CONTENTS

1	Introduction	1		
2	Origins: Historical Views of Evolutionary Novelty and Innovation	17		
3	Novelty and Innovation	69		
4	Evolutionary Spaces: The Topology of Innovation	116		
5	A Conceptual Framework for Novelty and Innovation	165		
6	The Origins of Novelties	188		
7	Building Communities: The Dynamics of Evolutionary Innovation	230		
8	Ode to Opabinia	253		
9	On the Shoulders of Giants: The Dynamics of Cultural and Technological Innovation	290		
10	Toward a Theory of Evolutionary Novelty and Innovation	323		
	Epilogue	355		
Acknowledgments 361				

v

Notes 363 References 391 Index 431

1

Introduction

OPABINIA WAS only a few inches long, with about 15 paired, undulating flaps on the sides of the body, a head with five bulbous eyes, and a long, flexible proboscis ending in a pair of spiny claws. Long one of the weird wonders from the 505-million-year-old rocks of the Burgess Shale in western Canada, the few specimens of Opabinia are now known as part of an evolutionary burst leading to arthropods in the Cambrian Explosion of animal life. Finding a home for Opabinia among the arthropods makes it no less remarkable. If anything, it sharpens our questions about the processes that generated such remarkable evolutionary novelties.

Evolutionary novelties abound. Consider grasses. Grasses have been supremely successful, with grasslands carpeting the temperate interiors of North and South America, Asia, and Africa for the last 15–20 million years. Grasslands changed the structure of terrestrial communities, modifying regional climate, and stabilizing soils against erosion, probably even reducing the sediment flowing down rivers to the oceans. Studies of the fossil record of minute silica particles (known as phytoliths) in grass stems by paleobotanist Caroline Strömberg, coupled with molecular evidence, show that grasses originated 55 million years ago, or perhaps earlier. From their widespread success one might assume that grasses spread soon after they first appeared. Yet grasses were ecologically insignificant for tens of millions of years before changing climate accelerated a pervasive change in terrestrial ecosystems. So, grasses originated and diversified into their major clades long before they became ecologically or evolutionarily successful.¹

Similar lags have long been recognized between invention and the impact of a new technology. Although patent records are often used to study new technologies, most patents have little economic impact, and there is often a lag between discovery of a new technology and the onset of a significant role

1

2 CHAPTER 1

for it in the economy. The complexity of technological innovation is illustrated by the early history of digital computers. Over the winter of 1937–1938 John Vincent Atanasoff, a physicist at the Iowa State College, built the first digital computer to speed up laborious calculations. His computer was not programmable, but like modern digital computers it solved complex equations using Boolean logic and binary numbers. Although Atanasoff is often credited as the inventor of the digital computer (and eventually won recognition in a patent suit), the spread of digital computers was due to the development of ENIAC (Electronic Numerical Integrator and Computer) in 1943–1944 at the University of Pennsylvania (some of Atanasoff's ideas may have found their way into ENIAC, but that is a story for another day). As ENIAC was being built, British codebreakers at Bletchley Park were building Colossus, a fully digital computer, to help solve German codes. Atanasoff's computer was discarded as scrap at Iowa State, and the existence of Colossus would remain secret for decades, leaving ENIAC as the first fully digital, programmable computer. More importantly, some of the builders of ENIAC founded a company that became part of the Sperry-Rand Corporation and the beginning of the digital revolution.²

The importance of such lags is best illustrated through a brief look at three approaches among biologists since Darwin published *The Origin of Species* in 1859.

Darwin argued for a continuity of evolutionary processes from small-scale changes observed in living plants and animals to the longer-term patterns revealed by the fossil record. By denying the discontinuities suggested by some earlier natural scientists, Darwin emphasized the power of natural selection to explain the diversity of life. Although most scientists quickly accepted Darwin's views of descent with modification, natural selection was only one of many explanations debated in the interval between 1860 and the 1930s, in part because of controversies over how organismal attributes were passed to the next generation. These controversies were seeming resolved by geneticists and evolutionary biologists in the Modern Synthesis of evolutionary biology (1920s–1950s). Many contributors to the Modern Synthesis adopted Darwin's extrapolationist approach, updated with the recent discoveries in genetics. Paleontologist George Gaylord Simpson and evolutionary biologist Ernst Mayr focused on the origin of larger groups as a proxy for evolutionary innovation. For example, from this perspective the critical issue in the origin of turtles was the vertebrate order Testudines, which encompassed their morphological novelties. Mayr viewed evolution as opportunistic, capitalizing on useful morphological novelty, while Simpson beautifully articulated the variety of

INTRODUCTION 3

evolutionary patterns documented by the fossil record (his 1944 book *Tempo and Mode in Evolution* remains an intellectual touchstone for paleontologists). By the 1950s Simpson had adopted the reigning views of the Synthesis, that natural selection could, over time, craft the full panoply of the history of life. This extrapolationist view, that selection at the level of individuals within populations via small changes in genes, is, over time, responsible for remarkable evolutionary novelties, has long been the default assumption by evolutionary biologists and viewed as immune to deeper inquiry.³

A second approach to novelty extends the extrapolationist view. Confronted by new opportunities a species may diversify into a range of new species, each specialized for different opportunities—food type, habitat, and so on. Simpson explored these adaptive radiations from the 1940s to the 1960s, extrapolated from living plants and animals, often on islands, to more complex diversifications such as the spread of placental mammals and even the Cambrian Explosion of animals. In 1960 Simpson wrote: "On a broader scale, we now see, even more clearly than Darwin did, that every marked expansion of a group, whether it be a genus or a phylum or the whole animal kingdom is an adaptive radiation."

Subsequent generations of evolutionary biologists have examined adaptive radiations, including Darwin's finches in the Galapagos Islands, repeated invasions of small marine fish into lakes in British Columbia, and the remarkable expansion of the *Anolis* lizards across the Caribbean, establishing them as important contributors to diversity. But the theory of adaptive radiation assumes that the generation of new morphologies is a sufficiently regular occurrence that we do not need to worry about the supply side of the equation. The hinge point is the ecological opportunities that facilitate the radiation, whether migration to a largely unoccupied island, the aftermath of an extinction, or the acquisition of a "key innovation" that allows access to new resources. But the significance of adaptive radiations for morphological novelties seems limited, since few are associated with adaptive radiations. In later chapters evidence for lags between the origin and success of novelties will support the distinction between novelty and innovation. Moreover, these chapters reveal that not all novelties are a response to an opportunity or need.

Extrapolationist views invoke the principle that explanations with the fewest assumptions should be favored over more complex scenarios. Known as Ockham's razor, this principle of parsimony is attributed to William of Ockham, a medieval English monk. Isaac Newton made similar arguments, writing in his *Principia*: "Nature does nothing in vain, and more causes are in vain

4 CHAPTER 1

when fewer suffice. For nature is simple and does not indulge in the luxury of superfluous causes." Darwin had enough challenges arguing for the evolutionary unity of life and for the power of natural selection in crafting biological diversity without multiplying the range of processes. Similarly, advocates of the Modern Synthesis were trying to consolidate evolutionary biology through the incorporation of field natural history, genetics, and the fossil record, which also favored extrapolating from selection within populations. Thus, neither extrapolationist nor adaptive radiation scenarios for the origins of novelty and innovation can be rejected out of hand. The assumptions made by Simpson, Mayr, and their colleagues were reasonable, particularly as they were working to produce a more scientific view of evolutionary change. In fact, elements of them may make important contributions to a broader understanding of these problems. But nonetheless they seem to fall short of a full and comprehensive understanding of the phenomena of novelty and innovation. S

The third, more recent, approach reflects growing experimental evidence that new morphologies often reflect different sources of genetic variation from those fueling adaptation. New molecular methods of interrogating the genes and gene networks responsible for development from an embryo to an adult have revealed a remarkable and unexpected conservation of genes across many kinds of animals. Hox genes, involved in animal patterning, and *Pax6*, responsible for eye development in vertebrates, have become broadly known, but there are many more. From the extensive conservation of these genes among living animals we can infer that their last common ancestors also possessed these genes, even if the genes may have had somewhat different roles. These discoveries have led to the rise of comparative evolutionary developmental biology, or "evo-devo." The origins of novel attributes of animals (and some plants) have attracted considerable attention and have suggested the need for an expanded view of the origins of novelty.

While the classic model of an adaptive radiation involving a "key" morphological innovation assumes a close connection between the origins of novelties and their evolutionary success, there is no logical or necessary connection between the two phenomena. To Mayr the suggestion of a lengthy gap between the origin of a morphological novelty and its ecological or evolutionary success would seem nonsensical, if not bizarre. Mayr focused on the origin of higher taxa as a metric of evolutionary novelty, but novel morphological features often define new clades, and a new clade, whether turtles, grasses, or birds, involves the assembly of a suite of features. The evolutionary history of grasses illustrates that the innovation associated with a clade may be decoupled

INTRODUCTION

from the attributes that define the origin of the clade. But evolutionary developmental biologists are in some ways the reflection of advocates of adaptive radiations, for they emphasize the mechanisms that generate novel forms but often neglect the problem of how these new forms succeed and make a living. The origins of novelties, innovations, and clades are distinct issues. They may occur simultaneously, as Simpson and Mayr assumed, but that is a question to be resolved by study of individual cases, not assumed.

Distinguishing the origin of novel forms (novelty) from their success (innovation) is critical to understanding the processes responsible for their formation. I will define these terms more carefully later in this book, but for now we can treat the origin of novelty as the formation of unique features: the carapace of a turtle, the growth habits of grasses, feathers and skeletal changes for birds, language for humans. In contrast, innovations involve transformations of ecological assemblages and long-term evolutionary impact. Innovations are often more complicated than simply the acquisition of a morphological novelty, for they reflect the ecological and evolutionary success of a group, which may require additional adaptations beyond a novel morphology or environmental changes, as was the case with grasses.

The spread of evo-devo has led many biologists to reexamine the driving forces for novelty and innovation, informing the three major issues explored in this book: How did novel attributes arise, and how did they become successful innovations? Can the same general model explain novelty and innovation across biological, cultural, and technological domains? Finally, does novelty simply represent the extremes of adaptive evolutionary change, the sort of thing that happens every day, or are novelty and innovation somehow decoupled from evolutionary adaptation? As a foundation for what follows it is worth briefly elaborating on these three questions.

No comprehensive account of novelty and innovation in the biological domain can focus exclusively on genetic and developmental changes, on ecological opportunity, or on changes in the environment, any more than a useful account of technological change can focus on inventions to the exclusion of their economic success or failure, or an account of cultural innovation can ignore the broader context in which the changes occur. Exploring the origin of novelties and innovation constitutes chapters 6 through 9, with numerous examples in other chapters as well.

Novelty and innovation have become popular themes in evolutionary biology, business, economics, and culture, among other fields. Biological novelty, evolutionary innovation, cultural transformation, and technological change are

6 CHAPTER 1

usually treated separately by evolutionary biologists, anthropologists, and economists. There is a widely shared (if sometimes a bit inchoate) view that there are great similarities among biological, cultural, and technological innovation. But rarely has the nature of such similarities been investigated in detail. Yet human language, culture, and technology represent some of the most transformative novelties in the history of life. This motivates the second major theme of this book: *Can the same general model explain novelty and innovation across biological, cultural, and technological domains?* If a general approach to novelty and innovation is possible, it must encompass culture and technology.⁶

Charles Darwin famously drew upon the work of Thomas Robert Malthus as inspiration for his theory of natural selection. Modern evolutionary biology and modern economics trace their intellectual history back to the field of political economy in the eighteenth and early nineteenth centuries through Malthus, Adam Smith, Nicolas de Condorcet, and others, with continuing intellectual cross-pollination. Many economists have been deeply influenced by work in evolutionary biology. Economist Joseph Schumpeter has often been credited with distinguishing between invention and innovation in the evolution of technology. Schumpeter was a leading twentieth-century theorist of economic development and entrepreneurship. He emphasized the importance of technological innovation but recognized that inventions by themselves contributed little. It was only when inventions diffused through an economy that they could became innovations and influence economic growth. Just as I view Schumpeter's distinction between invention and innovation as equally applicable to the history of life, I will introduce other approaches from economics and anthropology that may prove valuable to biologists.⁷

Studies in cultural evolution have long made strong claims of analogy between cultural processes and biological evolution. It is hardly surprising that scholars have explored the possibility of a general theory of novelty and innovation spanning biological, cultural, and technological domains, although progress has been stymied by the fact that while there are many metaphorical similarities between novelty and innovation across these domains, we lack a robust theory.

Such a general theory of novelty and innovation could take several different forms:

 A general theory covering biological, cultural, and technological domains is possible, and it is possible to construct a mathematical theory through which we could evaluate the relative importance of different contributions and perhaps even make predictions about the future.

INTRODUCTION 7

- Commonalities exist across domains, but there are sufficient differences between domains that any mathematical framework (if possible) will be domain specific.
- Commonalities exist across domains, but for various reasons developing
 a mathematical theory even within domains is unlikely. However, a
 general conceptual framework covering the three domains can be
 developed, while acknowledging some degree of domain specificity.
- Despite apparent metaphorical similarities across domains, processes
 of novelty, invention, and innovation are sufficiently specific within
 different domains (and may vary so much within domains) that even
 building a domain-specific framework is a hazardous enterprise.⁸

These alternatives will be evaluated in the final chapter.

A third major issue woven through the book is the seemingly eternal issue of continuity versus disjunction. Does novelty simply represent the extremes of adaptive evolutionary change, the sort of thing that happens every day, or are novelty and innovation somehow decoupled from evolutionary adaptation? Many evolutionary biologists reject any distinction between novelty and the sort of evolutionary adaptation that makes up much of evolutionary change, generally assuming that with sufficient time adaptive change will generate morphological novelty. Recent insights from developmental biology challenge this comfortable assumption, suggesting, for example, that the changes in developmental patterning of the embryo that led to a novelty differ from those that generate adaptive changes. Abrupt transitions, such as the appearance of turtles, seem to lend credence to claims that novel attributes and innovations represent distinct modes of evolutionary change. Defenders of more traditional approaches to evolution dispute the existence of any discontinuities, just as they have disputed the existence of distinct processes of macroevolution since the contributions of Stephen Jay Gould, Niles Eldredge, Steve Stanley, and others in the 1970s and 1980s. From this more traditional, or microevolutionary, view the seemingly abrupt shifts are a description of pattern, not of process. In the case of turtles, one could argue that poor preservation of intermediate forms generated the apparent discontinuity.

In the mid-1990s the evolutionary biologists John Maynard Smith and Eörs Szathmáry developed the idea of the major evolutionary transitions. The eight events identified by Maynard Smith and Szathmáry spanned from the origin of life to the evolution of human culture and language, thus justifying the approach taken here. They believed new evolutionary individuals were

8 CHAPTER 1

constructed during these events by changes in the organization of genetic information and in the means of inheritance, and that these transitions explained the apparent hierarchy in the organization of life. The book by Maynard Smith and Szathmáry was wonderfully stimulating and will be discussed in later chapters. But their analysis fails to adequately incorporate profound changes in the environment from oxygenation of the oceans to increases in functional complexity and the formation of new evolutionary possibilities. Indeed, this book began as a response to the major evolutionary transitions viewpoint. Among the great challenges for research on the history of life is developing an approach to this problem that recognizes the complexity of historical processes and the diversity of information required to understand them. Major transitions encompass a much more diverse array of events than those identified by Maynard Smith and Szathmáry. Their work has been properly influential in articulating a nonuniformitarian view of evolutionary dynamics: that the nature of evolution has itself changed over time.9

I have a broad view of the range of evolution, and I find claims of human uniqueness that justify an inviolate separation between humans and the rest of life unsupportable. Social evolution is widespread among many species, even among microbial consortia. There are aspects of human cultural evolution that appear to be unique, and certainly the extent of technology created by humans is unprecedented. But many other species modify their external environment in important ways, suggesting that the differences are of degree rather than absolute. Human evolution, particularly cultural and technological evolution, is interesting exactly because it must be encompassed by any useful approach to evolutionary innovation. And for just this reason Maynard Smith and Szathmáry included the evolution of language as the last of their major evolutionary transitions.

This issue of novelty versus adaptation and continuity and discontinuity has implications for rates of change. So far, I have said nothing about how rapidly novelties arise or how quickly novelties transform ecosystems, beyond noting lags. I would be willing to wager that not a few readers have inferred that novelties must arise quickly. Indeed, as discussed in chapters 2 and 3, many such claims have been made, but in later chapters I will argue that distinctions among adaptation, novelty, and innovation are about mechanism and are independent of the time involved. So, in contrast to the claims of my tribe (paleontologists), estimated rates may be a poor indicator of evolutionary dynamics.

INTRODUCTION 9

Structure of the Book

Past studies of innovation, whether in biology, culture, or technology, have often relied upon compiling histories of specific cases. The case-study approach allows characteristics of novelty and innovation to emerge from the weight of examples. A more philosophical approach would be to search for definitions of novelty and innovation, emphasizing logical rigor over the messy realities of biology. Indeed, there is a growing literature among philosophers of biology and more philosophically inclined biologists proposing various definitions of novelty. Relying entirely on case studies is often justifiably criticized as anecdotal and ad hoc. The numerous informative examples in this book are in service of a broader conceptual framework. Chapters 2 through 4 examine seven different approaches to novelty and innovation, before I articulate a conceptual framework in chapter 5. Although I began this project with a rigid view of the boundaries of novelty, I have come to see that definitional flexibility is warranted. Chapters 6 through 9 employ this conceptual framework to examine different exemplars of novelty and innovation, but I will endeavor to show that these exemplars represent larger classes of similar patterns and processes.

I explore earlier approaches to novelty and innovation in chapter 2, roughly from the early nineteenth century through about 1990. I have already noted that the common assumption has been that novel morphologies are linked to the diversification of new species. I will argue that while adaptive change may often be a critical component of innovation, adaptive evolution may play less of a role than commonly assumed. Larger-scale or macroevolutionary approaches to novelty and innovation, such as the differential success of species or clades, are also discussed in this chapter. But I conclude that no model of adaptive radiation satisfactorily explains evolutionary novelty or macroevolutionary lags. Indeed, most traditional macroevolutionary approaches have neglected the factors responsible for the generation of morphological novelty.

The latter portion of chapter 2 extends the discussion of novelty and innovation to cultural evolution and technological change. Discussions of cultural and technological aspects are integrated into chapters where appropriate. But one of the challenges is the use of the term *evolution* in different fields and in different ways. Even two biologists may differ over whether the term applies to hereditary changes in gene frequencies mediated by either natural selection or genetic drift, or if selection operates at multiple levels—for example, between

10 CHAPTER 1

populations of a species. The past several decades have seen expansion of the types of inheritance to include cultural, ecological, and epigenetic inheritance. The problems increase with cultural evolution, where the focus shifts to processes distinct from the gene-centric views of many biologists. The term evolution becomes more confusing among economists, historians, sociologists, and other anthropologists, who may use it as a synonym for long-term change but reject any parallels with Darwinian or biological processes. While I have sought to identify similarities and differences across the domains of biology, culture, technology, and economics, I make no claim for a reductionist, genecentric view of evolution, nor an argument for universal Darwinism. Universal Darwinism is an effort to extend a reductionist view of evolution to fields beyond biology, particularly anthropology, economics, and psychology. Instead, the focus is on the nature of novelty and innovation across domains in which the processes of change may be very different. While I use the term evolution throughout the book, in chapter 2 on historical approaches, chapters 3 and 9 on the domains of culture and technology, and chapter 4 on cultural spaces I use the term generically as a synonym for change, with no analogy to biological processes. Because human novelties and innovations are found today in a single species, I discuss them together in chapter 9. I make no claims for even a survey of the vast literature on novelty and innovation in economics and business.10

Many biologists use *novelty* and *innovation* interchangeably, and writers of popular business books rarely seem to have given any thought to the possibility of a distinction between the two terms. Novelty and innovation are what cognitive scientist Marvin Minsky termed "suitcase words": words that have a variety of meanings, like conscience or complexity. Unpacking suitcase words can transform impossible problems ("What is consciousness?") into a series of less difficult problems where progress might be achievable. Definitions of novelty, invention, and innovation differ between different authors and have changed over time. To some, novelty applies to any heritable biological change or is synonymous with adaptation, but such a definition is so broad as to be meaningless. I begin unpacking these words in chapters 3 to 5 as I examine how the concept of evolutionary novelty has been refined over the past few decades. Coincidentally, the beginnings of evo-devo, insights from the fossil record, new approaches to cultural evolution, and new tools to reconstruct evolutionary history led to reassessments of the nature of novelty and innovation, beginning about 1990. These new ideas provide the foundation for chapter 3, which advances the historical presentation over the past three decades.

INTRODUCTION 11

I highlight how evo-devo studies have provided insights into the genetic and developmental foundations of novelty.¹¹

Sewall Wright, one of the founders of the Modern Synthesis, argued that supply of genetic novelties was relatively constant through time, with their success depending on ecological opportunities. Like Mayr and Simpson he saw no useful distinction between novelty and innovation. Wright introduced the concept of an adaptive landscape as a heuristic model to depict the fitness of an organism under different gene combinations. The highs on the landscape represent regions of high fitness or adaptation, while the basins represent low fitness or adaptation. Simpson's adaptive landscapes introduced the concept of a space into evolutionary biology and became one of the most enduring and popular metaphors in evolution. Today spaces of DNA, RNA, and proteins are common, and the idea has been extended to regulatory and metabolic networks. Paleontologists analyze morphology within morphospaces, and other design spaces encompass functional, ecological, or other features of organisms. Not to be outdone, economists have described product spaces and their potential influence on economic development.12

We intuitively think of spaces as Euclidean, where the three axes of the space are at 90 degrees to each other and distances can be measured between objects. But many mathematical relationships between objects are not Euclidean spaces or may be only locally Euclidean. The idea of a space is a powerful metaphor that raises important questions: How accessible are different regions of an evolutionary space? Do spaces simply exist, waiting for organisms to fill them, or are they somehow constructed through the history of life? Such questions raise some interesting and poorly appreciated problems associated with the topology of evolutionary spaces, the topic of chapter 4.

Innovation is often described as a search through a space of opportunities, but this is misleading if evolutionary spaces can be constructed. I explore this fundamental difference in some detail in chapter 4 because it has some farreaching consequences for how we think about evolutionary novelty and innovation. "Search" is the appropriate metaphor in situations where solutions are already present (what are called pre-statable spaces), and movement through the space can be accomplished via simple operations.

The sequence space of 20 nucleotides of DNA or RNA is an example I use in chapter 4. A single nucleotide mutation changes the sequence one position in the sequence space. Ignoring changes in the length of the sequence and considering just single nucleotide changes, then there are 19 possible single

12 CHAPTER 1

nucleotide changes from any starting sequence. And each of these is adjacent to additional single nucleotide changes. Thus, there is a pathway of single nucleotide changes through the sequence space from a starting sequence to a completely different 20-nucleotide sequence. A simple operation (mutations producing the substitution of one nucleotide for another) allows search through the space of alternative sequences. Some biologists argue that similar search processes explain innovation in many other systems. I will return to consider this influential example in some detail in chapter 4. In general, search operates in systems like sequence spaces for proteins and nucleotides, and even potentially for some phenotypes such as logarithmically coiled shells (clams and gastropods). But the metaphor of search becomes problematic where the design space cannot be defined independently.

My view is that most significant evolutionary novelties and innovation involve the construction of new opportunities. Construction involves the formation of a space of opportunities that could not reasonably have been specified in advance. These opportunities could be molecular, developmental, morphological, cultural, or technological, but they often involve more complicated evolutionary changes than in search. Once formed, new design spaces can be exploited by adaptive search. Arthropods, with exoskeletons and jointed appendages, represent the formation of a new space of opportunities, for example. It would have been difficult to define the possibilities for arthropods 600 million years ago, before the morphological novelties appeared. But the origin of arthropods opened a vast range of opportunities, which are continuing to be exploited.

Microbiologist Richard Lenski and his colleagues have followed the evolution of strains of the bacterium *Escherichia coli* for more than 50,000 generations. In 2011 Lenski and Zac Blount announced the discovery of a form of *E. coli* that feeds on citrate. Acquiring this capability required earlier genetic changes that created the potential for the mutation that allowed the bacteria to feed on citrate. These earlier mutations potentiated this change, but they did not themselves establish the novelty. Such potentiating mutations have been associated with other novelties as well and cast doubt on the assumptions of Wright, Mayr, and others: We cannot assume that the supply of novelty is relatively constant through time. Indeed, one of the main arguments of this book is that we need to understand the factors that control the supply of novelty and how this has changed through time. The experimental demonstration of potentiation deeply influenced the conceptual framework of novelty and innovation advanced in chapter 5. 13

INTRODUCTION 1

This framework involves four components: potentiation, novelty, adaptive refinement, and innovation. While ecological opportunities are important, in my view they do not play the central role in novelty and innovation proposed by Wright, Simpson, and Mayr. But by distinguishing potentiating factors and adaptive change from the generation of new morphological novelties and the environmental aspects that control whether, and when, the novelties become successful as innovations we may be able to generate a more comprehensive understanding of these aspects of evolution. The conceptual foundations of novelty and innovation are not as well developed in studies of cultural change as in biology or economics, but later chapters extend this approach to culture and technology.

The opportunity-driven view of novelty and innovation assumes that new morphologies depend upon existing genetic and developmental variation. But other evolutionary and developmental biologists have argued that novelty often requires specific genetic and developmental changes. If this latter view is correct, then the origin of novelty may in part reflect the internal dynamics of complex systems, whether they are organisms or cultures, and be largely decoupled from ongoing processes of adaptation. In my view, there is less conflict between these views than may first appear, once the nature of novelty is carefully circumscribed. Chapter 6 will consider specific cases of evolutionary novelty and the role of networks in facilitating change. The primary objective of that chapter is to address the sources of genetic and developmental novelties. The core of the chapter will involve a discussion of how the structure of developmental gene regulatory networks controls patterns of novelty.

The generation of evolutionary innovations in biological, cultural, and technological domains is addressed in chapters 7–9, including the mechanisms responsible for converting evolutionary novelties. Ecological processes are discussed in chapter 7, including those by which organisms construct niches either for their own species or for other species. In addition, that chapter considers several types of diversifications, novelty events, and innovation after mass extinctions or similar biotic crises. Chapter 8 provides case studies of biological innovation that illustrate the importance of a "macroevolutionary triad" of genetic and developmental potential, ecological opportunity, and environmental possibility.

Chapter 9 examines novelty and innovation in culture and technology. Cumulative cultural evolution, language, and cumulative technological evolution are unique human novelties that enable other novelties and innovations. Since

14 CHAPTER 1

these changes all occur among humans and our closely related ancestors, discussing these changes in a single chapter was more effective. Patterns of innovation in cultural and technological evolution exhibit many similarities to processes of biological innovation, but there are also many cases of apparently parallel innovation, as with social complexity such as states, whereas technological innovation more commonly seems to follow patterns of novelty followed by diffusion, more like some evolutionary diversifications in biology. The emphasis is on the formation of new stable structures as a key component of cultural evolution (broadly construed), focusing on macroevolutionary patterns of cultural and technological novelty, new forms of social complexity, the role of institutions, and the extent to which the model developed in chapter 5 may be applicable.

I return to the major themes discussed earlier in this chapter in the concluding chapter, emphasizing the conceptual framework developed in chapter 5, evaluating the prospects for a general theory of innovation and novelty and whether the probability of innovations has changed through the history of life, and why this might be so. One of the central themes of this book is how novelty and innovation reflect the evolution of the evolutionary process itself over the past three and a half billion years or so. The fundamentally historical nature of evolution means that the nature of variation upon which selection can act and the kinds of evolutionary changes that could occur vary across lineages and through time. New mechanisms of regulatory control create new opportunities for evolutionary novelty, while new ecological structures generate new opportunities for evolutionary innovation, just as technological inventions have expanded cultural and economic opportunities. The origin of sophisticated developmental programs in groups with complex cellular differentiation (plants, animals, and fungi) has greatly expanded the complexity of the regulatory genome relative to the possibilities in microbes. In contrast, microbes share huge libraries of genes in ways that are less common among groups with complex development. Thus, the evolutionary process has itself evolved over time, and this is just as true in the cultural domain as it is in the biological domain. I will develop the argument that the opportunity space for both novelty *and* innovation has expanded over time, a view that contrasts sharply with the idea that search through combinatoric possibilities is a sufficient explanation for innovation.

The final chapter also addresses the relationship between innovation and biodiversity. Is novelty primarily responsible for increases in biodiversity? Ecologists frequently invoke the concept of "carrying capacity," an idea derived

INTRODUCTION 15

from population biology, that available resources are limited and constrain total diversity. While there is little doubt that the total resources available to the bacterium *E. coli* in a test tube are limited, the extension of this concept to controls on the number of species is problematic. I am interested in how novelty and innovation influence total biodiversity and changes in the structure and complexity of ecosystems. One possibility is that novelties arise continuously but succeed only if there is sufficient ecological opportunity for successful innovation. Such a situation is analogous to what economists describe as a "demand-pull" innovation, where the need for an innovation drives the process of invention. Alternatively, biological novelty could drive changes in ecological networks, constructing new niches, and thus directly influence innovation through biotically driven positive feedback. The analogue of this in economics is the creation of new markets because of technological innovation. The revolution in personal computers and related personal electronics over the past decades is an example of niche-constructing innovation.

Finally, evolution is fundamentally a deeply historical process, which raises an important philosophical issue. Is the outcome of evolution contingent upon historical events, or would similar outcomes have arisen independently of whatever historical accidents transpired? One view of evolution acknowledges the primacy of natural selection and views long-lived lineages as successful because they were better adapted than competing lineages. An argument for the importance of contingency has been advanced by Jacques Monod in his book Chance and Necessity, and by Stephen Jay Gould in Wonderful Life, among other evolutionary biologists. A different perspective has been championed by paleontologists Simon Conway Morris, George McGhee, and others. In Wonderful Life Gould asked: If one replayed the tape of life again would the result be similar? Is life constrained to be carbon based? To be based on DNA, perhaps even with a similar genetic code? To form animals, even arthropods or highly encephalized primates? Advocates of this alternative describe it as deterministic, because they view the evolutionary options as limited and thus likely to recur, as discussed further in chapter 4. The answers to such questions can reveal much about the opportunity space in which novelty and innovation, and evolution more broadly, operate.14

If evolutionary outcomes are limited rather than contingent, the details of novelty may play little role in the outcome of innovation. I will argue that although some aspects of evolution are deterministic, the historical nature of

16 CHAPTER 1

evolution generates a highly contingent dynamic for novelty and innovation. This is particularly relevant for the nature of evolutionary spaces and the distinction between novelty as search versus construction. The topology of an evolutionary space with deterministic outcomes may be very different from one with contingent outcomes. The contingent nature of novelty and innovation is further support for the argument that construction rather than search is the dominant mode of generating novelty. If this argument is correct, it has substantive implications for how we think about evolutionary change through the history of life.

INDEX

A page number in italics refers to a figure.

```
Abel, Othenio, 34
                                                      Ediacaran-Cambrian Explosion of, 65,
Acemoglu, Daron, 316
                                                        254-265
adaptation
                                                      flying dinosaurs, 277-280
   character states and, 183
                                                      impact of mass extinction events on, 323
   decoupled from speciation, 46-47
                                                      late Cretaceous mammals, 271-273
adaptive landscapes, 11, 118-119, 122,
                                                      social/cultural innovations, 284-288
     123-126, 131
                                                      snakes, 281, 282
   combining morphospaces with, 137
                                                      transcendental morphology and, 24
   discontinuities and, 118, 141
                                                   animal multicellularity origins, 190-205
   in N-K model, 144
                                                      from holozoa to metazoa, 197-199
   sequential search and, 150
                                                      origins of bilateria, 199-201
adaptive radiation, 3, 4, 9, 18, 34, 35-38, 45,
                                                      panarthropod novelties, 201-205, 202
     84 - 85
                                                      recent animal phylogeny consensus, 195
   as limited measure of innovation,
                                                      sister, stem, crown, total group clades, 193
     238-242
                                                   Animal Species and Evolution (Mayr), 38
   paucity of evidence for, 168-170
                                                   An Inquiry into the Nature and Causes of the
   Simpson on, 172, 181, 231, 241
                                                        Wealth of Nations (Smith), 53
   that doesn't occur, 115
                                                   Anolis lizards, 3, 241
   types of, 369n26
                                                   Anomalocaris, 201, 203, 346
adaptive refinement, 180
                                                   anthropology, 6, 10, 53, 54, 56-58, 67, 102
adaptive spaces, 83-84, 118
                                                   Antikythera mechanism, 152-153
                                                   Archaea, 222, 223, 224, 226
adaptive zones, 35-37, 44-49, 70, 73, 84, 119,
     124, 172-173
                                                   Archaeopteryx, 217
adjacent possible, 118-119, 125-126, 132, 138,
                                                   aristogenesis, 34
     151-152, 295
                                                   Aristotle, 19, 77
Agihon, Philippe, 66
                                                   arthropods. See also panarthropod clades
Agricultural Revolution, 58, 65, 108
                                                      in Cambrian Explosion, 1
agriculture, 52, 53, 308-312, 319
                                                      deep similarities with vertebrates, 21-23,
altruistic behavior, 353
                                                        22
Alvarez, Louis, 351
                                                      fossils of, 192
Ancient Societies (Morgan), 55
                                                      origin of, 201-205, 202
angiosperms. See flowering plants
                                                      as space of opportunities, 12
animal life
                                                      success of, 189
   behavioral changes, 282-284
                                                   Arthur, Brian, 94, 318-320, 337
   Cambrian Explosion of, 1, 136
                                                   artificial intelligence, 359
   domestication of, 312
                                                   Atanasoff, John Vincent, 2
```

Bacon, Francis, 63-64	Booth, Austin, 224
Baer, Karl Ernst von, 23–25, 47	Borges, Jorge Luis, 116
Baer's laws, 24–25	Borges's Library, 116–118, 119–120, 133, 146,
Baldwin effect, 284	150, 152, 155
Bambach, Richard, 96, 97, 155, 342	Boyd, Robert, 300, 331
Barnett, Homer, 58	brain size
Baupläne, 32, 48, 88. See also body plans,	imaging studies of humans, 291–292
architectural	cultural/modular brain hypothesis, 292
Beatty, John, 33, 346	in placental mammals, 272
beavers, 245, 246	Brigandt, Ingo, 110, 178, 339
beetles, horns of, 211–214	Brown, Jim, 157–159
behavioral changes	bryophytes, 206
leading to phenotypic change, 45	Buffon, Georges-Louis Leclerc, 26
novelties and, 44, 84, 89–92, 282–284	Burgess Shale, 1, 42, 136–137, 192, 201, 345–346
potentiation and, 175–176	food webs of, 247
behavioral ecology, human, 101, 102	Burkhardt, Richard, 20
behaviors, design space of, 143–144	burrowing. See trace fossils
Bell Laboratories, 359	burrowing. occ trace rossins
Berlin, Isaiah, 334–336, 347	Cambrian Explosion, 1, 3, 42–43, 82, 85–86,
Bickerton, Derek, 298	97, 99, 136–137, 205, 255. See also
bilaterians, 194–195, 195, 199–201, 256,	Ediacaran–Cambrian Explosion
258–260	apparent suddenness of, 192–193
biodiversity	associated novelties, 172
aspects of, 186	body size and, 159
crises of, 98, 235, 354	
	completion of, 263
evolutionary novelty and, 231, 233	early plant evolution comparison, 205
evolutionary flexibility and, 277	ecospaces and, 140
expansion potential, 243	onset of appearance of skeletons,
innovation and, 14–15, 235, 251	195, 199
biomarkers, 268	skeletonization in, 195, 199
biotic crises, 233–237. See also mass	suddenness of, 192–193
extinctions	Campbell, Donald, 105, 336
birds. See also feathers	Carlquist, Sherwin, 239
body size and, 159	Carneiro, Robert, 315
diversity after mass extinction, 235	carpels, 208, 273
evolution of, 46, 71–72, 73, 74, 77, 79, 91,	Carroll, Lewis, 120–121, 126, 129–130, 133,
277-279	145, 150
Blount, Zak, 12, 165–166, 175	carrying capacity, 14–15, 53
Boas, Franz, 57–58	case studies, 9, 113
Bock, Walter, 46	cell types, 91
body plans, architectural, 18–19, 32, 33	animal phylogeny and, 195–197
Riedl on, 47–48, 88	gene regulatory networks and, 191,
in Schindewolf's theory, 40, 41	195–197
body sizes	new types arising, 214–216
changes in, 183	in transition to animals, 197–199
in Ediacaran–Cambrian animals, 194, 258	in Waddington's developmental
evolution of birds and, 278	landscapes, 135
scaling relationships of, 157–159	Cenozoic era, 30, 35, 39, 65, 85, 137–138, 140,
Bonner, John Tyler, 351	236, 254, 271–273, 276
Boot, Henry, 316	Chance and Necessity (Monod), 15

INDEX 433

change and progress, ideas of, 17-18 scientific communities, 52 terrestrial, 1, 234, 249 character-based approaches, 71–73, 76–80, 95, 178 comparative developmental mechanisms, character homology identity networks 32, 45, 189-190 (ChINs), 81, 191, 324 complex adaptations, 27, 29-30, 31-32, 38, character identity mechanisms (ChIMs), 74, 167-168 complex adaptive systems, 331 191, 324, 332 character states, 81, 112, 182-183, 218 complexity Chater, Nick, 298 in defining novelty, 110 chemical fossils, 268 ecological, 96-97 chloroplasts, 93, 95, 98, 222-223, 224, 265 major evolutionary transitions and, 96 choanoflagellates, 197 novelty and innovation in, 65-66 Chomsky, Noam, 104, 290, 292, 297-298, of organisms decoupled from genome 306 Christianity, 17, 19, 300 of regulatory interactions, 154 Christiansen, Clayton, 108-110 social, 54-59, 97 Christiansen, Morton, 298 conceptual framework for novelty and cities, and scaling relationships, 159-160 innovation, 166-167, 174-182, 185-187, clades 324, 338 homologous characters of, 77 limitations of, 183-184 monophyletic, 72, 88 requirements for, 170-171 climate change, 234-235 seven criteria for, 114-115 domestication and, 310 warranted by commonalities, 358 grasses and, 1, 70 Condorcet, Nicolas de, 6 Cloud, Preston, 43, 265, 270, 366n58 contingency, 15-16, 338, 345-349 cnidocytes, 258 contingent irreversibility, 96, 97 coevolution, gene-culture, 101-102, 284, 286, convergence, 71, 77, 138-139, 160-161 295-296, 336 on adjacent islands, 241 collective intelligence, 301-306 contingency and, 347 combinatorics, 92-94, 173 ecological, 140 of Borges's Library, 117 of electric organs, 215-216 evolutionary potential and, 226 of innovations, 249-250 of evolutionary spaces, 117-119 technological, 348 of gene components, 154 Conway Morris, Simon, 15, 347 of novelty, 220-226 cooperation, 101-102, 285, 299-301, 353 role in DNA sequencing, 97, 117, 185 corporations, 94-95 technological, 318-319 correlated progression model, 49-50, community building, 230-252 370n34 poverty of adaptive radiations, 238–242 creationists, 25, 27, 71, 111, 120 business communities, 109 creative destruction, 59-60, 66, 110 Cambrian Burgess Scale communities, 247 creativity, 58, 105-106, 301, 348 constructing innovation, 242-243 Cretaceous Period, 69, 74, 97, 138, 171, 207-209, 234-235, 254, 270-2272 ecological communities, 93, 111, 114, 117-118, 140, 181-182, 186, 231, 237, 245 cultural change evo-devo communities, 88 cultural evolution and, 286, 306 of cumulative human achievements, 51 generating innovation, 237growing ecological networks, 243-248 historical process and, 346 impacts of innovation, 248-252 innovation/novelty and, 13 plant communities 245 vs. widespread conformity, 50-51 post-extinction communities, 251 cultural diversity, 56, 65, 302-303

434 INDEX

cultural evolution, 9-10, 101 decidual cells, 214-215, 216 combinatorics in, 93-94 deep transformations, 189, 217-220 cumulative, 173, 179, 286-287, 292, demand-pull model, 25, 62-63 Dennett, Daniel, 117-118, 129, 132, 140, 336, 294-296, 295, 305-306, 321, 353-354 evolution of, 58 373n2o not unique to humans, 8 Descartes, René, 117, 292 novelty, innovation, and, 101-103 Descent of Man, The (Darwin), 51, 54, 290 cultural evolvability, 303 descent with modification, 25, 31, 34 cultural hierarchies, 56-57 design spaces, 143-144 cultural inheritance, 285-286, 311, 352-354 determinism, 15-16, 56, 139, 161, 349 cultural novelty and innovation, 5-6, 13-14, development, 4-5, 7, 13, 23-25 90, 99-110, 254, 284-288, 291, 309, 314 combinatoric novelty in, 94 cultural ratchet, 286-287, 295, 304 defining novelty and, 114 cultural spaces, 117, 358 gene regulatory networks in, 135 Cultural Transmission and Evolution Goldschmidt on, 40-42 (Cavalli-Sforza and Feldman), 53 novelty and, 80–82 culture revolution in understanding mechanisms role in building technology, 306-321 of, 70 human foundations of, 291-293, 295 timing of events in, 47 Culture and the Evolutionary Process (Boyd widespread potentiation of, 256 and Richerson), 53 developmental capacity, 168, 169, 228, 265, Cuvier, Georges, 20-23, 24, 27, 28, 48-49, 271, 326-327 developmental macromutations, 41 66, 135, 351 developmental patterning Darwin, Charles. See also Origin of Species in arthropods, 202 (Darwin) conserved, 213 in early metazoans, 199, 200–201 Baer's laws and, 24-25 Cambrian Explosion and, 192-193 in plants, 206 Descent of Man, The, 51, 54, 290 developmental spaces, 135 on domestication, 309 Devonian Period, 43, 77, 87, 91, 151, on earthworms, 245-246 206-207, 218, 234 on electric organs, 215 de Vries, Hugo, 32, 47 on the "abominable mystery" of diastrophism, 31, 42-43 flowering plants, 273 Dickinsonia, 192, 260 gaps in fossil record and, 141, 161-162, Dictyostelium, 285 192-193, 325 diffusion, 57-58, 59, 62, 63, 66, 67, 253-254 higher taxa and, 49 digital computers, early history of, 2, on human evolution, 51, 54 316-318 human uniqueness and, 290 dinoflagellates, 225, 268 Malthus and, 52 dinosaurs, 270-271 natural selection and, 2, 4, 6, 20, 25-26, 254 feathers of, 217, 277-278 niche construction and, 102 discontinuities, 323-324 Ockham's razor and, 3 adaptive landscapes and, 118, 141 using term evolution, 54 in defining novelty, 112–113 Wallace and, 348 Dennett's rejection of, 129, 140 Darwin, Erasmus, 19 explanations for, 161-163 Darwin's finches, 3, 85, 168, 239 from genotype to phenotype, 140-141 Darwinism, 10, 39. 336 neutral networks and, 130 Davidson, Eric, 81, 183, 191, 324 patterns of disparity and, 137 Dawkins, Richard, 131, 132 disparification, 242

disparity, morphological, 33, 49, 64–65, 131,	Ediacaran–Cambrian, 261, 263
136–139	innovation and, 181–182, 243–248,
decoupled from diversification of	251-252
species, 167, 239	ecological opportunities, 113-114, 162-163,
fossil record and, 162	232–233, 328
Gould on early pattern of, 192	ecological roles, 239
topology of morphospace and, 149	ecological spaces, 133
disruptive innovation, 108–110, 248–249	economic goods, 106–108, 107
distal enhancers, 171, 196, 196, 198, 228	economic growth, 53, 59–61, 66
distances	government investment in, 358–359
discontinuities and, 164	innovations and, 114
in metric spaces, 146–147	new possibilities and, 352
in spaces, 145–146	obstacles to, 355-356
diversity, increases in, 65–66	product spaces and, 133
DNA sequencing	technological change and, 106–110
advances in, 70	economics, 6, 10, 15, 51–53, 59–61, 67
computation of distances for, 145	demand-pull model in, 25
convergence and, 347	product spaces in, 11
creationist's idea on, 120	ecospaces, 139–140, 155, 244
DNA triple helix, 156	facets of innovation, 140
embedded neural networks, 127	for small mammals, 272–273
epigenetic inheritance and, 354	ecosystem engineering, 54, 155, 246, 248,
as an evolutionary novelty, 111–112	281
features of, 133-134	Ediacaran–Cambrian, 262, 263
Kauffman's ideas on, 118, 125, 153	by ocean organisms, 181
proteins and, 121	Ediacaran–Cambrian Explosion, 65,
rapid sequencing, 80	189–190, 254–265. <i>See also</i> Cambrian
role of combinatorics, 94, 117, 185	Explosion
sequence spaces, 94, 121–122	Ediacaran-Cambrian radiation of animals
transposable elements/transposons of,	190–197, 195, 254–265
215, 226	bilaterian origins in, 199–201
Dobzhansky, Theodosius, 35, 83–84, 88, 118,	consensus phylogeny of, 194, 195
123, 131, 141, 162, 335	conserved features of, 190–192
domestication, 308-312	four phases of, 256–265
Doolittle, Ford, 224	major clade groups in, 192, 193
drift, genetic, 131, 184, 231, 354	transition to animals in, 197–199
Droser, Mary, 259–260	Ediacaran fauna, 192
Drosophila melanogaster, 32, 70, 1131, 188	Ediacaran Period, 192
Durant, Will, 254	Edison, Thomas, 105, 359
Dworkin, Ronald, 335	Eldredge, Niles, 7, 38, 46, 162, 323–324
	electric organs, 214–216
Earth	electrocytes, 214–216
age of, 26-27	elephants, 279–280
transitions in chemistry of, 98–99	embranchements, 21, 23, 24, 135
echinoderms, 240, 264–265	embryos
Eco, Umberto, 116–117	developmental recapitulation and,
ecological communities, 93, 111, 114, 117–118,	23-24, 47
140, 181–182, 186, 231, 237, 245	distinctive architectures and, 33
ecological complexity, 96-97	redundancy of gene networks in, 130
ecological networks	emergent evolution, 364n3

"Endogenous Technological Change"	gene-culture coevolution, 101–102, 284,
(Romer), 106	286, 295–296, 336
energy, 97–99	Mayr's published work on, 38
size of an organism and, 157–158	microevolution, 7, 35-36, 40-41, 47, 49,
social complexity and, 56	88, 119, 126, 153, 163, 184, 326
of Western societies, 160	open-endedness of, 339–350
enhancers, 195–196, 196, 198	of plants (greening of land), 205–209
ENIAC, 2	rates of, 227, 240, 326–327
Enquist, Brian, 159	Simpson's published investigations
entrepreneurship, 59–60, 114	of, 35
environment	various meanings of, 9-10
complexities of development and, 131	Evolution above the Species Level (Rensch),
Cuvier and Geoffroy on, 20	39
impacted by organisms, 45, 54	Evolution: A Modern Synthesis (Huxley), 35
Lamarckians and, 18, 19–20	evolutionary biology
Modern Synthesis and, 34, 39	adaptive landscapes and, 11
phenotypic plasticity and, 89–90	Gould's argument for, 335
in phylogenetic studies, 89	influence on economists, 6
success of a group and, 5	integrating role of, 339
epigenetic inheritance, 354	intellectual history of, 6
epistasis, 125, 376n12	long-standing tensions in, 232
Escherichia coli, 12, 15	Mayr's views on, 37
<i>Cit</i> + mutant in, 165–166, 168, 174–175,	Modern Synthesis of, 2, 4
180, 376n12	novelty and innovation themes, 5
pangenome of, 221	population-based focus of, 329
Essay on the Principles of Population	evolutionary grade, 38
(Malthus), 52	evolutionary innovations
Eubacteria, 222, 223, 224, 226	association of novelties with, 230
Euclidean spaces, 119, 144–146, 164	components of, 96
eukaryotes, 99	construction of, 242
adoption of sexual recombination by,	De Vries on, 32
354	dynamics of, 230–252
cytoskeleton formation, 221–222	generation of, 131
with lipids converted to steranes, 268	growth of networks, 243–248
origin and early history of, 38, 99, 104, 173,	impacts of, 248–252
221–226, 223–227, 254, 265–270, 267	new opportunities for, 14, 133
transcription factors, 198	origin or larger groups as proxy for, 2
eusociality, 287–288	preconditions for, 229
Evans, Scott, 260	Riedl on, 47
Everett, Daniel, 306	role of, 133
evo-devo, 4, 5, 10–11, 88	separate treatment of, 5–6
evolution	Simpson on, 37, 46, 227
allegedly operating on two levels, 33–34,	Vermeij on, 98
40-41, 42, 49	whole-gene duplication and, 209
causes of limitation, 119	evolutionary landscapes, 119–133. See also
contested views/changes (1859–1930),	adaptive landscapes
31–34	in higher dimensions, 126
of evolutionary process itself, 8, 14,	neutral, 127–131, 132
350-354	rugged, 124–126, 132
explosive evolution, 42–43	simple, 121–124
first modern uses of the term, 54	evolutionary psychology, 101–102
, , , ,	/ 1 /

evolutionary spaces, 117–121	feathers, 81–82, 178–179, 216–217, 277–278
affecting novelties and innovations in	FECA (first eukaryotic common ancestor),
three ways, 337-338	224, 265–266, 267, 268, 270
application to culture and technology,	fecal pellets, 243, 250
142-144	Feinman, Gary, 315–316
bestiary of, 133-142	Feuda, Roberto, 225
combinatoric expansions of, 295	Filipchenko, Yuri, 49
constraints on, 156–161	fish
discontinuities, 161–164	convergent antifreeze proteins of, 77,
Euclidean/metric spaces, 145, 161, 350	160, 226
evolutionary novelty and, 139	functions of wrasses, 75
evolution of, 155	origin of limbs from, 219
expanded uses of, 121, 133, 343	swim bladder of, 25, 31, 75
features of, 148, 156	tetrapod origin and, 91
with high dimensionality, 131–132, 144,	fitness, in defining novelty, 110
146, 151	fitness landscapes, 11, 122, 124–126, 131, 135
impact of novelties and innovations, 337	in N-K model, 144, 151
innovations in, 153, 248–249, 333	sequential search and, 150
insights from, 131–133	fitness spaces, 151
linear growth of distances in, 132	flight, 217, 277–278
phenomenological spaces, 139	flowering plants, 206–209, 249, 273–277, 275
possible alternative/evolutionary	food webs, 181, 244–245, 246–247
trajectories through, 134, 346-347	Foote, Michael, 137
pre-statable, 155, 163, 337	form and function
properties of, 137	Cuvier-Geoffroy debate and, 20–23
role of carpals in constructing, 208	Darwin on, 25
search versus construction in, 149–156,	decoupled by Müller and Wagner, 79
163–164, 179, 333–334	distinguishing between novelty and
structural concerns, 160	innovation, 75
techniques for reducing the size of, 127	four fundamental approaches to, 66–67
Wagner's exploration of, 130, 163	in Lamarck's theory, 20
topology of, 145–149, 148, 161, 164	Formation of Vegetable Mould through the
evolvability, 343–345	Action of Worms (Darwin), 54
cultural, 303	fossil record
exaptation, 31, 177, 184	age of Earth and, 27
excludability, 106–108, 107	criticisms of Darwin and, 28, 30–31
explosive evolution, 42–43, 366n58. See also	Darwin on gaps in, 141
Cambrian Explosion	databases of, 87
Expression of Emotions in Man and Animals,	diastrophism and, 42–43
The (Darwin), 54	discontinuities in, 162, 179, 254–256
extinction, 27. See also mass extinctions	macroevolution associated with, 45
as ecological opportunity, 35	morphospaces of, 118
of intermediate forms, 49	orthogenesists and, 18
orthogenesis and, 33	saltations in, 33
in Schindewolf's theory, 40	Schindewolf's saltationism and, 37, 40
extrapolationist view, 2–3, 4	speciation and, 46
eyes, 25	trace fossils in, 193–194
common features of, 191	foxes and hedgehogs, 334–336, 347
homologies in, 77	
Mayr on evolution of, 44	GDP (gross domestic product), 237, 341
stress response in evolution of, 92	Gehling, Jim, 259
	0,0 , 0,

438 INDEX

gene-culture coevolution, 101-102, 284, Godin, Benoit, 62, 63 286, 295-296, 336 Goethe, Johann Wolfgang von, 18-19, 24 gene duplications, 76, 82 Goldschmidt, Richard, 34, 40-42, 47, gene expression 48–49, 179, 290, 325. *See also* systemic cell types and, 196-197 mutations regulatory circuits and, 134 Gordon, Robert, 355-356, 359 general-purpose technologies, 172, 224, Gould, Stephen Jay, 7, 15, 38, 46-49 contingency and, 345-347 248, 354 general theory of novelty and innovation, determinism and, 164 development and, 80 5-7, 334-339, 356 gene regulatory networks, 134-135, discontinuities and, 162, 323-324 on early maximal disparity, 192 195-197, 196 co-option of, 176–177, 200–201, 214 exaptation and, 177, 184 Ontogeny and Phylogeny, 47-48, 80 discontinuities and, 163 of panarthropods, 204 Wonderful Life, 15, 136-137, 167, 201, 335, in plants, 207 345-346 potentiation in, 175 Graeber, David, 58 recursively wired, 179, 191, 324, 332 grasses, 1, 4-5, 69-70 searches in, 152 C pathway in, 69-70, 250, 279-280 transposable elements in, 215 elephants and, 279-280 gene regulatory subcircuits, 169, 183, grazing animals and, 175-176 191, 200 Gray, Asa, 29 genes, novelties of changes in, 82-83 Great American Interchange, 288-289 genome doubling. See whole genome Great Chain of Being, 19, 21, 24, 254. See also duplications scala naturae genomes extended to human cultures, 56-57 in Dennett's Library of Mendel, 117-118, progress and, 343 129, 140 Great Oxidation Event (GOE), 98–99, 265, in Borges's Library, 117 268-269 evolutionary spaces and, 119, 150 green algae, 206, 207, 255 fitness landscape and, 124 Greenberg, J. H., 143 insights from, 82-83 Greenspan, Alan, 60 Kaufman's view on, 152 growth, 340-343, 349-350. See also mitochondrial, in eukaryotic lineages, economic growth 222, 224, 226 lacking in Earth history, 65–66 pangenomes, 226 searching changes in, 152 Haeckel, Ernst, 33, 51 sequencing, 82-83, 207 Hall, Brian, 80, 88 sizes of, 188-189 Hamilton, William, 353 structural limitations on recombination, Hardin, Garrett, 107 Hausmann, Ricardo, 142 genotype-to-phenotype mapping, 148, 154 heat shock protein 90 (Hsp90), 134, Geoffroy Saint-Hilaire, Étienne, 20–24 28, 376n12 hedgehogs, 335-336 66,88 German idealist morphology, 24, 29, 31, 40, Hegel, Georg Friedrich, 24 41, 66, 153 hemoglobin, 220 Givnish, Tom, 239 Henrich, Joseph, 286, 300 glaciation, 256, 258, 268 heterochrony, 47, 80 glycoproteins, 77, 160 Heyes, Cecilia, 294 Godfrey-Smith, Peter, 232, 330, 373n20 Hidalgo, César, 142

INDEX 439

higher taxa, 48-50, 85-89 Industrial Revolution, 17, 52, 65, 66, 105–106, four discrete views of, 87–88 340-341, 352 Goldschmidt on, 40-42 information Mayr on, 37-38 in defining novelty, 110 Rensch on, 39 major evolutionary transitions and, 95, Simpson on, 35, 36-37 historical kinds, 331 innovation, 5, 58, 60. See also novelty and holey landscapes, 126 innovation Holmes, Arthur, 27 biodiversity and, 14-15 Holozoa, 194, 195, 197-198, 255-256 bounding definitions of, 110-113 challenges in defining of, 332-334 homeobox genes, 22-23 homeostasis/homeostatic property as consequences of events, 173 clusters, 331 constructive, 242-248 homeotic mutations, 40-41 disruptive, 108-110 homologous characters, 72-73, 76-80, distinguishing from novelty, 113-115, 95, 114 167-170 homology, 331-332 ecological networks and, 181 Cuvier-Geoffroy debate and, 23 generation of, 237-242 novelty defined by absence of, 78-80 impacts of, 248-252 serial, 201, 203, 205 latent, 111, 380n3 limitations of adaptive radiation for, Homo erectus, 293, 321 Homo heidelbergensis, 304-306 238-242 Homo sapiens, 291, 293, 305, 321 lucky-leap, 102-103 honomonous features, 78 in oceans vs. land, 250-251 hopeful monsters, 40, 49, 166, 179, 326 opportunity-driven view of, 13 horizontal gene transfer, 207, 226, 354 organizational innovations, 64, 97 Hox genes, 4, 80, 170-171, 200-201, 208, people innovations, 64 231, 354 production-process innovations, 64 Hull, David, 330 product-service innovations, 64 human uniqueness as search through space, 11-12 claims for, 8, 13-14, 51, 100, 290 social and cultural, 284-289 collective nature of, 321 topology of, 116-163 novelty in behavior of, 99-101 types of, 63-65 hunter-gatherers, 51, 54-55, 58, 65 without novelty, 184 Hutton, James, 26-27 Innovation: The Basis of Cultural Change Huxley, Julian, 35 (Barnett), 58 Huxley, Thomas, 27-28, 29, 35, 42, 49, Innovator's Dilemma (Christensen), 161-162, 325 108-110 hypergraphs, 247 insects, 209-214 pollination by, 276 ideas, as an economic good, 106-108 wings of, 209-211, 214 incipient structures, 32, 44 institutions, 312-316 individuals, evolutionary, 94-95 insulators, 195–196 individuation, 331-332 intermediate forms, 7, 30-31, 42-43, 45, individuation of new characters, 78-80, 49, 87-88, 138, 162 81, 83, 94-95, 113, 178-179, 182-184 internal drive arising in different ways, 324 German idealists and, 31, 32, 33 conserved patterning and, 191 Naturphilosophie and, 24 serial homology in, 203 orthogenesis and, 33-34, 67 individuation of new genes, 83 Schindewolf and, 40

440 INDEX

Invention and Economic Growth Lack, David, 239 (Schmookler), 63 lactase, 102, 296, 310 inventions, 6, 15, 58-59 lags, macroevolutionary, 1-2, 69-70, 113 creativity and, 105-106 conceptual framework and, 166, 168, 171, in defining novelty and innovation, 111 180, 184 economic opportunity and, 63 Ediacaran-Cambrian, 258, 262, 265 independent or from diffusion, 57-58, eukaryotic cell and, 266, 267 of flowering plants, 209 59,67 vs. innovation, 60, 180-181 origin of animals and, 194 invention of, 340-341 Lamarck, 19-20 nearly-simultaneous, 348-349 Lamarckians, 18, 43 nineteenth-century, 53 Landes, David, 340 sequential process of, 59 language, 8, 13, 51, 103-105, 290-292, solving problems, 25 296–299. See also Chomsky, Noam isolates, peripheral, 38, 46 Chomsky's view of, 290-291 cumulative culture, collective intelli-Jablonski, David, 344 gence, and, 296-299 Jacob, Francois, 188 as major evolutionary transition, 95, 291 Jaekel, Otto, 33, 34, 40-41, 49 novelty, innovation, and, 103-105 James, William, 51, 335 as a primary technology, 299 Jefferson, Thomas, 27, 359 spaces applied to, 143 Jones, Chip, 356 LECA (last eukaryotic common ancestor), Jurassic Period, 118, 138, 160-161, 172, 205, 223-225, 265-266, 267, 268-270 Le Goff, Jacques, 323-324 217, 271-275, 281 *Justice for Hedgehogs* (Dworkin), 335 Leibniz, Gottfried, 26, 117, 372n5 Lenski, Richard, 12, 164, 165-166, 168, Kant, Immanuel, 24 175, 184 Kauffman, Stuart, 118-119, 125-126, 132, 138, Lepore, Jill, 110 144, 151-153, 155, 295, 318 Lévy flight, 152 Kaufman, Tom, 80 Lewontin, Richard, 131, 330 Kelvin, Lord, 27 Library of Mendel, 117-118, 126, 129, 140 Kemp, Tom, 49-50, 85-86 linear models, 62, 63, 65, 67, 170 kernels in regulatory network, 191, 324 Linnaeus, Carl, 26, 71 key innovations, 3, 4, 18, 35, 46, 84-85, Linnean taxonomic groups, 35, 36, 38, 88-89, 111, 231 71-72, 88, 135-136, 149 key mutations, 37 Lipalian interval, 193 Kimberella, 260 Locke, John, 290 King, Nicole, 197 logistic growth, 52–53 kin selection, 353 Lokiarchaea, 222, 223, 224, 270 Kirby, S., 298-299 Losos, Jonathan, 115 Kirch, Pat, 56 Love, Alan, 75, 110, 114, 178, 339 lucky-leap computer simulation, 102-103 Kleiber, Max, 158-159 Kleiber's law, 158-159 Lyell, Charles, 351 kleptoplastidy, 225 Lynch, Michael, 231, 354 Knight, 64-65 Knoll, Andrew, 96, 97, 342 Maclaurin, W. Rupert, 61-62 Krakauer, David, 149 macroevolution, 7, 9, 13 Kuhn, Steven, 304 debates on, 1972-1990, 45-48 Kuznets, Simon, 237 higher taxa and, 35, 86

Mayr on, 37–38	microevolution, 7, 35-36, 40-41, 47, 49, 88,
Rensch on, 39	119, 126, 153, 163, 184, 326
macromutations, 43, 45, 47, 49	Minsky, Marvin, 10
major evolutionary transitions, 7-8, 94-99,	mitochondria, 93, 95, 221–222, 224, 265,
169–170, 173, 266, 291, 331, 351	267–269
Major Features of Evolution (Simpson), 35,	Mivart, St. George, 27, 29–30, 31, 74, 167
45, 246	Moczek, Armin, 84, 163, 212–213, 218, 331
Malthus, Thomas Robert, 6, 52-53	models, 113, 185–187
Malthusian trap, 52–53	The Model Thinker (Page)185
mammals, 271–273. See also placental	Modern Synthesis of evolutionary biology,
mammals	2, 18, 34–39
management, and N-K model, 144, 151	classic adaptive radiation scenario in,
manifolds, 146, 350	242
many-to-one mapping, 127, 130, 132, 144,	combinatorics and, 93
148, 151	critiques of (1930–1970), 39–50
Margulis, Lynn, 221, 265, 270	discontinuities and, 118, 325
Marx, Karl, 51, 53, 54, 67	eclipse of novelty as an issue for, 67
Mason, Otis, 56, 63	ecological opportunity and, 328
mass extinctions, 233–235	form follows function in, 25
disturbing the status quo, 98, 109	gene-culture coevolution and, 102
end-Permian/end-Cretaceous, 251	human culture and, 100–101
extent of, 233–234	Ockham's razor and, 3
five canonical instances of, 234	Pigliucci and, 76
Phanerozoic, 256	proposals for replacement of, 387n2
post-extinction innovation, 13, 234	Riedl and, 47–48
_	modularity, 344–345
post-extinction novelties, 162,	Mokyr, Joel, 61, 340
234–235 questions raised by, 342	molecular clocks, consensus phylogeny
mathematics, 292–293	from, 194, 195
Maynard Smith, John, 7–8, 95–98, 121, 134,	
	Monod, Jacques, 15 monophyletic clades, 72, 88
169, 173, 291, 351 Mayr, Ernst, 2, 4–5, 11, 12–13, 35, 37–38,	Moore, Gordon, 317
41–42, 43–45, 49, 67, 71, 330 McClintock Boxboxa as	Morgan, Thomas Hunt as 24, 422
McClintock, Barbara, 215	Morgan, Thomas Hunt, 32, 34, 123
McGhee, George, 15, 347	morphospaces, 118, 135–138, 148
McShea, Dan, 342–343	construction of, 136–137, 156
measurement, 237–238	facts emerging from studies of, 137–138
Meckel, Johann Friedrich, 23–24	lumpy distributions in, 137–138, 141
Mémoires sur l'organisation des insectes	non-Euclidean, 146, 149
(Memoirs on the Organization of the	paleontologist's investigations of, 11,
Insects) (Geoffroy), 21	118, 137
Mendel, Gregor, 18, 32	search and, 155
Merge operation, 104, 290, 292	topology of, 149
metabolic power, 97–98	usefulness of, 136–137
metabolic rate, 157–159	Müller, Gerd, 78–79, 82, 84, 88, 163
metabolic theory of scaling, 159–160	multicellularity
Metazoa, origin of, 198–199, 255–256	distribution of introns and, 171
metazoan gene, 195–196, 196	in eukaryotic clades, 224–225
metric spaces, 146–147, 148, 149	multigraphs, 246–247

442 INDEX

mutationists, 18, 32-33, 35. See also Nichols, Linda, 315-316 saltationists nitrogen fixation, 280-281 mutations N-K models, 125, 144, 151, 373n14 biological mutations, 111 nonadaptive radiations, 241 Cit+ mutant, 166, 171, 175 novelty De Vries mutational theory of animal multicellularity origins, 190-205 evolution, 32 arguments about tempo and mode, homeotic, 40-41 227-229 implication of functional inteference assumed regular supply of, 114 between, 134 behavioral, 284, 295, 295 Mayr's downplaying of, 43 bounding definitions of, 110-113 in neutral networks, 129, 130 challenges in defining of, 330-332 order of, 134, 174–175, 376n12 changes in supply of, 12 permissive mutations, 174 causes of limitation, 119 potentiating, 12, 166, 174-177 combinatoric, 220-226 comparative development study findings, in RNA sequences, 130 Schindewolf's "key mutations" 189-190 single mutations, 121, 125 Darwin's denial of, 26 deep transformations, 218-220 spontaneous mutations, 28 definitions of, 177-178, 357 Stebbins on, 39 development and, 80-82 systemic mutations, 41, 290, 325 distinguishing from innovation, 113-115, natural selection. See also selection 167-170 in adaptive landscapes, 125 extrapolationist view of, 2-3 Baer's criticism of, 25 fate of, 232-237 feathers and flight, 216-217 complex adaptations and, 167-168 Darwin's view of, 2, 4, 6, 20, 25-26, 254 fins of skates and rays, 219-220 fitness landscape and, 131 gap between origin and success, 4-5, as limited explanation, 47 maybe not responsible for novelties, 131 generation in human societies, 301–303 in human behavior, culture, technology, Modern Synthesis and, 3 often downplayed after 1859, 32, 34 99-101 population genetics and, 30, 31 latent, 251, 338 Romanes's arguments for, 31 levels of, 170-171 selectable variation and, 32-33 measurement of, 173 Natura non facit saltus, 25-26, 28 Müller on different types of, 82 Naturphilosophie, 24 not based on genome size, 189 neo-Lamarckians, 9, 31, 33, 66 opportunity and limits, 156-161 Neolithic Revolution, 308-309, 311-312 origins of, 186-229 Neoproterozoic Era, 256 in Origin of Species, 25-31 plant evolution (greening of land) 189, network architectures, design space of, 143 neutral networks, of RNA sequences, 119, 205-208 121, 127-131, 128, 150 pregnant mammals, stunning fish, new, lacking definition of, 76 214-216 Newton, Isaac, 3-4 radical, generative, and consequential, niche construction, 54, 102, 246, 248, 281, 171-174 rate of generation of, 233 353-354 agriculture and, 311 reemergence of, 43-45 cultural, 283, 302 sequence of, 78 domestication and, 311 sources of three types of, 189

INDEX 443

vertebrate limbs, 218-219 Oakley, Todd, 94 three different types of, 178 Obama, Barack, 358 ties to recursively wired gene regulatory oceans networks, 332 Ediacaran-Cambrian, 256-257 wings, horns, helmets, 209-214 habitats of, 236 novelty and innovation. See also innovation innovations in, 250-251 adaptive refinement, 180 Ockham's razor, 3-4 advances facilitating newer approaches Ogburn, William, 58-59, 61, 348-349 Olson, Everett, 43 to, 70-73 biological and cultural processes, 291 O'Madagain, C., 304-305 challenges, 83-101 On the Genesis of Species (Mivart), 29 On Growth and Form (Thompson), 136 combinatorics and, 92-94 conceptual framework of, 12-13, Ontogeny and Phylogeny (Gould), 47-48, 80 165-187 onychophorans, 201, 263 creatitivity, psychology, and, 105-106 Opabinia, 1, 201,202, 203, 345-346 criteria for identification of, 110-111 opportunities culture and, 101-103 adaptive landscapes and, 141 decoupling between, 332-333 adaptive spaces and, 83 construction of, 12, 152-153 as distinct problems, 356-357 economics, finance, business, and, 59-61, cultural, 302 ecological, 11, 13, 86, 113-114, 162-163, exploitation, 180-181 232-233, 328 framework limitations and difficulties, economic, 14, 269, 312 evolutionary, 38, 98, 111, 150, 162, 183, 205, general theory of, 5-7, 334-339, 356 270, 347 genome sequencing, 82-83 Modern Synthesis and, 11 growth of diversity and, 65-68 success of novelties and, 86, 171 human behavior, culture, and, 99-101 organizational innovations, 64, 97 ideas of change to the nineteenth organs, 191, 199, 214 century, 18-20 origin of life, 7, 95, 99, 104 Origin of Species (Darwin) innovation, 181-182 major evolutionary transitions, 94-99 on novelty, and critical response, models, 185-187 nature of, 327-334 published in 1859, 18 need for bounding of, 110-113 orthogenesis, 18, 33-34, 35, 39, 40, 45, 67 new cell types, 214 Osborn, Henry Fairfield, 34, 239, 325 not necessarily distinct, 11, 73, 75 Ostrom, Elinor, 315 novelty, adaptation, diversification, Owen, Richard, 24, 201 182-183 oxygen, 98-99, 172-173, 190 potentiation, 174-177 early animals and, 257-258, 262 radical, generative, consequential virtues, eukaryotes and, 265, 268-270 171-174 low-level episodes in oceans, 234–235 reemergence as issues, 43-45 oysters, 242-243, 246-248 seven approaches to, since 1990s, 70, Padgett, John, 315-316 73-74, 99, 327-329 social complexity and, 54-59 Page, Scott, 185 structure and function, 74-80 Paleolithic Age 50-51, 304-305 technological, 61-65, 99-101 panarthropod clades, 201, 202, 203-204, three major issues on, 5-8 263-264 Nunez, Rafael, 292 pangenome, 108

444 INDEX

patents, 1-2, 59, 60, 63, 159, 307, 320 success of innovations and, 329 Pax6, 4 by whole genome duplication, 209 pre-adaptations, 74-75, 175, 177, 184 Pax gene family, 226 Pearl, Raymond, 52–53 predation, 262 people innovations, 64 pre-statable spaces, 155, 337 peripheral isolates, 38, 46 pre-topological space, 147-148, 151 personal computers, 152-153, 240, 355 private goods, 106–108 Pfennig, David, 283 Prochlorococcus, 243 Phanerozoic mass extinctions, 256 production-process innovations, 64 phenotypic plasticity, 89-92, 176, 283-284 product/service innovations, 64 phenotypic spaces, 140-141, 144, 148 product spaces, 133, 142-143 decoupled from sequence spaces, 150 progenesis, 47 discontinuities and, 164 progress, 254, 341-343, 349-350 Phillips, John, 27-28, 30-31 Spencer on, 54-55 Philosophia botanica (Linnaeus), 26 promoters, 195-196, 196 philosophy of practice, 339 protein spaces, 121-122, 133-134, 153-154 phosphorus, 256-257, 269-270 psychology, evolutionary, 101-102 photosynthesis public goods, 107–108, 247–249, 300, 359 C vs. C , 69-70, 84 punctuated equilibrium, 38, 45-46, 162, chloroplasts in, 93, 95, 98, 222-223 323-324 energy from, 98-99 oxygen and, 98-99, 172-173 racism, 56-58, 101 phylogenetic approaches, 50, 71-72, 76-77, radar, 316-317 radical innovations, 64, 249 Pictet, François Jules, 27-29, 42, 49, 325 Raff, Rudy, 80 Pigliucci, 75-76, 113 Randall, John, 316 Pinker, Steven, 290, 298, 350 rattlesnakes, 282 Pitt-Rivers, Augustus Lane-Fox, 55 Raup, David, 136, 137, 143 placental mammals, 35, 91, 189, 272 Red Queen hypothesis, 339 decidual cells of, 214-215, 216 Reed, Lowell, 52-53 Planer, Ronald, 298, 304 reefs, 246, 248, 261 plants, 205–209. See also flowering plants regulatory genome, 48. See also gene evolution of (greening of land), 205-209 regulatory networks morphospace of, 137 of eukaryotic cell, 225 plasticity, phenotypic, 89-92, 176, 283-284 similar between plants and animals, 225 regulatory networks. See gene regulatory Plato, 17, 292 Platonic essence, 17, 19, 41 networks pleiotropy, 44, 154 regulatory spaces, 134-135 Polypterus, 91 Rensch, Bernhard, 35, 39 Pomeranz, Ken, 66 Riedl, Rupert, 47-48, 88 population decline, human, 356 rivalrousness, 106-107, 107 population genetics, 30, 31, 34, 39, 40, 41, 45, RNA sequence spaces, 94, 119, 121-122, 122, 185, 336 127-131, 128, 141, 147-151, 154-155, population size, 354 373n19 Porter, Susannah, 269 discontinuities and, 162-163 potentiation, 12-13, 166, 171, 174-177, Robinson, James, 316 180-181 Romanes, George, 31-32 for Cit+ mutant, 165-166, 168 Romer, Paul, 73, 106-108, 247, 336 developmental capacity and, 326-327 Rousseau, J. J., 55 of developmental processes, 256 Rubik's Cube, 132, 150 early, 190 Ruiz-Trillo, Iñaki, 197

INDEX 445

Sahlins, Marshal, 56 shape spaces and, 136 saltationists, 18, 28, 32, 34, 39-42, 49, 66-67. Tempo and Mode in Evolution, 35 See also Goldschmidt, Richard; skates and rays, 180, 189, 219-220, 281-282 mutationists; Schindewolf, Otto skeletonization, 192, 195, 199, 258, 262-263 evolutionary spaces and, 141 skin, patterning of structures in, 216-217 Huxley's views, 28 Smil, Vaclav, 64 Jaekel's views, 33 Smith, Adam, 6, 53, 61, 67, 150, 340 stance on evolutionary change, 18 Smith, Bruce, 311 Samuelson, Paul, 60 snakes, 281-282 scala naturae, 19, 21, 23-24, 25. See also Great Snowball Earth hypothesis, 256, 268 Chain of Being social complexity, 54-59, 97, 315-316 scaling relationships, 157-160 social learning, 283-285, 292-296, 295 human societies and, 159-160 asocial learning vs., 294, 295 Schindewolf, Otto, 34, 37, 39-40, 41-42, 47 Boas's on the importance of, 57 Schmookler, Jacob, 63 cognitive ability requirements, 285 Schumpeter, Joseph, 6, 59-61, 63-64, 65, 67, collective intelligence and, 301-306 110, 113–114, 141, 181, 248, 336, 340, cultural brain hypothesis and, 292 cultural inheritance and, 286 356, 358 scientific research, 61-62, 108 examples of, 283, 284-285 federal support for, 359 impact on other behaviors, 289 Scientific Revolution, 17–18, 105–106 influence of gene-culture coevolution, search through spaces, 132-133, 163-164 295-296 Sebe-Pedros, Arnau, 225 Lala's animal study finding, 287 seed plants, 206-208. See also flowering plants outcome of persistent use of, 284-285 segmentation, 199-202, 204 role of language, 296-298 selection. See also natural selection Sociobiology (Wilson), 53, 101 in cultural evolution, 101 sociology, 53, 58-59 major evolutionary transitions and, 95 Solow, Robert, 66, 67 sorites paradox, 112-113, 115, 332, 372n73 on many levels, 46-47, 331, 353 sensitivity to initial conditions, 347, 348 spaces, 11–12. *See also* evolutionary spaces; sequence spaces, 11-12, 121-122, 133-134 morphospaces changes broader than single base biological, 119 mutations, 134 correlated, 120-121 models based on, 185 cultural, 117, 142-144, 358 searchable, 155 design, 11-12 serial homology, 201, 203, 205 developmental, 144 Service, Elman, 56 distances in, 145-146 sexual recombination, 354 ecospaces, 40, 139-140, 155, 244, 272-273 shape spaces. See morphospaces economic, 144 shared, derived characters, 71–72, 76–77 Euclidean vector, 145, 147, 149 Simon, Herbert, 150 low-dimensional, 126 Simonton, Dean Keith, 105 opportunity, 352 Simpson, George Gaylord, 2-3, 4-5, 11, 13, phenotypic, 144, 155, 164 35-38, 43, 45-46, 48-49, 67, 71. See also pre-statable, 11, 155, 337-338, 356 adaptive zones product, 142 adaptive landscapes and, 123-124 protein, 148, 155 adaptive radiations and, 172, 325, 334 sequence, 121, 126–127, 130, 133–134, 150, adaptive spaces and, 118 155, 185 discontinuities and, 162 technological, 132, 142-144, 318-322 Major Features of Evolution, 35 topological, 146-148, 147 niche construction and, 102, 246 spadefoot toad (Spea), 91

446 INDEX

speciation, Eldredge and Gould on, 46 collective/individual creativity and, 105, species, number of, 239 243, 301 species diversity, 186 combinations and, 117 complexities of innovation, 2 species selection, 46 Spencer, Herbert, 51, 54-55, 56 correlation with social complexity, 54 stabilizing selection, 49, 191 cumulative activities of, 293 standards, 157, 313 culture's role in building, 306-308 Stanley, Steve, 7 definition, 306-307 state formation, 315 demand-pull model in, 25 Stebbins, G. Ledyard, 35, 38-39, 239 domestication and agriculture, 308-312 drivers of change, 233 steranes, 268 Sterelny, Kim, 298, 306 early growth models, 170 stress response, 91-92, 370n42 evolution/evolutionary innovations, 8, 13 Strömberg, Caroline, 1 general-purpose, 160, 170, 172, 2224 structure-function distinction, 74-76, 78 hierarchical structured recipes of, 294 human behavior, culture, and, 99-101 in defining novelty, 111 subcircuits of genes, 80-81, 191, 324 invention and social complexity, 55-57 symbiosis, and eukaryotic cell, lags between invention and impact, 1-2 language as a primary technology, 221-226, 265 syntrophies, microbial, 267, 270 296, 304 macroevolutionary patterns of novelty, 14 systematics evolutionary, 71 military countertechnology, 181 Linnaeus as father of, 26 novelty and innovation in, 13-14, 50-53, Linnean hierarchy of, 35, 36, 38, 71 61-65, 153, 305-306 phylogenetic approaches to, 76-77 opportunity drivers of, 25 type specimen in, 19 radar and patents, 316-318 Systematics and the Origin of Species role of innovation in economic growth, (Mayr), 37 106-107 Systematic Zoology journal, 46 spaces for, 117, 142-144, 249, 318-321 systemic mutations, 41, 290, 325 standards, 157 Szathmáry, Eörs, 7–8, 95–98, 169, 173, 291, 351 technological determinism, 54 teeth tanks in warfare, 180-181, 376n23 of elephants, 279-280 tardigrades, 201, 263 of mammals, 271, 272-273 technological change, 9-10 Tempo and Mode in Evolution (Simpson), 35 by combinations, 94 Tetlock, Philip, 335 discussions of, 59 theory reduction, 339 economic growth and, 53, 106-110 Thomas, Dorothy, 348-349 linear model of, 62, 63, 65 Thompson, D'Arcy, 136 modular and hierarchical, 318 Thornton, Joseph, 134 vs. widespread conformity, 50-51 tissues, 191, 192, 199, 214 technological innovation, 5-6 Tomasello, Michael, 298, 303-304, 351 Mokyr on, 61 topology Morgan on, 65 algebraic topology, 293 Romer on, 73, 108 problem of, 145-156 Schumpeter on, 6, 59-61, 65, 67, 141, 248 topological spaces, 145-147, 147 types of, 63-64 of evolutionary spaces, 11, 16, 146-149, technology 148 161, 164 adaptive/evolutionary spaces and, 133 trace fossils, 193–194, 260, 261–262, 265, built by culture, 306-321 282-283

INDEX 447

venoms, 160-161

trackways, 261 "Tragedy of the Commons" (Hardin), 107 transcendental morphology, 24, 66 transcription-factor binding sites, 196, 196, 198, 226 transcription factors, 196, 198, 225 transformationists, 18, 23, 32, 40, 42, 49, 66-67, 102, 364n10 ecological opportunity and, 113-114 evolutionary rates and, 325-326 transistor, 316-317 transitional forms, 25, 40 transposable elements, 215, 226, 233 tree frogs, 283 treehoppers, 212-214 trees, 207, 209 Triassic Period, 77, 86, 167, 205, 234–235, 240, 253, 270-272 tribosphenic molars, 272-273 trilobites, 151, 204 tropical ecosystems, 235-236 Tullimonstrum, 72, 94 Tully, Francis, 72 Turgot, A. R. J., 55 turtles, 2, 4, 5, 7, 272 type I and type II novelties, 79-80, 82 types, 24, 29. See also body plans, architectural different meanings of, 41 typogenesis, 40 typostrophism, 39, 40

uniformitarian assumptions, 351 unpredictability, 347, 348

Valentine, Jim, 80, 85–86, 238 Van Valen, Leigh, 339 vascular plants, 206–207

Vermeij, Gary, 97–98, 250, 254, 347, 381n32 vertebrate limbs, 218-219 Vrba, Elisabeth, 177, 184 Waddington, Conrad, 135 Wagner, Andreas, 130, 134, 149–150, 154, 163, 249 Wagner, Günter, 78-81, 83, 84, 88, 91, 94, 112, 163, 178-179, 183-184, 191-192, 324, 332 Wainwright, Peter, 75 Wake, David, 80 Walcott, Charles Doolittle, 42, 193 Wallace, Alfred Russell, 321, 348 Warren, Elizabeth, 358 Wengrow, David, 58 West, Geoff, 157–159 West-Eberhard, Mary Jane, 90, 283 White, Leslie, 56, 58, 97 Whitehead, Alfred North, 340-341 whole genome duplications, 208-209 nitrogen fixing among legumes and, 171 plant novelties and, 189 Wilson, E. O., 53, 101 Wing, Scott, 275 wings of insects, 209-211, 214 Woese, Carl, 222 Wonderful Life (Gould), 15, 136-137, 167, 201, 335, 345-346 Wood, Rachel, 235, 257-258 Wooton, David, 17–18 wrasses, 151 Wright, Sewall, 11, 12-13, 35, 86, 122-126, 131, 185, 372n10

Zeder, Melinda, 309–310 Zuk, Marlene, 284