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1
Introduction

opabinia was only a few inches long, with about 15 paired, undulating flaps 
on the sides of the body, a head with five bulbous eyes, and a long, flexible 
proboscis ending in a pair of spiny claws. Long one of the weird wonders from 
the 505-million-year-old rocks of the Burgess Shale in western Canada, the few 
specimens of Opabinia are now known as part of an evolutionary burst leading 
to arthropods in the Cambrian Explosion of animal life. Finding a home for 
Opabinia among the arthropods makes it no less remarkable. If anything, it 
sharpens our questions about the processes that generated such remarkable 
evolutionary novelties.

Evolutionary novelties abound. Consider grasses. Grasses have been su-
premely successful, with grasslands carpeting the temperate interiors of North 
and South America, Asia, and Africa for the last 15–20 million years. Grass-
lands changed the structure of terrestrial communities, modifying regional 
climate, and stabilizing soils against erosion, probably even reducing the sedi-
ment flowing down rivers to the oceans. Studies of the fossil record of minute 
silica particles (known as phytoliths) in grass stems by paleobotanist Caroline 
Strömberg, coupled with molecular evidence, show that grasses originated 
55 million years ago, or perhaps earlier. From their widespread success one 
might assume that grasses spread soon after they first appeared. Yet grasses 
were ecologically insignificant for tens of millions of years before changing 
climate accelerated a pervasive change in terrestrial ecosystems. So, grasses 
originated and diversified into their major clades long before they became 
ecologically or evolutionarily successful.1

Similar lags have long been recognized between invention and the impact 
of a new technology. Although patent records are often used to study new 
technologies, most patents have little economic impact, and there is often a 
lag between discovery of a new technology and the onset of a significant role 
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for it in the economy. The complexity of technological innovation is illustrated 
by the early history of digital computers. Over the winter of 1937–1938 John 
Vincent Atanasoff, a physicist at the Iowa State College, built the first digital 
computer to speed up laborious calculations. His computer was not program-
mable, but like modern digital computers it solved complex equations using 
Boolean logic and binary numbers. Although Atanasoff is often credited as the 
inventor of the digital computer (and eventually won recognition in a patent 
suit), the spread of digital computers was due to the development of ENIAC 
(Electronic Numerical Integrator and Computer) in 1943–1944 at the Univer-
sity of Pennsylvania (some of Atanasoff ’s ideas may have found their way into 
ENIAC, but that is a story for another day). As ENIAC was being built, British 
codebreakers at Bletchley Park were building Colossus, a fully digital computer, 
to help solve German codes. Atanasoff ’s computer was discarded as scrap at 
Iowa State, and the existence of Colossus would remain secret for decades, leav-
ing ENIAC as the first fully digital, programmable computer. More importantly, 
some of the builders of ENIAC founded a company that became part of the 
Sperry-Rand Corporation and the beginning of the digital revolution.2

The importance of such lags is best illustrated through a brief look at three 
approaches among biologists since Darwin published The Origin of Species 
in 1859.

Darwin argued for a continuity of evolutionary processes from small-scale 
changes observed in living plants and animals to the longer-term patterns 
revealed by the fossil record. By denying the discontinuities suggested by some 
earlier natural scientists, Darwin emphasized the power of natural selection to 
explain the diversity of life. Although most scientists quickly accepted Dar-
win’s views of descent with modification, natural selection was only one of 
many explanations debated in the interval between 1860 and the 1930s, in part 
because of controversies over how organismal attributes were passed to the 
next generation. These controversies were seeming resolved by geneticists and 
evolutionary biologists in the Modern Synthesis of evolutionary biology 
(1920s–1950s). Many contributors to the Modern Synthesis adopted Darwin’s 
extrapolationist approach, updated with the recent discoveries in genetics. 
Paleontologist George Gaylord Simpson and evolutionary biologist Ernst 
Mayr focused on the origin of larger groups as a proxy for evolutionary innova-
tion. For example, from this perspective the critical issue in the origin of turtles 
was the vertebrate order Testudines, which encompassed their morphological 
novelties. Mayr viewed evolution as opportunistic, capitalizing on useful 
morphological novelty, while Simpson beautifully articulated the variety of 
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evolutionary patterns documented by the fossil record (his 1944 book Tempo 
and Mode in Evolution remains an intellectual touchstone for paleontologists). 
By the 1950s Simpson had adopted the reigning views of the Synthesis, that 
natural selection could, over time, craft the full panoply of the history of life. 
This extrapolationist view, that selection at the level of individuals within 
populations via small changes in genes, is, over time, responsible for remarkable 
evolutionary novelties, has long been the default assumption by evolutionary 
biologists and viewed as immune to deeper inquiry.3

A second approach to novelty extends the extrapolationist view. Con-
fronted by new opportunities a species may diversify into a range of new spe-
cies, each specialized for different opportunities—food type, habitat, and so 
on. Simpson explored these adaptive radiations from the 1940s to the 1960s, 
extrapolated from living plants and animals, often on islands, to more complex 
diversifications such as the spread of placental mammals and even the Cam-
brian Explosion of animals. In 1960 Simpson wrote: “On a broader scale, we 
now see, even more clearly than Darwin did, that every marked expansion of 
a group, whether it be a genus or a phylum or the whole animal kingdom is an 
adaptive radiation.”4

Subsequent generations of evolutionary biologists have examined adaptive 
radiations, including Darwin’s finches in the Galapagos Islands, repeated inva-
sions of small marine fish into lakes in British Columbia, and the remarkable 
expansion of the Anolis lizards across the Caribbean, establishing them as 
important contributors to diversity. But the theory of adaptive radiation as-
sumes that the generation of new morphologies is a sufficiently regular occur-
rence that we do not need to worry about the supply side of the equation. The 
hinge point is the ecological opportunities that facilitate the radiation, whether 
migration to a largely unoccupied island, the aftermath of an extinction, or the 
acquisition of a “key innovation” that allows access to new resources. But the 
significance of adaptive radiations for morphological novelties seems limited, 
since few are associated with adaptive radiations. In later chapters evidence 
for lags between the origin and success of novelties will support the distinction 
between novelty and innovation. Moreover, these chapters reveal that not all 
novelties are a response to an opportunity or need.

Extrapolationist views invoke the principle that explanations with the few-
est assumptions should be favored over more complex scenarios. Known as 
Ockham’s razor, this principle of parsimony is attributed to William of Ock-
ham, a medieval English monk. Isaac Newton made similar arguments, writing 
in his Principia: “Nature does nothing in vain, and more causes are in vain 
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when fewer suffice. For nature is simple and does not indulge in the luxury of 
superfluous causes.” Darwin had enough challenges arguing for the evolution-
ary unity of life and for the power of natural selection in crafting biological 
diversity without multiplying the range of processes. Similarly, advocates of 
the Modern Synthesis were trying to consolidate evolutionary biology through 
the incorporation of field natural history, genetics, and the fossil record, which 
also favored extrapolating from selection within populations. Thus, neither 
extrapolationist nor adaptive radiation scenarios for the origins of novelty and 
innovation can be rejected out of hand. The assumptions made by Simpson, 
Mayr, and their colleagues were reasonable, particularly as they were working 
to produce a more scientific view of evolutionary change. In fact, elements of 
them may make important contributions to a broader understanding of these 
problems. But nonetheless they seem to fall short of a full and comprehen-
sive understanding of the phenomena of novelty and innovation.5

The third, more recent, approach reflects growing experimental evidence 
that new morphologies often reflect different sources of genetic variation 
from those fueling adaptation. New molecular methods of interrogating the 
genes and gene networks responsible for development from an embryo to an 
adult have revealed a remarkable and unexpected conservation of genes across 
many kinds of animals. Hox genes, involved in animal patterning, and Pax6, 
responsible for eye development in vertebrates, have become broadly known, 
but there are many more. From the extensive conservation of these genes 
among living animals we can infer that their last common ancestors also pos-
sessed these genes, even if the genes may have had somewhat different roles. 
These discoveries have led to the rise of comparative evolutionary develop-
mental biology, or “evo-devo.” The origins of novel attributes of animals (and 
some plants) have attracted considerable attention and have suggested the 
need for an expanded view of the origins of novelty.

While the classic model of an adaptive radiation involving a “key” morpho-
logical innovation assumes a close connection between the origins of novelties 
and their evolutionary success, there is no logical or necessary connection 
between the two phenomena. To Mayr the suggestion of a lengthy gap 
between the origin of a morphological novelty and its ecological or evolution-
ary success would seem nonsensical, if not bizarre. Mayr focused on the origin 
of higher taxa as a metric of evolutionary novelty, but novel morphological 
features often define new clades, and a new clade, whether turtles, grasses, or 
birds, involves the assembly of a suite of features. The evolutionary history of 
grasses illustrates that the innovation associated with a clade may be decoupled 
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from the attributes that define the origin of the clade. But evolutionary devel-
opmental biologists are in some ways the reflection of advocates of adaptive 
radiations, for they emphasize the mechanisms that generate novel forms but 
often neglect the problem of how these new forms succeed and make a living. 
The origins of novelties, innovations, and clades are distinct issues. They may 
occur simultaneously, as Simpson and Mayr assumed, but that is a question to 
be resolved by study of individual cases, not assumed.

Distinguishing the origin of novel forms (novelty) from their success (in-
novation) is critical to understanding the processes responsible for their for-
mation. I will define these terms more carefully later in this book, but for now 
we can treat the origin of novelty as the formation of unique features: the cara-
pace of a turtle, the growth habits of grasses, feathers and skeletal changes for 
birds, language for humans. In contrast, innovations involve transformations 
of ecological assemblages and long-term evolutionary impact. Innovations are 
often more complicated than simply the acquisition of a morphological nov-
elty, for they reflect the ecological and evolutionary success of a group, which 
may require additional adaptations beyond a novel morphology or environ-
mental changes, as was the case with grasses.

The spread of evo-devo has led many biologists to reexamine the driving 
forces for novelty and innovation, informing the three major issues explored 
in this book: How did novel attributes arise, and how did they become successful 
innovations? Can the same general model explain novelty and innovation across 
biological, cultural, and technological domains? Finally, does novelty simply repre-
sent the extremes of adaptive evolutionary change, the sort of thing that happens 
every day, or are novelty and innovation somehow decoupled from evolutionary 
adaptation? As a foundation for what follows it is worth briefly elaborating on 
these three questions.

No comprehensive account of novelty and innovation in the biological do-
main can focus exclusively on genetic and developmental changes, on ecologi-
cal opportunity, or on changes in the environment, any more than a useful 
account of technological change can focus on inventions to the exclusion of 
their economic success or failure, or an account of cultural innovation can 
ignore the broader context in which the changes occur. Exploring the origin 
of novelties and innovation constitutes chapters 6 through 9, with numerous 
examples in other chapters as well.

Novelty and innovation have become popular themes in evolutionary biol-
ogy, business, economics, and culture, among other fields. Biological novelty, 
evolutionary innovation, cultural transformation, and technological change are 
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usually treated separately by evolutionary biologists, anthropologists, and econ-
omists. There is a widely shared (if sometimes a bit inchoate) view that there 
are great similarities among biological, cultural, and technological innovation. 
But rarely has the nature of such similarities been investigated in detail. Yet 
human language, culture, and technology represent some of the most transfor-
mative novelties in the history of life. This motivates the second major theme 
of this book: Can the same general model explain novelty and innovation across 
biological, cultural, and technological domains? If a general approach to novelty 
and innovation is possible, it must encompass culture and technology.6

Charles Darwin famously drew upon the work of Thomas Robert Malthus 
as inspiration for his theory of natural selection. Modern evolutionary biology 
and modern economics trace their intellectual history back to the field of 
political economy in the eighteenth and early nineteenth centuries through 
Malthus, Adam Smith, Nicolas de Condorcet, and others, with continuing 
intellectual cross-pollination. Many economists have been deeply influenced 
by work in evolutionary biology. Economist Joseph Schumpeter has often 
been credited with distinguishing between invention and innovation in the 
evolution of technology. Schumpeter was a leading twentieth-century theorist 
of economic development and entrepreneurship. He emphasized the impor-
tance of technological innovation but recognized that inventions by them-
selves contributed little. It was only when inventions diffused through an 
economy that they could became innovations and influence economic growth. 
Just as I view Schumpeter’s distinction between invention and innovation as 
equally applicable to the history of life, I will introduce other approaches from 
economics and anthropology that may prove valuable to biologists.7

Studies in cultural evolution have long made strong claims of analogy be-
tween cultural processes and biological evolution. It is hardly surprising that 
scholars have explored the possibility of a general theory of novelty and innova-
tion spanning biological, cultural, and technological domains, although progress 
has been stymied by the fact that while there are many metaphorical similarities 
between novelty and innovation across these domains, we lack a robust theory.

Such a general theory of novelty and innovation could take several different 
forms:

•	 A general theory covering biological, cultural, and technological 
domains is possible, and it is possible to construct a mathematical theory 
through which we could evaluate the relative importance of different 
contributions and perhaps even make predictions about the future.
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•	 Commonalities exist across domains, but there are sufficient differences 
between domains that any mathematical framework (if possible) will 
be domain specific.

•	 Commonalities exist across domains, but for various reasons developing 
a mathematical theory even within domains is unlikely. However, a 
general conceptual framework covering the three domains can be 
developed, while acknowledging some degree of domain specificity.

•	 Despite apparent metaphorical similarities across domains, processes 
of novelty, invention, and innovation are sufficiently specific within 
different domains (and may vary so much within domains) that even 
building a domain-specific framework is a hazardous enterprise.8

These alternatives will be evaluated in the final chapter.
A third major issue woven through the book is the seemingly eternal issue 

of continuity versus disjunction. Does novelty simply represent the extremes 
of adaptive evolutionary change, the sort of thing that happens every day, or 
are novelty and innovation somehow decoupled from evolutionary adaptation? 
Many evolutionary biologists reject any distinction between novelty and the 
sort of evolutionary adaptation that makes up much of evolutionary change, 
generally assuming that with sufficient time adaptive change will generate mor-
phological novelty. Recent insights from developmental biology challenge this 
comfortable assumption, suggesting, for example, that the changes in develop-
mental patterning of the embryo that led to a novelty differ from those that 
generate adaptive changes. Abrupt transitions, such as the appearance of tur-
tles, seem to lend credence to claims that novel attributes and innovations rep-
resent distinct modes of evolutionary change. Defenders of more traditional 
approaches to evolution dispute the existence of any discontinuities, just as 
they have disputed the existence of distinct processes of macroevolution since 
the contributions of Stephen Jay Gould, Niles Eldredge, Steve Stanley, and 
others in the 1970s and 1980s. From this more traditional, or microevolutionary, 
view the seemingly abrupt shifts are a description of pattern, not of process. In 
the case of turtles, one could argue that poor preservation of intermediate 
forms generated the apparent discontinuity.

In the mid-1990s the evolutionary biologists John Maynard Smith and 
Eörs Szathmáry developed the idea of the major evolutionary transitions. The 
eight events identified by Maynard Smith and Szathmáry spanned from the 
origin of life to the evolution of human culture and language, thus justifying 
the approach taken here. They believed new evolutionary individuals were 
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constructed during these events by changes in the organization of genetic 
information and in the means of inheritance, and that these transitions 
explained the apparent hierarchy in the organization of life. The book by 
Maynard Smith and Szathmáry was wonderfully stimulating and will be dis-
cussed in later chapters. But their analysis fails to adequately incorporate 
profound changes in the environment from oxygenation of the oceans to 
increases in functional complexity and the formation of new evolutionary 
possibilities. Indeed, this book began as a response to the major evolutionary 
transitions viewpoint. Among the great challenges for research on the his-
tory of life is developing an approach to this problem that recognizes the 
complexity of historical processes and the diversity of information required 
to understand them. Major transitions encompass a much more diverse 
array of events than those identified by Maynard Smith and Szathmáry. 
Their work has been properly influential in articulating a nonuniformitarian 
view of evolutionary dynamics: that the nature of evolution has itself 
changed over time.9

I have a broad view of the range of evolution, and I find claims of human 
uniqueness that justify an inviolate separation between humans and the rest 
of life unsupportable. Social evolution is widespread among many species, 
even among microbial consortia. There are aspects of human cultural evolu-
tion that appear to be unique, and certainly the extent of technology created 
by humans is unprecedented. But many other species modify their external 
environment in important ways, suggesting that the differences are of degree 
rather than absolute. Human evolution, particularly cultural and technological 
evolution, is interesting exactly because it must be encompassed by any useful 
approach to evolutionary innovation. And for just this reason Maynard Smith 
and Szathmáry included the evolution of language as the last of their major 
evolutionary transitions.

This issue of novelty versus adaptation and continuity and discontinuity 
has implications for rates of change. So far, I have said nothing about how 
rapidly novelties arise or how quickly novelties transform ecosystems, beyond 
noting lags. I would be willing to wager that not a few readers have inferred 
that novelties must arise quickly. Indeed, as discussed in chapters 2 and 3, 
many such claims have been made, but in later chapters I will argue that dis-
tinctions among adaptation, novelty, and innovation are about mechanism 
and are independent of the time involved. So, in contrast to the claims of my 
tribe (paleontologists), estimated rates may be a poor indicator of evolution-
ary dynamics.
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Structure of the Book

Past studies of innovation, whether in biology, culture, or technology, have 
often relied upon compiling histories of specific cases. The case-study ap-
proach allows characteristics of novelty and innovation to emerge from the 
weight of examples. A more philosophical approach would be to search for 
definitions of novelty and innovation, emphasizing logical rigor over the 
messy realities of biology. Indeed, there is a growing literature among 
philosophers of biology and more philosophically inclined biologists propos-
ing various definitions of novelty. Relying entirely on case studies is often jus-
tifiably criticized as anecdotal and ad hoc. The numerous informative exam-
ples in this book are in service of a broader conceptual framework. Chapters 2 
through 4 examine seven different approaches to novelty and innovation, be-
fore I articulate a conceptual framework in chapter 5. Although I began this 
project with a rigid view of the boundaries of novelty, I have come to see that 
definitional flexibility is warranted. Chapters 6 through 9 employ this concep-
tual framework to examine different exemplars of novelty and innovation, but 
I will endeavor to show that these exemplars represent larger classes of similar 
patterns and processes.

I explore earlier approaches to novelty and innovation in chapter 2, 
roughly from the early nineteenth century through about 1990. I have already 
noted that the common assumption has been that novel morphologies are 
linked to the diversification of new species. I will argue that while adaptive 
change may often be a critical component of innovation, adaptive evolution 
may play less of a role than commonly assumed. Larger-scale or macroevolu-
tionary approaches to novelty and innovation, such as the differential success 
of species or clades, are also discussed in this chapter. But I conclude that no 
model of adaptive radiation satisfactorily explains evolutionary novelty or 
macroevolutionary lags. Indeed, most traditional macroevolutionary ap-
proaches have neglected the factors responsible for the generation of mor-
phological novelty.

The latter portion of chapter 2 extends the discussion of novelty and 
innovation to cultural evolution and technological change. Discussions of cul-
tural and technological aspects are integrated into chapters where appropriate. 
But one of the challenges is the use of the term evolution in different fields and 
in different ways. Even two biologists may differ over whether the term applies 
to hereditary changes in gene frequencies mediated by either natural selection 
or genetic drift, or if selection operates at multiple levels—for example, between 



10  C h a p t e r   1

populations of a species. The past several decades have seen expansion of the 
types of inheritance to include cultural, ecological, and epigenetic inheritance. 
The problems increase with cultural evolution, where the focus shifts to 
processes distinct from the gene-centric views of many biologists. The term 
evolution becomes more confusing among economists, historians, sociologists, 
and other anthropologists, who may use it as a synonym for long-term change 
but reject any parallels with Darwinian or biological processes. While I have 
sought to identify similarities and differences across the domains of biology, 
culture, technology, and economics, I make no claim for a reductionist, gene-
centric view of evolution, nor an argument for universal Darwinism. Universal 
Darwinism is an effort to extend a reductionist view of evolution to fields 
beyond biology, particularly anthropology, economics, and psychology. In-
stead, the focus is on the nature of novelty and innovation across domains in 
which the processes of change may be very different. While I use the term 
evolution throughout the book, in chapter 2 on historical approaches, chap-
ters 3 and 9 on the domains of culture and technology, and chapter 4 on cul-
tural spaces I use the term generically as a synonym for change, with no analogy 
to biological processes. Because human novelties and innovations are found 
today in a single species, I discuss them together in chapter 9. I make no claims 
for even a survey of the vast literature on novelty and innovation in economics 
and business.10

Many biologists use novelty and innovation interchangeably, and writers of 
popular business books rarely seem to have given any thought to the possibil-
ity of a distinction between the two terms. Novelty and innovation are what 
cognitive scientist Marvin Minsky termed “suitcase words”: words that have 
a variety of meanings, like conscience or complexity. Unpacking suitcase words 
can transform impossible problems (“What is consciousness?”) into a series 
of less difficult problems where progress might be achievable. Definitions of 
novelty, invention, and innovation differ between different authors and have 
changed over time. To some, novelty applies to any heritable biological change 
or is synonymous with adaptation, but such a definition is so broad as to 
be meaningless. I begin unpacking these words in chapters 3 to 5 as I examine 
how the concept of evolutionary novelty has been refined over the past few 
decades. Coincidentally, the beginnings of evo-devo, insights from the fossil 
record, new approaches to cultural evolution, and new tools to reconstruct 
evolutionary history led to reassessments of the nature of novelty and innova-
tion, beginning about 1990. These new ideas provide the foundation for chap-
ter 3, which advances the historical presentation over the past three decades. 
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I highlight how evo-devo studies have provided insights into the genetic and 
developmental foundations of novelty.11

Sewall Wright, one of the founders of the Modern Synthesis, argued 
that supply of genetic novelties was relatively constant through time, with 
their success depending on ecological opportunities. Like Mayr and Simp-
son he saw no useful distinction between novelty and innovation. Wright 
introduced the concept of an adaptive landscape as a heuristic model to 
depict the fitness of an organism under different gene combinations. The 
highs on the landscape represent regions of high fitness or adaptation, while 
the basins represent low fitness or adaptation. Simpson’s adaptive landscapes 
introduced the concept of a space into evolutionary biology and became one 
of the most enduring and popular metaphors in evolution. Today spaces of 
DNA, RNA, and proteins are common, and the idea has been extended 
to regulatory and metabolic networks. Paleontologists analyze morphology 
within morphospaces, and other design spaces encompass functional, 
ecological, or other features of organisms. Not to be outdone, economists 
have described product spaces and their potential influence on economic 
development.12

We intuitively think of spaces as Euclidean, where the three axes of the 
space are at 90 degrees to each other and distances can be measured between 
objects. But many mathematical relationships between objects are not Euclid-
ean spaces or may be only locally Euclidean. The idea of a space is a powerful 
metaphor that raises important questions: How accessible are different re-
gions of an evolutionary space? Do spaces simply exist, waiting for organisms 
to fill them, or are they somehow constructed through the history of life? Such 
questions raise some interesting and poorly appreciated problems associated 
with the topology of evolutionary spaces, the topic of chapter 4.

Innovation is often described as a search through a space of opportunities, 
but this is misleading if evolutionary spaces can be constructed. I explore this 
fundamental difference in some detail in chapter 4 because it has some far-
reaching consequences for how we think about evolutionary novelty and in-
novation. “Search” is the appropriate metaphor in situations where solutions 
are already present (what are called pre-statable spaces), and movement 
through the space can be accomplished via simple operations.

The sequence space of 20 nucleotides of DNA or RNA is an example I use 
in chapter 4. A single nucleotide mutation changes the sequence one position 
in the sequence space. Ignoring changes in the length of the sequence and 
considering just single nucleotide changes, then there are 19 possible single 
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nucleotide changes from any starting sequence. And each of these is adjacent 
to additional single nucleotide changes. Thus, there is a pathway of single 
nucleotide changes through the sequence space from a starting sequence to a 
completely different 20-nucleotide sequence. A simple operation (mutations 
producing the substitution of one nucleotide for another) allows search 
through the space of alternative sequences. Some biologists argue that similar 
search processes explain innovation in many other systems. I will return to 
consider this influential example in some detail in chapter 4. In general, search 
operates in systems like sequence spaces for proteins and nucleotides, and 
even potentially for some phenotypes such as logarithmically coiled shells 
(clams and gastropods). But the metaphor of search becomes problematic 
where the design space cannot be defined independently.

My view is that most significant evolutionary novelties and innovation in-
volve the construction of new opportunities. Construction involves the forma-
tion of a space of opportunities that could not reasonably have been specified 
in advance. These opportunities could be molecular, developmental, morpho-
logical, cultural, or technological, but they often involve more complicated 
evolutionary changes than in search. Once formed, new design spaces can be 
exploited by adaptive search. Arthropods, with exoskeletons and jointed 
appendages, represent the formation of a new space of opportunities, for ex-
ample. It would have been difficult to define the possibilities for arthropods 
600 million years ago, before the morphological novelties appeared. But the 
origin of arthropods opened a vast range of opportunities, which are continuing 
to be exploited.

Microbiologist Richard Lenski and his colleagues have followed the 
evolution of strains of the bacterium Escherichia coli for more than 50,000 gen-
erations. In 2011 Lenski and Zac Blount announced the discovery of a form of 
E. coli that feeds on citrate. Acquiring this capability required earlier genetic 
changes that created the potential for the mutation that allowed the bacteria 
to feed on citrate. These earlier mutations potentiated this change, but they 
did not themselves establish the novelty. Such potentiating mutations have 
been associated with other novelties as well and cast doubt on the assump-
tions of Wright, Mayr, and others: We cannot assume that the supply of 
novelty is relatively constant through time. Indeed, one of the main arguments 
of this book is that we need to understand the factors that control the supply 
of novelty and how this has changed through time. The experimental demon-
stration of potentiation deeply influenced the conceptual framework of novelty 
and innovation advanced in chapter 5.13
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This framework involves four components: potentiation, novelty, adaptive 
refinement, and innovation. While ecological opportunities are important, in 
my view they do not play the central role in novelty and innovation proposed 
by Wright, Simpson, and Mayr. But by distinguishing potentiating factors 
and adaptive change from the generation of new morphological novelties and 
the environmental aspects that control whether, and when, the novelties 
become successful as innovations we may be able to generate a more compre-
hensive understanding of these aspects of evolution. The conceptual founda-
tions of novelty and innovation are not as well developed in studies of cultural 
change as in biology or economics, but later chapters extend this approach to 
culture and technology.

The opportunity-driven view of novelty and innovation assumes that new 
morphologies depend upon existing genetic and developmental variation. 
But other evolutionary and developmental biologists have argued that nov-
elty often requires specific genetic and developmental changes. If this latter 
view is correct, then the origin of novelty may in part reflect the internal 
dynamics of complex systems, whether they are organisms or cultures, and 
be largely decoupled from ongoing processes of adaptation. In my view, there 
is less conflict between these views than may first appear, once the nature of 
novelty is carefully circumscribed. Chapter 6 will consider specific cases 
of evolutionary novelty and the role of networks in facilitating change. The 
primary objective of that chapter is to address the sources of genetic and 
developmental novelties. The core of the chapter will involve a discussion of 
how the structure of developmental gene regulatory networks controls pat-
terns of novelty.

The generation of evolutionary innovations in biological, cultural, and tech-
nological domains is addressed in chapters 7–9, including the mechanisms 
responsible for converting evolutionary novelties. Ecological processes are 
discussed in chapter 7, including those by which organisms construct niches 
either for their own species or for other species. In addition, that chapter con-
siders several types of diversifications, novelty events, and innovation after 
mass extinctions or similar biotic crises. Chapter 8 provides case studies of 
biological innovation that illustrate the importance of a “macroevolutionary 
triad” of genetic and developmental potential, ecological opportunity, and 
environmental possibility.

Chapter 9 examines novelty and innovation in culture and technology. Cu-
mulative cultural evolution, language, and cumulative technological evolution 
are unique human novelties that enable other novelties and innovations. Since 
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these changes all occur among humans and our closely related ancestors, dis-
cussing these changes in a single chapter was more effective. Patterns of in-
novation in cultural and technological evolution exhibit many similarities to 
processes of biological innovation, but there are also many cases of apparently 
parallel innovation, as with social complexity such as states, whereas techno-
logical innovation more commonly seems to follow patterns of novelty 
followed by diffusion, more like some evolutionary diversifications in biology. 
The emphasis is on the formation of new stable structures as a key component 
of cultural evolution (broadly construed), focusing on macroevolutionary 
patterns of cultural and technological novelty, new forms of social complexity, 
the role of institutions, and the extent to which the model developed in chap-
ter 5 may be applicable.

I return to the major themes discussed earlier in this chapter in the conclud-
ing chapter, emphasizing the conceptual framework developed in chapter 5, 
evaluating the prospects for a general theory of innovation and novelty and 
whether the probability of innovations has changed through the history of 
life, and why this might be so. One of the central themes of this book is how 
novelty and innovation reflect the evolution of the evolutionary process itself 
over the past three and a half billion years or so. The fundamentally historical 
nature of evolution means that the nature of variation upon which selection 
can act and the kinds of evolutionary changes that could occur vary across 
lineages and through time. New mechanisms of regulatory control create new 
opportunities for evolutionary novelty, while new ecological structures gen-
erate new opportunities for evolutionary innovation, just as technological 
inventions have expanded cultural and economic opportunities. The origin of 
sophisticated developmental programs in groups with complex cellular dif-
ferentiation (plants, animals, and fungi) has greatly expanded the complexity 
of the regulatory genome relative to the possibilities in microbes. In contrast, 
microbes share huge libraries of genes in ways that are less common among 
groups with complex development. Thus, the evolutionary process has itself 
evolved over time, and this is just as true in the cultural domain as it is in the 
biological domain. I will develop the argument that the opportunity space for 
both novelty and innovation has expanded over time, a view that contrasts 
sharply with the idea that search through combinatoric possibilities is a suf-
ficient explanation for innovation.

The final chapter also addresses the relationship between innovation and 
biodiversity. Is novelty primarily responsible for increases in biodiversity? 
Ecologists frequently invoke the concept of “carrying capacity,” an idea derived 
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from population biology, that available resources are limited and constrain 
total diversity. While there is little doubt that the total resources available to 
the bacterium E. coli in a test tube are limited, the extension of this concept 
to controls on the number of species is problematic. I am interested in how 
novelty and innovation influence total biodiversity and changes in the struc-
ture and complexity of ecosystems. One possibility is that novelties arise 
continuously but succeed only if there is sufficient ecological opportunity 
for successful innovation. Such a situation is analogous to what economists 
describe as a “demand-pull” innovation, where the need for an innovation 
drives the process of invention. Alternatively, biological novelty could drive 
changes in ecological networks, constructing new niches, and thus directly 
influence innovation through biotically driven positive feedback. The ana-
logue of this in economics is the creation of new markets because of techno-
logical innovation. The revolution in personal computers and related per-
sonal electronics over the past decades is an example of niche-constructing 
innovation.

Finally, evolution is fundamentally a deeply historical process, which 
raises an important philosophical issue. Is the outcome of evolution 
contingent upon historical events, or would similar outcomes have arisen 
independently of whatever historical accidents transpired? One view of evo-
lution acknowledges the primacy of natural selection and views long-lived 
lineages as successful because they were better adapted than competing lin-
eages. An argument for the importance of contingency has been advanced 
by Jacques Monod in his book Chance and Necessity, and by Stephen Jay 
Gould in Wonderful Life, among other evolutionary biologists. A different 
perspective has been championed by paleontologists Simon Conway Mor-
ris, George McGhee, and others. In Wonderful Life Gould asked: If one re-
played the tape of life again would the result be similar? Is life constrained 
to be carbon based? To be based on DNA, perhaps even with a similar ge
netic code? To form animals, even arthropods or highly encephalized pri-
mates? Advocates of this alternative describe it as deterministic, because 
they view the evolutionary options as limited and thus likely to recur, as 
discussed further in chapter 4. The answers to such questions can reveal 
much about the opportunity space in which novelty and innovation, and 
evolution more broadly, operate.14

If evolutionary outcomes are limited rather than contingent, the details of 
novelty may play little role in the outcome of innovation. I will argue that al-
though some aspects of evolution are deterministic, the historical nature of 
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evolution generates a highly contingent dynamic for novelty and innovation. 
This is particularly relevant for the nature of evolutionary spaces and the dis-
tinction between novelty as search versus construction. The topology of an 
evolutionary space with deterministic outcomes may be very different from 
one with contingent outcomes. The contingent nature of novelty and innova-
tion is further support for the argument that construction rather than search 
is the dominant mode of generating novelty. If this argument is correct, it has 
substantive implications for how we think about evolutionary change through 
the history of life.
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