	 (1.18)

The first allows a tangent table to be computed quickly (using only additions) 
once the entries up to an argument of 45° have been found; the second allows 
the easy completion of a secant table once a tangent table has been completed. 
Others of Viète’s theorems include

	 cot
α + β
2

= −
sinα − sinβ
cosα − cosβ

	 (1.19)

and

	
tan α + β

2

tan α − β
2

=
sinα + sinβ
sinα − sinβ

, 	 (1.20)

with the latter being related to the Law of Tangents. As part of his work on 
solving planar oblique triangles, Viète also presents the sine and cosine 
difference-to-product identities,80

	 sinα − sinβ = 2cos
α + β
2

sin
α − β
2

	 (1.21)

and

	 cosα − cosβ = − 2sin
α + β
2

sin
α − β
2

. 	 (1.22)

78 �[Viète 1593, 32].
79 �See [Delambre 1821, vol. 2, 19] on the identities useful for computing tables. For a survey of 

the new identities in the Canon mathematicus seu ad triangula, see [Ritter 1895, 48–53].
80 �There are corresponding formulas for the sums of sines and cosines.
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These two equations are close cousins of the product-to-difference (or just 
product) identities

	 sinα sinβ = 1

2
[cos(α − β) − cos(α + β)] 	 (1.23)

and

	 cosα cosβ = 1

2
[cos(α − β) + cos(α + β)], 	 (1.24)

which were of considerable interest. They were studied intensely, first by Jo-
hann Werner in the early sixteenth century and then in the 1580s by Nicolai 
Ursus and the group led by Tycho Brahe.81 Their attraction lay in the fact that 
they could be used to transform the need to multiply two trigonometric quan-
tities, a tedious process common in spherical trigonometry and astronomy, 
into the much easier task of adding or subtracting—essentially the same ben-
efit that would be associated later with logarithms. This became known as 
prosthaphairesis; we already discussed its history in the previous volume.82

Spherical trigonometry also saw its share of new theorems; in fact, the 
subject underwent a metamorphosis during the sixteenth century. We begin 
where the theory itself begins, with right-angled triangles. The modern treat-
ment reduces to these ten identities:

sin b = tan a cot A sin a = sin A sin c

cos c = cot A cot B cos A = sin B cos a

sin a = cot B tan b cos B = cos b sin A

cos A = tan b cot c sin b = sin c sin B

cos B = cot c tan a cos c = cos a cos b

Many of these results had been known already to ancient and medieval as-
tronomers, especially those in the right column consisting entirely of sines 
and cosines. In various forms, some of them may be found buried in texts as 
old as Ptolemy’s Almagest, embedded in the language of chords and often 
presented within solutions to problems in spherical astronomy. The second 
and third identities on the right are known as Geber’s theorem, named after 
the twelfth-century Andalusian astronomer. But neither the ancient Greek 
nor the medieval eastern Islamic astronomers dealt solely with the triangle as 
the fundamental figure of spherical trigonometry; the Greeks worked with 
Menelaus’s theorem, and in eastern Islam after the tenth century the emphasis 

81 �We do not suggest that the later interest in these formulas came from Viète.
82 �[Van Brummelen 2009, 264–265].
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was on the Rule of Four Quantities.83 Our ordered list of identities would not 
have been familiar to either culture.

The idea of gathering the ten fundamental identities into a unified whole 
is first hinted at by Georg Rheticus in a six-page dialogue at the end of his 
1551 Canon doctrinae triangulorum.84 Explicitly rejecting both Ptolemy and 
Geber, Rheticus claims to have a new approach to spherical trigonometry that 
requires knowledge of only ten identities applied to a right triangle. One can 
hardly imagine what else he may have meant, other than these. But in this 
dialogue, he does not elaborate or even state what they are.

Rheticus’s comprehensive theory of spherical trigonometry would not ap-
pear until 22 years after his death in the 1596 Opus palatinum with Valentin 
Otho. In the meantime, several authors had beaten him to publication. The 
first was François Viète in his 1579 Canon mathematicus seu ad triangula. 
Viète lists all ten of the basic identities in a table as follows:85

Totus Sinus Sinus Sinus Totus Fecundus Fecundus Sinus

I C A B A C B VI C A C B C B

II C A B B A C VII C C B A A C

III C A C A B VIII C A B C B B

IIII C C B B A IX C A B A C A

V C A C C B A B X C B A A B

The table may be read as follows. Under “Totus” the C represents the sine 
of the right angle at C, in other words, the radius of the base circle. “Sinus” 
represents the sine; “fecundus” represents the tangent. A pair of letters repre-
sents the side we would represent by the missing letter (i.e., AB represents c). 
A strikethrough represents the complementary function of that quantity. 
Each row expresses an equality of ratios. Thus the first row represents  
sin90°
sinc

= sin A

sina
 or sin a = sin A sin c. The other rows give the remaining nine  

identities; for instance, rows III and IIII are Geber’s Theorem, and row V is 
the spherical Pythagorean Theorem. As we shall see, the ten identities exhibit 
an extraordinary structure when arranged appropriately, but Viète’s arrange-
ment does not reflect this structure. Viète proceeds to rearrange the identities 
in various ways corresponding to his version of Rheticus’s scheme for 

83 �In two nested right-angled triangles sharing the angles on the bases, the ratio of the sines of the 
altitudes is equal to the ratio of the sines of the hypotenuses.

84 �[Rheticus 1551, third and fourth pages of the dialogue].
85 �[Viète 1579, 36–37].
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grouping right-angled triangles in three species. This results in another 50 
mathematically trivial variations of the ten identities. He does not prove any 
of them; his interest here (and elsewhere in the Canon) is to present the 
theorems compactly and systematically so that the reader may apply them 
easily to any triangle problem—provided that Viète’s unique notation is 
mastered.

A couple of pages later, Viète presents another table of 60 identities.86 
The first ten are as follows:

Sinus Sinus Sinus Sinus Sinus Faecundus Faecundus Sinus

I B A A C A B VI A B A C A B

II A B C B A B VII B A C B A B

III C B A A B A C VIII A C B A B A C

IIII A C B A B C B IX B A C A B C B

V A C B B A C X C B A B A C

The notation is identical to the preceding table, so for instance, the first 
identity should be read as sin B / cos A = cos b / cos c. Each of these ten identi-
ties may be derived by solving for the same term in two of the original ten 
theorems and setting them equal to each other; for example, this one may be 
found by solving for cos a in cos A = sin B cos a and cos c = cos a cos b. Hence 
these new results are not particularly interesting here. But Viète’s thorough-
ness occasionally leads him to stumble upon theorems that had had currency 
in medieval Islam; for instance, the third identity is cos a / cos b = sin c / sin b, 
which had appeared three centuries earlier in Naṣīr al-Dīn al-Ṭūsī’s 
thirteenth-century Treatise on the Quadrilateral.87

Viète seemed to realize that such a surfeit of formulas could be confus-
ing to the reader. Later, in his 1593 Variorum de rebus mathematicis respon-
sorum, following the textbook writers of the previous decade, he selected and 
reported on the identities most useful for solving triangles according to which 
of the triangle’s elements are known and which are to be found.88 As we 
shall see, the theory was streamlined between 1580 and 1609; Simon Stevin 
has been credited with the conclusion that the original ten identities are suf-
ficient for all right triangles in his 1608 book Driehouckhandel.89

86 �[Viète 1579, 40–41]
87 �See [Van Brummelen 2009, 190].
88 �[Viète 1593, folios 32–35].
89 �Within [Stevin 1608a]; a Latin version may be found at the beginning of the first volume of 

[Stevin 1608b]; the credit is given in [von Braunmühl 1900/1903, vol. 1, 227]. Here and else-
where, he and some other writers sometimes refer to six rather than ten identities; this reflects 
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As for oblique spherical triangles, many authors continued to treat 
them simply by dropping a perpendicular from one of the vertices onto the 
opposite side and working with the resulting pair of right triangles, an ap-
proach that would later pay dividends in the age of logarithms. But others 
treated oblique triangles directly. The two fundamental results are the Law 
of Sines,

	
sina

sin A
= sinb

sinB
= sinc

sinC
; 	 (1.25)

and the Law of Cosines,

	 cos c = cos a cos b + sin a sin b cos C.	 (1.26)

Both had been stated and proved already in Regiomontanus’s De triangulis 
omnimodis.90 However, Regiomontanus’s expression of the Law of Cosines 
is in a form that might not be recognized immediately today. It refers not to 
cosines but rather to versed sines:

	
vers C

vers c − vers(a − b)
= 1

sina sinb
. 	 (1.27)

The Law of Cosines refers to all three sides of the triangle but only one angle. 
There is another spherical Law of Cosines, this one referring to three angles 
and one side:

	 cos C = −cos A cos B + sin A sin B cos c.	 (1.28)

This theorem did not appear in Regiomontanus or anywhere else for some 
time; it is stated for the first time in print (but not proven), again in a form 
that applies the versed sine rather than the cosine, in IV.16 of Phillipp van 
Lansberge’s 1591 Triangulorum geometricae.91 It seems that it was known 
earlier to Brahe92 and possibly others. In both van Lansberge’s book and in 
its next appearance in Viète’s 1593 Variorum de rebus mathematicis respon-
sorum (the latter using cosines rather than versed sines), it is placed in direct 

the fact that four of the identities are identical to four others, up to switching the As with the Bs 
and the as with the bs.

90 �The Law of Sines is theorem IV.17, [Regiomontanus (Hughes) 1967, 225–227]; the Law of 
Cosines is theorem V.2, [Regiomontanus (Hughes) 1967, 271–275].

91 �[Van Lansberge 1591, 196–197]. In later editions it appears as IV.17. Lansberge claims the 
theorem as his own and inserts a proof, on which we shall comment shortly, in the second edi-
tion, [van Lansberge 1631, 158–161].

92 �[Von Braunmühl 1900, vol. 1, 181] notes its appearance in one of Brahe’s unpublished 
manuscripts.
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parallel with the Law of Cosines.93 The earliest proof may be found a couple 
of years later, in Pitiscus’s 1595 edition of the Trigonometriae.94

The correspondence between the two Laws of Cosines is no coincidence; 
they are linked by a duality relation. If one considers each side of a given 
spherical triangle to be an equator and draws the pole of that equator on the 
side of the triangle’s interior, then joins the three poles, the resulting polar 
triangle has some remarkable properties (figure 1.15). In particular, the polar 
triangle of the polar triangle is the original triangle, the sides of the polar tri-
angle are the supplements of the angles of the original, and the angles of the 
polar triangle are the supplements of the sides of the original. Applying this 

93 �[Viète 1593, 36].
94 �[Zeller 1944, 103].

Figure 1.15 
The construction of the polar triangle. For each side Sn of the original triangle, 
draw the pole Pn on the side of Sn that contains the interior of the triangle; then join 
the Pns.

P3

P2

P1

S3

S1

S2
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latter statement to the Law of Cosines immediately gives the Law of Cosines 
for Angles and vice versa.

The polar triangle had been discovered centuries earlier by astronomer 
Abū Naṣr Mansūr ibn ʿIrāq around the turn of the millennium,95 but it (along 
with most other trigonometric innovations from eastern Islam) does not seem 
to have found its way to Europe. The story of its rediscovery is more compli-
cated. We find something like the polar triangle first in the creative hands of 
François Viète in his 1593 Variorum de rebus mathematicis responsorum 
where he refers somewhat obscurely to sides and angles of triangles being re-
ciprocal.96 Later in the same chapter Viète constructs diagrams of triangles 
with great circles connecting all six poles of the three sides of the original 
triangle; the polar triangle is one of the triangles in these figures.97 Later in 
the same text, Viète gives a series of eight theorems about spherical triangles 
that happen to be aligned in four pairs, a theorem along with its dual result 
through the polar triangle. This has been taken as evidence that Viète was in 
fact using polar triangles as a device to convert theorems to their dual part-
ners. In any case, Viète’s presentation is sufficiently vague that it appears not 
to have spread far; until Viète’s work was reexamined much later, credit went 
instead to Willebrord Snell.98 The expression of polar triangles in the latter’s 
1627 Doctrinae triangulorum canonicae is certainly much clearer and gives 
a good sense as to how they can be used.

Text 1.4
Snell on Reciprocal Triangles
(from Doctrinae triangulorum canonicae)

Book III: PROPOSITION 8: If from the three given angles of the triangles 
[taken as] poles, great circles are described, the sides and angles of the trian-
gle will be expressed, [and] the remaining sides and angles are first found 
reciprocally.99

95 �See [Van Brummelen 2009, 184–185].
96 �The tenth statement on spherical triangles in [Viète 1593, folio 41], which reads: “Si sub apici-

bus singulia propositi Tripleuri sphaerici describantur maximi circuli, Tripleurum ita descrip-
tum Tripleuri primum propositi lateribus et angulis est reciprocum.”

97 �[Viète 1593, folios 42–45]. See an exposition of one of the examples of this section in [Zeller 
1944, 83–84].

98 �[Delambre 1819, 478–479] argues that Viète’s words are not sufficiently clear to be certain that 
he was referring specifically to the polar triangle; [Ritter 1895, 56] disagrees. [Von Braunmühl 
1898] and [1900/1903, vol. 1, 182–183] pay special attention to the problem, noting the se-
quence of theorems in polar pairs as evidence. [Tropfke 1923, vol. 5, 125] notes that Viète’s 
sparse presentation likely led to the public credit passing to Snell.

99 �[Snell 1627, 120].
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Figure 1.16 
The polar triangle in 
Snell’s Doctrinae 
triangulorum 
canonicae.

Explanation: (See figure 1.16) The diagram represents a sphere; the original 
triangle is aei. Snell instructs us to draw the equator sdy with pole a; equator 
rfl with pole e; and equator tdqb with pole i. Snell’s construction is a little dif
ferent than how it is usually done today; it begins by considering the poles of 
the original triangle and constructs equators rather than the other way around. 
The relation between spherical triangles and their polar duals implies that there 
is no difference in the final result as long as one selects the correct triangle 
among those formed by the intersections of the three equators.

There is one other candidate for the discovery of the polar triangle in 
Europe. As noted above, the Law of Cosines for Angles is stated in Philip van 
Lansberge’s 1591 Triangulorum geometricae. It seems a natural inference that 
he might have used polar triangles to arrive at the statement of this theorem.100 
In his second edition, published four years after Snell’s book in 1631, van 
Lansberge inserts a proof based on the idea of the polar triangle, introducing 
it as follows: “the second part of the [Law of Cosines for Angles], which we 
have the right to claim that we were the first to discover, is proved in the same 
way as the first, if first we describe a new triangle by means of the poles of 
the sides of the given triangle.”101 This is a claim for the discovery of the Law 

100 �The suggestion is made in [von Braunmühl 1900/1903, vol. 1, 192–193].
101 �[Van Lansberge 1631, 158]. The description and diagram in [Zeller 1944, 97] are from the 

1631 edition and are not found in the 1591 first edition.
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of Cosines for Angles but not quite for polar triangles. Nevertheless Simon 
Stevin credits van Lansberge in his 1608 Hypomnemata mathematica (the 
Latin version of his Dreihouckhandel)102 and provides essentially the same 
proof of the complementarity of sides and angles. Perhaps van Lansberge had 
circulated his ideas privately.

Consolidating the Solutions of Triangles

François Viète’s 1579 Canon mathematicus seems to have triggered a period 
of about three decades of textbook writing. There were enough new trigono-
metric functions, theorems, and approaches to solving triangles that a book 
to replace Regiomontanus’s universal triangle solver De triangulis omnimodis 
was sorely needed, and a number of authors attempted to fill the gap. Neither 
Viète’s notation nor the structure of his 1579 Canon mathematicus conformed 
to Regiomontanus’s style, which most of his contemporaries were used to 
reading. Thus, while clearly most mathematicians read Viète and profited by 
his work, many continued to approach trigonometry within Regiomontanus’s 
tradition (soon to be augmented by Fincke’s 1583 introduction of the “tan-
gent” and “secant”). Perhaps the earliest of these textbooks was Maurice Bres-
sieu’s 1581 Metrices astronomicae,103 written and titled to position the sci-
ence of triangles as a computational foundation for astronomy. Bressieu 
presents various different kinds of triangles and in each case outlines how to 
solve it, often presenting alternate methods he credits to Ptolemy and some-
times to Regiomontanus; following this he provides a numerical example. Fig-
ure 1.17 shows his solution to a plane right triangle where the two sides ad-
joining the right angle are known and the beginning of a numerical example.104 
Note the hash marks drawn on the given segments; Bressieu seems to have 
been the first of a number of authors to indicate the givens in the diagram in 
this way.105

One of the most influential of the early texts, Thomas Fincke’s 1583 Geo-
metriae rotundi appeared two years later. The book itself was not especially 
innovative mathematically, relying especially on Menelaus’s theorem for its 
spherical results (although, as we saw, it does contain the first appearance of 
the planar Law of Tangents). However, it came recommended by Clavius, 
Pitiscus, and Napier for its exceptional clarity. Fincke’s presentation (Book X 
for plane triangles, Book XIV for spherical) is organized around theorems 

102 �[Stevin 1608b, vol. 1, 223–224].
103 �Little has been written about Bressieu; see [de Merez 1880] for a short biography.
104 �For readers attempting to translate the Latin, the “canone adscriptarum” refers to a tangent 

table.
105 �[Zeller 1944, 87].
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rather than triangles: that is, he presents a theorem and afterward describes 
how it may be used to solve a certain kind of triangle rather than the other 
way around. Christoph Clavius’s 1586 text106 similarly emphasizes theorems 
and proofs, interspersing them with “problems” that demonstrate how to use 
the theorems to solve certain triangles. Pitiscus’s famous 1595 Trigonome-
triae107 follows Regiomontanus’s model in De triangulis omnimodis: he 
states all the theorems first and then uses them to solve various kinds of 
triangles. For spherical triangles he begins with four results, calling them 
“axioms”: the Rule of Four Quantities, the Law of Tangents, the Law of Sines, 
and the Law of Cosines.

However, perhaps driven by the increasing use of trigonometry in appli-
cations such as surveying, navigation, and science, some texts started to em-
phasize an algorithmic approach based on the presentation of triangles rather 
than theorems: if the triangle has such and such a property, then follow this 
path; if it does not, then the triangle does not exist; and so forth. Some of the 
books we have just mentioned had an inkling of such schemes in short in-
dexes that list the various types of triangles in sequence and indicate where 
one should go in the text to solve them. The index in Phillip van Lansberge’s 

106 �Published as a supplement to his edition of Theodosius’s Sphaerica; see [Clavius 1586].
107 �Pitiscus’s Trigonometriae first appeared at the end of Scultetus’s Sphaericorum in 1595 and 

was published separately in a revised edition five years later [Pitiscus 1600]. For Handson’s 
translation, see [Pitiscus (Handson) 1614]; the frontispiece is reproduced in the preface of this 
book. For a summary of the various editions and translations of the Trigonometriae and Pitis-
cus’s other works, see [Archibald 1949a]. See also [Delambre 1821, vol. 2, 28–35]; [Gravelaar 
1898] in Dutch, mostly on the computation of tables; [Hellmann 1997] for some discussion of 
the mathematics; and [Miura 1986] on the applications.

Figure 1.17 
The beginning of Maurice Bressieu’s solution of a right-angled triangle. The word 
“adscriptum” refers to his version of a tangent.
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1591 Triangulorum geometriae is elaborate; figure 1.18, for instance, shows 
the first of three pages of his index for right-angled spherical triangles, group-
ing the various identities according to what element is sought and what ele
ments are known.108 Antonio Magini’s 1609 Primum mobile goes further 
with similar classifications, grouping different types of spherical triangle 
in a 16-page-long scheme109 and elsewhere providing grids showing which 
problem in his treatise solves which type of triangle.110 Simon Stevin’s Drie-
houckhandel (Trigonometry), published as part of his 1608 Wisconstighe 
Ghedachtenissen (Mathematical Memoirs),111 divides the discussions of 
both planar and spherical triangles into three distinct parts: (a) preliminary 
theorems, (b) identities, and (c) solutions of triangles. This structure endured 
for hundreds of years; it is found in Todhunter’s Spherical Trigonometry, 
the dominant textbook of the late nineteenth and early twentieth centuries.112 

108 �[Van Lansberge 1591, 202].
109 �[Magini 1609, folios 38–45].
110 �[Magini 1609, folios 47, 68]. Several other grids in this work explain how to handle certain 

cases of problem.
111 �[Stevin 1608a]. The book, written in Dutch, was translated several times. See, for instance, the 

Latin edition by Snell [Stevin 1608b], and a French translation with supplements by Albert 
Girard [Stevin (Girard) 1634]. A selection from the treatise appears in Struik’s The Principal 
Works of Simon Stevin [Struik 1958, vol. IIB, 757–761].

112 �The original edition is [Todhunter 1859]; it was revised and expanded in [Todhunter/Leathem 
1901].

Figure 1.18 
A page from van Lansberge’s 1591 
Triangulorum geometriae, classifying methods 
to solve right-angled spherical triangles.
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Figure 1.19 shows part of the index from Albert Girard’s French edition of 
the Driehouckhandel, illustrating the classification of spherical triangles (in-
cluding a special category of quadrantal triangles).113

But when it came to algorithmic thinking, no one went further than Adri-
anus Romanus in his 1609 Canon triangulorum sphaericorum. Other than 
its tables and a section describing how to compute them, the entire book is a 
270-page-long detailed algorithm for solving spherical triangles with dozens 
of examples. Book II begins with a detailed nine-page classification of tri-
angles into various genera, followed by 40 pages of examples and diagrams 
of each genus. The remaining 200 pages are divided into six problems: the 
first dealing with triangles where two sides are given as well as one of the 
angles not included between the given sides, the second dealing with two 
given angles and one of the sides not included between the given angles, and 
so on. In each case Romanus provides an algorithm for solving the triangle 
and for handling the various cases that arise. At the bottom of figure 1.20, 

113 �[Stevin 1634, vol. 2, 87]. A quadrantal triangle has a side (not an angle) equal to 90°.

Figure 1.19 
A page from Albert Girard’s 1634 
edition of Stevin’s trigonometry, 
showing part of the classification of 
spherical triangles.

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



	 European Trigonometry Comes of Age	 43

the beginning of his algorithm for the first problem, Romanus solves it (as 
many others did) by dropping a perpendicular from a vertex to the opposite 
side, thereby dividing it into two right triangles. He then applies (but does 
not prove) the right-angled triangle identities to the two right triangles.114

One of the most eccentric, yet remarkable methods ever developed to 
solve spherical triangles appears in Christoph Clavius’s lengthy treatise, the 
Astrolabium.115 This mostly astronomical treatise works extensively with the 
technique for spherical geometry known as the analemma.116 Dating back to 
ancient Greece, the analemma deals with a problem in spherical geometry 
by rotating one or more circles on the sphere into the plane of a particular 
great circle, thereby reducing it to a problem in plane geometry.

The central topic of the Astrolabium is stereographic projection, which 
maps a sphere onto the plane through its equator as follows. In figure 1.21 

114 �[Romanus 1609, 100]. We should mention Nathaniel Torporley’s bizarre 1602 Diclides Coelo-
metricae, which we saw before. Its unique approach reduces the six cases of right spherical 
triangles to two, but its obscurity renders it close to impenetrable. See [Delambre 1821, vol. 2, 
37–40], [von Braunmühl 1900/1903, vol. 1, 183–186], [Zeller 1944, 106–107], and [Silverberg 
2009].

115 �[Clavius 1593]. For an account of Clavius’s interactions with Ptolemy’s and Copernicus’s cos-
mological theories, see [Lattis 1994]. For a survey of Clavius’s mathematics, see [Naux 1983].

116 �See [Van Brummelen 2009, 66–67].

Figure 1.20 
A page from Adrianus Romanus’s 1609 
Triangulorum sphaericorum.
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the south pole is A, and a plane is drawn through equator BFDT. For any point 
M on the sphere, a line is drawn from M to A. Point S, where the line crosses 
the plane through the equator, is considered to be the projection of M onto 
the plane.117 Stereographic projection has two advantages: circles on the sphere 
map to circles or lines on the plane and the angle between two great circles 
is mapped to the same angle on the plane. The ancient astronomical instru-
ment, the astrolabe, is simply a physical realization of a stereographic pro-
jection of the celestial sphere.

Clavius’s approach to solving spherical triangles begins by positioning 
the sphere so that some side of the triangle is placed along the equator (called 
by later authors the primitive circle) or so that one vertex is at the north pole. 
Using the given quantities, as much as possible of the projected triangle is 
drawn on the primitive circle. Once this is done, the remaining elements are 
constructed geometrically, if possible. Sometimes other great circles are ro-
tated onto the plane, taking the place of the primitive circle. Once the pro-
jected triangle has been drawn, the sought angles and sides are measured with 
a ruler or protractor. Finally, these data are used as inputs into a mathemati-
cal process that reconstructs the values of the sought elements of the original 
spherical triangle.118

117 �Points on the sphere below the equator are mapped to points on the plane outside the equator; 
for instance, G maps to N.

118 �Clavius’s methods, as well as related work by Dutch mathematician Adrian Metius (1571–
1635) in Book V of De astrolabio catholico (1633), are described in [Haller 1899].

Figure 1.21 
From Clavius’s Astrolabium, illustrating stereographic projection.
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This method, ingenious as it is, was not seen as very practical even by 
some of its adherents; the famous instrument maker Benjamin Martin, intro-
ducing the subject in his 1736 Young Trigonometer’s Compleat Guide, states 
that “this way is (generally speaking) more artful than useful”; but he goes 
on to say that “by a little use, [it] is very practicable and easy.”119 It had cur-
rency in some textbooks until as late as the nineteenth century, appearing 
alongside more conventional solutions as a legitimate alternative.120

Widening Applications

Through the fifteenth century and into the sixteenth, trigonometry had been 
a handmaid to astronomy; Regiomontanus himself called it “the foot of the 
ladder to the stars.”121 In medieval Islam, spherical trigonometry had come 
to be applied to finding distances and directions on the surface of the earth, 
originally through the determination of the direction of Mecca. But even these 
calculations had taken place on the celestial rather than the terrestrial sphere. 
This makes the sixteenth century one of the most remarkable periods in the 
history of mathematics, for it was during the latter part of this century that 
trigonometry started to become genuinely applicable to the physical world: 
not just for determining distances and directions in the heavens but also on 
the earth and sea. Raphe Handson’s 1614 translation of Pitiscus’s Trigonome-
triae presents a transformed view of trigonometry, liberated from its servant
hood to astronomy by linking to many other earthly activities:

All arts are in themselves so infinite, that the life of man is first con-
sumed before he comes to know; yet, the pleasure is such (espe-
cially in the mathematics) that the more a man understandeth, the 
less he thinks to know; as still covetous of more, and never satisfied. 
And amongst all the sciences mathematical, this trigonometry, or di-
mension of triangles, is copious in the contemplation of it, and more 
profitable in the practice: For thereby all heights, depths, distances, 
questions of the map, globe, sphere, or astrolabe, may be more truly 
supputated [calculated], than by any instrument whatsoever; besides 

119 �[Martin 1736, vol. 2, 150]. See pp. 150–160 for his treatment of the subject and [Van Brum-
melen 2013, 133–139] for a modern mathematical explanation based on Martin’s text. See also 
[von Braunmühl 1900/1903, vol. 1, 189–191], who expresses admiration but also reserves 
doubts about its efficacy.

120 �See for instance [Wilson 1720] and [Keith 1826]. Other graphical methods were invented to 
solve spherical triangles, and interest continued (especially in educational circles) as late as 
the 1950s, at which point interest in spherical trigonometry itself faded away. [Bradley 1920] 
contains a useful bibliography of references up to that date.

121 �[Regiomontanus (Hughes) 1967, 28–29].
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the infinite use thereof in geometry, astronomy, cosmography, etc. 
Wherefore I have adventured thereon, as a subject, which generally 
in its own nature carrieth much reputation amongst the sincere lov-
ers of those sciences.122

Modern students may dispute Handson’s characterization of the pleasure of 
the subject but perhaps not its practical value.

The most obvious places for trigonometry to spread its wings were still 
with mathematics—in particular, to measurement within geometry, for which 
there was a healthy tradition dating back to ancient times. From the sixteenth 
century onward, a number of authors were interested in questions of goni-
ometry and cyclometry. These related subjects dealt with measurements of 
various lengths, angles, and areas of certain geometric figures, especially reg-
ular polygons and circles. Trigonometry can of course be applied to such 
questions, but it can also benefit from such study. For instance, the study of 
the lengths of regular polygons is related to the determination of the sines of 
small arcs (such as sin 1°, which is half the length of a side of a 180-gon in-
scribed in a unit circle). Cyclometry in particular is intimately related to ap-
proximations for π. It was at this time that Adrianus Romanus, Ludolph van 
Ceulen, and Philip van Lansberge derived their values of π accurate to 16, 
35, and 28 digits respectively.123

Genuine applications of trigonometry outside of mathematics were more 
difficult to find at first. There was of course no end to the uses of trigonom-
etry in astronomy: they had been present since the birth of the subject, espe-
cially models of the motions of the planets, spherical astronomy, and solar 
timekeeping. However, earthly applications were much rarer.124 From the thir-
teenth century, the genre of “practical geometry” had dealt with questions 
related to altimetry, stereometry, and mensuration. This subject was defined 
by its interaction with the physical world and often involved the use of mea
surements made by instruments. Its audience consisted of surveyors, archi-
tects, cartographers, observational astronomers, navigators, the military, and 
artists, among others.125 A few of these treatises made some small use of trig-

122 �[Pitiscus (Handson) 1614, beginning of the dedicatory epistle].
123 �Romanus’s text is the incomplete Ideae mathematicae pars prima [Romanus 1593]; van Ceu-

len’s is Arithmetische en Geometrische Fondamenten [van Ceulen 1615] (which contains 33 
digits; his final value appears in [Snell 1621]); van Lansberge’s is the Cycometriae novae [van 
Lansberge 1616].

124 �One must not forget the determination of the qibla in medieval Islam; but even here, correct 
solutions relied primarily on spherical astronomy. Some other uses of trigonometry in geogra-
phy in Islam do exist; see [Van Brummelen 2009, 215–217].

125 �The literature on practical geometry and its history is too extensive to be described exhaus-
tively here; we refer only to a few texts. See [Victor 1979] for a description of its origins in 
medieval Europe; [Busard 1998, 7–12] for a survey of practical geometry to the mid-sixteenth 
century; [Taylor 1954] for a history of practical mathematics in England from 1485 to 1715; 
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onometry, but most were devoid of it, sticking to basic geometric tools like 
similar triangles and the Pythagorean theorem.126

Prior to 1580, texts devoted to trigonometry had stayed within the con-
fines of mathematics and astronomy. This changed dramatically with the con-
solidation movement of the 1580s and beyond. What one might consider to 
be the first practical “story problem” in a trigonometry textbook appears at 
the end of the chapter on planar trigonometry in Maurice Bressieu’s 1581 Me-
trices astronomicae.127

Bressieu seems hesitant to introduce the world of practice into his trigo-
nometry, separating the problem from his main text and introducing it with 
the phrase, “Hoping it will not be unwelcome to the reader.” His goal is to 
find the height of a tower (figure 1.22) where the distance BC from the base 
is given and the angle of altitude from the observer at C of the top of the tower 
is measured. This elementary problem had been solved previously in practi-
cal geometry textbooks but not with trigonometry. Bressieu replaces the 

and several of Jim Bennett’s publications, especially [Bennett 1998], a survey of the relation 
between instruments and practical geometry.

126 �See [Van Brummelen 2009, 224–230, 239–240], where the works of Abraham bar Hiyya, Fi-
bonacci, and John of Murs are considered.

127 �[Bressieu 1581, 49].

Figure 1.22 
Finding the altitude of a tower in Bressieu’s Metrices astronomicae.
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shadow square and similar triangles with an angle measurement and a tan-
gent table, eventually finding the height as an equivalent to 50 tan θ, where θ 
is the altitude. In the example calculation Bressieu has an angle of elevation 
of 60.5° and the distance to the tower of 50 paces, which makes the height of 
the tower an impressive 88.5 paces.

Bressieu’s tentative foray into practical geometry seems not to have had 
the feared effect of deterring readers, for several texts over the next decade 
traversed similar ground but with much more commitment. Only two years 
later, Thomas Fincke’s Geometriae rotundi devoted the entire 11th book (out 
of 14) to problems involving altitudes and distances.128 Its mathematics is 
straightforward; it consists of applying similar triangles and (often) the tan-
gent function to measurements obtained with a quadrant and other simple in-
struments to determine various heights, distances, and lengths. Fincke’s text 
and images would have appealed to surveyors, the military, and architects (see 
figure 1.23). Pitiscus’s Trigonometriae goes even further; it includes chapters 
on geodesy, altimetry, geography, gnomometry (sundials), and astronomy and 
in a later edition another chapter on architecture (especially military). These 
applications take up over half of his text (aside from the tables).129

128 �[Fincke 1583, 296–322].
129 �[Miura 1986] contains a brief account of the applications chapters in Pitiscus’s Trigonometriae.

Figure 1.23 
From Book XI of 
Fincke’s 
Geometriae 
rotundi.
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Trigonometry and practical geometry truly came together in a meaning-
ful way with Christopher Clavius’s revolutionary new Geometria practica in 
1604. Near the beginning of this book Clavius presents a full summary of 
the solutions of planar triangles via trigonometry, although with no proofs as 
befitted a practical work.130 Armed with these new tools, he goes on to solve 
the usual surveying problems (heights of castles, etc.), but using plane trigo-
nometry rather than the usual tools of practical geometry.

Text 1.5
Clavius on a Problem in Surveying
(from Geometria practica)

On the distance along the ground, whether it is accessible or inaccessible, by 
means of quadrant measurements at two stations in the same plane, when at 
its endpoint some perpendicular altitude is erected, even if [the base] is not 
seen at its lowest extreme. And here we determine the height.

Let the distance, or the sought length be AB, in plane CB, and erected at 
the endpoint B is some perpendicular altitude BG, although the endpoint B is 
not visible. Let the height of the measurer, from the eye to the feet, be DA. . . . ​
Extend through D a parallel EF to CB, starting in the first station D and end-
ing in the second station E, the furthest point; and line DE, the distance be-
tween the stations, is known by an ordinary measurement. Then, guided by 
the side of the quadrant HK that has the sights, . . . ​set the sights so that the 
peak G may be seen, dropping perpendicular HI. And . . . ​angle GDF in min-
utes, equal to arc IL, may be seen on the quadrant, clearly the complement of 
arc IK. For when thread HI is perpendicular to line DF, angle GDF, the com-
plement of angle DHI, clearly will be equal to angle IHL, which is itself the 
complement of angle DHI. And we will call this angle GDF the angle of obser-
vation. In the same way angle GEF is observed at the second station, by rays 
from the eye, through the quadrant’s sights to the peak at G. Taking EM equal 
to DN, erect perpendiculars M<H> and NO. . . . ​Therefore, if we set EM and 
DN as the sinus toti, MH and NO will be tangents of the angles of observation 
at E and D. Also draw DQ parallel to EG, crossing NO at P. Angle NDP is equal 
to angle E. Therefore, the two angles N and D in triangle NDP are equal to two 
angles M and E, . . . ​and sides DN and EM, which are adjacent, are equal. Sides 
NP and MH will be equal, so OP will be the difference between the tangents of 
the angles of observation. Because of this, as OP is to PN, so is GQ to QF. And 
as GQ is to QF, so is ED to DF. . . . ​Hence if [the following] is done:

As OP, the difference between the tangents of the angles of observation is 
to PN (or HM), tangent of the smaller [angle], so is ED, the distance between 
the noted stations in a common measure to the other, that is, to DF,

130 �[Clavius 1604, 45–52].
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[it] produces the sought distance, DF or AB, the same measure of the distance 
to the station; and if it is added to the distance ED between the stations, we 
will also learn the distance EF, or CB, to the furthest station.131

Figure 1.24 
Finding the altitude of a tower if the base is inaccessible, from Clavius’s 1604 
Geometria practica.

Explanation: (See figure 1.24.) The goal is to determine the distance to a tower 
when its base F is inaccessible or hidden from view. Observers at two stations 
in a direct line from the tower, at D and E, measure the altitude of the pin-
nacle of the tower G (the “angles of observation” θ1 = ∠GDF and θ2 = ∠GEF) 
with their quadrants. Slide ΔEMH to the right so that ∠E is at D, defining N 
and P; extend DP to Q. Then ON = DN tan θ1 and MH = NP = DN tan θ2. 

So OP = ON − NP = DN(tan θ1 − tan θ2), and hence 
OP

NP
=
tanθ1 − tanθ2

tanθ1
.  

But 
OP

NP
= GQ
QF

= ED

DF
; and ED is the measured distance while DF is the 

sought distance from the first station to the base of the tower. So  

DF = ED ⋅ tanθ1
tanθ1 − tanθ2

.

131 �[Clavius 1604, 54–55].
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The merger of trigonometry with practical needs in geodesy and altim-
etry provided practitioners with much more powerful and precise mathemat-
ical tools. However, without corresponding improvements in the instruments 
used to measure distances and angles, the extra precision would be superflu-
ous. The new methods were not adopted very widely at their outset. The power 
of geometry had been revealed to surveyors as early as 1533, with Gemma 
Frisius’s introduction of the notion of triangulation on the surface of the earth 
(figure 1.25).132 Although his techniques had required angle measurements, 
they had not employed trigonometry. Various instruments were invented for 
use in surveying through the sixteenth century, including a device called a 
“trigonometer,” which formed with its arms a triangle similar to the triangle 
being measured on the ground. However, only the simple theodolite, measur
ing azimuths but not altitudes, seems to have gained much traction in prac-
tice. It would not be until the first half of the seventeenth century that the 
power of geometry in general and trigonometry in particular would become 
generally accepted in surveying practice.133 This late adoption may have been 
aided at least in part by the wave of surveying applications in the trigonometry 

132 �This appears first in Gemma Frisius’s 1533 edition of Peter Apian’s Cosmographia [Apian 
1533a]. See analyses of Gemma Frisius’s, Brahe’s, and Snell’s approaches to triangulation in 
[Haasbroeck 1968]. On triangulation in Gemma Frisius’s work, see also [Taylor 1927] and 
[Pogo 1935]; the latter contains a facsimile edition.

133 �[Bennett 1991b], especially pp. 348–354.

Figure 1.25 
Gemma Frisius on surveying, from the 
1540 edition of Apian’s Cosmographia.
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textbooks but may have had more to do with logarithms, which we shall see 
in chapter 2. A notable step forward was Aaron Rathborne’s 1616 The Sur-
veyor (figure 1.26), which introduces trigonometry in certain contexts and 
even mentions Pitiscus and Napier in one of the earliest references to loga-
rithms outside of mathematics and astronomy.134 Rathborne was a member 
of the peculiarly English trade of “mathematical practitioner.” These men 
earned their living, at least in part, through tutoring mathematics useful for 
purposes such as engineering and gunnery rather than the higher pursuits of 
natural philosophy.135

134 �[Rathborne 1616, 142].
135 �Much has been written about the culture of the English mathematical practitioners. For a start 

on the literature, see [Taylor 1954] and [Taylor 1966]. A more recent account, arguing (in part) 
that the upper classes were not entirely separate from the trade, is [Feingold 1984]. See also 
[Bennett 1982], [Bennett 1991a], [Johnston 1994], [Neal 1999], [Hackmann 2000], and [Cor-
mack 2006], among others.

Figure 1.26 
Frontispiece of Aaron 
Rathborne’s 1616 The Surveyor.
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It is thus no surprise that England took the lead in the integration of trigo-
nometry with navigation. This had not yet begun in the mid-sixteenth 
century, with European trigonometry still in its infancy and still firmly at-
tached to astronomy; as Leonard Digges in his 1553 Prognostication had la-
mented, “but those who have tried [to introduce trigonometry] know how far 
this passes the capacity of the common man.”136 However, in 1581, surely be-
fore he had seen the flood of trigonometry textbooks that was just starting to 
appear, naval officer William Borough advocated using trigonometric tables 
to calculate the sun’s azimuth, referring to Regiomontanus and the tables of 
Copernicus, Reinhold, and Rheticus, although apparently he had not seen 
Viète’s Canon mathematicus.137

Trigonometry was circulating in England, but it did not really enter into 
English publications until its use in navigation became clearer near the end 
of the century as awareness of the practical value of the subject was grow-
ing.138 An appendix to Thomas Blundeville’s popular 1594 Exercises dedi-
cated to astronomy, geography, and navigation,139 larger than the rest of the 
book, contained the first trigonometric tables published in England (explic
itly borrowed from Clavius). Blundeville illustrated the use of these tables to 
solve astronomical problems important for navigation and printed them in a 
compact size helpful for use at sea.140

Two major navigational books, both published in 1614, solidified the 
union of trigonometry with navigation. The first was a partial translation of 
Pitiscus’s Trigonometriae by Ralph Handson, a friend of Aaron Rathborne 
and a student of Henry Briggs, of whom we shall say more in chapter 2. Hand-
son added a section on navigation, “wherein is manifested, the disagreement 
betwixt the ordinarie sea-Chart, and the globe, and the agreement betwixt the 
globe, and a true sea-chart: made after Mercator’s way, or Mr. Edw. Wright’s 
projection: whereby the excellency of the art of triangles will be the more 
perspicuous.”141 (We shall discuss this projection shortly.) Among Handson’s 

136 �Quoted in [Taylor 1954, 52].
137 �Quoted in [Taylor 1957, 211]. Borough speaks of completing for himself the second half of 

Rheticus’s Canon doctrinae triangulorum (Rheticus had calculated the table for arguments 
up to 45°), either unaware that one may simply read the columns backward to generate the 
entries for arguments greater than 45° (although Rheticus had provided arguments working 
backward on the right side of his table for this purpose) or hoping to provide tables with argu-
ments up to 90° for easier use in “Navigation and Cosmographie.”

138 �John Blagrave’s The Mathematical Jewel [Blagrave 1585], a description of a new mathemati-
cal instrument, contains definitions of trigonometric functions; however, he solves triangles 
not with the functions but with his new instrument.

139 �[Blundeville 1594]; see also the facsimile edition [Blundeville 1971].
140 �[Waters 1958, 355–356].
141 �[Pitiscus (Handson) 1614, nautical section, 1].
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contributions was the “mid-latitude formula,” which allowed sailors to deter-
mine, from the longitudes and latitudes of two places, their bearing and dis-
tance from one another. Ease of calculation, important for navigators, was 
important to Handson; he emphasizes the benefits of prosthaphairesis to con-
vert multiplications to additions in the same year that his Scottish colleague 
John Napier was to render it obsolete.142 Handson’s book was aided into pub-
lication by his colleague John Tapp, who the same year published a new 
edition of Robert Norman’s The Newe Attractive and William Borough’s 
Discourse on the Variation of the Cumpas, to which he appended a set of 
navigational techniques for use with trigonometric tables.143 Tapp’s intent was 
to promote the “arithmetical sailing,” that is, trigonometric methods with 
tables. The computational barriers to these methods, not inconsiderable in 
practice, were to become much more benign before the year was out.

However, in the meantime, the need to calculate—especially multiplica-
tion and division with trigonometric quantities—was a near-fatal disadvan-
tage; while seamen might have been capable of the task, it was cumbersome 

142 �For an account see [Waters 1958, 393–399].
143 �[Norman 1614]. See [Waters 1958, 559–562] for an account of Tapp’s trigonometric navigation.

Figure 1.27 
The title page of Peter Apian’s 
1541 Instrumentum sinuum, seu 
primi mobilis.
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when required on a regular basis and, more seriously, prone to error. The al-
ternative to calculation with trigonometric tables was the use of mathemati-
cal instruments, which worked much more quickly and easily, and the loss of 
precision caused by the use of a physical device was insignificant for naviga-
tion. Several such instruments had existed for centuries; see for instance the 
sine quadrant on the title page of Peter Apian’s 1541 Instrumentum sinuum 
seu primi mobilis (figure 1.27). However, the needs of tradesmen and naviga-
tors in the context of the new practical mathematics seems to have brought 
instruments freshly into the discussion; in 1598 Thomas Hood and Galileo 
independently invented “sectors” with multiple uses that were predecessors 
to the slide rule.144

However, the sector that really made arithmetical navigation accessible 
was invented by Edmund Gunter around 1606. A young recent graduate of 
Oxford, Gunter would become associated with Henry Briggs and Edward 
Wright at Gresham College several years later. His fame rests on his instru-
ments, especially the sector and a quadrant also named for him. Indeed, his 
connection with instruments and hence the class of mathematical practition
ers seems at least once to have decreased his reputation. John Aubrey re-
counted his interview with Henry Savile for the first Savilian chair of geo
metry at Oxford:

[Gunter] came and brought with him his sector and quadrant, and 
fell to resolving of triangles and doing a great many fine things. Said 
the grave knight, “Do you call this reading of Geometry? This is 
showing of tricks, man!” and so dismissed him with scorn, and sent 
for Briggs from Cambridge.145

It took Gunter until two years before his death to publish a book on his 
invention, the De sector et radio (1624), but his work had circulated widely in 
manuscript long before that.146 Likely inspired by Hood’s device, Gunter’s sec-
tor is a simpler instrument honed for the purpose of calculation (figure 1.28). 

144 �The origins of the sector are not entirely clear; see [Williams/Tomash 2003] for a survey and 
a description of the other lines on the instrument. On Hood and his sector, see [Johnston 1991] 
and [Taylor 2013]. On Galileo’s sector see [Galileo 1978]. [Drake 1977] demonstrates that 
Hood and Galileo worked independently. For the contribution of Antwerp mathematician 
Michiel Coignet, see [Meskens 1997].

145 �[Aubrey 1982, 117]; see [Higton 2001] for a discussion of the context of the issue. Even today 
the attitude persists; the Dictionary of Scientific Biography entry says that “the tools he pro-
vided were of immense value long afterward,” but that his contributions were “essentially of a 
practical nature,” and that he was merely a “competent but unoriginal mathematician” [Pepper 
1972, 593].

146 �[Gunter 1624]; see [Higton 2013] on the illustrations and diagrams in this work. On Gunter’s 
sector and other contributions to navigation, see [Waters 1958, 358–392] and [Cotter 1981].
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It has two arms fixed with a hinge at one end and various scales marked on 
both sides of each arm. Scales for the sine, tangent, and secant allow the de-
vice to solve any triangle, plane or spherical. For instance, the sine scale is 
marked so that the distance of any point from the hinge corresponds to the sine 
of the angle indicated at that point. The arms open outward, and with a pair 
of compasses the user is able to form similar triangles that correspond to 
various ratios such as those that arise in the solutions of right-angled spherical 
triangles.

Text 1.6
Gunter on Solving a Right-Angled Spherical Triangle with His Sector
(from De Sectore et Radio)

In a rectangle triangle: To find a side by knowing the base, and the angle op-
posite to the required side.

As the Radius
	 is to the sine of the base;
So the sine of the opposite angle
	 to the sine of the side required.
As in the rectangle ACB, having the base AB, the place of the Sun 30° from 

the equinoctial point, and the angle BAC of 23°30′ the greatest declination, if 
it were required to find the side BC the declination of the Sun.

Take either the lateral sine of 23°30′ and make it a parallel radius; so the 
parallel sine of 30° taken and measured in the side of the Sector; shall give 

Figure 1.28 
Gunter’s sector, from his 1636 Description and Use of the Sector, 
Crosse-Staffe and Other Instruments.
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the side required 11°30′. Or take the sine of 30° and make it a parallel radius; 
so the parallel sine of 23°30′ taken and measured in the lateral sines, shall be 
11°30′ as before.147

Figure 1.29 
Finding the declination using Gunter’s sector.
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Explanation: (See figure 1.29) By “base,” Gunter means the hypotenuse of 
the spherical triangle. Gunter’s first example is a standard astronomical prob
lem: find the sun’s declination δ from its ecliptic longitude λ. The solution is 
sin δ = sin λ sin ϵ (where ϵ  = 23°30′ is the obliquity of the ecliptic), equivalent 
to the modern formula sin a = sin A sin c for a right triangle. But Gunter  

expresses it as 
Sin90°
Sinε

= Sinλ
Sinδ

 for good reason.

The “line of sines” is the unequally marked scale near the middle in fig-
ure 1.28, ending at 90°, displayed on both arms of the sector. Set a compass 

147 �[Gunter 1624, 76].
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along the line of sines so that the distance between the two tips is equal to 
Sin 23°30′, that is, the distance along the line of sines from zero to 23°30′. Move 
the compass to the end of the sector, and spread the sector’s arms so that their 
ends touch both ends of the compass. Without changing the angle of the pivot, 
move the compass inward (narrowing the gap between its tips) so that its two 
ends touch the two locations on the sector corresponding to 30°. We now have 
two similar triangles; from them, we have sin 90° / sin 23°30′ = sin 30° / x, 
where x is the new distance between the compass tips. From Gunter’s ratio 
above, we know that x is equal to sin δ. Move the compass so that one of its 
tips is at the pivot. On the line of sines, the point corresponding to the other 
tip (11°30′) is δ.148

One of the scales on Gunter’s instrument is entitled “meridional parts,” 
and therein lies the final episode of this chapter. The shortest voyage between 
two ports is of course the great circle arc between them. However, traveling 
along this course is difficult because one’s bearing changes continuously and 
so frequent course corrections are required. A simpler choice (although a 
slightly longer journey) is to travel along a path with a constant bearing, called 
a loxodrome or rhumb line. It would be helpful for a navigator to have in his 
possession a map with the property that a straight line on the map corresponds 
to a rhumb line on the ocean. A straight line drawn on the map, say, at a 45° 
angle upward and to the right, would follow a northeast bearing at every point. 
Pedro Nuñez had discovered the difference between great circles and rhumb 
lines in 1533. The first to construct a map with the desired property (in 1569) 
was none other than Gerard Mercator, a former pupil of Gemma Frisius.149 
For a map to achieve the required property, it turns out that the lines corre-
sponding to latitude circles must be spaced not at equal intervals but at ever 
greater distances from each other as one moves from the equator to a pole 
(figure 1.30). Although this notion is at the heart of the Mercator projection, 

148 �The reader may object that the arms cannot be spread far enough apart to fit R (the length of 
the sector) between the two 23°30′ indicators. However, elsewhere in the treatise Gunter ex-
plains how one may scale quantities up and down using linear scales (the “line of lines,” 
marked from zero to ten printed on the other side of the sector. Using similar triangles as 
above, one may use compass distances of R/10 and sin 30°/10. On the “line of sines” side of 
the sector, separate the 23°30′ indicators by R/10. Then insert the compass points separated by 
sin 30°/10 at the appropriate place on the line of sines to find δ as before.

149 �[Mercator 1961]. The literature on Mercator is enormous; we point out only a few recent items. 
[Crane 2002] and [Taylor 2004] are two of the most recent biographies while [Monmonier 
2004] is a social history of the projection, including the early history but also the modern de-
bate with the alternative Peters projection. [D’Hollander 2005] deals with the projection itself. 
[Delevsky 1942] also considers the possible sources of Mercator’s ideas. There also have been 
more than a few volumes of collected papers over the past two decades on Mercator and his 
historical context.
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Mercator’s latitude circles on his own map were not very accurately placed, 
and it is unclear what process he invoked to place them.

The first published solution to the problem of the spacing of the latitude 
lines is due to Edward Wright in his 1599 Certaine Errors in Navigation (fig-
ure 1.31).150 Also known for his translation of Napier’s Mirifici logarithmorum 
canonis descriptio in 1618 (published the year after Napier died), Wright also 
collaborated with Henry Briggs for many years; Wright, Briggs, and Edmund 
Gunter were together at Gresham College in 1615. Wright’s interest in loga-
rithms and mathematical instruments was practical—for the service of navi-

150 �[Wright 1599], although some of his table of meridional parts had previously appeared mul-
tiple times, first in [Blundeville 1594]. Indeed, the whole book nearly appeared under some-
one else’s name before Wright was compelled to publish; clearly the demand for Wright’s 
ideas was strong. In addition to various scholarly treatments (including within some of the 
books on Mercator we mentioned previously), the method has been described in several popu
lar articles; see for instance [Rickey/Tuchinsky 1980], [Fernández Garcia/Jiménez Alcón/
Muñoz Prieto 2001], and [Maor 2002, 174–177]. On Wright and his work, see [Parsons/
Morris 1939] and [Waters 1958, especially pp. 219–229].

Figure 1.30 ​  
Longitude and latitude lines in Mercator’s projection.
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gation. His Certaine Errors became a landmark, if one may put it that way, 
for finding one’s way at sea.

The idea behind Wright’s solution to the problem of the spacing of the 
latitude circles is straightforward. The latitude circles in figure 1.30 are all 
drawn as if they have the same length, but on the globe their lengths vary in 
proportion to cos φ, where φ is the latitude. Therefore, horizontal distances 
(longitudes) have been stretched relative to the equator by a factor of the re-
ciprocal of cos φ, that is, sec φ. To preserve bearings, the vertical distances 
ΔA (where A is the northward distance on the map from the equator to the 
latitude line corresponding to φ) must be stretched by the same ratio. So, at 
latitude φ, ΔA should be proportional to sec φ · ΔA (at latitude 0°), but since 
there is no stretching at the equator, at latitude 0° ΔA is equal to Δφ. Hence 
ΔA = k sec φ · Δφ.

The modern calculus student will notice immediately that this is the same 

as A(φ) = k ∫0
φ secϕ  dϕ , but at Wright’s time calculus was still many decades 

Figure 1.31 
The frontispiece of the 
second edition (1610) of 
Edward Wright’s 
Certaine Errors in 
Navigation.
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away. So, to construct his table of meridional parts, Wright was forced into an 
onerous calculation (which he described as “an easy way laid open”):

For . . . ​by perpetuall addition of the secantes answerable to the lati-
tudes of each point or parallel unto the summe compounded of all 
the former secants, beginning with the secans of the first parallel’s 
latitude, and thereto adding the secans of the second parallel’s lati-
tude, and to the summe of both of these adjoyning the secans of the 
third parallel’s latitude, and so forth in all the rest, we may make a 
table which shall shew the sections and points of latitude in the me-
ridians of the nautical planisphere: by which sections, the parallels 
are to be drawne.

Effectively, then, Wright uses a Riemann sum to compute A(φ). He chooses 
Δφ = 1′ but helpfully refers readers to Rheticus’s Opus palatinum should some-
one wish to take on the thankless task of improving the accuracy of the cal-
culation by decreasing Δφ to 10″.151

Wright was not the only English navigator working on the problem of 
meridional parts. John Dee (1527–1609), a friend of Mercator and Nuñez and 
a student of Gemma Frisius, had produced tables that predated Mercator’s 
1569 map, although the method he used to calculate them is unknown.152 
Later, Dee’s colleague Thomas Harriot (1560–1621) (who himself served on 
an ocean-going expedition to Virginia with Sir Walter Raleigh in the 1580s) 
would also venture in this direction. Harriot’s highly innovative work in 
mathematics and science never saw a printing press during his life. Today it 
exists only in manuscripts, notes, and modern scholarly editions. In mathe
matics he is known especially for his contribution to the theory of equations; 
closer to our interests here, he also was the first to state the area of a spherical 
triangle (although he did not prove his result). Harriot constructed tables of 
meridional parts in the 1580s or 1590s, not long after his voyage with Ra-
leigh. He revisited the topic late in his life and in 1614 constructed a large 
table of meridional parts with the aid of finite difference interpolation.153 We 
shall discuss this topic in chapter 2.

151 �[Wright 1599, chapter entitled “Faults in the common sea chart,” from the 17th  to the 
19th page].

152 �The literature devoted to Dee is extensive, but not much attention has been paid to his interest 
in navigation; see [Taylor 1955], [Taylor 1957, 195–207], [Alexander 2005], and [Baldwin 
2006]. For his table of meridional parts see [Taylor 1963, 415–433].

153 �The history of Harriot’s contribution to the problem of meridional parts has been controversial. 
See [Taylor/Sadler 1953], [George 1956], [Lohne 1965/66], [Pepper 1967a], [Pepper 1967b], 
[George 1968], and especially [Pepper 1968] and [Pepper 1976]. [Taylor/Sadler 1953] and 
[Pepper 1967b, 23–25] reveal that Harriot somehow knew some formula for meridional parts.
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