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Chapter One

Introduction
The Role of Binary Star Evolution in Astrophysics

Many key astrophysical objects and phenomena are related to the evolution of binary
stars. This holds, for example, for the formation of the brightest X-ray sources in the
sky and the formation of double neutron stars (NSs) and black holes (BHs), the mergers
of which produce the strongest bursts of energy anywhere in the observable Universe,
measurable on Earth with gravitational wave (GW) detectors.1 Binary interactions also
play a role for the origin of most supernovae (SNe), all nova explosions and short
gamma-ray bursts, and the formation of millisecond radio pulsars and a large variety
of stars with peculiar chemical abundances, such as barium stars and carbon-enriched
metal poor stars.

It has been long realized, from the fact that most stars are members of binary sys-
tems (Abt & Levy, 1976; Bonnell et al., 2003), that binary evolution must play a key
role in stellar evolution (e.g., van den Heuvel, 1994a). This early and important aware-
ness has even been strengthened further by the findings of, for example, Chini et al.
(2011) and Sana et al. (2012) that practically all massive stars are found in binaries
with orbits such that at some stage in their evolution, the far majority of these stars will
interact with each other. This implies that binary interactions dominate the evolution of
massive stars.

The first ideas about the evolution of binary systems originated in the 1950s. They
were largely inspired by the surprising characteristics of Algol-type eclipsing binary
systems (see also Section 2.4). Here, Algol-type means physically similar to the Algol
system, which consists of an unevolved B8V2 main-sequence star with a mass of
3.2 M� together with an evolved but less massive subgiant companion star of spec-
tral type K3 IV of mass 0.7 M�. This situation, with the more evolved star having the
smaller mass of the two, is just opposite to what one would expect on the grounds of
stellar evolution, as stars of larger mass are expected to have shorter lives than stars of
smaller mass do. In a binary—where both stars were born at the same time—one would
therefore expect the star of larger mass to be in a more advanced stage of evolution at
any time than that of its companion of smaller mass.

1The first ever detected BH merger event GW150914 (Abbott et al., 2016d) released an energy of
3 M� c2 within a fraction of a second, thereby outshining all stars in the Universe for a brief moment.

2B8V refers to a star of spectroscopic type B8 and luminosity class V.
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This is what is called the Algol paradox. Crawford (1955) was the first to realize
that this paradoxical situation can be explained if one assumes that large-scale mass
transfer can take place during the evolution of a binary system: Crawford hypothesized
that the subgiant components in Algol-type binaries were originally the more massive
components of these systems. As the more massive star evolved faster than its less
massive companion did, it was the first one to exhaust the hydrogen fuel in its core and
evolve into a giant star with a much expanded envelope. The presence of the close com-
panion, however, prevented such an evolution: when the outer layers of the expanding
(sub)giant came under the gravitational influence of the companion, they were cap-
tured by this smaller star (the accretor), causing the accretor to increase in mass at the
expense of the (sub)giant (the donor). The (sub)giant transferred so much of its mass
that it was finally able to restabilize its internal structure. At that moment, it became
the less massive of the two stars, and the originally less massive star became the most
massive one of the pair.

The first attempt to carry out a real calculation of this type of evolution with mass
transfer was by Morton (1960). He demonstrated the correctness of Crawford’s con-
jecture that mass transfer, once it begins, continues until the (sub)giant has become the
less massive star of the system. In his calculations, however, Morton still assumed that
the orbital period of the system does not change during the mass transfer. This is not
correct because, if one assumes that the total mass of the system is conserved, one also
expects the total angular momentum of the system to be conserved. The total angular
momentum is, in good approximation, equal to the orbital angular momentum (as the
rotational angular momentum of the two stars is usually much smaller than the orbital
one). Conservation of the orbital angular momentum implies that during the mass trans-
fer the orbital period and separation change in a well-determined way, which will be
explained in Chapter 4. The evolution of close binaries in this more realistic approach
was first calculated, independently of one another, by Paczyński (1966), Kippenhahn
& Weigert (1967), and Plavec (1967). Their work was the foundation of all subsequent
work on the evolution of close binary systems. Furthermore, the discovery of the first
celestial X-ray source in 1962 and of the X-ray binaries in 1971–1972—which earned
Riccardo Giacconi the 2002 Physics Nobel Prize—has given a great stimulus to the
research in this field. The X-ray binaries consist of a normal star together with a com-
pact object: a NS or a BH, which are the end states of evolution of massive stars. The
X-rays from these binaries, which are observed with space-borne detectors, are gen-
erated by the accretion of matter onto the compact star, which is captured from the
outer layers of the companion star. During the accretion this gas, falling inward in the
extremely strong gravitational field of the compact star, is heated by the release of
gravitational potential energy to temperatures above 106 K, causing it to emit X-rays.

Without the occurrence of extensive mass transfer from the original primary star
(the progenitor of the compact object) to the secondary star, most of these systems
could not have survived the SN explosion of the primary star in which the NS or BH
was formed (van den Heuvel & Heise, 1972; Tutukov & Yungelson, 1973b), because
the probability of the post-SN orbit to remain bound depends on the relative mass loss
from the system during the SN (see e.g. Section 4.3.10 and Chapter 13).
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Since the early 1970s, the realization of the importance of accretion of matter onto
a compact star (NS, BH, or white dwarf [WD]) as an energy source in many types
of binaries, ranging from X-ray binaries to cataclysmic variables (CVs) and symbiotic
stars, has been a further important source of inspiration for new research on the struc-
ture and evolution of close binary systems. The discoveries since 1974 of binary radio
pulsars, of which at least 20 are double NSs (DNSs; for a recent review, see Tauris
et al., 2017), have revealed many interesting properties, including the many relativis-
tic effects that are measurable in them with unprecedented precision (e.g., Taylor &
Weisberg, 1989; Taylor, 1992; Kaspi & Kramer, 2016).

These discoveries have created a new and fundamental branch of relativistic binary
star astrophysics, which among other things has produced the most accurate measure-
ments of masses of any stellar objects so far (Chapter 14). The measured rate of orbital
decay of the first-discovered double NS, PSR B1913+16, is in exact agreement with the
decay rate predicted from the emission of GWs according to the general theory of rel-
ativity. The highly precise detection of this and other relativistic effects earned the dis-
coverers of this binary pulsar, Russell Hulse and Joseph Taylor, the 1993 Physics Nobel
Prize. Later-discovered DNSs, particularly the double pulsar system J0737−3039, have
further refined the up to five tests of relativity allowed by these systems (Section 14.7.1)
to almost incredible precision (Wex, 2014; Kramer et al., 2021).

The amazing discoveries of the merger event of a double BH, starting with GW-
150914 in September 2015 (Abbott et al., 2016d), and of a DNS, in August 2017
(Abbott et al., 2017c), have revealed the ultimate final destiny of a massive binary star
system and demonstrated the production of strong bursts of GWs, that are observable
on Earth. This earned the LIGO pioneers Rainer Weiss, Kip Thorne, and Barry Barish
the 2017 Physics Nobel Prize. But how do ordinary stars born in a binary system end
up as two NSs or BHs that finish as a final single BH remnant? To answer this question,
we need to follow the binary system through a long chain of exotic binary interactions
(Fig. 1.1), involving mass transfer between the stellar components, SNe, and relativistic
effects. That the orbits of evolved massive stars in binaries will shrink to the very small
sizes observed for the double compact objects was predicted before these objects were
discovered (van den Heuvel & De Loore, 1973).

Radio pulsars are some of the most intriguing astrophysical objects, among which
a sizable fraction of binaries is found with quite special characteristics that give impor-
tant information on binary evolution. To understand the continuously growing diversity
of observed radio pulsars (see Fig. 1.2), it is necessary to link their properties to the
stellar and binary evolution of their progenitors (Bhattacharya & van den Heuvel,
1991).

The detection of close binary pulsars and of the merger events of double BHs and
NSs have further increased the interest in the evolution of binary systems. These dis-
coveries demonstrated that, even though binaries may have undergone several stages of
mass transfer during their evolution, where up to 90% of their original mass and >95%
of their original orbital angular momentum is lost from the system, and despite having
experienced two SN explosions, the two stars might still survive as a (very close) binary
system with two compact objects.
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Figure 1.2. Observed population of ∼2,400 radio and high-energy pulsars with mea-
sured values of both spin period (P ) and period derivative (Ṗ ). The variety of pulsars
has flourished immensely since their discovery in 1967 and continues to be a major
science driver in modern astrophysics. Binary pulsars (blue circles) dominate among
the fast-spinning millisecond pulsars. CCOs are central compact objects of SN rem-
nants, XDINs are X-ray dim isolated NSs, and RRATs are rotating radio transients (see
Chapter 14). Data taken from the ATNF Pulsar Catalogue in June 2021 (Manchester
et al., 2005, https://www.atnf.csiro.au/research/pulsar/psrcat).

The existence of the close double NSs and close double BHs has also demonstrated
that a precise knowledge of the physics of binary evolution is of vital importance for
understanding fundamental astrophysics as diverse as the generation of the strongest
bursts of GW radiation, the production of gamma-ray bursts, and the synthesis of
heavy r-process (or rapid neutron-capture) elements in the Universe. The latter was pre-
dicted to be produced by the merging of double NSs or NS+BH binaries (Lattimer &
Schramm, 1976) and expected to be observable as a so-called kilonova optical-infrared
eruption (Metzger et al., 2010; Berger, 2014).

These predictions have been beautifully confirmed by the spectroscopic study of the
optical-infrared transient that accompanied the DNS merger event GW170817 (Abbott
et al., 2017c, 2017d, 2017e). The mergers of double compact object binaries with at
least one NS also had been predicted to produce gamma-ray bursts (Paczynski, 1986;
Eichler et al., 1989), which was confirmed by the Fermi and INTEGRAL missions
by the detection of a short gamma-ray burst, following within 2 sec after GW170817
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(Abbott et al., 2017a; Savchenko et al., 2017). The occurrence of an electromagnetic
counterpart—the kilonova—is a great advantage of a DNS merger or a NS+BH merger,
relative to the mergers of double BHs, because this allows one to determine the place of
origin of the merger on the sky with sub-arcsecond precision. In the case of GW170817,
this place turned out to be in the lenticular (S0) Galaxy. NGC 4993 at a distance of
40 Mpc (Coulter et al., 2017; Soares-Santos et al., 2017). The discovery, in this way, of
the DNS merger GW170817 at once provided the solution to the nature of a variety of
key astrophysical phenomena.

In the past decades it was realized that the SNe of Types Ia, Ib, and Ic (characterized
by the absence of hydrogen in their spectra) most likely are related to the evolution of
binary systems (see Section 2.10). That these three types together form approximately
half of all SNe shows how important knowledge of binary star evolution is for a general
understanding of observational stellar evolution processes.

Finally, in the past decades it was discovered that binary evolution has affected a
large variety of low- and intermediate-mass stars with peculiar abundances of chemical
elements. Examples are the barium stars, which are G and K giants with masses up to a
few solar masses and an overabundance of barium and other s-process elements (prod-
ucts of slow neutron-capture processes) (Bidelman & Keenan, 1951; Boffin & Joris-
sen, 1988). They are wide binaries with eccentric orbits and orbital periods ranging
from approximately 100 to 10,000 days (Boffin & Jorissen, 1988). The binary nature
of these stars, of blue stragglers in star clusters, of extremely metal-depleted post–
asymptotic giant branch stars, of carbon-enhanced metal-poor (CEMP) stars, and of
>80% of nuclei of planetary nebulae was discovered in past decades. These discover-
ies show that the evolution of ∼50% of all low- and intermediate-mass stars is expected
to be affected by binary evolution (Abate et al., 2015). Because lower-mass stars are far
more abundant in galaxies than massive stars are, the products of low- and intermediate-
mass binaries are expected to vastly outnumber the products of the evolution of mas-
sive binaries. However, in this book we will concentrate mainly on the physics and
evolution of the more massive binaries that produce NSs and BHs and on the origin of
Type Ia SNe, which are caused by exploding WDs and are of crucial importance for
cosmology.

In the last decades it was realized that stars are found often, even in triple systems
or higher-order multiple systems. Observational estimates suggest that approximately
20%–30% of all binary stars are members of triple systems (Tokovinin et al., 2006;
Rappaport et al., 2013). These systems may remain bound with a long-term stability
in a hierarchical structure (a close inner binary with a third star in relatively distant
orbit). Since the 1970s, a number of stability criteria for a triple system have been
proposed (see Mikkola, 2008, for an overview) that enable predictions for the long-
term stability of triple systems. Iben & Tutukov (1999) estimated that in ∼ 70% of
the triple systems, the inner binary is close enough that the most massive star will
evolve to fill its Roche lobe. Furthermore, in ∼ 15% of the triple star systems, the outer
third (tertiary) star may even also fill its Roche lobe at some point, possibly leading
to disintegration or production of rare configurations with three degenerate objects in
the same system. In 2014, Ransom et al. (2014) reported the remarkable discovery of
a triple-system pulsar (PSR J0337+1715), which is exactly the first example of such
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an exotic system—a NS orbited by two WDs. (For a formation and evolution scenario
for this complex system, which must have survived a SN explosion and at least three
stages of mass transfer between the stellar components, see our model in Tauris &
van den Heuvel [2014].) Besides specific triple-star interactions, such as Kozai-Lidov
resonances (Kozai, 1962; Lidov, 1962) and the above-mentioned dynamical stability
considerations, most interactions between stars in triples are similar to the interactions
between binary stars. For this reason, we focus only on binary stars in this book.3

The 2020s and 2030s are expected to reveal a large number of discoveries of new
double compact object systems, as well as their progenitors and merger remnants. This
field of astrophysics is strongly driven by investments in new big-science instruments.
The Square-Kilometer Array (SKA) is expected to increase the number of known radio
pulsars by a factor of 5 to 10, thus resulting in a total of >100 known DNS sys-
tems (Keane et al., 2015). The Five-hundred-meter Aperture Spherical Telescope is
also expected to contribute a significant number of new radio pulsars (Smits et al.,
2009; Nan et al., 2011), including new discoveries of pulsar binaries. High-mass X-ray
binaries (HMXBs), the anticipated progenitors of double compact object systems con-
taining NSs and BHs, are continuously being discovered with ongoing X-ray missions
(INTEGRAL, Swift, XMM-Newton, and Chandra [see e.g., Chaty, 2013]). New and
upcoming space-borne X-ray telescopes such as eXTP, STROBE-X, and Athena are
expected to produce further discoveries of these systems. Hence, we are currently in an
epoch when a large wealth of new information on exotic binaries is becoming available.
In light of this, it is important to explore and understand the formation and evolution
of such binary systems in more detail. Earlier textbooks on binary evolution are those of
Shore et al. (1994), Hilditch (2001), and Eggleton (2006), to which we refer for further
reading. For an earlier book on physics and evolution of relativistic objects in binaries,
we refer to Colpi et al. (2009).

This book is organized as follows. In Chapter 2, we give a brief history of the
discovery of the different types of binary systems and, where appropriate, summarize
their importance in modern astrophysics. In Chapter 3, we consider how the orbital
parameters of spectroscopic and eclipsing binaries are measured and, how from these
measurements information is obtained about the masses and radii of the stars. We give
an overview of the thus-derived masses of stars of different spectral types.

In Chapter 4, we consider basic aspects of the celestial mechanics of binary sys-
tems, the meaning and limitations of the Roche-lobe concept, as well as the changes
in orbital period and binary separation that are induced by various processes of mass
loss and mass transfer in binary systems. We first consider the somewhat idealized
“conservative” evolution, in which the total mass and orbital angular momentum of the
binary are expected to be conserved during the evolution, followed by the more realis-
tic and exotic types of close binary evolution, so-called non-conservative evolution, in
which large losses of mass and orbital angular momentum from the systems are taken
into account. A treatment of common envelopes and the orbital evolution during the

3Formation of stellar binaries via triple- or quadruple-star dynamical interactions in dense cluster, how-
ever, are discussed in Chapter 12. For a recent review on the evolution of destabilized triple systems, see
Toonen et al. (2022).
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dynamically unstable in-spiral phase are described as well. Finally, we briefly discuss
the Eddington accretion limit as well as accretion disks.

In Chapter 5, we describe the observed properties and the general classifications
of the various types of interacting binary systems that do not contain NSs or BHs,
concentrating mostly on systems in which at least one component is an evolved star,
that is, a (sub)giant, or a WD.

In Chapters 6 and 7, we describe the observed properties of X-ray binaries: HMXBs
as well as low-mass X-ray binaries (LMXBs), including mass determination of the
accreting NSs and BHs. Regarding HMXBs, we discuss Be-star X-ray binaries, super-
giant X-ray binaries, and, for example, stellar wind accretion and the Corbet diagram.
We also discuss the recently discovered class of pulsating ultra-luminous X-ray sources.
For LMXBs, we discuss the various types, including the systems with BHs and the
symbiotic X-ray binaries with accreting NSs.

In Chapter 8, we give an overview of the evolution of single stars (with a special
focus on the final evolution of massive stars). In Chapter 9, we apply this knowledge
to the evolution of binaries in general. Here, we also discuss in detail the various cases
of mass transfer (including mass loss) and orbital stability analysis, and we end with a
comparison between the outcomes of single vs. binary star evolution.

This knowledge is crucial for understanding the formation and evolution of X-ray
binaries, which are the subjects of Chapters 10 (HMXBs) and 11 (LMXBs). We discuss
the final stages of HMXBs (including Wolf-Rayet [WR] star binaries), with or without
a common envelope, leading to the formation of double NS/BH binaries. For LMXBs
and CVs, we also discuss the mechanisms driving the mass transfer in LMXBs and
CVs. These concern the internal evolution of the companion star, as well as the loss
of orbital angular momentum due to emission of GWs and/or a magnetically coupled
stellar wind, or a combination of these. We also discuss the final mass-transfer stage
from WDs in very tight binaries, in the so-called AM Canum Venaticorum (double WD)
systems and the ultra-compact X-ray binary sources (typically WD+NS systems).

Binaries with compact objects can also be formed by the dynamical evolution of
dense star clusters. This is the subject of Chapter 12.

Chapter 13 concerns SNe in binaries. We first discuss the evolution leading to the
thermonuclear Type Ia SNe, triggered by the accretion of matter by a WD, and we also
consider accretion-induced collapse (AIC) of massive WDs. We subsequently discuss
the origin of Type Ib/Ic SNe and the evidence derived from theoretical computations of
the late stages of close binary evolution, including ultra-stripped SNe, combined with
observations of SN light curves and known Galactic post-SN DNS systems. We dis-
cuss the evidence for momentum kicks imparted onto compact objects during various
SN events (iron core collapse and electron-capture SNe) and examine the kinematical
effects of these kicks on the resulting compact-object binaries.

In Chapter 14, using the results of the previous chapters, the final stages of the
formation of binary and millisecond radio pulsars is studied; in other words, the tran-
sition from X-ray binaries to radio pulsars. We review the recycling of pulsars in
detail, including the accretion torques at work. We review the rich diversity of resulting
millisecond pulsar binaries and their component masses (theoretical expectations and
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measurements via relativistic effects). Finally, we revisit the formation of double NS
(DNS) systems.

Chapter 15 is devoted to GW astrophysics. We cover the basic physics of GW emis-
sion and detection. We discuss formation channels of both high-frequency (LIGO–
Virgo–KAGRA–IndIGO) and low-frequency (LISA and TianQin) GW sources. We
review the signals expected from extragalactic merging double BHs and NSs, including
the electromagnetic counterparts of these mergers, and the Galactic WD and NS bina-
ries as continuous GW emission sources. The different models for the formation of the
double BHs are discussed in depth in light of the latest observations of “ordinary” and
exotic events from the LIGO–Virgo-KAGRA network.

Chapter 16 discusses the subject of binary population synthesis with an emphasis
on methodology and statistics. Two examples are highlighted that illustrate a synthetic
open star cluster population of binaries and the differences between estimates of empir-
ical vs. theoretical double NS (DNS) merger rates.
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collapse; supernovae, electron-capture);
radio pulsating, 161

WN3/O3 stars, 363–365
Wolf-Rayet (WR) stars, 45ff, 146–149;

formation of, 377–379, 386–389;
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