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CHAPTER 1

GEOMETRODYNAMICS IN BRIEF

§1.1. THE PARABLE OF THE APPLE

One day in the year 1666 Newton had gone to the country,

and seeing the fall of an apple, as his niece told me, let himself
be led into a deep meditation on the cause which thus

draws every object along a line whose extension would pass
almost through the center of the Earth.

VOLTAIRE (1738)

Once upon a time a student lay in a garden under an apple tree reflecting on the
difference between Einstein’s and Newton’s views about gravity. He was startled
by the fall of an apple nearby. As he looked at the apple, he noticed ants beginning
to run along its surface (Figure 1.1). His curiosity aroused, he thought to investigate
the principles of navigation followed by an ant. With his magnifying glass, he noted
one track carefully, and, taking his knife, made a cut in the apple skin one mm
above the track and another cut one mm below it. He peeled off the resulting little
highway of skin and laid it out on the face of his book. The track ran as straight
as a laser beam along this highway. No more economical path could the ant have
found to cover the ten cm from start to end of that strip of skin. Any zigs and
zags or even any smooth bend in the path on its way along the apple peel from
starting point to end point would have increased its length.

“What a beautiful geodesic,” the student commented.

His eye fell on two ants starting off from a common point P in slightly different
directions. Their routes happened to carry them through the region of the dimple
at the top of the apple, one on each side of it. Each ant conscientiously pursued
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© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

4 1. GEOMETRODYNAMICS IN BRIEF

Figure 1.1.

The Riemannian geometry of the spacetime of general relativity is here symbolized by the two-dimen-
sional geometry of the surface of an apple. The geodesic tracks followed by the ants on the apple’s
surface symbolize the world line followed through spacetime by a free particle. In any sufficiently localized
region of spacetime, the geometry can be idealized as flat, as symbolized on the apple’s two-dimensional
surface by the straight-line course of the tracks viewed in the magnifying glass (“local Lorentz character”
of geometry of spacetime). In a region of greater extension, the curvature of the manifold (four-dimen-
sional spacetime in the case of the real physical world; curved two-dimensional geometry in the case
of the apple) makes itself felt. Two tracks ¢ and ¢, originally diverging from a common point ¢, later
approach, cross, and go off in very different directions. In Newtonian theory this effect is ascribed to
gravitation acting at a distance from a center of attraction, symbolized here by the stem of the apple.
According to Einstein a particle gets its moving orders locally, from the geometry of spacetime right
where it is. Its instructions are simple: to follow the straightest possible track (geodesic). Physics is as
simple as it could be locally. Only because spacetime is curved in the large do the tracks cross. Geome-
trodynamics, in brief, is a double story of the effect of geometry on matter (causing originally divergent
geodesics to cross) and the effect of matter on geometry (bending of spacetime initiated by concentration
of mass, symbolized by effect of stem on nearby surface of apple).

his geodesic. Each went as straight on his strip of appleskin as he possibly could.
Yet because of the curvature of the dimple itself, the two tracks not only crossed
but emerged in very different directions.

“What happier illustration of Einstein’s geometric theory of gravity could one

Einstein’s local view of possibly ask?” murmured the student. “The ants move as if they were attracted

physics contrasted with by the apple stem. One might have believed in a Newtonian force at a distance.

Newton’s "‘action at a . .

distance’” Yet from nowhere does an ant get his moving orders except from the local geometry
along his track. This is surely Einstein’s concept that all physics takes place by
‘local action.” What a difference from Newton’s ‘action at a distance’ view of physics!
Now I understand better what this book means.”

Physics is simple only when And so saying, he opened his book and read, “Don’t try to describe motion

analyzed locally relative to faraway objects. Physics is simple only when analyzed locally. And locally
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§1.2. SPACETIME WITH AND WITHOUT COORDINATES 5

the world line that a satellite follows [in spacetime, around the Earth] is already
as straight as any world line can be. Forget all this talk about ‘deflection’ and ‘force
of gravitation.” I'm inside a spaceship. Or I'm floating outside and near it. Do I
feel any ‘force of gravitation’? Not at all. Does the spaceship ‘feel’ such a force?
No. Then why talk about it? Recognize that the spaceship and I traverse a region
of spacetime free of all force. Acknowledge that the motion through that region
is already ideally straight.”

The dinner bell was ringing, but still the student sat, musing to himself. “Let me
see if I can summarize Einstein’s geometric theory of gravity in three ideas: (1)
locally, geodesics appear straight; (2) over more extended regions of space and time,
geodesics originally receding from each other begin to approach at a rate governed
by the curvature of spacetime, and this effect of geometry on matter is what we
mean today by that old word ‘gravitation’; (3) matter in turn warps geometry. The
dimple arises in the apple because the stem is there. I think I see how to put the
whole story even more briefly: Space acts on matter, telling it how to move. In turn,
matter reacts back on space, telling it how to curve. In other words, matter here,”
he said, rising and picking up the apple by its stem, “curves space here. To produce
a curvature in space here is to force a curvature in space there,” he went on, as
he watched a lingering ant busily following its geodesic a finger’s breadth away from
the apple’s stem. “Thus matter here influences matter there. That is Einstein’s
explanation for ‘gravitation.””

Then the dinner bell was quiet, and he was gone, with book, magnifying glass—and

apple.

§1.2. SPACETIME WITH AND WITHOUT COORDINATES

Now it came to me: . . . the independence of the
gravitational acceleration from the nature of the falling
substance, may be expressed as follows: In a

gravitational field (of small spatial extension) things
behave as they do in a space free of gravitation. . . . This
happened in 1908. Why were another seven years required
for the construction of the general theory of relativity?

The main reason lies in the fact that it is not so easy to
free oneself from the idea that coordinates must have an
immediate metrical meaning.

ALBERT EINSTEIN [in Schilpp (1949), pp. 65-67.]

Nothing is more distressing on first contact with the idea of “curved spacetime” than
the fear that every simple means of measurement has lost its power in this unfamiliar
context. One thinks of oneself as confronted with the task of measuring the shape
of a gigantic and fantastically sculptured iceberg as one stands with a meter stick
in a tossing rowboat on the surface of a heaving ocean. Were it the rowboat itself
whose shape were to be measured, the procedure would be simple enough. One
would draw it up on shore, turn it upside down, and drive tacks in lightly at strategic
points here and there on the surface. The measurement of distances from tack to
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Figure 1.2.

The crossing of straws in a barn full of hay is a symbol for the world lines that fill up spacetime. By
their crossings and bends, these world lines mark events with a uniqueness beyond all need of coordinate
systems or coordinates. Typical events symbolized in the diagram, from left to right (black dots), are:
absorption of a photon; reemission of a photon; collision between a particle and a particle; collision
between a photon and a particle; another collision between a photon and a particle; explosion of a
firecracker; and collision of a particle from outside with one of the fragments of that firecracker.

tack would record and reveal the shape of the surface. The precision could be made
arbitrarily great by making the number of tacks arbitrarily large. It takes more daring
to think of driving several score pitons into the towering iceberg. But with all the
daring in the world, how is one to drive a nail into spacetime to mark a point?
Happily, nature provides its own way to localize a point in spacetime, as Einstein
was the first to emphasize. Characterize the point by what happens there! Give a
point in spacetime the name “event.” Where the event lies is defined as clearly and
sharply as where two straws cross each other in a barn full of hay (Figure 1.2). To
say that the event marks a collision of such and such a photon with such and such
a particle is identification enough. The world lines of that photon and that particle
are rooted in the past and stretch out into the future. They have a rich texture of
connections with nearby world lines. These nearby world lines in turn are linked
in a hundred ways with world lines more remote. How then does one tell the location
of an event? Tell first what world lines participate in the event. Next follow each
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Figure 1.3.

Above: Assigning “telephone numbers” to events by way of a system of coordinates. To say that the
coordinate system is “smooth” is to say that events which are almost in the same place have almost
the same coordinates. Below: Putting the same set of events into equally good order by way of a different
system of coordinates. Picked out specially here are two neighboring events: an event named “2” with
coordinates (x°, x!) = (77.2,22.6) and (x°, x!) = (18.5,51.4); and an event named “%” with coordinates
(x%, x1) = (79.9, 20.1) and (x%, xT) = (18.4, 47.1). Events € and # are connected by the separation “vector”
&. (Precise definition of a vector in a curved spacetime demands going to the mathematical limit in
which the two points have an indefinitely small separation [N-fold reduction of the separation ¥ — 2],
and, in the resultant locally flat space, multiplying the separation up again by the factor N [lim N — oo;
“tangent space”; “tangent vector”]. Forego here that proper way of stating matters, and forego complete
accuracy; hence the quote around the word “vector”.) In each coordinate system the separation vector
& is characterized by “components” (differences in coordinate values between ¥ and 2):

(89,8 = (799 — 772, 20.1 — 22.6) = (2.7, — 2.5),
(& &1 = (184 — 185, 47.1 — 51.4) = (—0.1, —4.3).

See Box 1.1 for further discussion of events, coordinates, and vectors.
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8 1. GEOMETRODYNAMICS IN BRIEF

of these world lines. Name the additional events that they encounter. These events
pick out further world lines. Eventually the whole barn of hay is catalogued. Each
event is named. One can find one’s way as surely to a given intersection as the city
dweller can pick his path to the meeting of St. James Street and Piccadilly. No
numbers. No coordinate system. No coordinates.

That most streets in Japan have no names, and most houses no numbers, illustrates
The name of an event can one’s ability to do without coordinates. One can abandon the names of two world
even be arbitrary lines as a means to identify the event where they intersect. Just as one could name

a Japanese house after its senior occupant, so one can and often does attach arbitrary
names to specific events in spacetime, as in Box 1.1.
Coordinates provide a Coordinates, however, are convenient. How else from the great thick catalog of
convenient naming system events, randomly listed, can one easily discover that along a certain world line one
will first encounter event Trinity, then Baker, then Mike, then Argus—but not the
same events in some permuted order?

To order events, introduce coordinates! (See Figure 1.3.) Coordinates are four
indexed numbers per event in spacetime; on a sheet of paper, only two. Trinity
acquires coordinates

(x, x1, x2, x3) = (77,23, 64, 11).

In christening events with coordinates, one demands smoothness but foregoes every
Coordinates generally do not  thought of mensuration. The four numbers for an event are nothing but an elaborate
measure length kind of telephone number. Compare their “telephone” numbers to discover whether
two events are neighbors. But do not expect to learn how many meters separate
them from the difference in their telephone numbers!
Nothing prevents a subscriber from being served by competing telephone systems,
Several coordinate systems nor an event from being catalogued by alternative coordinate systems (Figure 1.3).
can be used at once Box 1.1 illustrates the relationships between one coordinate system and another, as
well as the notation used to denote coordinates and their transformations.
Choose two events, known to be neighbors by the nearness of their coordinate
Vectors values in a smooth coordinate system. Draw a little arrow from one event to the
other. Such an arrow is called a vector. (It is a well-defined concept in flat spacetime,
or in curved spacetime in the limit of vanishingly small length; for finite lengths
in curved spacetime, it must be refined and made precise, under the new name
“tangent vector,” on which see Chapter 9.) This vector, like events, can be given
a name. But whether named “John” or “Charles” or “Kip,” it is a unique, well-
defined geometrical object. The name is a convenience, but the vector exists even
without it.
Just as a quadruple of coordinates

(x% x1, x2, x%) = (77,23, 64, 11)

is a particularly useful name for the event “Trinity” (it can be used to identify what
other events are nearby), so a quadruple of “components”

(£, 8,82, 8) = (1.2, —0.9,0,2.1)
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Box 1.1 MATHEMATICAL NOTATION FOR EVENTS, COORDINATES, AND VECTORS

Events are denoted by capital script, one-letter Latin names such as P, 2,1, B.
Sometimes subscripts are used: Pos P1s B

Coordinates of an event & are denoted by HP), x(P), W(P), z(P),
or by XUP), xU(P), x%(?P),

XH(),

or more abstractly by x*(P) or x*(P),
where it is understood that Greek indices can take on any value 0, 1,
2, or 3.

Time coordinate (when one of the four is picked to play this role) X9(9).

Space coordinates are XH(P), xX(P), x3(P)
and are sometimes denoted by XI(P) or x¥(P) or....

It is to be understood that Latin indices take on values 1, 2, or 3.

Shorthand notation: One soon tires of writing explicitly the functional depen-
dence of the coordinates, x#(%); so one adopts the shorthand notation xB
for the coordinates of the event ¥, and x7
for the space coordinates. One even begins to think of x# as representing
the event & itself, but must remind oneself that the values of x?, x!, x2,
x3 depend not only on the choice of ¢ but also on the arbitrary choice
of coordinates!

Other coordinates for the same event ¥ may be denoted x*() or just x,
xff'(f’/’) or just xf’/,
X*(P) or just x*.

EXAMPLE: In Figure 1.3 (x°, x!) = (77.2,22.6) and (x°, xT) = (18.5,51.4)

refer to the same event. The bars, primes, and hats distinguish one

coordinate system from another; by putting them on the indices rather
than on the x’s, we simplify later notation.

Transformation from one coordinate system to another is achieved by the four
functions x0(x0, x1, x2, x3),
XT(x0, x1, x2, x9),
X2(x0, x1, X2, x9),
X3(x0, x1, x2, x3),
which are denoted more succinctly x%(xP).

Separation vector* (little arrow) reaching from one event £ to neighboring event

& can be denoted abstractly by uorvoré, or? — 2.
It can also be characterized by the coordinate-value differencest between
? and £ (called “components” of the vector) £ = xYP) — x42),

£ = xYP) — x42).

Transformation of components of a vector from one coordinate system to another

a
is achieved by partial derivatives of transformation equations g — gxﬁ B,
X
since £ = x4P) — x%2) = (0x*/oxP)xP(P) — xB(D)).7
Einstein summation convention is used here: Ox® 3 5xd
any index that is repeated in a product is automatically summed on P = > _X~§B.
oxh =0 oxB

*This definition of a vector is valid only in flat spacetime. The refined definition (“tangent vector”) in curved spacetime
is not spelled out here (see Chapter 9), but flat-geometry ideas apply with good approximation even in a curved geometry,
when the two points are sufficiently close.

T These formulas are precisely accurate only when the region of spacetime under consideration is flat and when in addition
the coordinates are Lorentzian. Otherwise they are approximate—though they become arbitrarily good when the separation
between points and the length of the vector become arbitrarily small.
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10 1. GEOMETRODYNAMICS IN BRIEF

is a convenient name for the vector “John” that reaches from

(x%, x1, x2, x%) = (77,23, 64, 11)
to
(x% x1, x2, x%) = (78.2,22.1, 64.0, 13.1).

How to work with the components of a vector is explored in Box 1.1.
There are many ways in which a coordinate system can be imperfect. Figure 1.4

Coordinate singularities illustrates a coordinate singularity. For another example of a coordinate singularity,

normally unavoidable run the eye over the surface of a globe to the North Pole. Note the many meridians
that meet there (“collapse of cells of egg crates to zero content”). Can’t one do better?
Find a single coordinate system that will cover the globe without singularity? A
theorem says no. Two is the minimum number of “coordinate patches” required
to cover the two-sphere without singularity (Figure 1.5). This circumstance empha-
sizes anew that points and events are primary, whereas coordinates are a mere
bookkeeping device.

Continuity of spacetime Figures 1.2 and 1.3 show only a few world lines and events. A more detailed
diagram would show a maze of world lines and of light rays and the intersections
between them. From such a picture, one can in imagination step to the idealized
limit: an infinitely dense collection of light rays and of world lines of infinitesimal
test particles. With this idealized physical limit, the mathematical concept of a

The mathematics of continuous four-dimensional “manifold” (four-dimensional space with certain

manifolds applied to the smoothness properties) has a one-to-one correspondence; and in this limit continu-

physics of spacetime ous, differentiable (i.e., smooth) coordinate systems operate. The mathematics then
supplies a tool to reason about the physics.

Dimensionality of spacetime A simple countdown reveals the dimensionality of the manifold. Take a point &
in an n-dimensional manifold. Its neighborhood is an n-dimensional ball (i.e., the
interior of a sphere whose surface has n — 1 dimensions). Choose this ball so that
its boundary is a smooth manifold. The dimensionality of this manifold is (n — ).
In this (n — 1)-dimensional manifold, pick a point 2. Its neighborhood is an
(n — 1)-dimensional ball. Choose this ball so that..., and so on. Eventually one
comes by this construction to a manifold that is two-dimensional but is not yet known
to be two-dimensional (two-sphere). In this two-dimensional manifold, pick a point
9. Its neighborhood is a two-dimensional ball (“disc”). Choose this disc so that
its boundary is a smooth manifold (circle). In this manifold, pick a point 9. Its
neighborhood is a one-dimensional ball, but is not yet known to be one-dimensional
(“line segment”). The boundaries of this object are two points. This circumstance
tells that the intervening manifold is one-dimensional; therefore the previous mani-
fold was two-dimensional; and so on. The dimensionality of the original manifold
is equal to the number of points employed in the construction. For spacetime, the
dimensionality is 4.

This kind of mathematical reasoning about dimensionality makes good sense at
the everyday scale of distances, at atomic distances (10~® cm), at nuclear dimensions
(10-13 cm), and even at lengths smaller by several powers of ten, if one judges by
the concord between prediction and observation in quantum electrodynamics at high
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Figure 1.4.
How a mere coordinate singularity arises. Above: A coordinate system becomes singular when the “cells
in the egg crate” are squashed to zero volume. Below: An example showing such a singularity in the
Schwarzschild coordinates r, 7 often used to describe the geometry around a black hole (Chapter 31).
For simplicity the angular coordinates 6, ¢ have been suppressed. The singularity shows itself in two
ways. First, all the points along the dotted line, while quite distinct one from another, are designated
by the same pair of (r, 7) values; namely, r = 2m, 1 = oo. The coordinates provide no way to distinguish
these points. Second, the “cells in the egg crate,” of which one is shown grey in the diagram, collapse
to zero content at the dotted line. In summary, there is nothing strange about the geometry at the dotted
line; all the singularity lies in the coordinate system (“poor system of telephone numbers”). No confusion
should be permitted to arise from the accidental circumstance that the ¢ coordinate attains an infinite
value on the dotted line. No such infinity would occur if 7 were replaced by the new coordinate 7, defined
by _

(t/2m) = tan(t/2m).
When ¢ = oo, the new coordinate 7 is 7 = =m. The r, ¢ coordinates still provide no way to distinguish
the points along the dotted line. They still give “cells in the egg crate” collapsed to zero content along
the dotted line.
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Figure 1.5.

Singularities in familiar coordinates on the two-sphere can be eliminated by covering the sphere with
two overlapping coordinate patches. A. Spherical polar coordinates, singular at the North and South
Poles, and discontinuous at the international date line. B. Projection of the Euclidean coordinates of
the Euclidean two-plane, tangent at the North Pole, onto the sphere via a line running to the South
Pole; coordinate singularity at the South Pole. C. Coverage of two-sphere by two overlapping coordinate
patches. One, constructed as in B, covers without singularity the northern hemisphere and also the
southern tropics down to the Tropic of Capricorn. The other (grey) also covers without singularity all
of the tropics and the southern hemisphere besides.

energies (corresponding de Broglie wavelength 10716 cm). Moreover, classical general

relativity thinks of the spacetime manifold as a deterministic structure, completely

well-defined down to arbitrarily small distances. Not so quantum general relativity
Breakdown in smoothness of ~ or “quantum geometrodynamics.” It predicts violent fluctuations in the geometry
spacetime at Planck length at distances on the order of the Planck length,

LY = (hG/CS)l/Z
= [(1.054 x 10727 g cm?/sec)(6.670 X 1078 cm?/g sec?)]/2 X
X (2.998 x 1019 cm/sec) %2 (1.1)

1.616 x 10733 cm.

No one has found any way to escape this prediction. As nearly as one can estimate,
these fluctuations give space at small distances a “multiply connected” or “foamlike”
character. This lack of smoothness may well deprive even the concept of dimension-
ality itself of any meaning at the Planck scale of distances. The further exploration
of this issue takes one to the frontiers of Einstein’s theory (Chapter 44).

If spacetime at small distances is far from the mathematical model of a continuous
manifold, is there not also at larger distances a wide gap between the mathematical
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idealization and the physical reality? The infinitely dense collection of light rays
and of world lines of infinitesimal test particles that are to define all the points of
the manifold: they surely are beyond practical realization. Nobody has ever found
a particle that moves on timelike world lines (finite rest mass) lighter than an electron.
A collection of electrons, even if endowed with zero density of charge (e* and e~
world lines present in equal numbers) will have a density of mass. This density will
curve the very manifold under study. Investigation in infinite detail means unlimited
density, and unlimited disturbance of the geometry.

However, to demand investigatability in infinite detail in the sense just described
is as out of place in general relativity as it would be in electrodynamics or gas
dynamics. Electrodynamics speaks of the strength of the electric and magnetic field
at each point in space and at each moment of time. To measure those fields, it is
willing to contemplate infinitesimal test particles scattered everywhere as densely
as one pleases. However, the test particles do not have to be there at all to give
the field reality. The field has everywhere a clear-cut value and goes about its
deterministic dynamic evolution willy-nilly and continuously, infinitesimal test
particles or no infinitesimal test particles. Similarly with the geometry of space.

In conclusion, when one deals with spacetime in the context of classical physics,
one accepts (1) the notion of “infinitesimal test particle” and (2) the idealization
that the totality of identifiable events forms a four-dimensional continuous manifold.
Only at the end of this book will a look be taken at some of the limitations placed
by the quantum principle on one’s way of speaking about and analyzing spacetime.

§1.3. WEIGHTLESSNESS

“Gravity is a great mystery. Drop a stone. See it fall. Hear it hit. No one understands
why.” What a misleading statement! Mystery about fall? What else should the stone
do except fall? To fall is normal. The abnormality is an object standing in the way
of the stone. If one wishes to pursue a “mystery,” do not follow the track of the
falling stone. Look instead at the impact, and ask what was the force that pushed
the stone away from its natural “world line,” (i.e., its natural track through space-
time). That could lead to an interesting issue of solid-state physics, but that is not
the topic of concern here. Fall is. Free fall is synonymous with weightlessness:
absence of any force to drive the object away from its normal track through space-
time. Travel aboard a freely falling elevator to experience weightlessness. Or travel
aboard a spaceship also falling straight toward the Earth. Or, more happily, travel
aboard a spaceship in that state of steady fall toward the Earth that marks a circular
orbit. In each case one is following a natural track through spacetime.

The traveler has one chemical composition, the spaceship another; yet they travel
together, the traveler weightless in his moving home. Objects of such different nuclear
constitution as aluminum and gold fall with accelerations that agree to better than
one part in 1011, according to Roll, Krotkov, and Dicke (1964), one of the most
important null experiments in all physics (see Figure 1.6). Individual molecules fall
in step, too, with macroscopic objects [Estermann, Simpson, and Stern (1938)]; and
so do individual neutrons [Dabbs, Harvey, Paya, and Horstmann (1965)], individual

(continued on page 16)
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Figure 1.6.

Principle of the Roll-Krotkov-Dicke experiment, which showed that the gravitational accelerations of
gold and aluminum are equal to 1 part in 101* or better (Princeton, 1964). In the upper lefthand corner,
equal masses of gold and aluminum hang from a supporting bar. This bar in turn is supported at its
midpoint. If both objects fall toward the sun with the same acceleration of g = 0.59 cm/sec?, the bar
does not turn. If the Au mass receives a higher acceleration, g + g, then the gold end of the bar starts
to turn toward the sun in the Earth-fixed frame. Twelve hours later the sun is on the other side, pulling
the other way. The alternating torque lends itself to recognition against a background of noise because
of its precise 24-hour period. Unhappily, any substantial mass nearby, such as an experimenter, located
at M, will produce a torque that swamps the effect sought. Therefore the actual arrangement was as
shown in the body of the figure. One gold weight and two aluminum weights were supported at the
three corners of a horizontal equilateral triangle, 6 cm on a side (three-fold axis of symmetry, giving
zero response to all the simplest nonuniformities in the gravitational field). Also, the observers performed
all operations remotely to eliminate their own gravitational effects*. To detect a rotation of the torsion
balance as small as ~1079 rad without disturbing the balance, Roll, Krotkov, and Dicke reflected a
very weak light beam from the optically flat back face of the quartz triangle. The image of the source
slit fell on a wire of about the same size as the slit image. The light transmitted past the wire fell on
a photomultiplier. A separate oscillator circuit drove the wire back and forth across the image at 3,000
hertz. When the image was centered perfectly, only even harmonics of the oscillation frequency appeared
in the light intensity. However, when the image was displaced slightly to one side, the fundamental
frequency appeared in the light intensity. The electrical output of the photomultiplier then contained
a 3,000-hertz component. The magnitude and sign of this component were determined automatically.
Equally automatically a proportional p.c. voltage was applied to the electrodes shown in the diagram.
It restored the torsion balance to its zero position. The p.c. voltage required to restore the balance to
its zero position was recorded as a measure of the torque acting on the pendulum. This torque was
Fourier-analyzed over a period of many days. The magnitude of the Fourier component of 24-hour
period indicated a ratio 8g/g = (0.96 == 1.04) x 10~!'. Aluminum and gold thus fall with the same
acceleration, despite their important differences summarized in the table.

Ratios Al Au

Number of neutrons 108 15
Number of protons ’ ’
Mass of kineti f K-elect

inetic ene{gy o electron 0.005 0.16

Rest mass of electron
Electrostati - f leus
ectrostatic mass-energy of nucleus 0.001 0.004

Mass of atom

The theoretical implications of this experiment will be discussed in greater detail in Chapters 16 and 38.

Braginsky and Panov (1971) at Moscow University performed an experiment identical in principle
to that of Dicke-Roll-Krotkov, but with a modified experimental set-up. Comparing the accelerations
of platinum and aluminum rather than of gold and aluminum, they say that

0g/g <1 x 10712

*Other perturbations had to be, and were, guarded against. (1) A bit of iron on the torsion balance
as big as 1073 cm on a side would have contributed, in the Earth’s magnetic field, a torque a hundred
times greater than the measured torque. (2) The unequal pressure of radiation on the two sides of a
mass would have produced an unacceptably large perturbation if the temperature difference between
these two sides had exceeded 10~* °K. (3) Gas evolution from one side of a mass would have propelled
it like a rocket. If the rate of evolution were as great as 1078 g/day, the calculated force would have
been ~ 1077 g cm/sec?, enough to affect the measurements. (4) The rotation was measured with respect
to the pier that supported the equipment. As a guarantee that this pier did not itself rotate, it was anchored
to bed rock. (5) Electrostatic forces were eliminated; otherwise they would have perturbed the balance.
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electrons [Witteborn and Fairbank (1967)] and individual mu mesons [Beall (1970)].
What is more, not one of these objects has to see out into space to know how to

move.

Contemplate the interior of a spaceship, and a key, penny, nut, and pea by accident
or design set free inside. Shielded from all view of the world outside by the walls
of the vessel, each object stays at rest relative to the vessel. Or it moves through
the room in a straight line with uniform velocity. That is the lesson which experience
shouts out.

Forego talk of acceleration! That, paradoxically, is the lesson of the circumstance
that “all objects fall with the same acceleration.” Whose fault were those accelera-
tions, after all? They came from allowing a groundbased observer into the act. The

Box 1.2 MATERIALS OF THE MOST DIVERSE COMPOSITION FALL WITH
THE SAME ACCELERATION (““STANDARD WORLD LINE")

Aristotle: “the downward movement of a mass of
gold or lead, or of any other body endowed with
weight, is quicker in proportion to its size.”

Pre-Galilean literature: metal and wood weights
fall at the same rate.

Galileo: (1) “the variation of speed in air between
balls of gold, lead, copper, porphyry, and other
heavy materials is so slight that in a fall of 100
cubits [about 46 meters] a ball of gold would surely
not outstrip one of copper by as much as four
fingers. Having observed this, I came to the con-
clusion that in a medium totally void of resistance
all bodies would fall with the same speed.” (2)
later experiments of greater precision “diluting
gravity” and finding same time of descent for
different objects along an inclined plane.

Newton: inclined plane replaced by arc of pendu-
lum bob; “time of fall” for bodies of different
composition determined by comparing time of
oscillation of pendulum bobs of the two materials.
Ultimate limit of precision in such experiments
limited by problem of determining effective length
of each pendulum: (acceleration) = (27/pe-
riod)?(length).

Lorand von Eotvos, Budapest, 1889 and 1922:
compared on the rotating earth the vertical defined
by a plumb bob of one material with the vertical
defined by a plumb bob of other material. The
two hanging masses, by the two unbroken threads
that support them, were drawn along identical
world lines through spacetime (middle of the labo-
ratory of Eotvos!). If cut free, would they also
follow identical tracks through spacetime (“normal
world line of test mass”)? If so, the acceleration
that draws the actual world line from the normal
free-fall world line will have a standard value, a.
The experiment of E6tvds did not try to test agree-
ment on the magnitude of a between the two
masses. Doing so would have required (1) cutting
the threads and (2) following the fall of the two
masses. Eotvos renounced this approach in favor
of a static observation that he could make with
greater precision, comparing the direction of a for
the two masses. The direction of the supporting
thread, so his argument ran, reveals the direction
in which the mass is being dragged away from its
normal world line of “free fall” or “weightless-
ness.” This acceleration is the vectorial resultant
of (1) an acceleration of magnitude g, directed
outward against so-called gravity, and (2) an ac-
celeration directed toward the axis of rotation of
the earth, of magnitude w? R sin # (w, angular ve-
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§1.3. WEIGHTLESSNESS 17
push of the ground under his feet was driving him away from a natural world line.
Through that flaw in his arrangements, he became responsible for all those accelera-
tions. Put him in space and strap rockets to his legs. No difference!* Again the
responsibility for what he sees is his. Once more he notes that “all objects fall with

*“No difference” spelled out amounts to Einstein’s (1911) principle of the local equivalence between a
“gravitational field” and an acceleration: “We arrive at a very satisfactory interpretation of this law of
experience, if we assume that the systems K and K’ are physically exactly equivalent, that is, if we assume
that we may just as well regard the system K as being in a space fiee from gravitational fields, if we then
regard K as uniformly accelerated. This assumption of exact physical equivalence makes it impossible for
us to speak of the absolute acceleration of the system of reference, just as the usual theory of relativity
forbids us to talk of the absolute velocity of a system; and it makes the equal falling of all bodies in a

gravitational field seem a matter of course.”

locity; R, radius of earth; 6, polar angle measured
from North Pole to location of experiment). This
centripetal acceleration has a vertical component
—w? Rsin?§ too small to come into discussion.
The important component is «? R sin 6 cos 6, di-
rected northward and parallel to the surface of the
earth. It deflects the thread by the angle

horizontal acceleration
vertical acceleration

_ w? Rsin @ cos 6
g

_ 34 cm/sec?

980 cm/sec?

=17 x 1073 radian atd = 45°

sin € cos 0

from the straight line connecting the center of the
earth to the point of support. A difference, dg, of
one part in 10® between g for the two hanging
substances would produce a difference in angle of
hang of plumb bobs equal to 1.7 x 107! radian
at Budapest (f = 42.5°). Eotvos reported 8g/g less
than a few parts in 10°.

Roll, Krotkov, and Dicke, Princeton, 1964: em-
ployed as fiducial acceleration, not the 1.7 cm/sec?
steady horizontal acceleration, produced by the
earth’s rotation at = 45°, but the daily alternat-

ing 0.59 cm/sec? produced by the sun’s attraction.
Reported |g(Au) — g(Al)|/g less than 1 x 10711
See Figure 1.6.

Braginsky and Panov, Moscow, 1971: like Roll,
Krotkov, and Dicke, employed Sun’s attraction as
fiducial acceleration. Reported |g(Pt) — g(AD|/g
less than 1 x 10712,

Beall, 1970: particles that are deflected less by the
Earth’s or the sun’s gravitational field than a pho-
ton would be, effectively travel faster than light.
If they are charged or have other electromagnetic
structure, they would then emit Cerenkov radia-
tion, and reduce their velocity below threshold in
less than a micron of travel. The threshold is at
energies around 103 mc?. Ultrarelativistic particles
in cosmic-ray showers are not easily identified, but
observations of 101 eV muons show that muons
are not “too light” by as much as 5 x 107>. Con-
versely, a particle P bound more strongly than
photons by gravity will tra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>