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CHAPTER 1

GEOMETRODYNAMICS IN BRIEF

§1.1. THE PARABLE OF THE APPLE

One day in the year 1666 Newton had gone to the country,

and seeing the fall of an apple, as his niece told me, let himself
be led into a deep meditation on the cause which thus

draws every object along a line whose extension would pass
almost through the center of the Earth.

VOLTAIRE (1738)

Once upon a time a student lay in a garden under an apple tree reflecting on the
difference between Einstein’s and Newton’s views about gravity. He was startled
by the fall of an apple nearby. As he looked at the apple, he noticed ants beginning
to run along its surface (Figure 1.1). His curiosity aroused, he thought to investigate
the principles of navigation followed by an ant. With his magnifying glass, he noted
one track carefully, and, taking his knife, made a cut in the apple skin one mm
above the track and another cut one mm below it. He peeled off the resulting little
highway of skin and laid it out on the face of his book. The track ran as straight
as a laser beam along this highway. No more economical path could the ant have
found to cover the ten cm from start to end of that strip of skin. Any zigs and
zags or even any smooth bend in the path on its way along the apple peel from
starting point to end point would have increased its length.

“What a beautiful geodesic,” the student commented.

His eye fell on two ants starting off from a common point P in slightly different
directions. Their routes happened to carry them through the region of the dimple
at the top of the apple, one on each side of it. Each ant conscientiously pursued
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4 1. GEOMETRODYNAMICS IN BRIEF

Figure 1.1.

The Riemannian geometry of the spacetime of general relativity is here symbolized by the two-dimen-
sional geometry of the surface of an apple. The geodesic tracks followed by the ants on the apple’s
surface symbolize the world line followed through spacetime by a free particle. In any sufficiently localized
region of spacetime, the geometry can be idealized as flat, as symbolized on the apple’s two-dimensional
surface by the straight-line course of the tracks viewed in the magnifying glass (“local Lorentz character”
of geometry of spacetime). In a region of greater extension, the curvature of the manifold (four-dimen-
sional spacetime in the case of the real physical world; curved two-dimensional geometry in the case
of the apple) makes itself felt. Two tracks ¢ and ¢, originally diverging from a common point ¢, later
approach, cross, and go off in very different directions. In Newtonian theory this effect is ascribed to
gravitation acting at a distance from a center of attraction, symbolized here by the stem of the apple.
According to Einstein a particle gets its moving orders locally, from the geometry of spacetime right
where it is. Its instructions are simple: to follow the straightest possible track (geodesic). Physics is as
simple as it could be locally. Only because spacetime is curved in the large do the tracks cross. Geome-
trodynamics, in brief, is a double story of the effect of geometry on matter (causing originally divergent
geodesics to cross) and the effect of matter on geometry (bending of spacetime initiated by concentration
of mass, symbolized by effect of stem on nearby surface of apple).

his geodesic. Each went as straight on his strip of appleskin as he possibly could.
Yet because of the curvature of the dimple itself, the two tracks not only crossed
but emerged in very different directions.

“What happier illustration of Einstein’s geometric theory of gravity could one

Einstein’s local view of possibly ask?” murmured the student. “The ants move as if they were attracted

physics contrasted with by the apple stem. One might have believed in a Newtonian force at a distance.

Newton’s "‘action at a . .

distance’” Yet from nowhere does an ant get his moving orders except from the local geometry
along his track. This is surely Einstein’s concept that all physics takes place by
‘local action.” What a difference from Newton’s ‘action at a distance’ view of physics!
Now I understand better what this book means.”

Physics is simple only when And so saying, he opened his book and read, “Don’t try to describe motion

analyzed locally relative to faraway objects. Physics is simple only when analyzed locally. And locally
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§1.2. SPACETIME WITH AND WITHOUT COORDINATES 5

the world line that a satellite follows [in spacetime, around the Earth] is already
as straight as any world line can be. Forget all this talk about ‘deflection’ and ‘force
of gravitation.” I'm inside a spaceship. Or I'm floating outside and near it. Do I
feel any ‘force of gravitation’? Not at all. Does the spaceship ‘feel’ such a force?
No. Then why talk about it? Recognize that the spaceship and I traverse a region
of spacetime free of all force. Acknowledge that the motion through that region
is already ideally straight.”

The dinner bell was ringing, but still the student sat, musing to himself. “Let me
see if I can summarize Einstein’s geometric theory of gravity in three ideas: (1)
locally, geodesics appear straight; (2) over more extended regions of space and time,
geodesics originally receding from each other begin to approach at a rate governed
by the curvature of spacetime, and this effect of geometry on matter is what we
mean today by that old word ‘gravitation’; (3) matter in turn warps geometry. The
dimple arises in the apple because the stem is there. I think I see how to put the
whole story even more briefly: Space acts on matter, telling it how to move. In turn,
matter reacts back on space, telling it how to curve. In other words, matter here,”
he said, rising and picking up the apple by its stem, “curves space here. To produce
a curvature in space here is to force a curvature in space there,” he went on, as
he watched a lingering ant busily following its geodesic a finger’s breadth away from
the apple’s stem. “Thus matter here influences matter there. That is Einstein’s
explanation for ‘gravitation.””

Then the dinner bell was quiet, and he was gone, with book, magnifying glass—and

apple.

§1.2. SPACETIME WITH AND WITHOUT COORDINATES

Now it came to me: . . . the independence of the
gravitational acceleration from the nature of the falling
substance, may be expressed as follows: In a

gravitational field (of small spatial extension) things
behave as they do in a space free of gravitation. . . . This
happened in 1908. Why were another seven years required
for the construction of the general theory of relativity?

The main reason lies in the fact that it is not so easy to
free oneself from the idea that coordinates must have an
immediate metrical meaning.

ALBERT EINSTEIN [in Schilpp (1949), pp. 65-67.]

Nothing is more distressing on first contact with the idea of “curved spacetime” than
the fear that every simple means of measurement has lost its power in this unfamiliar
context. One thinks of oneself as confronted with the task of measuring the shape
of a gigantic and fantastically sculptured iceberg as one stands with a meter stick
in a tossing rowboat on the surface of a heaving ocean. Were it the rowboat itself
whose shape were to be measured, the procedure would be simple enough. One
would draw it up on shore, turn it upside down, and drive tacks in lightly at strategic
points here and there on the surface. The measurement of distances from tack to
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Figure 1.2.

The crossing of straws in a barn full of hay is a symbol for the world lines that fill up spacetime. By
their crossings and bends, these world lines mark events with a uniqueness beyond all need of coordinate
systems or coordinates. Typical events symbolized in the diagram, from left to right (black dots), are:
absorption of a photon; reemission of a photon; collision between a particle and a particle; collision
between a photon and a particle; another collision between a photon and a particle; explosion of a
firecracker; and collision of a particle from outside with one of the fragments of that firecracker.

tack would record and reveal the shape of the surface. The precision could be made
arbitrarily great by making the number of tacks arbitrarily large. It takes more daring
to think of driving several score pitons into the towering iceberg. But with all the
daring in the world, how is one to drive a nail into spacetime to mark a point?
Happily, nature provides its own way to localize a point in spacetime, as Einstein
was the first to emphasize. Characterize the point by what happens there! Give a
point in spacetime the name “event.” Where the event lies is defined as clearly and
sharply as where two straws cross each other in a barn full of hay (Figure 1.2). To
say that the event marks a collision of such and such a photon with such and such
a particle is identification enough. The world lines of that photon and that particle
are rooted in the past and stretch out into the future. They have a rich texture of
connections with nearby world lines. These nearby world lines in turn are linked
in a hundred ways with world lines more remote. How then does one tell the location
of an event? Tell first what world lines participate in the event. Next follow each
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Figure 1.3.

Above: Assigning “telephone numbers” to events by way of a system of coordinates. To say that the
coordinate system is “smooth” is to say that events which are almost in the same place have almost
the same coordinates. Below: Putting the same set of events into equally good order by way of a different
system of coordinates. Picked out specially here are two neighboring events: an event named “2” with
coordinates (x°, x!) = (77.2,22.6) and (x°, x!) = (18.5,51.4); and an event named “%” with coordinates
(x%, x1) = (79.9, 20.1) and (x%, xT) = (18.4, 47.1). Events € and # are connected by the separation “vector”
&. (Precise definition of a vector in a curved spacetime demands going to the mathematical limit in
which the two points have an indefinitely small separation [N-fold reduction of the separation ¥ — 2],
and, in the resultant locally flat space, multiplying the separation up again by the factor N [lim N — oo;
“tangent space”; “tangent vector”]. Forego here that proper way of stating matters, and forego complete
accuracy; hence the quote around the word “vector”.) In each coordinate system the separation vector
& is characterized by “components” (differences in coordinate values between ¥ and 2):

(89,8 = (799 — 772, 20.1 — 22.6) = (2.7, — 2.5),
(& &1 = (184 — 185, 47.1 — 51.4) = (—0.1, —4.3).

See Box 1.1 for further discussion of events, coordinates, and vectors.
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8 1. GEOMETRODYNAMICS IN BRIEF

of these world lines. Name the additional events that they encounter. These events
pick out further world lines. Eventually the whole barn of hay is catalogued. Each
event is named. One can find one’s way as surely to a given intersection as the city
dweller can pick his path to the meeting of St. James Street and Piccadilly. No
numbers. No coordinate system. No coordinates.

That most streets in Japan have no names, and most houses no numbers, illustrates
The name of an event can one’s ability to do without coordinates. One can abandon the names of two world
even be arbitrary lines as a means to identify the event where they intersect. Just as one could name

a Japanese house after its senior occupant, so one can and often does attach arbitrary
names to specific events in spacetime, as in Box 1.1.
Coordinates provide a Coordinates, however, are convenient. How else from the great thick catalog of
convenient naming system events, randomly listed, can one easily discover that along a certain world line one
will first encounter event Trinity, then Baker, then Mike, then Argus—but not the
same events in some permuted order?

To order events, introduce coordinates! (See Figure 1.3.) Coordinates are four
indexed numbers per event in spacetime; on a sheet of paper, only two. Trinity
acquires coordinates

(x, x1, x2, x3) = (77,23, 64, 11).

In christening events with coordinates, one demands smoothness but foregoes every
Coordinates generally do not  thought of mensuration. The four numbers for an event are nothing but an elaborate
measure length kind of telephone number. Compare their “telephone” numbers to discover whether
two events are neighbors. But do not expect to learn how many meters separate
them from the difference in their telephone numbers!
Nothing prevents a subscriber from being served by competing telephone systems,
Several coordinate systems nor an event from being catalogued by alternative coordinate systems (Figure 1.3).
can be used at once Box 1.1 illustrates the relationships between one coordinate system and another, as
well as the notation used to denote coordinates and their transformations.
Choose two events, known to be neighbors by the nearness of their coordinate
Vectors values in a smooth coordinate system. Draw a little arrow from one event to the
other. Such an arrow is called a vector. (It is a well-defined concept in flat spacetime,
or in curved spacetime in the limit of vanishingly small length; for finite lengths
in curved spacetime, it must be refined and made precise, under the new name
“tangent vector,” on which see Chapter 9.) This vector, like events, can be given
a name. But whether named “John” or “Charles” or “Kip,” it is a unique, well-
defined geometrical object. The name is a convenience, but the vector exists even
without it.
Just as a quadruple of coordinates

(x% x1, x2, x%) = (77,23, 64, 11)

is a particularly useful name for the event “Trinity” (it can be used to identify what
other events are nearby), so a quadruple of “components”

(£, 8,82, 8) = (1.2, —0.9,0,2.1)
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Box 1.1 MATHEMATICAL NOTATION FOR EVENTS, COORDINATES, AND VECTORS

Events are denoted by capital script, one-letter Latin names such as P, 2,1, B.
Sometimes subscripts are used: Pos P1s B

Coordinates of an event & are denoted by HP), x(P), W(P), z(P),
or by XUP), xU(P), x%(?P),

XH(),

or more abstractly by x*(P) or x*(P),
where it is understood that Greek indices can take on any value 0, 1,
2, or 3.

Time coordinate (when one of the four is picked to play this role) X9(9).

Space coordinates are XH(P), xX(P), x3(P)
and are sometimes denoted by XI(P) or x¥(P) or....

It is to be understood that Latin indices take on values 1, 2, or 3.

Shorthand notation: One soon tires of writing explicitly the functional depen-
dence of the coordinates, x#(%); so one adopts the shorthand notation xB
for the coordinates of the event ¥, and x7
for the space coordinates. One even begins to think of x# as representing
the event & itself, but must remind oneself that the values of x?, x!, x2,
x3 depend not only on the choice of ¢ but also on the arbitrary choice
of coordinates!

Other coordinates for the same event ¥ may be denoted x*() or just x,
xff'(f’/’) or just xf’/,
X*(P) or just x*.

EXAMPLE: In Figure 1.3 (x°, x!) = (77.2,22.6) and (x°, xT) = (18.5,51.4)

refer to the same event. The bars, primes, and hats distinguish one

coordinate system from another; by putting them on the indices rather
than on the x’s, we simplify later notation.

Transformation from one coordinate system to another is achieved by the four
functions x0(x0, x1, x2, x3),
XT(x0, x1, x2, x9),
X2(x0, x1, X2, x9),
X3(x0, x1, x2, x3),
which are denoted more succinctly x%(xP).

Separation vector* (little arrow) reaching from one event £ to neighboring event

& can be denoted abstractly by uorvoré, or? — 2.
It can also be characterized by the coordinate-value differencest between
? and £ (called “components” of the vector) £ = xYP) — x42),

£ = xYP) — x42).

Transformation of components of a vector from one coordinate system to another

a
is achieved by partial derivatives of transformation equations g — gxﬁ B,
X
since £ = x4P) — x%2) = (0x*/oxP)xP(P) — xB(D)).7
Einstein summation convention is used here: Ox® 3 5xd
any index that is repeated in a product is automatically summed on P = > _X~§B.
oxh =0 oxB

*This definition of a vector is valid only in flat spacetime. The refined definition (“tangent vector”) in curved spacetime
is not spelled out here (see Chapter 9), but flat-geometry ideas apply with good approximation even in a curved geometry,
when the two points are sufficiently close.

T These formulas are precisely accurate only when the region of spacetime under consideration is flat and when in addition
the coordinates are Lorentzian. Otherwise they are approximate—though they become arbitrarily good when the separation
between points and the length of the vector become arbitrarily small.
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10 1. GEOMETRODYNAMICS IN BRIEF

is a convenient name for the vector “John” that reaches from

(x%, x1, x2, x%) = (77,23, 64, 11)
to
(x% x1, x2, x%) = (78.2,22.1, 64.0, 13.1).

How to work with the components of a vector is explored in Box 1.1.
There are many ways in which a coordinate system can be imperfect. Figure 1.4

Coordinate singularities illustrates a coordinate singularity. For another example of a coordinate singularity,

normally unavoidable run the eye over the surface of a globe to the North Pole. Note the many meridians
that meet there (“collapse of cells of egg crates to zero content”). Can’t one do better?
Find a single coordinate system that will cover the globe without singularity? A
theorem says no. Two is the minimum number of “coordinate patches” required
to cover the two-sphere without singularity (Figure 1.5). This circumstance empha-
sizes anew that points and events are primary, whereas coordinates are a mere
bookkeeping device.

Continuity of spacetime Figures 1.2 and 1.3 show only a few world lines and events. A more detailed
diagram would show a maze of world lines and of light rays and the intersections
between them. From such a picture, one can in imagination step to the idealized
limit: an infinitely dense collection of light rays and of world lines of infinitesimal
test particles. With this idealized physical limit, the mathematical concept of a

The mathematics of continuous four-dimensional “manifold” (four-dimensional space with certain

manifolds applied to the smoothness properties) has a one-to-one correspondence; and in this limit continu-

physics of spacetime ous, differentiable (i.e., smooth) coordinate systems operate. The mathematics then
supplies a tool to reason about the physics.

Dimensionality of spacetime A simple countdown reveals the dimensionality of the manifold. Take a point &
in an n-dimensional manifold. Its neighborhood is an n-dimensional ball (i.e., the
interior of a sphere whose surface has n — 1 dimensions). Choose this ball so that
its boundary is a smooth manifold. The dimensionality of this manifold is (n — ).
In this (n — 1)-dimensional manifold, pick a point 2. Its neighborhood is an
(n — 1)-dimensional ball. Choose this ball so that..., and so on. Eventually one
comes by this construction to a manifold that is two-dimensional but is not yet known
to be two-dimensional (two-sphere). In this two-dimensional manifold, pick a point
9. Its neighborhood is a two-dimensional ball (“disc”). Choose this disc so that
its boundary is a smooth manifold (circle). In this manifold, pick a point 9. Its
neighborhood is a one-dimensional ball, but is not yet known to be one-dimensional
(“line segment”). The boundaries of this object are two points. This circumstance
tells that the intervening manifold is one-dimensional; therefore the previous mani-
fold was two-dimensional; and so on. The dimensionality of the original manifold
is equal to the number of points employed in the construction. For spacetime, the
dimensionality is 4.

This kind of mathematical reasoning about dimensionality makes good sense at
the everyday scale of distances, at atomic distances (10~® cm), at nuclear dimensions
(10-13 cm), and even at lengths smaller by several powers of ten, if one judges by
the concord between prediction and observation in quantum electrodynamics at high

For general queries, contact webmaster@press.princeton.edu



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

=m
r=18m {

r=22m 24m 26m  28m  30m

Figure 1.4.
How a mere coordinate singularity arises. Above: A coordinate system becomes singular when the “cells
in the egg crate” are squashed to zero volume. Below: An example showing such a singularity in the
Schwarzschild coordinates r, 7 often used to describe the geometry around a black hole (Chapter 31).
For simplicity the angular coordinates 6, ¢ have been suppressed. The singularity shows itself in two
ways. First, all the points along the dotted line, while quite distinct one from another, are designated
by the same pair of (r, 7) values; namely, r = 2m, 1 = oo. The coordinates provide no way to distinguish
these points. Second, the “cells in the egg crate,” of which one is shown grey in the diagram, collapse
to zero content at the dotted line. In summary, there is nothing strange about the geometry at the dotted
line; all the singularity lies in the coordinate system (“poor system of telephone numbers”). No confusion
should be permitted to arise from the accidental circumstance that the ¢ coordinate attains an infinite
value on the dotted line. No such infinity would occur if 7 were replaced by the new coordinate 7, defined
by _

(t/2m) = tan(t/2m).
When ¢ = oo, the new coordinate 7 is 7 = =m. The r, ¢ coordinates still provide no way to distinguish
the points along the dotted line. They still give “cells in the egg crate” collapsed to zero content along
the dotted line.
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Figure 1.5.

Singularities in familiar coordinates on the two-sphere can be eliminated by covering the sphere with
two overlapping coordinate patches. A. Spherical polar coordinates, singular at the North and South
Poles, and discontinuous at the international date line. B. Projection of the Euclidean coordinates of
the Euclidean two-plane, tangent at the North Pole, onto the sphere via a line running to the South
Pole; coordinate singularity at the South Pole. C. Coverage of two-sphere by two overlapping coordinate
patches. One, constructed as in B, covers without singularity the northern hemisphere and also the
southern tropics down to the Tropic of Capricorn. The other (grey) also covers without singularity all
of the tropics and the southern hemisphere besides.

energies (corresponding de Broglie wavelength 10716 cm). Moreover, classical general

relativity thinks of the spacetime manifold as a deterministic structure, completely

well-defined down to arbitrarily small distances. Not so quantum general relativity
Breakdown in smoothness of ~ or “quantum geometrodynamics.” It predicts violent fluctuations in the geometry
spacetime at Planck length at distances on the order of the Planck length,

LY = (hG/CS)l/Z
= [(1.054 x 10727 g cm?/sec)(6.670 X 1078 cm?/g sec?)]/2 X
X (2.998 x 1019 cm/sec) %2 (1.1)

1.616 x 10733 cm.

No one has found any way to escape this prediction. As nearly as one can estimate,
these fluctuations give space at small distances a “multiply connected” or “foamlike”
character. This lack of smoothness may well deprive even the concept of dimension-
ality itself of any meaning at the Planck scale of distances. The further exploration
of this issue takes one to the frontiers of Einstein’s theory (Chapter 44).

If spacetime at small distances is far from the mathematical model of a continuous
manifold, is there not also at larger distances a wide gap between the mathematical
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idealization and the physical reality? The infinitely dense collection of light rays
and of world lines of infinitesimal test particles that are to define all the points of
the manifold: they surely are beyond practical realization. Nobody has ever found
a particle that moves on timelike world lines (finite rest mass) lighter than an electron.
A collection of electrons, even if endowed with zero density of charge (e* and e~
world lines present in equal numbers) will have a density of mass. This density will
curve the very manifold under study. Investigation in infinite detail means unlimited
density, and unlimited disturbance of the geometry.

However, to demand investigatability in infinite detail in the sense just described
is as out of place in general relativity as it would be in electrodynamics or gas
dynamics. Electrodynamics speaks of the strength of the electric and magnetic field
at each point in space and at each moment of time. To measure those fields, it is
willing to contemplate infinitesimal test particles scattered everywhere as densely
as one pleases. However, the test particles do not have to be there at all to give
the field reality. The field has everywhere a clear-cut value and goes about its
deterministic dynamic evolution willy-nilly and continuously, infinitesimal test
particles or no infinitesimal test particles. Similarly with the geometry of space.

In conclusion, when one deals with spacetime in the context of classical physics,
one accepts (1) the notion of “infinitesimal test particle” and (2) the idealization
that the totality of identifiable events forms a four-dimensional continuous manifold.
Only at the end of this book will a look be taken at some of the limitations placed
by the quantum principle on one’s way of speaking about and analyzing spacetime.

§1.3. WEIGHTLESSNESS

“Gravity is a great mystery. Drop a stone. See it fall. Hear it hit. No one understands
why.” What a misleading statement! Mystery about fall? What else should the stone
do except fall? To fall is normal. The abnormality is an object standing in the way
of the stone. If one wishes to pursue a “mystery,” do not follow the track of the
falling stone. Look instead at the impact, and ask what was the force that pushed
the stone away from its natural “world line,” (i.e., its natural track through space-
time). That could lead to an interesting issue of solid-state physics, but that is not
the topic of concern here. Fall is. Free fall is synonymous with weightlessness:
absence of any force to drive the object away from its normal track through space-
time. Travel aboard a freely falling elevator to experience weightlessness. Or travel
aboard a spaceship also falling straight toward the Earth. Or, more happily, travel
aboard a spaceship in that state of steady fall toward the Earth that marks a circular
orbit. In each case one is following a natural track through spacetime.

The traveler has one chemical composition, the spaceship another; yet they travel
together, the traveler weightless in his moving home. Objects of such different nuclear
constitution as aluminum and gold fall with accelerations that agree to better than
one part in 1011, according to Roll, Krotkov, and Dicke (1964), one of the most
important null experiments in all physics (see Figure 1.6). Individual molecules fall
in step, too, with macroscopic objects [Estermann, Simpson, and Stern (1938)]; and
so do individual neutrons [Dabbs, Harvey, Paya, and Horstmann (1965)], individual

(continued on page 16)
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Figure 1.6.

Principle of the Roll-Krotkov-Dicke experiment, which showed that the gravitational accelerations of
gold and aluminum are equal to 1 part in 101* or better (Princeton, 1964). In the upper lefthand corner,
equal masses of gold and aluminum hang from a supporting bar. This bar in turn is supported at its
midpoint. If both objects fall toward the sun with the same acceleration of g = 0.59 cm/sec?, the bar
does not turn. If the Au mass receives a higher acceleration, g + g, then the gold end of the bar starts
to turn toward the sun in the Earth-fixed frame. Twelve hours later the sun is on the other side, pulling
the other way. The alternating torque lends itself to recognition against a background of noise because
of its precise 24-hour period. Unhappily, any substantial mass nearby, such as an experimenter, located
at M, will produce a torque that swamps the effect sought. Therefore the actual arrangement was as
shown in the body of the figure. One gold weight and two aluminum weights were supported at the
three corners of a horizontal equilateral triangle, 6 cm on a side (three-fold axis of symmetry, giving
zero response to all the simplest nonuniformities in the gravitational field). Also, the observers performed
all operations remotely to eliminate their own gravitational effects*. To detect a rotation of the torsion
balance as small as ~1079 rad without disturbing the balance, Roll, Krotkov, and Dicke reflected a
very weak light beam from the optically flat back face of the quartz triangle. The image of the source
slit fell on a wire of about the same size as the slit image. The light transmitted past the wire fell on
a photomultiplier. A separate oscillator circuit drove the wire back and forth across the image at 3,000
hertz. When the image was centered perfectly, only even harmonics of the oscillation frequency appeared
in the light intensity. However, when the image was displaced slightly to one side, the fundamental
frequency appeared in the light intensity. The electrical output of the photomultiplier then contained
a 3,000-hertz component. The magnitude and sign of this component were determined automatically.
Equally automatically a proportional p.c. voltage was applied to the electrodes shown in the diagram.
It restored the torsion balance to its zero position. The p.c. voltage required to restore the balance to
its zero position was recorded as a measure of the torque acting on the pendulum. This torque was
Fourier-analyzed over a period of many days. The magnitude of the Fourier component of 24-hour
period indicated a ratio 8g/g = (0.96 == 1.04) x 10~!'. Aluminum and gold thus fall with the same
acceleration, despite their important differences summarized in the table.

Ratios Al Au

Number of neutrons 108 15
Number of protons ’ ’
Mass of kineti f K-elect

inetic ene{gy o electron 0.005 0.16

Rest mass of electron
Electrostati - f leus
ectrostatic mass-energy of nucleus 0.001 0.004

Mass of atom

The theoretical implications of this experiment will be discussed in greater detail in Chapters 16 and 38.

Braginsky and Panov (1971) at Moscow University performed an experiment identical in principle
to that of Dicke-Roll-Krotkov, but with a modified experimental set-up. Comparing the accelerations
of platinum and aluminum rather than of gold and aluminum, they say that

0g/g <1 x 10712

*Other perturbations had to be, and were, guarded against. (1) A bit of iron on the torsion balance
as big as 1073 cm on a side would have contributed, in the Earth’s magnetic field, a torque a hundred
times greater than the measured torque. (2) The unequal pressure of radiation on the two sides of a
mass would have produced an unacceptably large perturbation if the temperature difference between
these two sides had exceeded 10~* °K. (3) Gas evolution from one side of a mass would have propelled
it like a rocket. If the rate of evolution were as great as 1078 g/day, the calculated force would have
been ~ 1077 g cm/sec?, enough to affect the measurements. (4) The rotation was measured with respect
to the pier that supported the equipment. As a guarantee that this pier did not itself rotate, it was anchored
to bed rock. (5) Electrostatic forces were eliminated; otherwise they would have perturbed the balance.
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electrons [Witteborn and Fairbank (1967)] and individual mu mesons [Beall (1970)].
What is more, not one of these objects has to see out into space to know how to

move.

Contemplate the interior of a spaceship, and a key, penny, nut, and pea by accident
or design set free inside. Shielded from all view of the world outside by the walls
of the vessel, each object stays at rest relative to the vessel. Or it moves through
the room in a straight line with uniform velocity. That is the lesson which experience
shouts out.

Forego talk of acceleration! That, paradoxically, is the lesson of the circumstance
that “all objects fall with the same acceleration.” Whose fault were those accelera-
tions, after all? They came from allowing a groundbased observer into the act. The

Box 1.2 MATERIALS OF THE MOST DIVERSE COMPOSITION FALL WITH
THE SAME ACCELERATION (““STANDARD WORLD LINE")

Aristotle: “the downward movement of a mass of
gold or lead, or of any other body endowed with
weight, is quicker in proportion to its size.”

Pre-Galilean literature: metal and wood weights
fall at the same rate.

Galileo: (1) “the variation of speed in air between
balls of gold, lead, copper, porphyry, and other
heavy materials is so slight that in a fall of 100
cubits [about 46 meters] a ball of gold would surely
not outstrip one of copper by as much as four
fingers. Having observed this, I came to the con-
clusion that in a medium totally void of resistance
all bodies would fall with the same speed.” (2)
later experiments of greater precision “diluting
gravity” and finding same time of descent for
different objects along an inclined plane.

Newton: inclined plane replaced by arc of pendu-
lum bob; “time of fall” for bodies of different
composition determined by comparing time of
oscillation of pendulum bobs of the two materials.
Ultimate limit of precision in such experiments
limited by problem of determining effective length
of each pendulum: (acceleration) = (27/pe-
riod)?(length).

Lorand von Eotvos, Budapest, 1889 and 1922:
compared on the rotating earth the vertical defined
by a plumb bob of one material with the vertical
defined by a plumb bob of other material. The
two hanging masses, by the two unbroken threads
that support them, were drawn along identical
world lines through spacetime (middle of the labo-
ratory of Eotvos!). If cut free, would they also
follow identical tracks through spacetime (“normal
world line of test mass”)? If so, the acceleration
that draws the actual world line from the normal
free-fall world line will have a standard value, a.
The experiment of E6tvds did not try to test agree-
ment on the magnitude of a between the two
masses. Doing so would have required (1) cutting
the threads and (2) following the fall of the two
masses. Eotvos renounced this approach in favor
of a static observation that he could make with
greater precision, comparing the direction of a for
the two masses. The direction of the supporting
thread, so his argument ran, reveals the direction
in which the mass is being dragged away from its
normal world line of “free fall” or “weightless-
ness.” This acceleration is the vectorial resultant
of (1) an acceleration of magnitude g, directed
outward against so-called gravity, and (2) an ac-
celeration directed toward the axis of rotation of
the earth, of magnitude w? R sin # (w, angular ve-
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§1.3. WEIGHTLESSNESS 17
push of the ground under his feet was driving him away from a natural world line.
Through that flaw in his arrangements, he became responsible for all those accelera-
tions. Put him in space and strap rockets to his legs. No difference!* Again the
responsibility for what he sees is his. Once more he notes that “all objects fall with

*“No difference” spelled out amounts to Einstein’s (1911) principle of the local equivalence between a
“gravitational field” and an acceleration: “We arrive at a very satisfactory interpretation of this law of
experience, if we assume that the systems K and K’ are physically exactly equivalent, that is, if we assume
that we may just as well regard the system K as being in a space fiee from gravitational fields, if we then
regard K as uniformly accelerated. This assumption of exact physical equivalence makes it impossible for
us to speak of the absolute acceleration of the system of reference, just as the usual theory of relativity
forbids us to talk of the absolute velocity of a system; and it makes the equal falling of all bodies in a

gravitational field seem a matter of course.”

locity; R, radius of earth; 6, polar angle measured
from North Pole to location of experiment). This
centripetal acceleration has a vertical component
—w? Rsin?§ too small to come into discussion.
The important component is «? R sin 6 cos 6, di-
rected northward and parallel to the surface of the
earth. It deflects the thread by the angle

horizontal acceleration
vertical acceleration

_ w? Rsin @ cos 6
g

_ 34 cm/sec?

980 cm/sec?

=17 x 1073 radian atd = 45°

sin € cos 0

from the straight line connecting the center of the
earth to the point of support. A difference, dg, of
one part in 10® between g for the two hanging
substances would produce a difference in angle of
hang of plumb bobs equal to 1.7 x 107! radian
at Budapest (f = 42.5°). Eotvos reported 8g/g less
than a few parts in 10°.

Roll, Krotkov, and Dicke, Princeton, 1964: em-
ployed as fiducial acceleration, not the 1.7 cm/sec?
steady horizontal acceleration, produced by the
earth’s rotation at = 45°, but the daily alternat-

ing 0.59 cm/sec? produced by the sun’s attraction.
Reported |g(Au) — g(Al)|/g less than 1 x 10711
See Figure 1.6.

Braginsky and Panov, Moscow, 1971: like Roll,
Krotkov, and Dicke, employed Sun’s attraction as
fiducial acceleration. Reported |g(Pt) — g(AD|/g
less than 1 x 10712,

Beall, 1970: particles that are deflected less by the
Earth’s or the sun’s gravitational field than a pho-
ton would be, effectively travel faster than light.
If they are charged or have other electromagnetic
structure, they would then emit Cerenkov radia-
tion, and reduce their velocity below threshold in
less than a micron of travel. The threshold is at
energies around 103 mc?. Ultrarelativistic particles
in cosmic-ray showers are not easily identified, but
observations of 101 eV muons show that muons
are not “too light” by as much as 5 x 107>. Con-
versely, a particle P bound more strongly than
photons by gravity will transfer the momentum
needed to make pair production y — P + P occur
within a submicron decay length. The existence of
photons with energies above 1013 eV shows that
e* are not “too heavy” by 5 parts in 109, u* not
by 2 in 10%, A, ==, £~ not by a few per cent.

J
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Figure 1.7.

“Weightlessness” as test for a local inertial frame of reference (“Lorentz frame”). Each spring-driven
cannon succeeds in driving its projectile, a steel ball bearing, through the aligned holes in the sheets
of lucite, and into the woven-mesh pocket, when the frame of reference is free of rotation and in free
fall (“normal world line through spacetime”). A cannon would fail (curved and ricocheting trajectory
at bottom of drawing) if the frame were hanging as indicated when the cannon went off (“frame drawn
away by pull of rope from its normal world line through spacetime”). Harold Waage at Princeton has
constructed such a model for an inertial reference frame with lucite sheets about 1 m square. The “fuses”
symbolizing time delay were replaced by electric relays. Penetration fails if the frame (1) rotates, (2)
accelerates, or (3) does any combination of the two. It is difficult to cite any easily realizable device
that more fully illustrates the meaning of the term “local Lorentz frame.”

the same acceleration.” Physics looks as complicated to the jet-driven observer as
it does to the man on the ground. Rule out both observers to make physics look
simple. Instead, travel aboard the freely moving spaceship. Nothing could be more
natural than what one sees: every free object moves in a straight line with uniform
velocity. This is the way to do physics! Work in a very special coordinate system:
Eliminate the acceleration by ~ a coordinate frame in which one is weightless; a local inertial frame of reference.
use of a local inertial frame Or calculate how things look in such a frame. Or—if one is constrained to a ground-
based frame of reference—use a particle moving so fast, and a path length so limited,
that the ideal, freely falling frame of reference and the actual ground-based frame
get out of alignment by an amount negligible on the scale of the experiment. [Given
a 1,500-m linear accelerator, and a 1 GeV electron, time of flight ~ (1.5 X 10° cm)/
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(3 x 100 cm/sec) = 0.5 X 1075 sec; fall in this time ~3 gr? = (490 cm/sec?)(0.5 X
1072 sec)? ~ 1078 cm.]

In analyzing physics in a local inertial frame of reference, or following an ant
on his little section of apple skin, one wins simplicity by foregoing every reference
to what is far away. Physics is simple only when viewed locally: that is Einstein’s
great lesson.

Newton spoke differently: “Absolute space, in its own nature, without relation
to anything external, remains always similar and immovable.” But how does one
give meaning to Newton’s absolute space, find its cornerstones, mark out its straight
lines? In the real world of gravitation, no particle ever follows one of Newton’s
straight lines. His ideal geometry is beyond observation. “A comet going past the
sun is deviated from an ideal straight line.” No. There is no pavement on which
to mark out that line. The “ideal straight line” is a myth. It never happened, and
it never will.

“It required a severe struggle [for Newton] to arrive at the concept of independent
and absolute space, indispensible for the development of theory. . . . Newton’s decision
was, in the contemporary state of science, the only possible one, and particularly the
only fruitful one. But the subsequent development of the problems, proceeding in a
roundabout way which no one could then possibly foresee, has shown that the resistance
of Leibniz and Huygens, intuitively well-founded but supported by inadequate argu-
ments, was actually justified. . . . It has required no less strenuous exertions subsequently

to overcome this concept [of absolute space]”
[A. EINSTEIN (1954)].
What is direct and simple and meaningful, according to Einstein, is the geometry
in every local inertial reference frame. There every particle moves in a straight line
with uniform velocity. Define the local inertial frame so that this simplicity occurs
for the first few particles (Figure 1.7). In the frame thus defined, every other free
particle is observed also to move in a straight line with uniform velocity. Collision
and disintegration processes follow the laws of conservation of momentum and
energy of special relativity. That all these miracles come about, as attested by tens
of thousands of observations in elementary particle physics, is witness to the inner
workings of the machinery of the world. The message is easy to summarize: (1)
physics is always and everywhere locally Lorentzian; i.e., locally the laws of special
relativity are valid; (2) this simplicity shows most clearly in a local Lorentz frame
of reference (“inertial frame of reference”; Figure 1.7); and (3) to test for a local

Lorentz frame, test for weightlessness!

§1.4. LOCAL LORENTZ GEOMETRY,
WITH AND WITHOUT COORDINATES

On the surface of an apple within the space of a thumbprint, the geometry is
Euclidean (Figure 1.1; the view in the magnifying glass). In spacetime, within a
limited region, the geometry is Lorentzian. On the apple the distances between point
and point accord with the theorems of Euclid. In spacetime the intervals (“proper
distance,” “proper time”) between event and event satisfy the corresponding theo-
rems of Lorentz-Minkowski geometry (Box 1.3). These theorems lend themselves

(continued on page 23)
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~

Box 1.3 LOCAL LORENTZ GEOMETRY AND LOCAL EUCLIDEAN GEOMETRY:
WITH AND WITHOUT COORDINATES

I. Local Euclidean Geometry

What does it mean to say that the geometry of B
a tiny thumbprint on the apple is Euclidean?
A. Coordinate-free language (Euclid):
Given a line ¢¢. Extend it by an equal
distance ¢Z. Let % be a point not on &%
but equidistant from & and £. Then

2 — 2 2
Ses” = Sqe + Spe”

a ¢ Z
(Theorem of Pythagoras; also other theo-
rems of Euclidean geometry.)
B. Language of coordinates (Descartes):
From any point & to any other point % [ERE
there is a distance s given in suitable (Eucli- , / B
dean) coordinates by x4 =1 /
y x2 =10 /
Sgg” = [XHB) — xH@)F + [x*(B) — XHD)F.
x? =
If one succeeds in finding any coordinate . g
system where this is true for all points & v 7,
and % in the thumbprint, then one is guar- x2 =17
anteed that (i) this coordinate system is ‘G "J “’l "l“
locally Euclidean, and (ii) the geometry of T N T N

the apple’s surface is locally Euclidean.

Il. Local Lorentz Geometry

What does it mean to say that the geometry of

a sufficiently limited region of spacetime in the

real physical world is Lorentzian?

A. Coordinate-free language (Robb 1936):

Let ¢ be the world line of a free particle.
Let 4 be an event not on this world line.
Let a light ray from % strike #£ at the
event 2. Let a light ray take off from such
an earlier event ¢ along £ that it reaches
3. Then the proper distance s, (spacelike
separation) or proper time 7, (timelike
separation) is given by

2 — 2
\ Sea” = —Ted” = —TgaTgo /
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~

Proof of above criterion for local Lorentz
geometry, using coordinate methods in the

local Lorentz frame where particle remains
at rest:

Tpg” = 12 — X* = (1 = x)({ + x)

=TT o

Y

B. Language of coordinates (Lorentz, Poincaré,
Minkowski, Einstein):
From any event & to any other nearby
event @, there is a proper distance s,.; or
proper time 7,, given in suitable (local
Lorentz) coordinates by

Spit = —Tpp” = —[x%(B) — x%@) x0 = B
+ [x1(B) — xH )P 0_3 »
+ [X2(B) — XA@)P g Pt
+ [x3(B) — X3 = /r
0 _

If one succeeds in finding any coordinate =l (4

system where this is locally true for all X! :Om T

neighboring events ¢ and %, then one is T

guaranteed that (i) this coordinate system Tk kR &

is locally Lorentzian, and (ii) the geometry
of spacetime is locally Lorentzian.

Ill. Statements of Fact

The geometry of an apple’s surface is locally Eu-
clidean everywhere. The geometry of spacetime is
locally Lorentzian everywhere.
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Box 1.3 (continued)

Local Geometry in the Language of
Modern Mathematics

A. The metric for any manifold:

At each point on the apple, at each event
of spacetime, indeed, at each point of any
“Riemannian manifold,” there exists a geo-
metrical object called the merric tensor g.
It is a machine with two input slots for the
insertion of two vectors:

slot 1 slot 2
} }
g( ; )-

Ifoneinsertsthe same vectoruinto both slots,
one gets out the square of the length of u:

g(u,u) = u>.

If one inserts two different vectors, u and v
(it matters not in which order!), one gets out
a number called the “scalar product of & on
v” and denoted u - v:

guv)=gvu)=u-v=v-u.
The metric is a linear machine:

9gQ2u + 3w, v) = 2g(u,v) + 3g(w, v),
g(u,av + bw) = ag(u, v) + bg(u, w).

Consequently, in a given (arbitrary) coordi-
nate system, its operation on two vectors can
be written in terms of their components as a
bilinear expression:

g(u,v) = g, zuvh
(implied summation on «a, f3)
= gu'vt + gu'v? + goutvt + -

The quantit.ies ap = &pa (a and f8 running
from O to 3 in spacetime, from 1 to 2 on the
apple) are called the “components of g in the
given coordinate system.”

Components of the metric in local Lorentz and
local Euclidean frames:

To connect the metric with our previous de-
scriptions of the local geometry, introduce
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local Euclidean coordinates (on apple) or
local Lorentz coordinates (in spacetime).

/ B

/

¢/
/

o/

Let & be the separation vector reaching from
& to 9. Its components in the local Eucli-
dean (Lorentz) coordinates are

£ = x¥B) — x¥&)

(cf.Box 1.1). Then the squared length of u,.;,
which is the same as the squared distance
from & to %, must be (cf. [.B. and I1.B. above)

& g&. &) = ga,géaiﬁ
Spqt = (82 + (£%)? on apple
— ()2 + (£92 + (&) + (&)

in spacetime.

Consequently, the components of the met-
ric are

o BT 82 = g1, =80 = (_)§

L€, gup = Onp on apple, in
local Euclidean
coordinates;

8o = —L g = Q» ik = (?jk .
in spacetime, in
local Lorentz
coordinates.

These special components of the metric in
local Lorentz coordinates are written here
and hereafter as g;, or 1,5, by analogy
with the Kronecker delta §,5. In matrix
notation:

— B —
0o 1 2 3

| o|-1 0 0 0

lgaph = lnggll =a 1 0 1 0 0
200 0 10

l3 000 1

For general queries, contact webmaster@press.princeton.edu




© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

§1.5. TIME 23

to empirical test in the appropriate, very special coordinate systems: Euclidean
coordinates in Euclidean geometry; the natural generalization of Euclidean coordi-
nates (local Lorentz coordinates; local inertial frame) in the local Lorentz geometry
of physics. However, the theorems rise above all coordinate systems in their content.
They refer to intervals or distances. Those distances no more call on coordinates
for their definition in our day than they did in the time of Euclid. Points in the
great pile of hay that is spacetime; and distances between these points: that is
geometry! State them in the coordinate-free language or in the language of coordi-
nates: they are the same (Box 1.3).

§1.5. TIME

Time is defined so that motion looks simple.

Time is awake when all things sleep.
Time stands straight when all things fall.
Time shuts in all and will not be shut.
Is, was, and shall be are Time’s children.
O Reasoning, be witness, be stable.

VYASA, the Mahabarata (ca. A.D. 400)

Relative to a local Lorentz frame, a free particle “moves in a straight line with
uniform velocity.” What “straight” means is clear enough in the model inertial
reference frame illustrated in Figure 1.7. But where does the “uniform velocity” come
in? Or where does “velocity” show itself? There is not even one clock in the drawing!

A more fully developed model of a Lorentz reference frame will have not only
holes, as in Fig. 1.7, but also clock-activated shutters over each hole. The projectile
can reach its target only if it (1) travels through the correct region in space and
(2) gets through that hole in the correct interval of time (“window in time”). How
then is time defined? Time is defined so that motion looks simple!

No standard of time is more widely used than the day, the time from one high
noon to the next. Take that as standard, however, and one will find every good clock
or watch clashing with it, for a simple reason. The Earth spins on its axis and also
revolves in orbit about the sun. The motion of the sun across the sky arises from
neither effect alone, but from the two in combination, different in magnitude though
they are. The fast angular velocity of the Earth on its axis (roughly 366.25 complete
turns per year) is wonderfully uniform. Not so the apparent angular velocity of the
sun about the center of the Earth (one turn per year). It is greater than average
by 2 per cent when the Earth in its orbit (eccentricity 0.017) has come 1 per cent
closer than average to the sun (Kepler’s law) and lower by 2 per cent when the
Earthis 1 per cent further than average from the sun. In the first case, the momentary
rate of rotation of the sun across the sky, expressed in turns per year, is approximately

366.25 — (1 + 0.02);
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in the other,

366.25 — (1 — 0.02).

Taking the “mean solar day” to contain 24 X 3,600 = 86,400 standard seconds, one
sees that, when the Earth is 1 per cent closer to (or further from) the sun than average,
then the number of standard seconds from one high noon to the next is greater
(or less) than normal by

0.02 (drop in turns per year)

86,400 sec ~ 4.7 sec.
365.25 (turns per year on average)

This is the bookkeeping on time from noon to noon. No standard of time that varies
so much from one month to another is acceptable. If adopted, it would make the
speed of light vary from month to month!

This lack of uniformity, once recognized (and it was already recognized by the
ancients), forces one to abandon the solar day as the standard of time; that day
does not make motion look simple. Turn to a new standard that eliminates the motion
of the Earth around the sun and concentrates on the spin of the Earth about its
axis: the sidereal day, the time between one arrival of a star at the zenith and the
next arrival of that star at the zenith. Good! Or good, so long as one’s precision
of measurement does not allow one to see changes in the intrinsic angular velocity
of the Earth. What clock was so bold as first to challenge the spin of the Earth for
accuracy? The machinery of the heavens.

Halley (1693) and later others, including Kant (1754), suspected something was
amiss from apparent discrepancies between the paths of totality in eclipses of the
sun, as predicted by Newtonian gravitation theory using the standard of time then
current, and the location of the sites where ancient Greeks and Romans actually
recorded an eclipse on the day in question. The moon casts a moving shadow in
space. On the day of a solar eclipse, that shadow paints onto the disk of the spinning
Earth a black brush stroke, often thousands of kilometers in length, but of width
generally much less than a hundred kilometers. He who spins the globe upon the
table and wants to make the shadow fall rightly on it must calculate back meticu-
lously to determine two key items: (1) where the moon is relative to Earth and sun
at each moment on the ancient day in question; and (2) how much angle the Earth
has turned through from then until now. Take the eclipse of Jan. 14, A.p. 484, as
an example (Figure 1.8), and assume the same angular velocity for the Earth in
the intervening fifteen centuries as the Earth had in 1900 (astronomical reference
point). One comes out wrong. The Earth has to be set back by 30° (or the moon
moved from its computed position, or some combination of the two effects) to make
the Athens observer fall under the black brush. To catch up those 30° (or less, if
part of the effect is due to a slow change in the angular momentum of the moon),
the Earth had to turn faster in the past than it does today. Assigning most of the
discrepancy to terrestrial spin-down (rate of spin-down compatible with modern
atomic-clock evidence), and assuming a uniform rate of slowing from then to now
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Figure 1.8.

Calculated path of totality for the eclipse of January 14, A.D. 484 (left; calculation based on no spin-down
of Earth relative to its 1900 angular velocity) contrasted with the same path as set ahead enough to
put the center of totality (at sunrise) at Athens [displacement very close to 30°; actual figure of deceleration
adopted in calculations, 32.75 arc sec/(century)?]. This is “undoubtedly the most reliable of all ancient
European eclipses,” according to Dr. F. R. Stephenson, of the Department of Geophysics and Planetary
Physics of the University of Newcastle upon Tyne, who most kindly prepared this diagram especially
for this book. He has also sent a passage from the original Greek biography of Proclus of Athens (died
at Athens A.D. 485) by Marinus of Naples, reading, “Nor were there portents wanting in the year which
preceded his death; for example, such a great eclipse of the Sun that night seemed to fall by day. For
a profound darkness arose so that stars even appeared in the sky. This happened in the eastern sky
when the Sun dwelt in Capricorn” [from Westermann and Boissonade (1878)].

Does this 30° for this eclipse, together with corresponding amounts for other eclipses, represent the
“right” correction? “Right” is no easy word. From one total eclipse of the sun in the Mediterranean
area to another is normally many years. The various provinces of the Greek and Roman worlds were
far from having a uniform level of peace and settled life, and even farther from having a uniform standard
of what it is to observe an eclipse and put it down for posterity. If the scores of records of the past
are unhappily fragmentary, even more unhappy has been the willingness of a few uncritical “investigators”
in recent times to rush in and identify this and that historical event with this and that calculated eclipse.
Fortunately, by now a great literature is available on the secular deceleration of the Earth’s rotation,
in the highest tradition of critical scholarship, both astronomical and historical. In addition to the books
of O. Neugebauer (1959) and Munk and MacDonald (1960), the paper of Curott (1966), and items cited
by these workers, the following are key items. (For direction to them, we thank Professor Otto Neuge-
bauer—no relation to the other Neugebauer cited below!) For the ancient records, and for calculations
of the tracks of ancient eclipses, F. K. Ginzel (1882, 1883, 1884); for an atlas of calculated eclipse tracks,
Oppolzer (1887) and Ginzel (1899); and for a critical analysis of the evidence. P. V. Neugebauer (1927,
1929, and 1930). This particular eclipse was chosen rather than any other because of the great reliability
of the historical record of it.
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(angular velocity correction proportional to first power of elapsed time: angle cor-
rection itself proportional to square of elapsed time), one estimates from a correction
of

30° or 2 hours 1,500 years ago
the following corrections for intermediate times:

30°/102%, or 1.2 min 150 years ago,
30°/10%, or 0.8 sec 15 years ago.

Thus one sees the downfall of the Earth as a standard of time and its replacement
by the orbital motions of the heavenly bodies as a better standard: a standard that
does more to “make motion look simple.” Astronomical time is itself in turn today
being supplanted by atomic time as a standard of reference (see Box 1.4, “Time
Today™).
Look at a bad clock for a good view of how time is defined. Let 7 be time on
Good clocks make spacetime  a “good” clock (time coordinate of a local inertial frame); it makes the tracks of
trajectories of free particles free particles through the local region of spacetime look straight. Let 7(r) be the
look straight reading of the “bad” clock; it makes the world lines of free particles through the
local region of spacetime look curved (Figure 1.9). The old value of the acceleration,
translated into the new (“bad”) time, becomes

0= i (A1) dTd , (dT) %

darr ~ dit\dt dT) ~ dt* dT ~ \dt) dT*
To explain the apparent accelerations of the particles, the user of the new time
introduces a force that one knows to be fictitious:

(dx)(dQT)

d?x dT )\ dr?

= = — . 12

F, de2 m (dT)2 (L.2)
dt

It is clear from this example of a “bad” time that Newton thought of a “good” time
when he set up the principle that “Time flows uniformly” (d27/dr* = 0). Time is
defined to make motion look simple!

The principle of uniformity, taken by itself, leaves free the scale of the time
variable. The quantity 7' = ar + b satisfies the requirement as well as ¢ itself. The
history of timekeeping discloses many choices of the unit and origin of time. Each
one required some human action to give it sanction, from the fiat of a Pharaoh to
the communique of a committee. In this book the amount of time it takes light to
travel one centimeter is decreed to be the unit of time. Spacelike intervals and

Our choice of unit for timelike intervals are measured in terms of one and the same geometric unit: the

measuring time: the centimeter. Any other decision would complicate in analysis what is simple in nature.

geometrodynamic centimeter. N, other choice would live up to Minkowski’s words, “Henceforth space by itself,
and time by itself, are doomed to fade away into mere shadows, and only a kind
of union of the two will preserve an independent reality.”
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Figure 1.9.

Good clock (left) vs. bad clock (right) as seen in the maps they give of the same free particles moving
through the same region of spacetime. The world lines as depicted at the right give the impression that
a force is at work. The good definition of time eliminates such fictitious forces. The dashed lines connect
corresponding instants on the two time scales.

One can measure time more accurately today than distance. Is that an argument
against taking the elementary unit to be the centimeter? No, provided that this
definition of the centimeter is accepted: the geometrodynamic standard centimeter
is the fraction

1/(9.460546 x 1017 (1.3)

of the interval between the two “effective equinoxes” that bound the tropical year
1900.0. The tropical year 1900.0 has already been recognized internationally as the
fiducial interval by reason of'its definiteness and the precision with which it is known.
Standards committees have defined the ephemeris second so that 31,556,925.974 sec
make up that standard interval. Were the speed of light known with perfect precision,
the standards committees could have given in the same breath the number of
centimeters in the standard interval. But it isn’t; it is known to only six decimals.
Moreover, the international centimeter is defined in terms of the orange-red wave-
length of Kr®® to only nine decimals (16,507.6373 wavelengths). Yet the standard
second is given to 11 decimals. We match the standard second by arbitrarily defining
the geometrodynamic standard centimeter so that

9.4605460000 x 1017

such centimeters are contained in the standard tropical year 1900.0. The speed of
light then becomes exactly

9.4605460000 X 107
31,556,925.974

geometrodynamic cm/sec. (1.4)

This is compatible with the speed of light, as known in 1967, in units of “international
cm/sec”:

29,979,300,000 == 30,000 international cm/sec.
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Box 1.4 TIME TODAY

Prior to 1956 the second was defined as the frac-
tion 1/86,400 of the mean solar day.

From 1956 to 1967 the “second” meant the
ephemeris second, defined as the fraction
1/(31,556,925.9747) of the tropical year
00h00mO00s December 31, 1899.

Since 1967 the standard second has been the
SI (Syst¢tme International) second, defined as
9,192,631,770 periods of the unperturbed micro-
wave transition between the two hyperfine levels
of the ground state of Cs33.

Like the foregoing evolution of the unit for the
time interval, the evolution of a time coordinate
has been marked by several stages.

Universal time, UTO, is based on the count of
days as they actually occurred historically; in other
words, on the actual spin of the earth on its axis;
historically, on mean solar time (solar position as
corrected by the “equation of time”; i.e., the faster
travel of the earth when near the sun than when
far from the sun) as determined at Greenwich
Observatory.

UTI, the “navigator’s time scale,” is the same
time as corrected for the wobble of the earth on
its axis (4t ~ 0.05 sec).

UT2 is UT1 as corrected for the periodic fluc-
tuations of unknown origin with periods of one-
half year and one year (4f ~ 0.05 sec; measured
to 3 ms in one day).

Ephemeris Time, ET (as defined by the theory
of gravitation and by astronomical observations
and calculations), is essentially determined by the
orbital motion of the earth around the sun.
“Measurement uncertainties limit the realization
of accurate ephemeris time to about 0.05 sec for
a nine-year average.”

Coordinated Universal Time (UTC) is broadcast
on stations such as WWV. It was adopted interna-
tionally in February 1971 to become effective Jan-
uary 1, 1972. The clock rate is controlled by atomic
clocks to be as uniform as possible for one year
(atomic time is measured to ~0.1 microsec in 1
min, with diffusion rates of 0.1 microsec per day
for ensembles of clocks), but is changed by the
infrequent addition or deletion of a second—called
a “leap second”—so that UTC never differs more
than 0.7 sec from the navigator’s time scale, UTI.

ER)

Time suspended
for a second

Time will stand still throughout
the world for one second at mid-
night, June 30. All radio time
signals will insert a * Jeap second ”
to bring Greenwich Mean Time into
line with the earth’s loss of three
thousandths of a second a day.

THE TIMES ‘The signal from the Royal Green-
wich Observatory to Broadcasting
Wednesday | House at midnight GMT (1 am

BST July 1) will be six short pips
marking the seconds 55 to 60 inclu-
sive, followed by a lengthened sig-
nal at the following second to mark
the new minute.

June 21 1972

The foregoing account is abstracted from J. A.
Barnes (1971). The following is extracted from a
table (not official at time of receipt), kindly sup-
plied by the Time and Frequency Division of the
U.S. National Bureau of Standards in Boulder,
Colorado.

Timekeeping capabilities of some familiar clocks
are as follows:

Tuning fork wrist watch (1960),
1 min/mo.

Quartz crystal clock (1921-1930),
I psec/day,
1 sec/yr.

Quartz crystal wrist watch (1971),
0.2 sec/2 mos.,
1 sec/yr.

Cesium beam (atomic resonance, Cs!33), (1952
1955),
0.1 psec/day,
0.5 psec/mo.

Rubidium gas cell (Rb87 resonance), (1957),
0.1 usec/day,
1-5 psec/mo.

Hydrogen maser (1960),
0.01 psec/2 hr,
0.1 psec/day.

Methane stabilized laser (1969),
0.01 psec/100 sec.
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Recent measurements [Evenson et al. (1972)] change the details of the foregoing
1967 argument, but not the principles.

§1.6. CURVATURE

Gravitation seems to have disappeared. Everywhere the geometry of spacetime is
locally Lorentzian. And in Lorentz geometry, particles move in a straight line with
constant velocity. Where is any gravitational deflection to be seen in that? For
answer, turn back to the apple (Figure 1.1). Inspect again the geodesic tracks of
the ants on the surface of the apple. Note the reconvergence of two nearby geodesics
that originally diverged from a common point. What is the analog in the real world
of physics? What analogous concept fits Einstein’s injunction that physics is only
simple when analyzed locally? Don’t look at the distance from the spaceship to the
Earth. Look at the distance from the spaceship to a nearby spaceship! Or, to avoid
any possible concern about attraction between the two ships, look at two nearby
test particles in orbit about the Earth. To avoid distraction by the nonlocal element
(the Earth) in the situation, conduct the study in the interior of a spaceship, also
in orbit about the Earth. But this region has already been counted as a local inertial
frame! What gravitational physics is to be seen there? None. Relative to the spaceship
and therefore relative to each other, the two test particles move in a straight line
with uniform velocity, to the precision of measurement that is contemplated (see
Box 1.5, “Test for Flatness”). Now the key point begins to appear: precision of
measurement. Increase it until one begins to discern the gradual acceleration of the
test particles away from each other, if they lie along a common radius through the
center of the Earth; or toward each other, if their separation lies perpendicular to
that line. In Newtonian language, the source of these accelerations is the tide-pro-
ducing action of the Earth. To the observer in the spaceship, however, no Earth
is to be seen. And following Einstein, he knows it is important to analyze motion
locally. He represents the separation of the new test particle from the fiducial test
particle by the vector &(k = 1,2, 3; components measured in a local Lorentz frame).
For the acceleration of this separation, one knows from Newtonian physics what
he will find: if the Cartesian z-axis is in the radial direction, then

d*& __ Gmen &

dr? s 77

d?&v Gy

ac R (13)
dze? _ ZGmconv £

az = o

Proof: In Newtonian physics the acceleration of a single particle toward the center
of the Earth in conventional units of time is Gm,,,,/r% where G is the Newtonian
constant of gravitation, 6.670 X 10~8 cm?®/g sec? and m,,,, is the mass of the Earth
in conventional units of grams. In geometric units of time (cm of light-travel time),

For general queries, contact webmaster@press.princeton.edu

Gravitation is manifest in
relative acceleration of
neighboring test particles



© Copyright, Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

30 1. GEOMETRODYNAMICS IN BRIEF

the acceleration is Gmy,,,/c?r?. When the two particles are separated by a distance
¢ perpendicular to r, the one downward acceleration vector is out of line with the
other by the angle £/r. Consequently one particle accelerates toward the other by
the stated amount. When the separation is parallel to r, the relative acceleration
is given by evaluating the Newtonian acceleration at » and at » + £, and taking the
difference (£ times d/dr) Q.E.D. In conclusion, the “local tide-producing acceleration”
of Newtonian gravitation theory provides the local description of gravitation that
Einstein bids one to seek.

What has this tide-producing acceleration to do with curvature? (See Box 1.6.)
Look again at the apple or, better, at a sphere of radius a (Figure 1.10). The
separation of nearby geodesics satisfies the “equation of geodesic deviation,”

Relative acceleration is
caused by curvature

d?/ds® + R = 0. (1.6)

Here R = 1/a? is the so-called Gaussian curvature of the surface. For the surface
of the apple, the same equation applies, with the one difference that the curvature
R varies from place to place.

~

Box 1.5 TEST FOR FLATNESS

1. Specify the extension in space L (cm or m) (d/dr)(im/r?) =
and extension in time 7 (cm or m of light travel =
time) of the region under study. =

—2m/r3
—0.888 cm/(6.37 X 108 cm)?
—344 x 10727 ¢cm~2

(“cm of relative displacement per cm of light-

2. Specify the precision 8¢ with which one can
travel time per cm of light-travel time per cm of

measure the separation of test particles in this

region.

3. Follow the motion of test particles moving
along initially parallel world lines through this
region of spacetime.

4. When the world lines remain parallel to the
precision &8¢ for all directions of travel, then one
says that “in a region so limited and to a precision
so specified, spacetime is flat.”

EXAMPLE: Region just above the surface of the
earth, 100 m X 100 m X 100 m (space extension),
followed for 10°m of light-travel time (7,,,, ~
3 sec). Mass of Earth, m,, 6 = 598 x 10?7 g,
m = (0.742 x 10728 cm/g) X (5.98 x 1027 g) =
0.444 cm [see eq. (1.12)]. Tide-producing accelera-
tion R?,, (relative acceleration in z-direction of
two test particles initially at rest and separated
from each other by 1 cm of vertical elevation) is

vertical separation”). Two test particles with a ver-
tical separation ¢ = 10* cm acquire in the time
¢ = 10" cm (difference between time and proper
time negligible for such slowly moving test parti-
cles) a relative displacement

66 = _%RZOzoﬂgz
= 1.72 x 10727 cm~2(10** ¢m)? 10* cm
= 1.72 mm.

(Change in relative separation less for other direc-
tions of motion). When the minimum uncertainty
6¢ attainable in a measurement over a 100 m
spacing is “worse” than this figure (exceeds 1.72
mm), then to this level of precision the region of
spacetime under consideration can be treated as
flat. When the uncertainty in measurement is
“better” (less) than 1.72 mm, then one must limit
attention to a smaller region of space or a shorter
interval of time or both, to find a region of space-
time that can be regarded as flat to that precision.

J
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Figure 1.10.

Curvature as manifested in the “acceleration of the separation” of two
nearby geodesics. Two geodesics, originally parallel, and separated by the
distance (“geodesic deviation™) £, are no longer parallel when followed
a distance 5. The separation is £ = &, cos ¢ = §, cos (s/a), where a is
the radius of the sphere. The separation follows the equation of simple
harmonic motion, d?¢/ds*> + (1/a?) ¢ = 0 (“equation of geodesic devia-
tion”).

The direction of the separation vector, &, is fixed fully by its orthogon-
ality to the fiducial geodesic. Hence, no reference to the direction of &
is needed or used in the equation of geodesic deviation; only the magni-
tude ¢ of § appears there, and only the magnitude, not direction, of the
relative acceleration appears.

In a space of more than two dimensions, an equation of the same general form
applies, with several differences. In two dimensions the direction of acceleration of
one geodesic relative to a nearby, fiducial geodesic is fixed uniquely by the demand
that their separation vector, &, be perpendicular to the fiducial geodesic (see Figure
1.10). Not so in three dimensions or higher. There & can remain perpendicular to
the fiducial geodesic but rotate about it (Figure 1.11). Thus, to specify the relative
acceleration uniquely, one must give not only its magnitude, but also its direction.

The relative acceleration in three dimensions and higher, then, is a vector. Call
it “D?&/ds®” and call its four components “D2£*/ds?”” Why the capital D? Why
not “d?£*/ds?”? Because our coordinate system is completely arbitrary (cf. §1.2). The
twisting and turning of the coordinate lines can induce changes from point to point
in the components £* of &, even if the vector & is not changing at all. Consequently,
the accelerations of the components d2£*/ds® are generally not equal to the compo-
nents D2&%/ds? of the acceleration!

How, then, in curved spacetime can one determine the components D2¢%/ds? of
the relative acceleration? By a more complicated version of the equation of geodesic
deviation (1.6). Differential geometry (Part III of this book) provides us with a
geometrical object called the Riemann curvature tensor, “Riemann.” Riemann is

(continued on page 34)

seodesic
=}

Figure 1.11.

The separation vector & between two geodesics in a curved three-
dimensional manifold. Here & can not only change its length from
point to point, but also rotate at a varying rate about the fiducial
geodesic. Consequently, the relative acceleration of the geodesics must
be characterized by a direction as well as a magnitude; it must be
a vector, D2 /ds?.
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Box 1.6 CURVATURE OF WHAT?

Nothing seems more attractive at first glance than
the idea that gravitation is a manifestation of the
curvature of space (A), and nothing more ridicu-
lous at a second glance (B). How can the tracks
of a ball and of a bullet be curved so differently
if that curvature arises from the geometry of
space? No wonder that great Riemann did not give
the world a geometric theory of gravity. Yes, at
the age of 28 (June 10, 1854) he gave the world
the mathematical machinery to define and calcu-
late curvature (metric and Riemannian geometry).
Yes, he spent his dying days at 40 working to find
a unified account of electricity and gravitation. But
if there was one reason more than any other why
he failed to make the decisive connection between
gravitation and curvature, it was this, that he
thought of space and the curvature of space, not

of spacetime and the curvature of spacetime. To
make that forward step took the forty years to
special relativity (1905: time on the same footing
as space) and then another ten years (1915: gen-
eral relativity). Depicted in spacetime (C), the
tracks of ball and bullet appear to have compara-
ble curvature. In fact, however, neither track has
any curvature at all. They both look curved in (C)
only because one has forgotten that the spacetime
they reside in is itself curved—curved precisely
enough to make these tracks the straightest lines
in existence (“geodesics”).

If it is at first satisfying to see curvature, and
curvature of spacetime at that, coming to the fore
in so direct a way, then a little more reflection
produces a renewed sense of concern. Curvature
with respect to what? Not with respect to the labo-

Photograph of stars
when sun (eclipsed
by moon) lies % *
as indicated *

Photograph of stars
when sun swims
elsewhere

A. Bending of light by the sun depicted as a conse-
quence of the curvature of space near the sun. Ray of
light pursues geodesic, but geometry in which it travels
is curved (actual travel takes place in spacetime rather
than space; correct deflection is twice that given by
above elementary picture). Deflection inversely propor-
tional to angular separation between star and center of
sun. See Box 40.1 for actual deflections observed at time
of an eclipse.

[32]
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ratory. The earth-bound laboratory has no simple
status whatsoever in a proper discussion. First, it
is no Lorentz frame. Second, even to mention the
earth makes one think of an action-at-a-distance
version of gravity (distance from center of earth
to ball or bullet). In contrast, it was the whole
point of Einstein that physics looks simple only : 10 m -
when analyzed locally. To look at local physics,
however, means to compare one geodesic of one
test particle with geodesics of other test particles
traveling (1) nearby with (2) nearly the same di-
rections and (3) nearly the same speeds. Then one
can “look at the separations between these nearby
test particles and from the second time-rate of
change of these separations and the ‘equation of

geodesic deviation’ (equation 1.8) read out the B. Tracks of ball and bullet through space as seen in
curvature of spacetime.” laboratory have very different curvatures.

500 m/sec

N

A Ball

C. Tracks of ball and bullet through spacetime, as re-
corded in laboratory, have comparable curvatures.
Track compared to arc of circle: (radius) = (horizontal
distance)?/8 (rise).

[33]
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34 1. GEOMETRODYNAMICS IN BRIEF

the higher-dimensional analog of the Gaussian curvature R of our apple’s surface.
Riemann is the mathematical embodiment of the bends and warps in spacetime.
And Riemann is the agent by which those bends and warps (curvature of spacetime)
produce the relative acceleration of geodesics.

Riemann, like the metric tensor g of Box 1.3, can be thought of as a family of
machines, one machine residing at each event in spacetime. Each machine has three
slots for the insertion of three vectors:

slot 1 slot 2 slot 3

S ¥ ¥

Riemann ( , ) ).

Choose a fiducial geodesic (free-particle world line) passing through an event £,
and denote its unit tangent vector (particle 4-velocity) there by

u = dx/dr; components, u* = dx*/dr. (1.7)

Choose another, neighboring geodesic, and denote by § its perpendicular separation
from the fiducial geodesic. Then insert u into the first slot of Riemann at 2, § into
the second slot, and w into the third. Riemann will grind for awhile; then out will
pop a new vector,

Riemann (u, &, u).

Riemann tensor, through The equation of geodesic deviation states that this new vector is the negative of

equation of geodesic the relative acceleration of the two geodesics:
deviation, produces relative

accelerations

D?§ /dr?> + Riemann (u, §,u) = 0. (1.8)

The Riemann tensor, like the metric tensor (Box 1.3), and like all other tensors,
is a linear machine. The vector it puts out is a linear function of each vector inserted
into a slot:

Riemann (2u, aw + bv, 3r)
=2 X a X 3 Riemann (u,w,r) + 2 X b X 3 Riemann (u, v, r). (1.9)

Consequently, in any coordinate system the components of the vector put out can
be written as a “trilinear function” of the components of the vectors put in:

r = Riemann (u, v, w) <= r® = R%; ; uf v¥ w®. (1.10)

(Here there is an implied summation on the indices B, v, §; cf. Box 1.1.) The
4 X 4 X 4 X 4 =256 numbers R, are called the “components of the Riemann
tensor in the given coordinate system.” In terms of components, the equation of
geodesic deviation states

2¢a dxB
D o e, (1.8")

dx?®
— 4+ R
dr? My dr dr
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In Einstein’s geometric theory of gravity, this equation of geodesic deviation Equation of geodesic
summarizes the entire effect of geometry on matter. It does for gravitation physics deviation is analog of Lorentz
. force law
what the Lorentz force equation,

D2x® _ € Fa dx®
dr? m- P odr

=0, (1.11)

does for electromagnetism. See Box 1.7.
The units of measurement of the curvature are cm™2 just as well in spacetime
as on the surface of the apple. Nothing does so much to make these units stand
out clearly as to express mass in “geometrized units”: Geometrized units

m(cm) = (G/c*)Meq,(8)
= (0.742 x 10728 cm/g)m, (). (1.12)

4 )

Box 1.7 EQUATION OF MOTION UNDER THE INFLUENCE OF A GRAVITATIONAL FIELD
AND AN ELECTROMAGNETIC FIELD, COMPARED AND CONTRASTED

Electromagnetism Gravitation [Equation of
[Lorentz force, equation (1.11)] geodesic deviation (1.8')]
Acceleration is defined for
one particle? Yes No
Acceleration defined how? Actual world line compared to Already an uncharged test
world line of uncharged particle, which can’t
“fiducial” test particle accelerate relative to
passing through same point itself! Acceleration
with same 4-velocity. measured relative to a

nearby test particle as
fiduciary standard.

Acceleration depends on all
four components of the
4-velocity of the particle? Yes Yes

Universal acceleration for all
test particles in same
locations with same
4-velocity? No; is proportional to e/m Yes

Driving field Electromagnetic field Riemann curvature tensor
Ostensible number of distinct
components of driving

field 4x4=16 44 = 256

Actual number when allowance
is made for symmetries of

tensor 6 20
Names for more familiar of 3 electric 6 components of local
these components 3 magnetic Newtonian tide-producing

acceleration

N Y
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This conversion from grams to centimeters by means of the ratio

G/c?=0.742 x 10728 cm/g

is completely analogous to converting from seconds to centimeters by means of the
ratio

_9.4605460000 X 1017 cm
T 31,556,925.974 sec

(see end of §1.5). The sun, which in conventional units has m,,,, = 1.989 x 1033 g,

has in geometrized units a mass m = 1.477 km. Box 1.8 gives further discussion.

Using geometrized units, and using the Newtonian theory of gravity, one can

readily evaluate nine of the most interesting components of the Riemann curvature

tensor near the Earth or the sun. The method is the gravitational analog of deter-

mining the electric field strength by measuring the acceleration of a slowly moving

Components of Riemann test particle. Consider the separation between the geodesics of two nearby and slowly
tensor evaluated from relative  mgying (v <c) particles at a distance r from the Earth or sun. In the standard, nearly

accelerations of slowly . . . . . .
moving particles inertial coordinates of celestial mechanics, all components of the 4-velocity of the

4 )

Box 1.8 GEOMETRIZED UNITS

Throughout this book, we use “geometrized units,” from grams to centimeters to seconds to ergs to
in which the speed of light ¢, Newton’s gravita- . ... For example:

tional constant G, and Boltzman’s constant k are
all equal to unity. The following alternative ways
to express the number 1.0 are of great value:

Mass of sun = M, = 1.989 x 1033 g
(1.989 x 1032 g) X (G/c?)
1.477 x 10° cm

(1.989 x 1023 g) X (¢?)

10 = ¢ =2.997930 - - - x 101° cm/sec
1.0 = G/¢? = 0.7425 X 10728 cm/g;

1.0 = G/c* = 0.826 x 107 cm/erg; = 1.788 x 10°* ergs.
1.0 = Gk/ct = 1.140 X 107% em/K; The standard unit, in terms of which everything
1.0 = ¢2/GV/2 = 348 X 1024 cm/gauss™. is measured in this book, is centimeters. However,

occasionally conventional units are used; in such
One can multiply a factor of unity, expressed in cases a subscript “conv” is sometimes, but not
any one of these ways, into any term in any equa- always, appended to the quantity measured:
tion without affecting the validity of the equation.
Thereby one can convert one’s units of measure Mo eony = 1.989 X 1023 g.
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fiducial test particle can be neglected except dx°/dr = 1. The space components of
the equation of geodesic deviation read

dz2ek /dr? + Rko;’()gj = 0. (1.13)

Comparing with the conclusions of Newtonian theory, equations (1.5), we arrive at
the following information about the curvature of spacetime near a center of mass:

Risz Rigzy Riggo| = |m/r® 0 0
R0 Rl Rl = | 0 m/r® 0 (1.14)
Rz RYz: Rzl =1 0 0  —2m/r

(units cm~2). Here and henceforth the caret or “hat” is used to indicate the compo-
nents of a vector or tensor in a local Lorentz frame of reference (“physical compo-
nents,” as distinguished from components in a general coordinate system). Einstein’s
theory will determine the values of the other components of curvature (e.g.,
Ré::: = —m/r?); but these nine terms are the ones of principal relevance for
many applications of gravitation theory. They are analogous to the components
of the electric field in the Lorentz equation of motion. Many of the terms not
evaluated are analogous to magnetic field components—ordinarily weak unless the
source is in rapid motion.

This ends the survey of the effect of geometry on matter (“effect of curvature
of apple in causing geodesics to cross”—especially great near the dimple at the top,
just as the curvature of spacetime is especially large near a center of gravitational
attraction). Now for the effect of matter on geometry (“effect of stem of apple in
causing dimple”)!

§1.7. EFFECT OF MATTER ON GEOMETRY

The weight of any heavy body of known weight at a particular
distance from the center of the world varies according to the
variation of its distance therefrom,; so that as often as it is
removed from the center, it becomes heavier, and when brought
near to it, is lighter. On this account, the relation of gravity to
gravity is as the relation of distance to distance from the center.

AL KHAZINT (Merv, A.D. 1115), Book of the Balance of Wisdom

Figure 1.12 shows a sphere of the same density, p = 5.52 g/cm?3, as the average
density of the Earth. A hole is bored through this sphere. Two test particles, 4 and
B, execute simple harmonic motion in this hole, with an 84-minute period. Therefore
their geodesic separation §, however it may be oriented, undergoes a simple periodic
motion with the same 84-minute period:

d*&l/dr? = — (%Ep) g, j=xoryorz (1.15)
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~

Box 1.9 GALILEO GALILEI
Pisa, February 15, 1564—Arcetri, Florence, January 8, 1642

“In questions of science the authority
of a thousand is not worth the humble
reasoning of a single individual. "’

GALILEO GALILEI (1632)

“‘The spaces described by a body falling from rest
with a uniformly accelerated motion are to each other
as the squares of the time intervals employed in
traversing these distances.’’

GALILEO GALILEI (1638)

Uffizi Gallery, Florence

“Everything that has been said before and imagined by other people [about the
tides] is in my opinion completely invalid. But among the great men who have
philosophised about this marvellous effect of nature the one who surprised me the
most is Kepler. More than other people he was a person of independent genius,
sharp, and had in his hands the motion of the earth. He later pricked up his ears
and became interested in the action of the moon on the water, and in other occult
phenomena, and similar childishness.”’

GALILEO GALILEI (1632)

“It is a most beautiful and delightful sight to behold [with the new telescope] the
body of the Moon . . . the Moon certainly does not possess a smooth and polished
surface, but one rough and uneven . . . full of vast protuberances, deep chasms
and sinuosities . . . stars in myriads, which have never been seen before and
which surpass the old, previously known, stars in number more than ten times. |
have discovered four planets, neither known nor observed by any one of the
astronomers before my time . . . got rid of disputes about the Galaxy or Milky
Way, and made its nature clear to the very senses, not to say to the
understanding . . . the galaxy is nothing else than a mass of luminous stars
planted together in clusters . . . the number of small ones is quite beyond
determination—the stars which have been called by every one of the astronomers
up to this day nebulous are groups of small stars set thick together in a wonderful
way.

GALILEO GALILEl IN SIDEREUS NUNCIUS (1610)

“So the principles which are set forth in this treatise will, when taken up by
thoughtful minds, lead to many another more remarkable result; and it is to be
believed that it will be so on account of the nobility of the subject, which is
superior to any other in nature.”’

GALILEO GALILEI (1638)
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) Figure 1.12.

84 min. Test particles 4 and B move up and down a hole bored through
the Earth, idealized as of uniform density. At radius r, a parti-
cle feels Newtonian acceleration

1y
> = 2 dr,, 2

conv

G (mass inside radius r)

S j_ 02 r2
_ G \(4n 3
- W T Peonv’
= —w’r.

Consequently, each particle oscillates in simple harmonic mo-
tion with precisely the same angular frequency as a satellite,
grazing the model Earth, traverses its circular orbit:

wiem ) = 4 penn-2)

. 47G .
wzconv(seCA2) = ‘773“_ pconv(g/cmd)'

Comparing this actual motion with the equation of geodesic deviation (1.13) for
slowly moving particles in a nearly inertial frame, we can read off some of the
curvature components for the interior of this model Earth.

R%@m R?@;:@ Rz 100
R%50 RYjo  R¥oj0||= (4mp/3)[|0 1 0 (1.16)
Rz RYz Reos 0 0 1

This example illustrates how the curvature of spacetime is connected to the distribu-
tion of matter.

Let a gravitational wave from a supernova pass through the Earth. Idealize the
Earth’s matter as so nearly incompressible that its density remains practically un-
changed. The wave is characterized by ripples in the curvature of spacetime, propa-
gating with the speed of light. The ripples will show up in the components R,
of the Riemann tensor, and in the relative acceleration of our two test particles.
The left side of equation (1.16) will ripple; but the right side will not. Equation
(1.16) will break down. No longer will the Riemann curvature be generated directly
and solely by the Earth’s matter.

Nevertheless, Einstein tells us, a part of equation (1.16) is undisturbed by the
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waves: its trace

Rop = Rigz0 + Rl + Rz = dmp. (1.17)

Even in the vacuum outside the Earth this is valid; there both sides vanish [cf. (1.14)].
More generally, a certain piece of the Riemann tensor, called the Einstein tensor

Einstein tensor introduced and denoted Einstein or G, is always generated directly by the local distribution

of matter. Einstein is the geometric object that generalizes Ry, the lefthand side

-

Box 1.10 ISAAC NEWTON
Woolsthorpe, Lincolnshire, England, December 25, 1642—
Kensington, London, March 20, 1726

““The description of right lines and circles, upon which geometry
is founded, belongs to mechanics. Geometry does not teach
us to draw these lines, but requires them to be drawn.”’

[FROM P. 1 OF NEWTON’'S PREFACE TO
THE FIRST (1687) EDITION OF THE PRINCIPIA]

“Absolute space, in its own nature,

without relation to anything external, remains
always similar and immovable

“Absolute, true, and mathematical time,

of itself, and from its own nature, flows
equably without relation to anything external.”’

[FROM THE SCHOLIUM IN THE PRINCIPIA]

I have not been able to discover the cause of those properties of gravity from
phenomena, and | frame no hypotheses, for whatever is not reduced from the
phenomena is to be called an hypothesis; and hypotheses . . . have no place in
experimental philosophy. . . . And to us it is enough that gravity does really exist,
and act according to the laws which we have explained, and abundantly serves to
account for all the motions of the celestial bodies, and of our sea.”’

[FROM THE GENERAL SCHOL/UM ADDED AT THE END OF THE THIRD BOOK OF THE PRINCIPIA IN

THE SECOND EDITION OF 1713; ESPECIALLY FAMOUS FOR THE PHRASE OFTEN QUOTED FROM
NEWTON'S ORIGINAL LATIN, “"HYPOTHESES NON FINGO."']

“And the same year [1665 or 1666] | began to think of gravity extending to the

orb of the Moon, and having found out. . . . All this was in the two plague years

of 1665 and 1666, for in those days | was in the prime of my age for invention,
and minded Mathematicks and Philosophy more than at any time since.”’

[FROM MEMORANDUM IN NEWTON’S HANDWRITING ABOUT HIS DISCOVERIES ON FLUXIONS, THE
BINOMIAL THEOREM, OPTICS, DYNAMICS, AND GRAVITY, BELIEVED TO HAVE BEEN WRITTEN

ABOUT 1714, AND FOUND BY ADAMS ABOUT 1887 IN THE “PORTSMOUTH COLLECTION"" OF
NEWTON PAPERS]
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of equation (1.17). Like Ry;, Einstein is a sort of average of Riemann over all
directions. Generating Einstein and generalizing the righthand side of (1.16) is a
geometric object called the stress-energy tensor of the matter. It is denoted T. No
coordinates are need to define Einstein, and none to define T; like the Riemann
tensor, Riemann, and the metric tensor, g, they exist in the complete absence of
coordinates. Moreover, in nature they are always equal, aside from a factor of 8x:

Einstein =G = 8« T. (1.18)

““For hypotheses ought . . . to explain the properties of things and not attempt to
predetermine them except in so far as they can be an aid to experiments.””

[FROM LETTER OF NEWTON TO |I. M. PARDIES, 1672, AS QUOTED IN THE CAJORI NOTES AT THE
END OF NEWTON (1687), P. 673]

““That one body may act upon another at a distance through a vacuum, without
the mediation of any thing else, by and through which their action and force may
be conveyed from one to another, is to me so great an absurdity, that | believe no
man, who has in philosophical matters a competent faculty of thinking, can ever
fall into it.”’

[PASSAGE OFTEN QUOTED BY MICHAEL FARADAY FROM LETTERS OF NEWTON TO RICHARD
BENTLY, 1692-1693, AS QUOTED IN THE NOTES OF THE CAJORI EDITION OF NEWTON (1687), P.
643]

““The attractions of gravity, magnetism, and electricity, reach to very sensible
distances, and so have been observed . . . ; and there may be others which reach
to so small distances as hitherto escape observation; . . . some force, which in
immediate contract is exceeding strong, at small distances performs the chemical
operations above-mentioned, and reaches not far from the particles with any
sensible effect.””

[FROM QUERY 31 AT THE END OF NEWTON'S OPT/CKS (1730)]

““What is there in places almost empty of matter, and whence is it that the sun
and planets gravitate towards one another, without dense matter between them?
Whence is it that nature doth nothing in vain; and whence arises all that order and
beauty which we see in the world? To what end are comets, and whence is it that
planets move all one and the same way in orbs concentrick, while comets move all
manner of ways in orbs very excentrick; and what hinders the fixed stars from
falling upon one another?”’

[FROM QUERY 28]

““He is not eternity or infinity, but eternal and infinite; He is not duration or space,
but He endures and is present. He endures forever, and is everywhere present; and
by existing always and everywhere, He constitutes duration and space. . . . And
thus much concerning God; to discourse of whom from the appearances of things,
does certainly belong to natural philosophy.””

[FROM THE GENERAL SCHOLIUM AT THE END OF THE PRINCIPIA (1687)]
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Einstein field equation: how This Einstein field equation, rewritten in terms of components in an arbitrary coordi-
matter generates curvature nate system reads

Gop = 87T,p. (1.19)

The Einstein field equation is elegant and rich. No equation of physics can be
written more simply. And none contains such a treasure of applications and conse-

quences.
oo The field equation shows how the stress-energy of matter generates an average
Consequences of Einstein | . o ) , .
field equation curvature (Einstein = G) in its neighborhood. Simultaneously, the field equation

is a propagation equation for the remaining, anisotropic part of the curvature: it
governs the external spacetime curvature of a static source (Earth); it governs the
generation of gravitational waves (ripples in curvature of spacetime) by stress-energy
in motion; and it governs the propagation of those waves through the universe. The
field equation even contains within itself the equations of motion (“Force =

Box 1.11
ALBERT EINSTEIN
Ulm, Germany, /
March 14, 1879—/
Princeton, New Jersey,
April 18, 1955

Library of E. T. Hochschule, Zirich Académie des Sciences, Paris Archives of California Institute of Technology

k SEAL: Courtesy of the Lewis and Rosa Strauss Foundation and Princeton University Press
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mass X acceleration”) for the matter whose stress-energy generates the curvature.

Those were some consequences of G = 87 T. Now for some applications.

The field equation governs the motion of the planets in the solar system; it governs
the deflection of light by the sun; it governs the collapse of a star to form a black
hole; it determines uniquely the external spacetime geometry of a black hole (“a
black hole has no hair”); it governs the evolution of spacetime singularities at the
end point of collapse; it governs the expansion and recontraction of the universe.
And more; much more.

In order to understand how the simple equation G = 8« T can be so all powerful,
it is desirable to backtrack, and spend a few chapters rebuilding the entire picture
of spacetime, of its curvature, and of its laws, this time with greater care, detail,
and mathematics.

Thus ends this survey of the effect of geometry on matter, and the reaction of
matter back on geometry, rounding out the parable of the apple.

Applications of Einstein field
equation

““What really interests me is whether God had any choice in the creation of the
world”’

EINSTEIN TO AN ASSISTANT, AS QUOTED BY G. HOLTON (1971), P. 20

“But the years of anxious searching in the dark, with their intense longing, their
alternations of confidence and exhaustion, and the final emergence into the
light—only those who have experienced it can understand that””

EINSTEIN, AS QUOTED BY M. KLEIN (1971), P. 1315

““Of all the communities available to us there is not one | would want to devote
myself to, except for the society of the true searchers, which has very few living
members at any time. . .”’

EINSTEIN LETTER TO BORN, QUOTED BY BORN (1971), P. 82

| am studying your great works and—when | get stuck anywhere—now have the
pleasure of seeing your friendly young face before me smiling and explaining”’

EINSTEIN, LETTER OF MAY 2, 1920, AFTER MEETING NIELS BOHR

“"As far as the laws of mathematics refer to reality, they are not certain,; and as far
as they are certain, they do not refer to reality.”’

EINSTEIN (1921), P. 28

““The most incomprehensible thing about the world is that it is comprehensible.”’
EINSTEIN, IN SCHILPP (1949), P. 112
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EXERCISES Exercise 1.1. CURVATURE OF A CYLINDER

Show that the Gaussian curvature R of the surface of a cylinder is zero by showing that
geodesics on that surface (unroll!) suffer no geodesic deviation. Give an independent argu-
ment for the same conclusion by employing the formula R = 1/p,p,, where p; and p, are
the principal radii of curvature at the point in question with respect to the enveloping
Euclidean three-dimensional space.

Exercise 1.2. SPRING TIDE VS. NEAP TIDE

Evaluate (1) in conventional units and (2) in geometrized units the magnitude of the Newton-
ian tide-producing acceleration R™,,,(m,n = 1,2,3) generated at the Earth by (1) the
moon (m,,,, = 7.35 X 102 g, r = 3.84 x 10 cm) and (2) the sun (m,,,, = 1.989 x 10%* g,
r = 1.496 x 1013 cm). By what factor do you expect spring tides to exceed neap tides?

Exercise 1.3. KEPLER ENCAPSULATED

A small satellite has a circular frequency w(cm™!) in an orbit of radius » about a central
object of mass m(cm). From the known value of w, show that it is possible to determine
neither 7 nor m individually, but only the effective “Kepler density” of the object as averaged
over a sphere of the same radius as the orbit. Give the formula for «w? in terms of this Kepler
density.

It is a reminder of the continuity of history that Kepler and Galileo (Box 1.9) wrote back
and forth, and that the year that witnessed the death of Galileo saw the birth of Newton
(Box 1.10). After Newton the first dramatically new synthesis of the laws of gravitation came
from Einstein (Box 1.11).

And what the dead had no speech for, when living,

They can tell you, being dead,; the communication
Of the dead is tongued with fire beyond

the language of the living.

T. S. ELIOT, in LITTLE GIDDING (1942)

| measured the skies

Now the shadows | measure
Skybound was the mind
Earthbound the body rests

JOHANNES KEPLER, d. November 15, 1630.
He wrote his epitaph in Latin;
it is translated by Coleman (1967), p. 109.

Ubi materia, ibi geometria.
JOHANNES KEPLER
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A

Aberration
formulas for, 68
in light-deflection experiments, 1101
Absolute space of Newtonian theory, 19,
40, 291f
Absolute time of Newtonian theory, 291f
Abundances of elements, 765
Accelerated observer in curved spacetime,
327-332. See also Proper reference
frame
Accelerated observer in flat spacetime,
163-175
measuring equipment of, 164-165
problems of principle in defining
coordinate system of, 168-169
constraints on size of frame, 168-169
tetrad Fermi-Walker transported with,
169-172
local coordinate system of, 172-176
with rotating tetrad, 174f
Acceleration
gravity mocked up by, 163ff
equivalent to gravitational field. See
Equivalence principle
special relativity adequate to analyze,
163ff
of neutron in nucleus, 163
constant in comoving frame, for
hyperbolic motion, 166-167
4-acceleration always orthogonal to
4-velocity, 166
See also Fermi-Walker transport
Acceleration, “absolute,” and the
equivalence principle, 17
Acceleration, relative. See Geodesic
deviation
Accretion of gas onto a black hole, 885
Action. See Dynamical path length
Action principle. See Variational principle

Action at a distance, gravitational, 4
Newton’s stricture against, 41
derived from local law, 120
Active vs. passive transformations, 1140
Adiabatic index defined, 692
Advanced fields, and radiation reaction, 474
Advanced potential, 121
After, undefined term in quantum
geometrodynamics, 1183
Affine connection. See Connection,
Covariant derivative
Affine geometry
characterized, 191, 242
in extenso, Chap. 10
See also specific concepts, such as
Covariant derivative, Connection
coefficients
Affine parameter, defined, 211, 244ff
of geodesic, 244-246
effect of changing, on geodesic deviation,
269
variational principle adapted to, 322-323
in geometric optics, 575
Alternating symbol, in spinor analysis,
defined, 1152. See also Levi-Civita
tensor, Permutation tensor
Alternating tensor. See Permutation tensor
Ampére’s law, from electromagnetic
4-potential, 122
Angle-effective distance vs. redshift, 795f
Angular integrals, useful formulas, 1001
Angular momentum in curved spacetime,
for an isolated source
defined by way metric approaches
flatness
in extenso, chapter 19
in linearized theory, 448-451
in general, 453fF
as geometric object residing in
asymptotically flat region, 453

no meaning of, for closed universe, 457ff
contribution of interbody matter and
fields to, 468
total unambiguous, despite contribution
of pseudotensor to, 470
Gaussian flux integral for, 460-464
volume integral for, 460-466
measured by satellite-orbit precession,
451, 454, 457
measured by gyroscope precession, 451,
454, 457
measured by frame dragging, 451, 457
conservation laws for, 455, 468-471
for Kerr-Newman black hole, 891
Angular momentum in flat spacetime
density of, 151, 156f
total, 156-159
decomposition of total into intrinsic and
orbital, 158f
conservation of, 156f
intrinsic, sets lower limit to size, 162
parallel transport of, and Thomas
precession, 175-176
Angular momentum in Newtonian theory,
flux integral for, 470
Angular momentum operators, 240
Angular momentum, orbital, for test
particles
in Schwarzschild geometry, 656ff
in Kerr-Newman geometry, 898f
Angular velocity
extended to four dimensions, 170f
rotating tetrad, vs. Fermi-Walker tetrad,
174f
in context of spinor analysis, 1139, 1142
Angular velocity of orbital motion in
Kerr-Newman geometry, 893ff
Anholonomic basis, 204, 210, 239
Anisotropy energy, 802, 807
Antisymmetrization, of tensor, 83
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Asymptotically flat spacetime geometry, 453
form of, in linearized theory, 448fF
form of far from stationary fully
relativistic source, 456f

key to defining mass and angular
momentum, 457fF

in evaluation of Gaussian flux integral,
462f

“I weigh all that’s here,” 475

conformal treatment of infinity, 917-921

Automatic conservation of source, 404,

408f, 417. See also Bianchi identities

B

Background geometry
defined by limiting procedure, 479-480.
See also Gravitational waves, shortwave
formalism of
Backscatter of waves off curvature, 864f,
869ff, 957
Bar operation
in linearized theory, 436fF
in shortwave formalism, 967
Baryons
number density of, 558
mass density of, 1069, 1074
conservation law for. See under
Conservation laws
Base metric, in time-symmetric initial-value
problem, 535
Basis forms
3- and 4-forms for volume integrals, 150
2-forms and dual labeling thereof, 151
Basis 1-forms
dual to basis vectors, 60f, 202f, 232, 234
as coordinate gradients, 60ff
transformation laws for, 68, 203
connection coefficients for, 209, 215, 258f
Basis vectors, 50
in extenso, 201-207
as differential operators, 229f
dual to basis 1-forms, 60ff, 232
transformation laws for, 68, 201, 203,
230f
commutation coefficients for, 204
connection coefficients for, 209, 258f
coordinate vs. general basis, 201-203
coordinate basis, 230f
See also Proper reference frame, tetrad
Bell bongs, 55f, 60, 99, 202, 231
Bertotti-Robinson electromagnetic universe,
845
Betti numbers, characterize connectivity,
221
Bianchi identities
stated, 221f, 224, 325f
proved, 287
model for, in geodesic identity, 318
expressed in terms of curvature 2-form,
362
in terms of boundary of a boundary,
Chap. 15

as automatically fulfilled conservation
law, 405
required because geometrodynamic law
must not predict coordinates, 409
applied to equations of motion, 473
from coordinate-neutrality of Hilbert-
Palatini variational principle, 503
Big Dipper, shape unaffected by velocity of
observer, 1160-1164
Binary star
black holes as members of, 886f
generation of gravitational waves by,
986, 988fT, 995
Binding energy of orbits around black
holes, 885, 911
Birkhoff’s theorem
for Schwarzschild geometry, 843f
for Reissner-Nordstrom geometry, 844fF
Bivector
defined, 83
in surface of Whitaker’s calumoid, 125
Black body. See under Radiation
Black hole, 884-887
in extenso, Chap. 33
brief summary of properties, 620
history of knowledge of, 620, 623
why deserve their name, 872-875
Kerr-Newman geometry as unique
external field, 863, 875-877, esp. 876
“hair on,” 43, 863, 876
baryon number transcended by, 876
lepton number transcended by, 640, 876
astrophysical aspects of, 833-887
mechanisms of formation, 883-884
gravitational waves from collapse that
forms, 1041
dynamical processes, 884fF
can never bifurcate, 933
collision and coalescence of, 886, 924,
939
gravitational waves from hole-hole
collisions, 886, 939, 982
interactions with matter, 885f
Cygnus X-1 as an examplar of, ix
gravitational waves from matter falling
into, 885, 904, 982f, 986
change of parameters of hole due to
infall of particles, 904-910, 913
extraction of energy from, 906, 908
experimental tests of general relativity
using, 1047
See also Black-hole dynamics, laws of;
Collapse, gravitational;
Kerr-Newman geometry;
Schwarzschild geometry
Black-hole dynamics, laws of, 887f. See also
Second law of black-hole dynamics
Boost, 671
Boundary
of a boundary, route to Bianchi
identities, Chap. 15
of a boundary is zero, 364-370
automatically conserve’s Cartan’s
moment of rotation, 377-378

GRAVITATION

of the boundary of a 4-simplex, 380-381
Boundary operator, 96
Boyer-Lindquist coordinates, 877-880
Brackets, round and square, define
symmetry, 126
Bragg reflection, related to 1-forms, 232
Brans-Dicke theory of gravity. See
Gravitation, theories of:
Dicke-Brans-Jordan theory
Brill-Hartle averaging process, 970
Brownian forces, 1038
Bubble-time derivative, 497
Buffer zone, in analysis of departures from
geodesic motion, 476-480
Buoyant force, 606

Cc

Calumoid, Whitaker’s, related to flux
integrals, 125
Canonical structure, metric and symplectic
structure, 126
Canonical variables, in Hamiltonian
mechanics, 125
Cartan structure equations, 359
Carter’s fourth constant, 899
Causal relationships in flat spacetime,
48, 51
Causal structure of curved spacetime, 922fF
future horizons, 923-924
global structure of horizons, theorems
about, 924-925
global structure of horizons, analysis of,
926-931
See also Global techniques, Horizons
Causality, principle of, and the mechanism
of radiation, 110
Caustics, of a horizon, 925
Cavendish experiment, 1121f
Cavendish gravitational constant, 1121ff
dependence on velocity relative to
“preferred universal rest frame,”
1123-1124
dependence on chemical composition of
gravitating bodies, 1125
variations in, cause deviations from
geodesic motion, 1127-1128
Center of mass, 161
Centrifugal forces, 294
Centrifuge, in idealized redshift experiment,
63f
Centroid, 161
Cepheid variable stars
pulsation of, 632
period-luminosity relation discovered, 758
as distance indicators, 786
confused with HII regions in Hubble’s
work, 709
confusion resolved by Baade, 710, 760
Chain rule
abstract, 314-315
for covariant derivative, 252, 257f, 260f
Chandrasekhar limit, 619
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Charge
evaluated from flux integral, 98
of closed universe, meaningless integral
for, 457-458
as measured by tubes of force, in 2-form
representation, 107
as lines of force trapped in the topology
of space, 221, 368, 1200f
Charge conservation. See Conservation
laws, charge
Charge density-current
4-vector, Lorentz transformation of, 68
dual representations 88, 97f
3-form, 113f, 151
Dirac’s representation, for particle in
arbitrary motion, 120f
Chemical potential. See under
Thermodynamics
Chinese historical records of Crab
supernova, ii.
Classical mechanics, correspondence with
quantum mechanics, 413
Classical theory, conceives of geometry and
fields as measureable, 13
Clock ““paradox,” 167
Clocks
bad vs. good, 26-27
stability of, 28, 1048
ideal
defined, 393
in Newton-Cartan theory, 301
built on geodesics, 396-399
specific types of, 28, 393-396
influence of acceleration on, 164f, 327,
396
influence of tidal forces on, 396
as tools in parametrization of geodesics,
246
infinite sequence of, needed as one
approaches a singularity, 813f
Closed form, 114. See also Forms,
differential
Closure of universe. See Cosmological
models
Clusters of galaxies
origin of, 766, 769f
Virgo as source of gravitational waves,
1042
Cold, catalyzed matter, 624-626
Collapse, gravitational
in one and two dimensions, 867f
of a spherical shell of dust, 555-556
of a spherical star
analyzed by examining exterior
geometry, 846-850, 857
redshift of radiation from, 847, 849f,
872
decay of luminosity of, 847, 850, 872
surface of last influence, 873f
Eddington-Finklestein diagram for,
849, 864, 873
Kruskal diagram for, 848, 855
embedding diagrams for, 855f
comoving coordinates for, 857

equations governing adiabatic collapse,
858f
models with zero pressure, 859
models with zero pressure and uniform
density, 851-856, 859
realistic, 862f, 883f
triggering of, in late stages of stellar
evolution, 627, 862
collapse, pursuit, and plunge scenario,
629
evolution of small perturbations from
spherical symmetry, 864-866
Price’s theorem, 866
gravitational waves emitted during,
1041
inevitability of, for massive stars, 819
in a dense star cluster, 884
creation of Kerr-Newman black hole
by, 882-883
at three levels: universe, black hole,
quantum fluctuations, 1201
issue of the final state, 940, 1196f
black box model of, 1209, 1213-1217
importance of and philosophical
implications of, 437, 1196f
Collapsed star. See Neutron star, Black
hole
Collisions of particles in flat spacetime, 19,
69f
Comma-goes-to-semicolon rule, 387-392.
See also Equivalence principle
Commutation, of observables on spacelike
hypersurface, 554
Commutation coefficients of basis vectors,
204, 243, 314
calculated by exterior derivative of basis
1-forms, 358f
for rotation group, 243
Commutator
of tangent vectors, 204, 206f, 235-240
Jacobi identity for, 240
as closer of quadrilaterals, 236, 278
pictorial representation of, 236-237
for rotation group, 332
for normal and tangent to spacelike slice,
517
of covariant derivatives, 276, 3891
Compatibility of metric and covariant
derivative, 313ff, 353f
Complexion, of electromagnetic field, 108,
482
Component manipulations. See Index
manipulations
Component notation, to remove ambiguity
of slots, 84
Components
of vectors, introduced, 8-10, 50-51
of 1-forms, introduced, 61
of tensors, introduced, 75
of curvature tensor, introduced, 34, 37,
40, 42
See also Index manipulations
Concepts of physics, defined by theory
itself, 71f
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Conduction of heat, 567
Conformal curvature tensor. See under
Curvature, formalism of
Conformal part of 3-geometry, in York’s
formulation of initial-value problem,
540-541
Conformal transformation of infinity. See
under Infinity
Connection, measured by light signals and
free particles, 324
See also Covariant derivative
Connection coefficients
summarized, 223
as components of covariant derivative,
208f, 256, 261-262
calculated from metric and commutators,
210, 216, 314
symmetries of, 213-214
transformation law for, 262
specialized to a coordinate basis
called “Christoffel symbols,” 210
contraction of, in terms of metric, 222
formula for, from Palatini variational
principle, 502
unique, to make geodesics agree with
straight lines of local Lorentz
geometry, 314f
illustrated by great-circle navigation, 212
specific cases of
for plane, in polar coordinates, 213,
263
for flat 3-geometry, polar coordinates,
213
for 2-sphere, 341, 345
for rotation group, 264
for Riemann normal coordinates, 286f
for Newton-Cartan spacetime, 291f,
294, 298
for proper reference frame of
accelerated observer, 330f
Connectivity
at small distances, 221
of spacetime, in classical differential
geometry, 1204-1205
charge as trapped lines of force, 221, 368,
1200f
See also Topology
Conservation laws
equivalence of differential and integral
formulations of, 146
baryon number, 558f, 563ff
applied to pulsating stars, 691f
applied to collapsing stars, 858
in PPN formalism, 1088
electric charge, 369f
differential formulation of, 88, 568, 570
integral formulation from differential
via Stokes theorem, 98, 156
as consequence of dd = 0, 118
energy-momentum(V - T = 0)
tested in elementary particle physics, 19
in flat spacetime, 132, 146, 152-155
integral formulation in flat spacetime,
142-146
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Conservation laws (continued)
transition to curved spacetime, 386f,
390
to be interpreted as automatic, via
“wiring up” to geometry, 364,
367f, 371, 404-407
in terms of generalized exterior
derivative, 362f
various mathematical representations
for, 379
total mass-energy and 4-momentum of a
gravitating source, 455, 468-471
for test-particle motion
related to Killing vector field, 651
related to Hamilton’s principle, 654
in Schwarzschild geometry, 655-658
in any spherical, static geometry, 681
in Kerr metric and electromagnetic
field, 898f
Constants, fundamental
listed, endpapers
limits on deviations from constancy,
1061-1063
Constraint, as signaling reduced number of
degrees of freedom, 528f
Constraints, first and second class, in
Dirac’s formulation of
geometrodynamics, 486
Constructive interference
as shortest leap from quantum to
classical, 1185
in particle mechanics and in
geometrodynamics, compared, 1186f
behind Hamilton-Jacobi formulation of
mechanics and geometrodynamics,
423f
Continuity, equation of, 152ff, 565
“Continuous creation,” 745, 750, 770
Contraction of tensor, 82
Contravariant components, 76, 201-207, 312
Controlled ignorance, philosophy of, 452f,
996
Convection, in supermassive stars, 600
Coordinate patch, concept introduced,
10-12
Coordinate systems
nature of, deducible from metric, 595f
of accelerated observers, 172-176
asymptotically Minkowskiian, 463
Boyer-Lindquist, 877-830
comoving, for collapsing star, 857
comoving, for universe, 715ff
curvilinear, in linearized theory, 441
Eddington-Finklestein, 828-831, 849
Euclidean, 22f
Fermi normal, 332
Galilean, 289, 291-298, 414
Gaussian normal, 516, 518, 715ff
isotropic, for Schwarzschild geometry,
840
isotropic, for static, spherical system, 595
Kerr, 879f
Kerr-Schild, 903
Kruskal-Szekeres, 827, 831-836

local Lorentz, 207
Lorentz, 22f
Minkowski, same as Lorentz
Novikov, 826f
of post-Newtonian formalism, 1073f,
1082-1087, 1089, 1091, 1097
Regge-Wheeler, same as Tortoise
Riemann normal, 2851, 329-332
Schwarzschild, for Schwarzschild
geometry, 607
Schwarzschild, for static, spherical
systems, 597
Schwarzschild, for pulsating star, 689
for any spherical system, 6161
Tortoise, for Schwarzschild geometry,
663, 665-666
Coordinates, 5-10
canonical, in context of differential forms
and symplectic structure, 125f
must not be predicted by
geometrodynamic law, 409
rotation and translation of, in
Newton-Cartan theory, 294f
preferred, in Newton, Minkowskii, and
Einstein spacetime, 296
Coordinate singularities. See Singularities,
coordinate
Coplanarity, test for, 281
Coriolis forces, 165, 175, 294, 327, 332
Correspondence, between 1-forms and
vectors, 310. See also Vectors; Forms,
differential
Correspondence principles, 412f
Cosmic censorship, 937
Cosmic gravitational-wave background, 712,
736f, 764f
Cosmic microwave radiation, 712f, 764ff
prediction of by Gamow e al., 760
isotropy of, 703
existence of, refutes steady-state
cosmological model, 770
incompatible with “turnaround universe,”
751
Cosmic neutrino background, 712, 736f,
764f
Cosmic rays, 757
evolution of mean density of, 798
observations refute Klein-Alfven
cosmological models, 770
Cosmological constant, 410fF
Einstein’s invention and retraction of,
410f, 707, 758
influence on evolution of universe, 747,
771, 774
Cosmological models
anisotropic, Chap. 30
Brans-Dicke, 770
closure of universe
related to Mach’s principle, 543, 549
as boundary condition, 1181
de Sitter, 745, 758
Einstein static universe, 746f, 750, 758f
flat, closed, static 3-torus model, 284
Friedmann

GRAVITATION

discovery of, by Friedmann and
Lemaitre, 751, 758

assumption of homogeneity and
isotropy, 703, 713

assumption of perfect-fluid
stress-energy tensor, 711f

assumed equation of state, 713, 726

implications of homogeneity and
isotropy, 714f, 720ff

isotropy implies homogeneity, 715, 723

coordinate system constructed, 715

expansion factor introduced, 718

arbitrariness in expansion factor, 720ff

expansion factor renormalized, 721f

possible 3-geometries for homogeneous
hypersurfaces, 720-725

curvature parameter K = k/a?, 721

line element, various forms for, 721ff,
731, 759

embedding diagrams, 723, 725

topology not unique, 725

first law of thermodynamics for, 726fF

assumption that matter and radiation
exchange negligible energy, 726fF,
765

assumption that pressure of mafter can
always be neglected, 726, 728

density and pressure expressed in terms
of expansion factor, 727

Einstein tensor for, 728

orthonormal frames attached to matter,
728

initial-value equation (for a,,2), 744

dynamic equation (for a,;,), 729

dynamic equation derivable from
initial-value equation plus first law
of thermodynamics, 729

time parameters: 4, @ m, 730-732

observer’s parameters vs. relativity
parameters, 771ff

implications of parameter values for
future of universe, 747, 771, 773f

dynamics of early stage independent of
k (unaffected by closure), 742f

critical density for closure of universe
if A =0, 782

small perturbations of, 800f

See also Hubble constant, Density
parameter, Deceleration parameter

Friedmann, closed (k = +1, A = 0)

in extenso, 733-742

track-1 overview, 704-711

Einstein’s arguments favoring closure,
704

critical density for closure, 710, 782

geometry of 3-sphere hypersurfaces,
704, 721, 723f

radius of, defined, 704

radius of maximum expansion, 705

embedding diagram, 723f

volume of, 724

topology not unique, 725

first law of thermodynamics applied to,
705, 726ff
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initial-value equation for, 537, 705f,
729, 733

effective potential for evolution of, 706

inevitability of recollapse, 707

solutions of field equations for, 734f
radiation-dominated era, 733-737, 740ff
matter-dominated era, 733ff, 738-742
coordinate diagram for, 741
concrete numbers for a typical model,
738
propagation of signals around universe,
741, 750
causal isolation of various regions from
each other, 740ff
mocked up by Schwarzschild-lattice
universe, 739f
compared with Newtonian
cosmological models, 707f
Friedmann, flat and open (k = 0,
k=-1,4=0)
geometry of homogeneous
hypersurfaces, 721, 724f
embedding diagram, 724f
topology not unique, 725
Solutions of field equations for, 742
radiation-dominated era, 742f
matter-dominated era, 743f
Friedmann, plus cosmological constant
(k=0,=£1; A#0)
initial-value equation (for a,,?), 744
effective potential for evolution of, 744,
746, 748f
dynamical evolution of, 744-747
special cases of, 745ff, 750f
hesitation universe, 750
hierarchic (island) universe, 748f, 770
inhomogeneous, Chap. 30
inhomogeneous Gowdy models, 804
inhomogeneous but spherical models,
804
Kasner model, 801, 805ff
Klein-Alfven model, 748, 770
mixmaster, 805-814
Newtonian, 707f, 759
primordial chaos in big-bang models,
769, 802fF
in extenso, Chap. 30
primordial black holes produced by,
884
See also Isotropy and homogeneity of
universe, possible explanations of
Schwarzschild lattice universe, 739f
steady-state universe, 745, 750, 770
turnaround universe, 750f
See also Cosmology: history of universe
according to “standard big-bang
model”
Cosmology:
expansion of universe
prediction of by Friedmann, de Sitter,
and Weyl, 758, 776
discovery of by Hubble, 759, 792-794
removed motive for cosmological term,
410-411

was greatest prediction of Einstein’s
theory, 411

what expands and what does not, 719,
739

“Where is the new space added?” 719,
739

will Universe recontract? 747, 771, 774

See also Hubble expansion rate

history of man’s ideas and knowledge of

the universe, 752-762

history of the universe according to the

“standard big-bang model”

in extenso, Chap. 28

initial singularity, 769f

what “preceded” initial singularity?
769

possible roles of primordial chaos, 769,
803f, 816. See also Cosmological
models: primordial chaos

complete thermal equilibrium at
t € 1 second, 736, 763f

decoupling of gravitational waves and
neutrinos, 736, 764

recombination of pairs, 736f, 764

thermal interaction of matter and
radiation during expansion, 765f

transition from matter dominance to
radiation dominance, 741f, 765f

condensation of stars, galaxies, and
clusters of galaxies, 766, 769, 800

past history not much affected by k
(by geometry of hypersurfaces),
7421, 763

expansion forever vs. recontraction,
747, 771, 774

observational probes of standard model,

780-798

summary of, 797f

distance-redshift relation, derivation of,
780f

distance-redshift relation, observational
data, 781, 785-788, 792ff. See also
Hubble expansion rate

magnitude-redshift relation, derivations
of, 782-785, 794

magnitude-redshift relation,
observational data, 788-791

angle-effective distance vs. redshift
(“lens- effect of universe”), 795f

source counts (number-flux relation),
798

mean mass density of universe, 710f,
796f

comparison of temperature, redshift,
and emission times for cosmic
background radiations, 737

abundances of elements, 765

comparison of ages deduced by various
methods, 797f

evolution of quasar population, 767f,
770

experimental tests of general relativity
using cosmological observations,
1047
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observed properties of universe
homogeneity on large scales, 703, 815
isotropy on large scale, 703, 801, 815
rotation, observational limits on, 939

cosmological expansion, 772, 775f,
785-788, 793f

age deduced from expansion rate, 709f,

797
ages of oldest stars, 709, 797f
ages of rocks and meteorites, 759, 761,
798
deceleration parameter, 785, 788-791
density parameter, 796f

mean density of luminous matter, 710f,

761
mean density of cosmic rays, 712, 757,
798
mean density of intergalactic matter,
712, 761f, 797
mean density in electromagnetic
radiation, 712
energy and pressure in kinetic motions
of galaxies and stars, 711
abundances of elements, 765
entropy per baryon, 766
quasar population, evolution of, 767f,
710
“fine-scale” structure, 703
See also Cosmic microwave radiation,
Hubble expansion rate
speculations about initial and final states
of universe, 707, 1209, 1213-1217
Coulomb field, “pancaking” of, for fast
charged particle, 124
Coulomb force, from electromagnetic
4-potential, 122
Coupling of fields to matter, direct vs.
indirect, 1063f
Covariance, general. See General
covariance
Covariant components of a tensor, 76,
201-207, 312
Covariant derivative
fundamental equations summarized,
223-224
defined by parallel transport, 208, 249
pictorialized, 209, 212
algebra of, 250-261
chain rule for, 214, 250, 252, 257f, 260f
symmetry of (“no torsion”), 250, 252,
353f
additivity of, 252
commutes with contraction, 214
compatibility with metric, 215f, 313ff,
353f
noncommutation of two covariant
derivatives, 389ff
as a machine with slots, 253fF
is not a tensor, 253, 255f

connection coefficients as its components,

210, 256, 261f
rotation 1-forms constructed from, 349ff,
359f
semicolon notation for, introduced, 210
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Covariant derivative (continued)

component calculations of, 215

of tensor densities, 501f

in a hypersurface, 510

regarded as a gravitational field, 387

See also Connection coefficients; Parallel
transport; Rotation coefficients

Crab nebula, ii, 619f, 760

Cross section

collisional, 69
Lorentz transformation of, 70
Crystallography, related to 1-forms, 232
Current 4-vector. See Charge
density-current
Curvature, constant, 3-geometries of,
720-725
Curvature, formalism of
fundamental equations, summarized,
223-224
Bel-Robinson (tidal) tensor, 381f
conformal (Weyl) tensor
introduced, 325, 327
principal null congruences of, 902
Petrov-Pirani algebraic classification of,
1165
spinor representation of, 1154f
in Nordstrom-Einstein-Fokker theory
of gravity, 429, 431
vanishes in 3 dimensions, 550
Einstein tensor
introduced, 222, 325f
track-1 equations summarized, 224
as trace of double dual of Riemann,
325f, 376
formula for mixed components in
terms of Riemann components,
343f
in terms of intrinsic and extrinsic
curvature, 515
interpreted as moment of rotation,
373-377
contracted Bianchi identity
(“conservation of Einstein”), 325,
3776F
conservation of, from boundary of a
boundary, 377ff
uniqueness of, 405, 407f
curvature 2-form, 348-363
picture of, for 2-sphere, 337
picture of, for pith helmet, 338
curvature operator
introduced, 271
regarded as bivector-valued 2-form,
376-380
as twice-applied exterior derivative, 351
as machine-with-slots, 351f
in context of Newton-Cartan theory,
299
extrinsic curvature of a hypersurface,
511-516
contrasted with intrinsic curvature, 336,
421
operator for, 511
tensor for, 512

from Lie derivative of metric, 520
Gauss-Codazzi relations, 514fF
Gaussian curvature of a 2-surface, 30, 44,
336f
intrinsic curvature of a hypersurface, 509f
invariants of Riemann, 491
Jacobi curvature tensor, 286f
Jacobi curvature operator, 286
in context of Newton-Cartan theory,
299, 301
principal radii of curvature for a
2-surface, 44, 335f
Riemann tensor
component formulas for, summarized,
224, 266
component formula for in
non-coordinate basis, 277
Riemann, matrix display of
components of, 360f
elementary introduction to, 31, 34-37,
39
in extenso track-1 treatment (metric
present), 218-224
in extenso, in absence of metric,
270-288
in extenso, properties induced by
introduction of metric, 324-327
defined by parallel transport around
closed curve, 277-282
proof of tensor character, 276
defined by geodesic deviation, 29-37,
218f, 270-277, 287
relation to curvature operator, 274ff
relation to noncommuting covariant
derivatives, 389
relation to curvature 2-form, 352
as machine with slots, 271, 274f
symmetries of, 35, 220fT, 286, 324f
number of independent components,
326
invariants of, 491
in 2 and 3 dimensions: deducible from
Ricci tensor, 334, 343, 550
Bianchi identities, 221f, 224, 325f. See
also Bianchi identities
only tensor from, and linear in, second
derivatives of metric, 408
wave equation for, 382
dynamic components of, 517f
spinor representation of, 1154f
in Newton-Cartan spacetime, 290, 302
in linearized theory, 438
Riemann tensor, double dual of, 325f,
343, 371, 376
Ricci tensor, 222, 325f
in Newton-Cartan theory, 290, 300
scalar curvature
introduced, 222, 325
in terms of area deficit, 516
for a 3-surface, 422f
Gauss-Bonnet integral of, 309, 381
in Hilbert action principle, 418, 491
Weyl tensor. See Conformal tensor
York’s curvature, 541, 550

GRAVITATION

Curvature, methods of calculating
in extenso, Chap. 14
analytical, on a computer, 342
straightforward method, from connection
and its derivative, 340f
mixed components of Einstein expressed
explicitly in terms of Riemann
components, 343f
geodesic Lagrangian method, 344-348
via 2-forms, theory, 348-354
via 2-forms, method, 354-362
ways to display results, 334, 360f
“Curvature coupling” in equivalence
principle, 389-392
Curvature of spacetime
modeled by surface of apple, 4f
implied by gravitational red shift, 187ff
generation of, by mass-energy, 37-44,
Chap. 17
measured by geodesic deviation, 29-37,
195f, 270-275
procedure-in-principle to measure, 72
measured by gravity gradiometer,
400-403
coupling to physics in equivalence
principle, 389-392
coupling to moments of a macroscopic
object, 391f, 476-480, 1120f
can be great locally even if average is
near zero, 220
See also Geodesic deviation, Tidal forces,
Spacetime geometry
“Curvature parameter” of Friedmann
cosmologies, 721
Curvature tensors for specific manifolds
gravitational wave, exact, plane, 346f, 444
gravitational wave, linearized, 948
linearized theory, any metric, 438
Friedmann cosmology, 345, 348, 355ff,
537, 728
Newton-Cartan spacetime, 290
Newtonian sphere of uniform density,
39f
Newtonian spherical vacuum field, 37
Schwarzschild metric, 821
spherical, dynamic line element, 361f
spherical, static line element in
Schwarzschild coordinates, 360f
3-hyperboloid, 343, 721
3-sphere, 343, 721
3-surface of ‘“‘constant curvature,” 721
2-hyperboloid, 334
2-sphere, 30, 341
2-surface of revolution, 339f
world tube of a collapsing star’s surface,
853
Curvature. See also Bianchi identities;
Gauss-Weingarten equations;
Gauss-Codazzi equations
Curve, in context of differential topology,
226
Curves, congruence of, 240
Cutoff, related to Planck length, 428
Cycloidal motion
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for radial geodesics in Schwarzschild
geometry, 664

for test particle in field of a Newtonian
point mass, 708

for radius of closed Friedmann
cosmology, 708

for surface of a pressure-free collapsing
star, 852

D

“d,” three usages of this differential
symbol, 95-96
d’Alembertian operator. See Wave
operators
Day, length of, 23-26, 1124f
de Rham operator. See Wave operators
de Broglie wave, 53, 55-59
de Sitter universe, 745, 758
Deceleration parameter of universe
defined, 772
relationship to other cosmological
parameters, 771-773
determinant of whether universe will
recontract, 774
magnitude-redshift relation for
measuring, 782-785, 794
observational data on, 785, 788-791
Deficit angles, 309, 1167ff
Deflection of light, gravitational,
pictorial explanation of, 32
early Einstein words on, 431
calculated in linearized theory, 184f, 446
calculated in Schwarzschild coordinates,
679
calculated in PPN formalism, 1101ff
post-post-Newtonian corrections to, 1069
magnitude of, compared with current
technology, 1048, 1101
experimental results on, 1104f
in flat-space theories of gravity, 179, 184f
Deflection of particles by a central field,
671, 1099f
Degenerate electron gas. See White-dwarf
matter
Degenerate neutron gas. See Neutron-star
matter
Degrees of freedom, counting of, for
geometrodynamics and
electrodynamics, 529-533
Delta, Kronecker, 22
Delta function, Dirac, 121
Democracy of histories, 418-419
Density of universe. See under Cosmology:
observed properties of the universe
“Density parameter” of universe, 772, 796
Derivative, covariant. See Covariant
derivative
Derivative, directional. See Directional
derivative
Derivative, following fluid, 153, 1078
Detailed balance, principle of, 1028ff, 1033,
1035f
Determinant

derivative of, 160-161
and Jacobian, 160-161
Deviation, geodesic. See Geodesic deviation
DeWitt equation, 1189. See also
Einstein-Schrodinger equation
Dicke-Brans-Jordan theory of gravity. See
under Gravitation, theories of
Dicke-Eotvos experiment. See Eotvos-Dicke
experiment
Dicke’s framework for analyzing
experiments, 1049, 1064
Differentiable manifold. See Manifold,
differentiable
Differentiable structure, 242
Differential conservation law, equivalence
to integral conservation law, 146
Differential forms. See Forms, differential
Differential geometry
overview of, 194-198
track-1 treatment of, Chap. 8
track-2 treatment of, Chaps. 9-11, 13-15
texts on, 196
three levels of: pictorial, abstract,
components, 198-200
Cartan’s contributions to, 198
applications of, listed, 198
See also Differential topology, Affine
geometry, Riemannian geometry,
and specific concepts, such as
Metric, Connection, Forms
“Differential,” of differential calculus,
rigorous version of, 62
interpreted as a 1-form, 63
interpreted as p-form, 160-161
Differential topology, 197f, Chap. 9, esp.
240-243. See also specific concepls, e.g.,
Manifold, Lie derivative
Dimensionality, 10, 12
Dirac brackets, 486, 520
Dirac delta function, 121
Dirac equation, in Schwarzschild geometry,
1165
Directional derivative
of a function along a vector, 59-60
operator for, 61
as a tangent vector, 227-230
Disks, rapidly rotating, in general relativity,
621
Dispersion relations obtained from
Hamiltonians, 486f, 494, 498
Distance, proper. See Interval, Lorentz
Distance-redshift relation. See under
Cosmology: observational probes of
standard model
Distances, as raw material of metric, 306-309
Distant action. See Action at a distance
Distant stars, inertial influence of. See
Mach’s principle
Distribution. See Dirac delta function
Distribution function, 583f, 590
Divergence of a vector or tensor, 82, 213,
222, 261
Divergences, in theory of particles and
fields, 426-428
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Double star. See Binary star
Dragging of inertial frames
in PPN formalism, 1117-1120
by Earth’s rotation, 1119f
by a slowly rotating star, 699
in Kerr-Newman geometry, 879ff, 893-896
prospects to measure, 1120
See also Mach’s principle
Dual bases, 60f, 119, 202, 232
Duality operation on forms, vectors, and
tensors
on forms, 88, 97f, 108, 119, 151
on simple forms, expressed in terms of
perpendicularity, 98
application to electromagnetism, 88, 97f,
114
double dual of Riemann, 371, 376
not to be confused with duality of bases,
119
special star operation that does not act
on forms, 376-380
Duality rotation of electromagnetic field,
108, 482f
Dynamical path length
in elementary mechanics, 486-487
as proportional to phase of wave
function, 486
in superspace formulation of
geometrodynamics, 419, 1186
See also Variational principle

E

Earth
atmosphere and gravity, 388
crust, as detector of gravitational waves,
1013, 1015
general precession (precession of rotation
axis), 391, 392, 1112, 1113
gravitational multipole moments, 401
mass, radius, density. See endpapers
motion relative to cosmic microwave
radiation, 713
particles oscillating in hole bored
through, 39
rotation of, drags inertial frames, 1119f.
See also Day
satellite orbits used to deduce mass, 638
shape as described by collection of
distances, 306-309
subsurface mass variations, 401
tides, as experimental test of general
relativity, 1123f
vibrations of, as detector for gravitational
waves, 1013, 1015, 1035f
Eccentricity of an elliptical orbit, 647
Eclipses, 24-26, 1104
Eddington-Finklestein coordinates, 828-831,
849
Eddington-Finklestein diagrams, 829, 830,
849, 864, 873
Effective potentials
for test particles in Schwarzschild
geometry, 639, 656, 659-662
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Effective potentials (continued)

for charged test particles in equatorial
plane of Kerr-Newman hole, 911

for waves in Schwarzschild geometry,
868, 870

for scalar waves in Kerr geometry, 915

for radius of Friedmann universe, 706,
744, 746, 748f

for oscillations of mixmaster universe,
809fF

Einstein. See under Curvature, formalism of

EIH equations of motion, 1091, 1094-1095
Eikonal method, 1102
Einstein A coefficients, 1029
Einstein’s elevator, 298. See also
Equivalence principle
Einstein field equation, 431-434
elementary introduction to, 41ff
integral equation equivalent to, 995-996
variational principles for. See under
Variational principles
derivations of
in extenso. Chap. 17, esp. 406, 416-482
from automatic conservation of source,
3791, 417
from Hilbert’s action principle, 418
from physics on a spacelike slice,
419-423
from spin-2 field theory, 424f, 437
from superspace analysis, 423f
from “metric elasticity of space,” 426ff
modified by cosmological term, 410-412
correspondence with Newtonian theory,
412-416
and collapse, 1198-1199
See also Geometrodynamics
Einstein-Infeld-Hoffman equations of
motion, 1091, 1094-1095
Einstein-Rosen bridge, 837fF
Einstein-Schrodinger equation, 1189f
Einstein static universe, 746, 747, 750, 758f
Einstein summation convention, 9
Einstein tensor. See under Curvature,
formalism of
Einstein’s theory of gravity. See General
relativity
Elasticity, 426-428
Electrodynamics
in flat spacetime, in extenso, Chap. 3
in curved spacetime, in extenso, 385-391,
568-570
in language of forms, in extenso, Chap. 4
in language of spinors, 1154, 1165
in terms of boundary of a boundary,
365-370
in geometric optics limit. See Geometric
optics
canonical formulation of, as a guide to
geometrodynamics, 496f, 522ff
analog of Palatini variational method in,
495-498
three-plus-one view versus geometric
view, 78-79
deduced from vector potential, 122

deduced from electrostatics plus
covariance, 81

lines of force never end, as core principle
of, 420

analogies and comparisons with
geometrodynamics, 35, 348, 364,
367-370

See also Initial-value problem, Integrating

forward in time
Electromagnetic field
descriptions of and equations governing
electric and magnetic fields, 73f
Lorentz transformation of, 78f
dual of electromagnetic field tensor,
Maxwell
introduced, 88, 105
egg-crate picture of, 107, 109
divergence vanishes, 88
exterior derivative gives charge density
and current, 113f
vector potential, 88f, 120, 569
wave equation for, 89, 120, 388-391,
569
electromagnetic field tensor (or 2-form),
Faraday
as machinery to produce force from
4-velocity, 73, 101, 104
components of, 73-74
expressed in terms of exterior products,
99
egg-crate pictures of, 99f, 104, 106, 107,
111

“canonical representation” of, 122
special cases of pure electric, pure
magnetic, and null, 122
generic case reduced to simplest form,
122, 483
Maxwell’s equations for, in component
notation, 80f, 568
divergence gives charge density and
current, 81, 88
exterior derivative vanishes, 112f, 117
invariants, 110, 480-483
field momentum, 496f, 522ff
stress-energy tensor, 140f
divergence vanishes, 89
complexion, 108, 482
calumoid, 125
Lorentz force, 711f, 101, 104, 568
Maxwell’s equations, 80f, 568. See also
Maxwell’s equations
Lorentz transformations, 78f, 108ff, 482f

Electromagnetic field produced by specific

sources
oscillating dipole, 111-112
point charge, 107-111, 121f

Electron

quasibound in field of small black hole,
1164
spinning, Thomas precession of, 175-176

Electron capture, in white-dwarf matter,

619

Elementary-particle experiments as tests of

relativity theory, 1054f, 1060. See also

GRAVITATION

under Conservation laws, energy-
momentum

Elements, abundances of, 765
Elevator, 431. See also Uniqueness of free

fall, Tide-producing acceleration

Embedding diagrams

general discussion, 613

for a static, spherical star, 613-615, 617

for Schwarzschild geometry, 837, 839, 528

for a spherical, collapsing star, 855-856

for Friedmann cosmological models, 723,
725

Energy-at-infinity

in Schwarzschild geometry, 656ff
in Kerr-Newman geometry, 898f, 910

Energy in mechanics, as time rate of

change of action, 486-487
Energy of a particle, expressed as — p-u,
65
Energy-momentum
4-vector, 51, 53f, 68
density of
revealed by stress-energy tensor, 131
3-form for, 151
of gravitational field
nonlocalizable in generic case, 466ff
precisely localizable only for spherical
systems, 603-604, 858f
localizable only to within a wavelength
for gravitational waves, 955f,
964-966, 969f
total, of a gravitating source
in terms of asymptotic gravitational
field, Chap. 19
expressed as a flux integral, 461-464
expressed as a volume integral,
464-466
conservation of. See under Conservation
laws
Entropy. See under Second law of
thermodynamics
Eotvos-Dicke experiments, 14-17, 1050-1055
early Einstein words on, 431
implications for constancy of
fundamental constants, 1061-1063
for massive (self-gravitating) bodies,
1127-1131
Ephemeris for solar system (J.P.L.), 1095,
1097
Ephemeris second, 28
Equation of structure, Cartan’s, 378
Equations of motion
derived from Einstein field equation,
42-43, 471-480
for bodies separated by distances large
compared to their sizes
“EIH” (post-Newtonian) for spherical
bodies, 1091, 1094-1095
deviations from geodesic motion,
1120-1121, 1128
Equations of state
for nuclear and white-dwarf matter,
624-626
for “cosmological fluid,” 713, 726
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Equinoxes, precession of, 391f, 1112f
Equivalence principle
enunciated, 386f, 1060
Einstein’s 1911 formulation of, 17
bridge from special relativity to general
relativity, 164, Chap. 16, 207
out of spin-2 field theory, 425
in Newton-Cartan theory, 297
basis for affine parameter, 211, 250
factor-ordering problems in, 388-391
role in metric theories, 1067f
tests of, 187-190, 1054-1063
weak equivalence principle. See
Uniqueness of free fall
Ergosphere, 880
Ether, 1051, 1064f
Euclidean geometry, 19-22
contrasted with Lorentz geometry, 51
Euler angles, 243
Euler relation, on vertices, edges, faces,
1175
Euler equation of hydrodynamics
in flat spacetime, 152f
in curved spacetime, 564
in PPN formalism, 1088
applied to a pulsating star, 693-694
applied to a collapsing star, 858
Eulerian perturbations, 690-691
Events, 6, 9f
identifiability as key, 225
as classical, not valid quantum concept,
1184
Expansion of universe. See under
Cosmology
“Expansion,” of a bundle of null rays, 582,
1165
“Expansion,” of a congruence of world
lines, 565f
Experimental tests of general relativity
in extenso, Chaps. 38, 39, 40
Beall test of uniqueness of free fall, 17
black holes, 1047
catalogued, 1129
constancy of fundamental constants,
1061-1063
cosmological observations used for, 707,
1047, 1061, 1067
deflection of electromagnetic waves by
sun, 1048, 1069, esp. 1101-1105
“de Sitter effects” in Earth-moon orbit,
1116, 1119
Earth’s failure to collapse, 398f
Earth’s rotation rate, periodicities in,
1124-1125
Earth tides due to galaxy and to motion
relative to preferred frame,
1123-1124
Eotvos-Dicke experiment. See
Eotvos-Dicke experiments
ether-drift experiments, 1064-1065
expansion of universe, 707
geophysical observations, 1061, 1123-1125
gyroscope precession, 1117-1120
gravitational (Cavendish) constant,

variations of. See under Cavendish
gravitational constant
gravitational waves, 1047, 1072
Hughes-Drever experiment, 1064
isotropy of space, 1064
Kreuzer experiment, 1125
laser ranging to moon, 1048, 1130-1131
lunar orbit, 1048, 1116, 1119, 1127,
1128-1131
Newtonian experiments, 1067
Nordtvedt effect, 1128-1131
null experiments, 1050, 1064
perihelion shift, esp. 1110-1116
planetary orbits, deviations from geodesic
motion, 1111, 1126-1131
planetary orbits, periodic effects in, 1069,
1111
Pound-Rebka-Snider experiment,
1056-1058
preferred-frame effects, 1098, 1113-1114
pulsars used for, 1047
quasars used for, 1047, 1048, 1061, 1101,
1103, 1104-1105
radar time delay, 1048, 1103, esp.
1106-1109
redshift, gravitational. See Redshift,
gravitational
redshift, due to “ether drift,” 1064-1065
singularities in spacetime, existence of, 939
Turner-Hill experiment, 1064-1065
See also Parametrized post-Newtonian
formalism, Dicke’s framework for
analyzing experiments, Experimental
tests of special relativity
Experimental tests of special relativity,
1054-1055
Exterior calculus
introduction to and detailed summary of,
91-98
application to electromagnetism, Chap. 4
largely unaffected by presence or absence
of metric, 233
extended to vector- and tensor-valued
forms, 348-363
See also specific concepts, e.g., Forms,
differential; Exterior derivative;
Stokes theorem
Exterior derivative
introduced, for scalar fields, 93f
as operation to augment the order of a
form, 114-120
applied twice in succession, automatically
gives zero, 116, 118
results of, 119
extended to vector- and tensor-valued
forms, 348-363, Chap. 15
Exterior product. See Wedge product
External field of a gravitating source. See
Asymptotically flat spacetime geometry
Extrema, number of, 318
Extreme Kerr-Newman geometry, as
limiting case of Kerr-Newman, 878
Extremization, of integral for proper time,
316-324

1263

Extrinsic curvature. See under Curvature,
formalism of

Extrinsic time, of Kuchar and York, 487,
490

F

Factor-ordering problems, 388-391
Faraday. See under Electromagnetic field
Faraday stresses, 140f, 481
Fast-motion approximation, 1072-1073
Fermat’s principle in a static gravitational
field, 1106, 1108
Fermi energy, in neutron stars and white
dwarfs, 599-600
Fermi gas, ideal, 565, 599
Fermi normal coordinates, 332
Fermi-Walker transport, 165, 170f, 1117
Feynman’s sum over histories, 320, 419, 499f
Field equations. See Einstein field
equations
Fields, long range (i.e., zero rest mass)
spin of, deduced from transformation
laws for polarization of waves, 954
radiation fields must have [ > S, 866, 977
role in slightly nonspherical collapse of a
star, 866
direct coupling vs. indirect coupling,
1063-1064
direct coupling, experimental searches
for, 1063-1065
indirect coupling, 1068, 1069
Final state of stellar evolution, 624. See
also White dwarfs, Neutron stars,
Black holes
Fine-structure constant, electromagnetic,
constancy of, 399, 1061
First law of thermodynamics
general formulation for a simple fluid,
559-560
for a fluid in adiabatic flow, 563
in PPN formalism, 1088
role in laws of hydrodynamics, 564
application to pulsating stars, 692
application to collapsing stars, 858
application to closed Friedmann universe,
705, 726fF
Fixed-point theorem, 978
Flatness
test for, 30
equivalent to zero Riemann curvature,
283-284
does not imply Euclidean topology, 284
local, accompanied by global curvature,
190-191
of space slices in Newton-Cartan
spacetime, 291-295
Flatness, asymptotic. See Asymptotically
flat spacetime
Flat spacetime. See Special relativity;
Lorentz geometry
“Foamlike” character of space, 419, 480,
1190-1194, 1202
Fluctuations, See Quantum fluctuations
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Fluid. See Hydrodynamics
Flux of particles. See Number-flux vector
Flux of energy, defined, 782
Focusing
of null rays, 582f, 932, 1165
See also Lens effect
4-Force, Lorentz, 73
Forms, differential
list of all definitions and formulas, 91-98.
Note: this list is not indexed here,
since it itself is organized like an
index!
machinery for working with, illustrated in
context of electromagnetism, Chap. 4
as intersecting stacks of surfaces, 99-120
ordered progression of (1-form,
2-form, . . .), 114-120
closed forms distinguished from general
forms, 114-119
operations on. See Duality, Exterior
derivative, Integration
1-forms
motivated, 53, 55f
defined, 56f
illustrated, 55-58
“corresponding” tangent vector, 58,
62, 310
pictorial addition of, 57
basis. See Basis 1-forms
algebra of, for general basis, 202-203
in metric-free context, 226, 231-233
closed, 123
curl-free, 123
rotation-free, 123-124
with rotation, 123
2-forms
as machines to construct “number of
tubes” from oriented surface,
105-107
simple, 103
general, expressible as sum of two
simple 2-forms, 103, 122f
basis 2-forms, in direct and dual
labeling, 151
used in description and calculation of
curvature, 337-340, 348-363
vector-valued and tensor-valued forms,
348-363 and chapter 15
Four-momentum. See under
Energy-momentum
Four-vector. See Vector
Four-velocity. See Velocity 4-vector
Friedmann cosmologies. See under
Cosmological models
Frobenius theorem, on rotation-free
1-forms, 124
Frozen star. See Black hole
“Future of.” See Causal relationships

G

Galaxies
classification of, 786f, 789, 793, 795
origin of, 766, 769f

evolution of, 791
distribution of, homogeneity vs.
hierarchy, 703
fraction of sky covered by, 799
nuclei of
explosions in, 634
black holes in, 887
relativistic star clusters in, 634, 687
Galaxy, The (Milky Way), 756-761
metric correction at, 459
oscillations of star through disc, analyzed,
318-319
Galilean coordinates, 289, 291-298, 414
Gamma-ray observations, as tests of
cosmological models, 770
Gauge transformations and invariance
in electromagnetism, 89
in linearized gravitation theory (flat-space
spin-2 theory), 180, 182f, 440f, 463
in perturbations of curved spacetime,
967ff
See also Lorentz gauge
Gauss-Bonnet theorem, for 2-sphere
topology, 309
Gauss-Codazzi relations, 514fF
Gauss-Weingarten equations, for
4-transport
in terms of extrinsic curvature, 512
Gaussian flux integrals
for energy-momentum and angular
momentum, 460-464
for charge, 461
Gaussian normal coordinate system, 552,
717
Gauss’s theorem, 148-151
as special case of generalized Stokes
theorem, 97
applied to conservation of
energy-momentum, 146, 152
General covariance, principle of, 80, 431f
General relativity
epitomized briefly, 130 (line 1), 164, 190f,
266, 289
foundations developed in detail, Chaps.
16, 17
See also Einstein field equation,
Equivalence principle, Experimental
tests of general relativity,
Geometrodynamics
Generating function, for transformation
from one canonical representation of a
2-form to another, 122-123
Geodesics
track-1 introduction to, 211
track-2 treatment, in absence of metric,
244-247
affine parametrization of, 244-246
as straight-on parallel transport, 245
as straight lines of local Lorentz
geometry, 312-315, 321-324
as curves of extremal proper length,
314-321, 324
“dynamic” variational principle for, 322f
one-parameter family of, 265-267

GRAVITATION

can’t change from timelike to null or
spacelike en route, 321
simple examples
great circle on sphere, 211f
straight line on plane, in polar
coordinates, 213
of specific manifolds. See under the
manifold of interest
as world lines of freely falling particles,
4, 196
as tools for building ideal rods and
clocks, 396-399
Geodesic deviation
elementary introduction to, 29-37
double role: defines curvature, predicts
motion, 72
equation of, presented in track-1
language, 218ff
equation of, derived, 265-275
in spacetime of Newton-Cartan, 272f, 293
in gravitational-wave detector, 444-445,
950-955, 1011f
Geodesic equation 211, 262ff
Geodesic motion
experimental tests of, 1055-1060
departures from. See under Equations
of motion
Geodesic separation vector, 265-270
Geometric objects, 48
absolute vs. dynamic, and “no prior
geometry,” 431
spinor representation of, 1154f
See also specific objects, e.g., Vectors,
Forms, Connection
Geometric units
introduced, 27ff, 36
factors of conversion to and from, 36,
638, end papers
Geometric optics
as limiting case of physical optics, 412
in extenso, for electromagnetic waves,
570-583
basic references on, 570n.
conditions for validity of, 571
two-length-scale expansion underlying,
571-572
basic concepts of, 571-582
summarized, 578-580
affine parameter of ray, 575
angular frequency, 575
bundle of rays, 581-582
electric field, 579
magnetic field, 579
phase, 571, 572, 574-575
photons, 580, 581
polarization vector, 573, 574-575, 577,
578, 581
scalar amplitude, 573
rays, 573, 574-575
stress-energy tensor, 579
wave vector, 573, 574-575
laws of
described qualitatively, 571
summarized in detail, 578-580
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photon interpretation of, 580
derived from wave equation and

Gravitation-matter “coupling loop,” in brief,
5,37
Gravitation, theories of

Gravitational potential. See under
Newton-Cartan theory, Post-Newtonian
formalism

Lorentz gauge condition for vector
potential, 573, 576-577
post-geometric optics corrections, 572f,

in spinor language, 1165
examples of applications of, 570
geometry of a bundle of rays, 581-582
focusing equation, 582f
breakdown of, related to pair creation,
803-804
Geometrodynamics (dynamics of geometry)
ideas of, in brief, 4f
built-in plan: initial data plus time
evolution, 408f, 484f
some history of, 486-488
analogies with electrodynamics, 364,
367-370
causal propagation of effects in, 554
Arnowitt, Deser, Misner formulation of
in brief, 486-490
action principle in, 521
geometrodynamic field momenta for,
521
3-geometry fixed at surfaces in, 522
split of variables made by, 525-526
electrodynamic analog, 522-524
Dirac formulation of, 520
subject to standard quantum
indeterminism, 1182
illustrated in action, for Schwarzschild
geometry, 528
See also Einstein field equation, General
relativity, Initial value, Integrating
forward in time
Geometry. See specific types: Spacetime,
Euclidean, Lorentz, Differential, Affine,
Riemannian, Prior. See also Curvature
Geon, 886
Global techniques of analyzing spacetime
structure
in extenso, Chap. 34
basic references on, 916-917
examples of, 926-931
attempt to combine with local methods,
806
See also Infinity, regions of, in
asymptotically flat spacetime; Causal
structure of spacetime; Singularities
in spacetime
Globular clusters, 757
black holes in, 887
“Glory,” in particle scattering, 670
Gowdy metrics, 804
Gradient
of a scalar, in flat spacetime, 59f
of a tensor, in flat spacetime, 81f
in a curved manifold, 208-212, 259-261
See also Exterior derivative
Gradiometer, gravity, 400-403
Gravitation, 13, 163-164

catalogs of, 429

criteria for viability of, 1066-1067

Bergmann’s scalar-tensor theories, 1049

Birkhoff’s, 1067

Cartan’s (general relativity plus torsion),
1049, 1068

Cartan-Newton. See Newton-Cartan
theory of gravity

Coleman’s, 1114

completeness of, 1067, 1068

conservative, 1093

Dicke-Brans-Jordan, 1048f, 1068f, esp.
1070, 1093, 1098, 1122, 1127, 1129

cosmological models in, 770

general relativity, foundations of, Chaps.
16, 17

Kustaanheimo’s, 1067

linearized. See Linearized theory of
gravity

metric. See Metric theories of gravity

metric, not encompassed by the
10-parameter PPN formalism, 1069

Newtonian. See Newton-Cartan theory of
gravity

Ni’s, 1068f, esp. 1070f, 1083, 1098, 1123,
1129

Nordstrem’s, 4291, 1049

Papapetrou’s, 1124

post-Newtonian. See Post-Newtonian
approximation; Post-Newtonian
formalism, parametrized

preferred-frame, 1083, 1093, 1098,
1123-1125

prior-geometric, 429-431, 1068, 1070-1071

self-consistency of, 1066-1067

spin-0 field, in flat spacetime, 178f

spin-1 field, in flat spacetime, 179

spin-2 field, in flat spacetime. See
Linearized theory of gravity

Whitehead’s, 430, 1049, 1067, 1069, 1124

Gravitational collapse. See Collapse,

gravitational

Gravitational constant

value of, 29, endpapers

measurement of, 1121, 1123

as measure of “metric elasticity of
space,” 426-428

See also Cavendish gravitational constant

“Gravitational field” in general relativity

theory

as term with many meanings and none,
399f

spacetime geometry as, 399-400

metric as, 399f

covariant derivative and connection
coefficients as, 387, 399-400

Riemann curvature as, 399-403

contribution of, to standard stress-energy
tensor, specifically excluded, 131

Gravitational radiation reaction. See
Gravitational waves; radiation reaction
Gravitational radius, 820-826. See also
Horizon, Black hole, Schwarzschild
geometry, Kerr-Newman geometry
Gravitational-wave detectors
conceivable types of
Earth-moon separation, 1013, 1014,
1018
normal-mode vibrations of Earth and
moon, 1013, 1015
oscillations of Earth’s crust, 1013, 1015
normal-mode vibrations of an elastic
bar, 1013, 1016, 1025, 1035, 1038
normal-mode vibrations of general
elastic bodies, 1013, 1016, 1025,
1028-1035, 1041-1042
angular accelerations of rotating bars
(“heterodyne detector”), 1013,
1016-1017
angular accelerations of driven
oscillators, 1013, 1017
pumping of fluid in a rotating pipe,
1013, 1018
idealized vibrator (2 masses on a
spring), 1022-1028
beads on stick, 444f
nonmechanical detectors, 1040
electromagnetic waves in a toroidal
wave guide, 1043-1044
methods of analyzing (for mechanical
detectors small compared to
wavelength)
proper reference frame of detector,
1005-1006, 1010, 1012
dynamic analysis: Newtonian equation
of motion plus wave driving
forces, 1006-1009
driving forces of waves, 1006, 1009,
1010
line-of-force diagram, 1011-1012
method of detailed balance, 1028,
1029-1030, 1033
for noisy detector, 1019, 1036-1040
detailed analysis of
two freely falling bodies, 1018
idealized vibrator (two masses on a
spring), 1022-1028
any resonant vibrator, analyzed by
detailed balance, 1030, 1033
any resonant vibrator, analyzed by
dynamic method, 1031-1034
noisy resonant vibrator (extraction of
signal from noise), 1036-1040
Earth vibrating in quadrupole mode,
1035-1036
electromagnetic waves in a toroidal
wave guide, 1043-1044
cross sections

local description in terms of
tide-producing acceleration, 29-37

Gravitational lens effect, 589, 887
Gravitational mass, 431

limits on usefulness of concept of cross
section, 1019, 1022

For general queries contact webmaster@press.princeton.edu.



© Copyright Princeton University Press. No part of this book may be
distributed, posted, or reproduced in any form by digital or mechanical
means without prior written permission of the publisher.

1266

Gravitational-wave detectors (continued)
summary of ways to use, for
wave-dominated detectors,
1020-1021
used to calculate total energy deposited
in detector, 1027, 1028
use of, for noisy detectors, 1038-1039
related to emission patterns, 1032-1033,
1035
for idealized vibrator, 1024, 1025
for any resonant, mechanical detector,
1025, 1029, 1032
for a Weber bar, 1025
for a Weber bar in multimode
operation, 1035
for Earth in fundamental quadrupole
mode, 1036
thermally noisy detectors
extraction of small signal from noise,
1036-1040
sensitivity of, to hammer-blow waves,
1039
ways to improve sensitivity, 1040
sensors for monitoring displacements,
1041, 1042
prospects for the future, 1040ff
Gravitational waves
exact solutions
cylindrical wave, 950
plane waves with one state of
polarization, 957-963. See also
Plane gravitational waves
plane waves with two polarization
states, 964
experimental tests of general relativity
using, 1047, 1072
generation by slow-motion, weak-field
sources
nonexistence of monopole and dipole
waves, 974-978
waves are predominantly quadrupolar,
975-978
assumptions underlying formulas, 989,
991
formula for metric perturbation, 991
formulas for emitted flux of energy
and angular momentum, 992
formulas for total output of energy and
angular momentum, 975, 992
formulas for radiation reaction in
source, 993-994
formulas for spectrum in various
polarization states, 1033, 1035
formulas specialized to impulse events,
987
order-of-magnitude formulas for,
978-979, 980-981
derivation of formulas, 995-1003
role of “gravitational stresses” in
generation, 996-998
generation by strong-field sources,
techniques for calculating
particle falling into black hole, by

perturbations of Schwarzschild
metric, 982, 983
vibrations of a relativistic star, by
perturbations of equilibrium stellar
structure, 984-985
rotation of a deformed relativistic star,
by perturbations of spherical
stellar structure, 986
initial-value solutions for, 536
intensity and spectrum of waves that
bathe Earth, estimate of, 986
linearized theory of
in extenso, 944-955
Lorentz gauge conditior, 944-945
propagation equation, 945
gauge transformations that maintain
Lorentz gauge, 945
plane-wave solutions, 945-946, 949,
1004-1005
transverse-traceless gauge 946-950
methods to calculate transverse-traceless
part, 948-949
Riemann tensor, 948
geodesic deviation, 950-955, 1011-1012
relative accelerations are purely
transverse, 951
polarization, 952-955
Fourier analysis of, 1026, 1027
specific flux of, 1027
monopole and dipole waves absolutely
forbidden, 977, 978
nonlinear interaction of waves with
themselves
nonexistence of precisely periodic
waves, 956
self-gravitational attraction, 957, 968
wave-wave scattering, 968
propagation through curved spacetime
analogy with water waves on ocean,
993-994
refraction of wave fronts (deflection of
rays) by background curvature,
956, 968, 972
gravitational redshift of frequency,
956-957, 968
backscatter off curvature, 957, 864-865,
869-871
tails due to interaction with
background curvature, 957,
864-865, 869-871
shock fronts, 554
shortwave formalism for, 964-973. See
also Gravitational waves:
shortwave formalism
propagation equation, 967-968
stress-energy tensor, 969-970. See also
Gravitational waves: stress-energy
tensor for
geometric optics formalism, 971-972
propagation of polarization tensor, 968,

spinor formalism for, 1165
See also Gravitational waves: nonlinear

GRAVITATION

interaction of waves with
themselves
radiation reaction
order-of-magnitude formulas for, 979,
981
formalism for calculating, in weak-
field, slow-motion sources, 993ff,
1001fF
linked to outgoing-wave condition, 993,
1001-1002
forbids existence of exactly periodic
waves, 956
damping of neutron-star vibrations by,
620, 628, 984f
evolution of binary-star orbits due to,
988
shortwave formalism
“steady” coordinates, 964
expansion parameters of, 964
assumptions underlying, 964
expansion of Ricci tensor, 964-965
coarse-grain viewpoint vs. fine-grain
viewpoint, 965
propagation equation, 967-968
gauge freedom, 967-969
Lorentz gauge, 968
transverse-traceless gauge, 969
stress-energy tensor, 969-970. See also
Gravitational waves: stress-energy
tensor
Brill-Hartle averaging process, 970
geometric optics specialization, 971-972
variational principle used to derive,
972-973
sources of
astrophysical sources,
order-of-magnitude formulas for,
980-981
big-bang origin of universe, 712,
736-737, 764-765
gravitational collapse of a star, 628,
629, 1041
supernova explosions, 982, 1040, 1042
explosion of a star, 987
collapses and explosions in Virgo
cluster of galaxies, 1042
vibrations of neutron star, 982-986
rotation of a deformed neutron star
(young pulsar), 628f, 983, 986, 1040
binary stars, 986, 988-990, 995
fall of matter into a black hole, 885,
982, 983, 986
collision and coalescence of black
holes, 886, 939, 982
vibrations of a black hole, 886
rotating steel beam, 979-980
fission of an atomic nucleus, 987
atomic bomb, 987
meteorite striking earth, 987
stress-energy tensor for
elementary summary of, 955-956
expressed in terms of metric
perturbations, 969
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expression for in traceless Lorentz
gauge, 970
gauge invariance of, 972
expressed as an average of stress-energy
pseudotensor, 972
divergence vanishes, 970
as source for background curvature of
spacetime, 966, 973
for geometric-optics waves, 972
for waves in nearly flat spacetime,
955-956
for exact plane wave, 963
Gravitons, 972
Gravity gradiometer, 400-403
Group. See Rotation group; Lorentz group
Group of motions, 652-653. See also
Killing vector fields
Gyroscopes
employed in definition of Fermi-Walker
transport, 165
employed in constructing proper
reference frame, 327, 330f
precession of, as experimental test of
general relativity, 1117-1120
See also Dragging of inertial frames
Gyromagnetic ratio, of Kerr-Newman black
hole, 883, 892

H

HII regions in galaxies, 710, 761, 786f
Hair on a billiard ball, 978
Hair on a hole. See Kerr-Newman
geometry, uniqueness of
“Hammer-blow waves” defined, 1019
Hamilton-Jacobi theory, 486ff, 641-649
relation to quantum theory, 641-643
for harmonic oscillator, 1194
for free particle, 1194
for test-particle motion
in Newtonian M/r potential, 644-649
in Schwarzschild gravitational field, 649
in Kerr-Newman gravitational and
electromagnetic fields, 900-901
deflection of light by sun, in PPN
formalism, 1102f
perihelion shift in PPN formalism,
1114f
for electrodynamics, 1195
for geometrodynamics in superspace,
423f, 1180-1190
Hamiltonian
contrasted with super-Hamiltonian, for
charged particle in field, 488-489
electromagnetic, 497
for test-particle in Newtonian 1/r
potential, 644
See also Super-Hamiltonian
Hamiltonian, ADM, applied to mixmaster
cosmology, 809
Hamiltonian dynamics,
in the language of forms, 125-126
symplectic structure of, 126

Hamilton’s principle for geodesic motion,
654
Harrison-Wheeler equation of state, 625
Harrison-Wakano-Wheeler stellar models,
625ff, 696
Hat product. See Wedge product
Heat flow in general relativity
references on, 559
heat-flux 4-vector, 567
law of thermal conductivity, 567
in a stationary gravitational field, 568
Hilbert’s variational principle. See
Variational principle, Hilbert’s
Histories,
space of, 318-319
democracy of, 320
sum over, 320, 419, 499f
“History of geometry,” defined, 418-419
Holonomic basis, 204, 210, 239
Homologous pulsations of a star, 697, 1079
Honeycomb structure. See Forms
Horizons, in black-hole physics
definition of, 923-924
global structure of (theorem), 924-925
global structure analyzed, 926-931
caustics of, 925
generators of, 903-904, 925, 929-931, 932
created by gravitational collapse, 862,
863, 867, 924
for Kerr-Newman geometry, 879ff
angular velocity of, 914
area of, 889, 914
generators of, 903f
Horizons, in cosmology, 815f
in Friedmann cosmologies, 740ff, 815
Hubble expansion rate, 709f
history of knowledge of, 709-710,
758-761
expressed in terms of expansion factor
a (1), 7132
distance-redshift relation used in
measuring, 780-781
relationship to other cosmological
parameters, 771-773
See also under Cosmological models,
Cosmology
Hughes-Drever experiment, 1064
Hydrodynamics
Newtonian, in absence of gravity, 152ff
Newtonian, in presence of gravity, 387f,
1077-1080
post-Newtonian. See under PPN
formalism
general relativistic
basic references, 562n, 568

for a simple fluid with no heat flow or

viscosity, 562-563

for a fluid with viscosity and heat flow,

567-568

volume changes related to divergence
of flow lines, 565

gradient of 4-velocity resolved into

4-acceleration, expansion, rotation,
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and shear, 566
Euler equation, 564
equilibrium in a stationary
gravitational field, 566, 568
interaction of charged matter with an
electromagnetic field, 570
See also Thermodynamics, laws of
Hydrostatic equilibrium
in any stationary gravitational field, 566
in static, spherical star, 601-602, 605
Oppenheimer-Volkoff equation of, 605
buoyant force, 606
Hyperbolic motion of an accelerated
observer, 166ff, 173f
Hypersurface, spacelike. See Spacelike slice

Imaginary time coordinate not used, 51
Ideal gas, 139f
Impact parameter
for hyperbolic, Newtonian orbit, 647
for hyperbolic orbit in Schwarzschild
field, 670
for photon in Schwarzschild field, 672
for photon in PPN formalism, 1101f
Identity, as automatically fulfilled
conservation law, 405
Index, contravariant and covariant, 76
Index manipulations
in global Lorentz frames, 85
in curved, Riemannian manifolds,
201-204, 223f
in affine manifolds, 225f
in linearized theory, 436
Induction, from electromagnetic 4-potential,
122
Inertia, 460
Inertial forces, 165, 332
in Newton-Cartan theory, 294
Inertial frames, dragging of. See Dragging
of inertial frames.
Inertial guidance, 247
Inertial mass, 159f, 431, 1051
Inertial reference frame, local (= local
Lorentz frame if orthonormal
coordinates are used), 18f
defined by uniform velocity of free test
particles, 23
used in analysis of tide-producing
acceleration, 29-37
mathematical representation of. See
Riemann normal coordinates
See also Lorentz frame, local
Infinitesimal Lorentz transformation. See
Lorentz transformation, infinitesimal
Infinity, regions of, in asymptotically flat
spacetime
It, I, 1° 9+, 9~ defined, 917-918
conformal transformations of, 919-921,
936
conformally transformed coordinate
diagrams, 919-921
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Initial-value data
as uniquely determining future, Hilbert
on, 434
mystery of what fixes them, 555
formulation of, on characteristic
hypersurface, 554
Initial-value data for geometrodynamics
in extenso, Chap. 21
required for dynamics, 484-485
compatible on spacelike slice, 489-490
on characteristic surface, 490
thin-sandwich conjecture, 534
count of, 529-533
time and dynamic data mixed in
3-geometry, 533
improperly posed data, 534-535
separation of time and dynamic data, 533
York’s formulation of
sketched, 490
on hypersurface of zero or constant
extrinsic time, 539-540
gives conformal 3-geometry, 540-541
gives York’s curvature, 541
gives conjugate York momenta, 542
Initial-value equations for
geometrodynamics, 515-516, 519, 525,
531-535
Initial-value problem for geometrodynamics
York’s formulation of
wave equation for conformal factor,
542
existence and uniqueness of solutions,
543
thin-sandwich formulation of
as option in specifying data, 529
electrodynamic analog, 529
as guide in counting degrees of
freedom, 529-533
as guide to geometrodynamics, 529-531
time-symmetric case, 490
formulated, 535
role of base metric in, 535
gravitational wave amplitude in, 536
wave equation for conformal
correction factor, 535
time-antisymmetric case, 490
formulated, 536
wave equation for conformal
correction factor, 536
mass of wave is positive, 536
other symmetric cases
Friedmann universe, 537, 705f, 727f,
744
mixmaster universe, 537, 806-811
waves with cylindrical symmetry, 537
waves with spherical symmetry, 537
pulsating star, 691-694
as route to cosmology, 537
See also Geometrodynamics, Integrating
forward in time
Initial-value theory for electrodynamics,
523f, 526, 529ff. See also
Electrodynamics, Integrating forward
in time

Injection energy, 561, 562
Integral conservation law, 146
Integrating forward in time
geometrodynamic equation
statement of initial data in, 526-527
options in choice of lapse and shift,
527-528
compared to electrodynamics, 527-528
Maxwell’s equations
statement of initial data in, 527
options in choice of potential, 527
as guide to geometrodynamics, 527
See also Electrodynamics,
Geometrodynamics, Initial value
Integration
of differential forms, 94-97, 150f
of tensors, in track-1 language, 147ff
See also Stokes’ theorem, Gauss’s
theorem, Volume
Interference, constructive and destructive,
419, 423f, 1185-1187
Interferometry, used to measure deflection
of radio waves by sun, 1104-1105
Intergalactic matter, mean density of, 712,
761f
Interval, Lorentz, 19-23
Intrinsic curvature. See under Curvature,
formalism of
Intrinsic time of Sharp, Baierlein, and
Wheeler, 487, 490
Invariants
of electromagnetic field, 110, 480-483
of Riemann tensor, 491
Irreducible mass of a black hole, 889f, 913
Isolated system, 454
Isometry, 652-653. See also Killing vector
fields
Isostasy, 402
Isothermal star clusters, 685fF
Isotropic coordinates
for a star, 595
for Schwarzschild geometry, 840
in post-Newtonian approximation, 1097
Isotropy and homogeneity of universe
in extenso, Chap. 30
man could not exist in an anisotropic
universe, 939
adiabatic cooling of anisotropy, 802
viscous dissipation of anisotropy, 769,
802-803
pair creation by anisotropy energy, 769,
803-804

See also Cosmological models; Cosmology

Isotropy implies homogeneity, 715, 723

J

Jacobi identity, for commutators, 240
Jacobian, 93, 148, 160f
Jacob’s ladder. See Schild’s ladder
Jeans instability, 757
Junction conditions, 490

from electrodynamics as guide, 551

GRAVITATION

relevant components of Einstein field
equation, 552

surface stress-energy tensor, 552-553

intrinsic geometry continuous, 553

extrinsic curvature may jump, 554

across null surface, 554

and motion of surface layer, 555

applied to collapsing shell of dust,
555-556

applied to surface of a collapsing star,
852-853

Jupiter, motion of satellites, 637

K

K’ai-feng observatory, ii
Kasner cosmological model, 801, 805ff
Keplerian orbits in Newtonian field of a
point mass, 647-649
analyzed using Hamilton-Jacobi theory,
644-649
effective potential for, 661
“Kepler density” from satellite period, 44
Kepler’s laws,
discovery by Kepler, 755
“1-2-3” law, 39, 450, 457
Kernel, of wave operator, 121
Kerr coordinates, 879f
Kerr diagram, 881
Kerr geometry, as limiting case of
Kerr-Newman, 878
Kerr-Newman geometry and
electromagnetic field
history of, 877n
parameters of (M, Q, S, or a), 878
limiting cases (Schwarzschild,
Reissner-Nordstrom, Kerr, extreme
Kerr-Newman), 878
uniqueness as external field of a black
hole
heuristic explanation of uniqueness,
875, 877
theorems implying uniqueness, 876,
938, 939
implications for realistic gravitational
collapse, 863
Boyer-Lindquist coordinates
metric, 877, 878
electromagnetic field tensor, 877, 878
vector potential, 898
pathology of, at horizon, 830
Kerr coordinates
electromagnetic field tensor, 879
metric, 879

transformation between Kerr and Boyer-

Lindquist coordinates, 879f
Kerr-Schild coordinates, 903
stationary observers, 893-894
locally nonrotating observers, 895-896
Kerr diagram for, 881
maximal analytic extension of, 882
Killing vectors, 879, 892ff
Killing tensor, 893
principal null congruences, 901-904
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light cones, 891, 896-897
electromagnetic-field structure, 877ff, 883,
892
magnetic dipole moment, 883, 892
multipole moments of, 883, 892
horizon, 879ff
null generators of, 903-904
area of, 889, 914
angular velocity of, 914
rotational properties
intrinsic angular momentum vector,
891
gyromagnetic ratio, 883, 892
static limit, 879ff, 894
ergosphere, 880
dragging of inertial frames, 879ff,
893-896
dynamic properties
role as endpoint of gravitational
collapse, 882-883
stability against small perturbations,
884-885
change of M, Q, § when particles fall
into horizon, 904-910, 913
reversible and irreversible
transformations of, 889-890
rotational energy of, 890
electromagnetic energy of, 890
irreducible mass, 889-890, 913
test-particle motion in,
super-Hamiltonian for, 897
energy-at-infinity, 898-899, 910
axial component of angular
momentum, 898-899
rest-mass of particle, 899
Carter’s fourth constant of the motion,
2 or %, 899
equations of motion in separated form
899-900, 901
Hamilton-Jacobi derivation of
equations of motion, 900-901
orbits in equatorial plane, 911-912
effective potential for equatorial
motion, 911
binding energy of last stable circular
orbit, 885, 911
wave propagation in, 914-915
Kerr-Schild coordinates, 903
Killing vector fields, 650-653
associated conservation laws for
test-particle motion, 651
commutator of is Killing vector, 654
eigenvalue problem for finding, 654
for flat spacetime, 654
for spherically symmetric manifolds, 658
for Kerr-Newman geometry, 879, 892ff
Killing’s equation, 650
Killing tensor field, 893n
Kinetic theory in curved spacetime
in extenso, 583-590
basic laws
Liouville’s theorem for noninteracting
particles in curved spacetime, 584,
586-587, 590

>

collisionless Boltzmann equation
(kinetic equation), 587, 590.
specialized to photons, 587-589
basic concepts
mass hyperboloid, 585
momentum space, 583ff, 590
phase space, 584f, 590
volume in phase space, 584-587, 590
distribution function (number density
in phase space) defined, 583f, 590
applications, 583
elementary expression for pressure,
139-140
stress-energy tensor as integral over
momentum space, 589f
photons, 587
relativistic star clusters, 679-687

computation of optical appearance of a

collapsing star, 850
Klein-Alfven cosmology, 748, 770
Kronecker delta, 22
Kruskal diagrams, 528, 834f, 839, 848, 855
Kruskal-Szekeres coordinates for
Schwarzschild geometry, 828-832
metric in, 827

relationship to Schwarzschild coordinates,

833-835

L

Lagrangian perturbations, 690-691
Lamb-Retherford shift, principal
mechanism, 1190
Landau-Lifshitz pseudotensor. See
Pseudotensor
Laplace operator, vs. d’Alembertian, 177
Lapse function
as Lagrange multiplier, 487
metric interval as fixed by, 507
covariant and contravariant forms of,
507-508
award of arbitrariness in, reversed, 532
variational principle for, 538
Laser ranging to moon, 1048, 1130f
Lattice. See Clocks; Rods
Laws of physics in curved spacetime,
384-393. See also specific laws, e.g.,
Kinetic theory, Hydrodynamics,
Conservation laws
Leap second, 28
Least action, principle of
applied in elementary Hamiltonian
mechanics, 125-126
related to extremal time, 315-324
Lens effect, 589, 795f, 887
Levi-Civita tensor
in flat spacetime, 87f
orientation of, 87f
in general basis, 202, 207
in spherical coordinates, 206
Lie derivative
of a vector, 240
of a tensor, 517
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independent of any affine connection,
517
Lie groups, 198
Lie transport law, 240
Light, bending of. See Deflection of light.
Light cone
characterization of advanced and
retarded potentials, 122
Newton-Cartan vs. Einstein difference,
297
See also Causal relationships
Line element. See Metric
Lines of force
relation to honeycomb structure, 102
never end, as core of Maxwell’s
equations, 420
diagram for gravitational waves, 1011f
Linearized theory of gravity (same as
Spin-2 theory in flat spacetime)
equivalence of the two theories spelled
out, 435
presentation from spin-2 viewpoint,
179-186
presentation as linearized limit of
general relativity, Chap. 18, 448-451,
461-464, 944-955
sketched, 435
bar operation, 436-438
field equations, 437-438, 461f
formula for metric, 438
gauge transformations, 438-441
gauge invariance of Riemann
curvature, 438
Lorentz gauge, 438, 441
global Lorentz transformations, 439
curvilinear coordinates, 441
effect of gravity on matter and
photons, 442-444
self-inconsistency of, 180, 186, 443f
complete repair of, leads to general
relativity, 186, 424f
partial repair for slow-motion systems
leads to Newtonian and
post-Newtonian formalisms,
1073-1078, 1089f
applications
external field of static spherical body,
438
external field of any source, 448-451,
461-464
bending of light, redshift, perihelion
advance, 183ff, 446
gravitational waves, 185f, 442, 444f,
944-955. See also under
Gravitational waves
Liouville’s theorem, 584, 586f, 590
Local physics is simple physics, 4, 19,
20f
Local inertial frame. See Inertial frame,
local
Local Lorentz frame. See Lorentz frame,
local
Locally nonrotating observers, 895-896
Lorentz contraction, 48
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Lorentz force law
compared equation of geodesic
deviation, 35
formulated, in flat spacetime, 73
energy change associated with, 73
double role: defines fields and predicts
motions, 71-74
in language of forms, 101-104
in language of energy-momentum
conservation, 155
in curved spacetime, 201, 568
for a continuous medium, 570
derived from Einstein’s field equations,
473-475
in three languages, 474
Lorentz frame, local
closest to global Lorentz frame, 207
mathematical representations of, 217f,
285ff, 314f
straight lines are geodesics of curved
spacetime, 312-324
evidences for acceleration relative to, 327
used to analyze redshift experiments,
1056-1060
See also Inertial frame, local
Lorentz gauge. See Gauge transformations
and invariance
Lorentz geometry, global, 19-23
contrasted with Euclidean geometry, 51
spacetime possesses, if and only if
Riemann vanishes, 284
Lorentz group, 242
Lorentz invariance, experimental tests of,
1054f
Lorentz transformations, 66-69
key points, 67f
matrix description of, 66
way to remember index positions, 66
velocity parameter in, 67
boost, 67, 69
rotation in a coordinate plane, 67
infinitesimal
antisymmetric matrix for, 171
generator of, 329
special case: boost along coordinate
axis, 80
in spin-matrix language, 1142-1145
velocity parameter, 1145
post-Newtonian limit of, 1086
used to annul Poynting flux, 122
See also Rotations
Lowering indices. See Index manipulations
Lunar orbit, experimental tests of general
relativity using, 1048, 1116, 1119,
1127-1131

M

Machine with slots. See under Covariant
derivative, Metric, Tensor
Mach’s principle, 490, 543-545
acceleration relative to distant stars, 543
and York’s formulation of initial-value
problem, 546

gives inertia here in terms of mass there,
546
and Foucault pendulum, 547
and dragging of inertial frames, 547.
See also Dragging of inertial frames
dragging analogous to magnetic effect,
548

inertial influence of distant stars, 548
sum-for-inertia in, 549
“flat” space as part of closed space in,
549
Magnetic flux, from integration of
Faraday, 99-101
Magnetic poles, absence of, 80
Magnetostatics, plus covariance, gives
magnetodynamics, 80, 106
“Magnitude, absolute,” defined, 786
“Magnitude, apparent,” defined, 782
Magnitude-redshift relation. See under
Cosmology, observational probes of
standard model
Manifold, differentiable, 10, 13, 241ff
Many-fingered time, and arbitrariness in
slice through spacetime, 713f, 1184
Mass
active vs. passive. See Cavendish
gravitational constant
center of, 161
experimental, finite, as difference
between two infinities, 474-475
inertial, density of, 159f
inertial vs. gravitational, 431, 1051 See
also Uniqueness of free fall
“Mass-energy inside radius i, 602ff, 858f
Mass-energy, density of. See Stress-energy
tensor
Mass-energy, total, of an isolated,
gravitating system (= “active
gravitational mass”)
defined by rate metric approaches
flatness
in extenso, Chap. 19
in linearized theory, 448-450
in general, 453, 455
no meaning of, for closed universe,
457-459
as geometric object residing in
asymptotically flat spacetime, 453
measured via Kepler’s 1-2-3 law, 450,
457, 636ff
contribution of gravitational field to, 467
not localizable in generic case, 466ff
precisely localizable only for spherical
systems, 603f, 803f
localizable to within a wavelength for
gravitational waves, 955f, 964fT,
969f
conservation law for, 455, 468-471
See also under Energy-momentum
Mass hyperboloid, 585
Matter in universe, luminous, mean density
of, 710f, 761
Matrix, inverse, explicit expression for, 161.
See also Jacobian, Determinant

GRAVITATION

Maxima, number of, 318
Maximal analytic extension of a geometry,
882
Maxwell, dual 2-form representation of
electromagnetic field, introduced, 105.
See under Electromagnetic field
Maxwell energy density, 140-141
Maxwell’s equations
component version in flat spacetime, 80f
geometric version, 88-89
in language of forms, 112-114
solution for particle in an arbitrary state
of motion, 121-122
in curved spacetime, 391, 568
for vector potential, 569
deduced from “lines of force end only
on charge,” 79-81
derived from physics on a spacelike slice,
419-420
derived from stress-energy and Einstein
field equation, 471-473
and conservation of energy-momentum,
483
nowhere failing, 1200
See also Electrodynamics, Lorentz force
law
Mean eccentric anomaly, 648
Measurability of geometry and fields in
classical theory, 13
Measurement, possibilities defined by
theory, 1184
Measuring rods. See Rods
Mercury, perihelion precession of. See
Perihelion shift
Meshing of local Lorentz frames, 190-191
Metric
distilled from distances, 306-309
descriptions
summarized, 77, 305, 310f
as machine with slots, 22, 51-53, 77,
305, 310f
in component language, 77, 310f
in terms of basis 1-forms, 77, 310
as line element, 77, 305, 310
introduced and defined, 22
components of
in arbitrary basis, 201, 310f
in Euclidean coordinates, 22
in Lorentz coordinates, 22, 53
determinant of components
defined, 202
differentiated, gives contraction of
connection coefficients, 222
variation of, 503
computation of connection coefficients
from, 210, 216
compatibility with covariant derivative,
313fF, 353f
structure, and symplectic structure, 126
enters electromagnetism only in concept
of duality, 105, 114
role in spacetime of general relativity
measured by light signals and free
particles, 324
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as “gravitational field,” 399-400
test for local Lorentz character,
311-312
components not all predicted by
geometrodynamic law, 409
role in Newton-Cartan spacetime, 300,
302
coefficients in specific manifolds and
frames. See specific manifolds, e.g.,
Sphere, 3-dimensional;
Schwarzschild geometry, or
coordinate systems, e.g., Kerr-Schild
coordinates
Metric elasticity of space, 426-428
Metric theories of gravity, 1067ff
experiments to test whether the correct
theory is metric, Chap. 38, 1067
PPN formalism as approximation to,
1069
Microwave radiation. See Cosmic
microwave radiation.
Minima, number of, 318
Minkowski geometry. See Lorentz geometry
Missing matter, “mystery of,” 710. See also
under Cosmology
Mixmaster universe, 805-814.
Mixmaster oscillations damp chaos, 769
Mobius strip, 96
Moment of inertia tensor defined, 977
Moment of rotation
as meaning of Einstein curvature,
373-377
conservation of, 378ff, 473
“Moment of time” means “spacelike
hypersurface,” 713-714, 1184
Momentum, in mechanics, as space rate of
change of action, 486-487
Momentum field, electromagnetic, 497f, 524
Momentum space, 583ff, 590
Momentum vector. See Energy-momentum
4-vector
Moon
effect on tides, 44
shadow on Earth, 24-26
laser ranging to, 1048, 1130f
orbit of, tests of general relativity using,
1048, 1116, 1119, 1127-1131
separation from Earth as
gravitational-wave detector, 1013f,
1018
Morse theory, 318
Mossbauer effect, 63, 1056, 1057
Motion. See Equations of motion
Moving frame. See Tetrad
Multicomponent fluid, 558
Multipole expansion of Newtonian
potential, 991
Multipole moments of Kerr-Newman black
hole, 883, 892

N

Near zone for radiation theory, 997,
999-1000

Neutral stability, 697
“Neutral relationship to.” See Causal
relationships
Neutrinos
emitted in stellar collapse, 599
transport energy in collapsing star, 628
redshift when emitted by a collapsing
star, 850
from big-bang, 712, 736-737, 164-765
damp anisotropy of expansion, 803
formalism for analyzing in curved
spacetime, 1164
Neutron-star matter, 599
idealized as simple fluid, 558
equations of state for, 624-626
Neutron stars, 619f, 622
models for, 625-627
mass limits, 627
rotation of, 628
as source of gravitational waves, 983,
986, 1040
pulsation of, 628
as source of gravitational waves,
982-986
stability of 626-627, 696
creation by stellar collapse, 627-629
Newman-Penrose constants, 870f
Newton-Cartan theory of gravity
contrasted with Einstein’s theory, 3ff, 197,
245, 2971, 302f
incompatibility with special relativity,
177, 304
standard Newtonian formulation of
in brief, 177, 301
as approximation to general relativity,
412-416
as approximation to metric theories of
gravity, 1077f, 1097
useful formulas and computational
techniques, 1078f
virial theorems, 1079
stress tensor for Newtonian
gravitational field, 1078f
Cartan’s curved-spacetime formulation of
in extenso, Chap. 12
in brief, in language of Galilean
coordinates, 289f
in brief, in coordinate-free language,
300f
transition between languages, 298f
transition between Newton formulation
and Cartan formulation, 289f, 299

Noise, extraction of signals from, 1036ff. See

also Gravitational-wave detectors

Nonlocalizability of gravitational energy.
See under Mass-energy, total;
Energy-momentum; Pseudotensor

Nonorientable surface, 96

Nordstrem’s theories of gravity. See under
Gravitation, theories of

Nordtvedt effect, 1128-1131

Norm of a p-form, 97

Normal, unit normal in terms of lapse and
shift, 508

1271

Normal coordinate system, 1055
Nothing, as foundation of everything
Leibniz on, 1219
geometrodynamics as early model for,
1202-1203
calculus of propositions as a later model
for, 1209, 1211-1212
Novikov coordinates, 826f
Nuclear burning in stars
drives pulsational instability, 632
HCNO cycle, 632
catalyzed to endpoint, 624-626
formulation of thermodynamics in
presence of, 558
Number-flux vector
introduced, 138-139
for photons in geometric optics limit,
580
Number-flux relation, in cosmology, 798
Number space, 241
Nuclear matter. See Neutron-star matter
Nucleosynthesis in big bang, 760, 762
Null experiments, 1050, 1064

(0]

Observational cosmology, Chap. 29. See
under Cosmology
One-form. See under Forms, differential
Optics. See Geometric optics
Olber’s paradox, 756
Oppenheimer-Volkoff equation of
hydrostatic equilibrium, 605
Oppenheimer-Snyder model for collapsing
star, 851-856
Orbit, See Keplerian orbits. Planetary orbits.
See also geometry in which the
orbits occur, e.g., Schwarzschild
geometry
Orientation
of space, embodied in duality operation,
97
of forms
1-form, illustrated, 55
2-form, illustrated, 100, 104, 107, 109,
116
3-form, 117
of volumes, 133, 135f, 147-150
relative, of domain and its boundary, 96

P

Pair production
by photon, 70
at high temperatures, 558
by tidal gravitational forces, 750, 769,
803f, 816
damps anisotropies of geometry, 769,
803f
Pairs
free-fall of, experimental test, 1051
in early stages of standard cosmological
model, 736f, 764
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Parallax, 757
Parallel transport
in brief, 208f
in extenso, 245-263
equation of, summarized, 224
illustrated, 209, 212
See also Fermi-Walker transport
Parallelepiped, trivector and 1-form
representation of, 133, 135-136
Parametrization, of geodesic, 244-246
Parametrized post-Newtonian formalism
history of, 1049, 1073
described qualitatively, 1049, 1068f, 1072f
summary of technical details, 1092
notation, 1073f, 1092f
accuracy and realm of validity, 1069,
1072f, 1075
metric theories encompassed by and not
encompassed by, 1069
parameters
described qualitatively, 1069, 1072
defined precisely, 1080f
translated from one convention to
another, 1093
values for several theories, 1072
parameters, experimental limits on
v, 1103, 1105, 1108f
B, 1111, 1113
ag =4p, — 2y —2 —¢, 1114
ay — A4, + ¢ — 1, 1124
ay; =4f, — 2y —2 —{, 1125
foundations of
coordinates of, 1073f, 1082-1087, 1089,
1091, 1097
expansion parameters and their
magnitudes in the solar system,
1068, 1075
radiation zone excluded from, 1075
time derivatives small compared to
space derivatives, 1075
shear stresses typically negligible, 1074f
expansion procedure, 1075F
metric coefficients, pattern of, 1076f,
1080, 1100
description of matter
thermodynamic functions in, 1074f
velocity of matter, 1073f, 1086
transformation between coordinate
frame and rest frame of matter,
1087
stress-energy tensor, 1086f
matter generates gravity
gravitational potentials (functions
appearing in metric), 1080f, 1085
nonlinear superposition of gravitational
fields, 1096
identities relating potentials to each
other, 1082, 1089
metric coefficients, precise form of,
1084f
Christoffel symbols, 1089
equations of motion for matter, 1087ff
baryon (rest mass) conservation, 1083
energy conservation law, 1088

Euler equation, 1088
post-Galilean transformations, and
invariance, 1085
velocity of coordinate frame relative to
universal preferred frame, 1083f,
1098, 1114
applications of
total mass-energy of a body calculated,
1091, 1094, 1099, 1125f
gravitational field of isolated, spherical
sun, 1097f
gravitational field of sun with
quadrupole moment, 1115
gravitational field of rotating Earth,
1119
why high-speed particle motion probes
only the parameter y, 1099f
propagation of light and radio waves,
1099-1109
deflection of electromagnetic waves by
sun, 1101
radar time-delay in sun’s gravitational
field, 1103, 1106-1109
many-body (“EIH”) equations of
motion, 1091, 1094f
equation of motion for a spinning
body, 1120f
perihelion shift, 1110-1116
three-body effects in lunar orbit, 1116
precession of a gyroscope, 1117-1120
Cavendish gravitational constant
derived, 1125f
Partial differential equations,
applications of differential geometry to,
198
rationale of analyzing, 485
Particle-physics experiments as tests of
special relativity, 1054f, 1060. See also
under Conservation laws.
Particles. See Pairs; Conservation laws
Passive vs. active transformations, 1140
“Past of.” See Causal relationships
Path integral. See Feynman’s sum over
histories
Pauli principle, as test of Riemannian
geometry, 398-399
“Peeling theorem,” in radiation theory,
1165
Perfect cosmological principle, 745
Perfect fluid
defined, 132, 140
stress-energy tensor for, 132, 140
See also Hydrodynamics
Perihelion shift, 391f
for nearly circular orbits in exact
Schwarzschild geometry, 670
in post-Newtonian limit of general
relativity, 1110-1116
in PPN formalism, 1110-1116
in linearized (spin-2) theory, 183f, 446
in spin-0 and spin-1 theories of gravity,
179
observational data on, 1112f
Einstein on, 433
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Permutation tensor (same as alternating
tensor), 126, 128f, 207, 343
Perturbation theory for spacetime geometry
general formalism
connection coefficients in terms of
metric perturbation, 966-967
curvature tensors in terms of metric
perturbations, 966-967
action principle for metric
perturbations, in vacuum, 972f
gauge transformations, 967f
stress-energy of metric perturbations in
shortwave limit, 969
applications
shortwave approximation for
gravitational waves, 964-973
pulsation of relativistic stars, 688-699
slow rotation of a star, 699
to Friedmann cosmology, 800f
to collapsing star, 844ff
stability analyses of Schwarzschild and
Kerr holes, 884f
Petrov-Pirani classification of spacetimes,
902
Phase, of de Broglie wave, 53-55
Phase, in geometric optics, 571f, 574f
Phase space, 126, 584f, 590
Photons
splitting, forbidden for plane wave, 70
world lines of, 388
kinetic-theory description of, 587-589
in geometric optics, 580
Physical optics, correspondence with
geometric optics, 412
Piercing of surfaces, of a form. 55f, 60, 99,
202, 231
Piezoelectric strain transducer, 401
Pit in the potential, 636-637
Planck length
defined, 10
relevance to fluctuations in geometry, 10,
1180, 1192ff
Plane electromagnetic waves in curved
spacetime, 961-962
Plane gravitational waves, exact
form of metric, 957
field equations and solution for a pulse
of waves, 958-959
linearized limit of, 958
Riemann curvature of, 959
global structure of spacetime, 958-960
effect on test particles, 960-961
comparison with exact electromagnetic
plane wave, 961-963
stress-energy of, 963
in language of shortwave approximation,
962-963
Plane gravitational waves in linearized
theory, 945f, 949, 1004f
Planetary orbits
periodic relativistic effects in, 1009, 1011
deviations from geodesic motion, 1111,
1126-1131
See also Keplerian orbits, Perihelion shift
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Plateau, problem of, 877
Poincaré transformation, 68
Positive sense. See Orientation
Poisson bracket, 654
generalized, 486
Poisson’s equation for Newtonian
gravitational potential, 290, 299, 301
Polarization of a gravitational wave
tensors defined 953f, 971
plane (linear), 952f
circular, 953f
elliptical, 955
compared with that of an electromagnetic
wave, 952-954
rotational transformation of states, 954
parallel transport of, in geometric-optics
limit, 971
line-of-force diagram, 1011-1012
Polarization of a neutrino, 954
Polarization of radiation fields with
arbitrary spin, 954-955
Polarization vector for electromagnetic
waves, 573fF, 577f, 581
Post-Galilean transformations, 1085
Post-Newtonian approximation to general
relativity, 1069
obtained from PPN formalism, 1073
derived by post-Newtonian expansion of
field equations, 1089f
stellar structure and stability analyzed
using, 1073
many-body (“EIH”) equations of motion,
1091, 1094f
See also Parametrized post-Newtonian
formalism
Post-Newtonian expansion procedure,
1075ff. See also Parametrized
post-Newtonian formalism.
Post-post-Newtonian approximation, 1069,
1077
Post3/2-Newtonian approximation and its
relationship to radiation damping, 1077
Potentials, effective. See Effective potentials
Pound-Rebka-Snider experiment, 1056fF
Poynting flux, 122, 140f, 481, 550
Precession
of perihelion. See Perihelion
of spin axis. See under Spinning body
Precession component, of Einstein field, 547
Preferred-frame theories of gravity, 1083,
1093, 1098, 1123ff
Preferred-frame effects, experiments to
search for, 1098, 1113f
Pregeometry, 1203-1212 passim
as calculus of propositions, 1208-1209,
1211-1212
Pressure, in stress-energy tensor for a
perfect fluid, 132
Price’s theorem, 863, 866
Primordial fireball. See Cosmic microwave
radiation
Principal null congruences of Weyl tensor
defined, 902
for Kerr-Newman geometry, 901-904

Prior geometry, 429ff, 1068, 1070f
Probability amplitude
for a history, 419
phase of, given by action, 486, 491
Projection operator for transverse-traceless
part of a tensor, 948
Projection tensors, 565f
Propagator, mentioned, 120
Proper distance. See Interval, Lorentz
Proper reference frame of an accelerated
(or unaccelerated) observer
constructed, 327-332
metric, 331f
connection coefficients, 330f
inertial and Coriolis forces, 332
applied to definition of thermodynamic
potentials, 557f
applied to analysis of gravitational-wave
detector, 1005-1010, 1012
Proper time. See Interval, Lorentz
Pseudotensors of stress-energy for
gravitational field, 465f
do not localize gravitational energy, 466f
order of magnitude of, 996, 999f
used in analyzing generation of
gravitational waves, 996-999
for waves, averaging gives stress-energy
tensor, 972
Pulsars
discovery of, 620, 762
theory of, 628, 630
timing data as a probe of neutron-star
structure, 628, 630
experimental tests of general relativity
using, 1047
in idealized experiment on “prior
geometry,” 430
See also Neutron stars

Q

Q of an oscillator, 1025
Quadrupole-moment parameter for sun, Jy,
1112f, 1115
Quadrupole moment, 977
coupling to curvature produces
departures from geodesic motion,
476-480
precession of spin axis, 391f
reduced, 977
as integral over mass distribution, 975,
971
as trace-free part of second moment of
mass distribution, 977
as coefficient in 1/r expansion of
Newtonian potential, 991
and generation of gravitational waves,
975, 991-994
Quantum fluctuations
in electromagnetic field, 427, 1190f
in geometry of spacetime, 419, 480,
1190-1194, 1202
and zero-point energy of particles and

1273

fields, as responsible for gravity,
426ff
Quantum geometrodynamics
commutation of observables in, on
spacelike hypersurface, 554
ideas of Penrose and Hawking on, 936,
938, 940
See also Pair production, Quantum
fluctuations
Quantum theory
angular momentum commutators, 236
general operators, 236
correspondence principle, 413
particle self-energies, 474f
Quantum propagator, 1194
Quasars, 761f
distances to, controversy over, 767
evolution of population, 767f, 770
models for energy source, 634-635, 687
use in experimental tests of general
relativity, 1047f, 1061, 1101, 1103ff
Quaternions. See Spin matrices

R

Radiation, description of spectrum, 588
specific intensity 7, defined, 587, 589
specific flux F, defined, 1025
flux F defined, 782
conservation of 7,/»* (Liouville’s

theorem), 587-588
redshift of temperature of black-body
radiation, 588

Radiation, electromagnetic

pictorial explanation of 1/r behavior,
110f

and causality, 110

of oscillating dipole, 111-112

Radiation, gravitational. See Gravitational

waves

Radiation reaction, 474, 993f

Radiation zone, 997

Radar time delay in Sun’s gravitational

field, 1048, 1103, esp. 1106-1109

Radio sources, cosmic, 759-762
isotropy on sky, 703
See also Quasars

Radius of closed Friedmann universe, 704f

Raising indices. See Index manipulations

Rays, in geometric optics, 573fF, 581f

Redshift, cosmological
independent of wavelength, 775
“tired light” does not explain, 775
derivations

from standing waves, 776
from wave-crest emission, propagation,
and reception, 777f
using symmetry-induced constant of
geodesic motion, 777, 780
used to characterize distances and times
in universe, 779
contrasted with Doppler shift, 794
of particle energies and de Broglie waves,
780
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Redshift (continued)
of cosmic microwave radiation, 764-765,
779
in anisotropic cosmology, 801
See also under Cosmology
Redshift
Doppler, 63f, 794
due to “ether drift,” 1064f
of radiation from a collapsing star, 847,
849f, 872
Redshift, gravitational, for gravitational
waves, 956f, 968
Redshift, gravitational, for photons
compared with 1970 clock technology,
1048
experimental results, 1058, 1060
Pound-Rebka-Snider experiment,
1056-1058
in solar spectum, 1058-1060
equivalence principle tested by, 189f,
1056
geodesic motion tested by, 1055-1060
implies spacetime is curved, 187-189
derivation
from energy conservation, 187
from geodesic equation in generic
static metric, 657, 659
in linearized theory, 446f
Redshift, gravitational, for temperature,
568, 685
Redshift parameter, z, defined, 187
Regge-Wheeler radial coordinate, See
Tortoise coordinate
Reference system. See Coordinate system,
Inertial frame, Lorentz frame, Proper
reference frame
Regge calculus,
surveyed, Chap. 42
suitable for low-symmetry
geometrodynamics, 1166
geometry determined by lengths, 1167
simplexes and deficit angles, 1167-1169
skeleton geometry, 1169
hinges, 1169
continuum limit of, 1169
blocks associated with one hinge, 1170
variational principle for
geometrodynamics, 1170
flow diagram for, 1171-1172
initial-value data in, 1172
Einstein’s geometrodynamic law,
expressed in, 1173
choice of lattice structure, 1173-1177
supplementary vertices in, 1176
facing, packing, and right-through blocks,
1176
count of faces, 1177
choice of edge lengths, 1177-1178
applications and future of, 1178-1179
Reissner-Nordstrom geometry
derivation of metric, 840-841
Kruskal-like coordinates for, 841
coordinates with infinity conformally
transformed, 920

global structure of, 920-921
throat for Q = M identical to
Bertotti-Robinson universe, 845
uniqueness of (Birkhoff-type theorem),
844fF
as limiting case of Kerr-Newman, 878
Reversible and irreversible transformations
in black-hole physics, 889f
Relative acceleration. See Geodesic
deviation
Relativity. See Special relativity; General
relativity
Renormalization of zero-point energy of
particles and fields, 426fF
“Reprocessing” of universe, 1209,
1213-1217
Retarded fields and radiation reaction, 474
Retarded potential, 121
Ricci curvature. See under Curvature,
formalism of
Ricci rotation coefficients. See Connection
coefficients
Ricci rotation 1-forms. See Rotation
1-forms.
Riemann. See under Curvature,
formalism of
Riemann normal coordinates, 285fF,
480-486
Riemannian geometry
characterized, 242, 304f
track-1 treatment of, Chap. 8
track-2 treatment of, Chap. 13
Riemann’s founding of, 220
of apple, is locally Euclidean, 19-21
of spacetime, is locally Lorentzian, 19-23
See also specific concepts, such as Metric,
Connection
Robertson-Walker line element, 722, 759
Rods, 301, 393, 396-399
Roll-Krotkov-Dicke experiment. See
Eotvos-Dicke experiments
Rotation
as stabilizer of stars, 633f
rigid-body, 123f
of universe, limits on, 939
“Rotation”
of a field of 1-forms, 123f
of a field of 4-velocities, 566
of rays, in spinor language, 1165
Rotation group, SO(3), manifold of
generators, 242-243, 264
structure constants, 243, 332
geodesics and connection, 264, 332
Riemann curvature, 288
metric, 332
isometric to 3-sphere, 725
used in constructing mixmaster
cosmological model, 807
Rotation matrices. See Spin matrices
Rotation 1-forms w*,, 350-354, 360
matrix notation for, 359
See also Covariant derivative, Connection
coefficients
Rotation operators. See Spin matrices

GRAVITATION

Rotations
in coordinate plane, 67
composition of, 1135-1138
Rodrigues formula, 1137
represented as two reflections, 1137ff
half-angles arise from reflections, 1137
infinitesimal, 170f, 1140ff

Rutherford scattering, 647, 669
relativistic corrections to, 669f

S

Saddle points, number of, 318
Sakharov view of gravitation, 426-428
Scalar field
stress-energy tensor, 483
equation of motion, from Einstein’s field
equation, 483
propagation in Schwarzschild geometry,
863, 868ff
Scalar product of vectors, 22, 52f, 62
Scalar-tensor theories of gravity. See under
Gravitation, theories of
Schild’s argument for curvature, 187-189
Schild’s ladder,
described, 249
applications, 251-253, 258, 263, 268, 278
Schwarzschild coordinates
for any static, spherical system, 597
for Schwarzschild geometry, 607
pathology at gravitational radius, 11,
823-826
for a pulsating star, 689
Schwarzschild geometry, 822
in extenso, Chaps. 25, 31
as limiting case of Kerr-Newman, 878
Birkhoff’s theorem for, 843-844
derivation from
full field equations, 607
initial-value equation, 538
coordinate systems and reference frames
Schwarzschild coordinates, 607,
823-826
isotropic coordinates, 840
Novikov coordinates, 826-827
ingoing Eddington-Finklestein
coordinates, 312, 828f, 849
outgoing Eddington-Finklestein
coordinates, 829fF
Kruskal-Szekeres coordinates, 827,
831-836. See also
Kruskal-Szekeres coordinates
tortoise coordinate, 663, 665f
coordinates with infinity conformally
transformed, 919f
orthonormal frames, 821
Riemann curvature, 821ff
structure and evolution
Einstein-Rosen bridge (wormhole),
8371f, 842f
topology, 838ff
not static inside gravitational radius,
838
evolution, 838fT, 842
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embedding diagrams, 528, 837, 839
diagram of causal structure, 920
singularities. See Singularities of
Schwarzschild geometry
singularities at » = 0. See under
Singularities.
explored by radially infalling observer,
820-823
destruction of all particles that fall inside
gravitational radius, 836, 839, 860-862
test-particle motion in
in extenso, Chap. 25
analyzed using Hamilton-Jacobi theory,
649
analyzed using symmetry-induced
constants of the motion, 656-672
orbit lies in a “plane,” 645f, 655
conserved quantities for, 656
angular momentum, 656{T
energy-at-infinity, 656ff
effective potential for radial part of
motion, 639, 656, 659-662
qualitative description of orbits, 662
radial orbits, details of, 663-668,
820-823, 824-826, 835
nonradial orbits, details of, 668
circular orbits, stability of, 662
binding energy of last stable circular
orbit, 885, 911
periastron shift for nearly circular
orbits, 670
scattering cross section, 669f
deflection angle, 671
photon motion in
shape of orbit, 673, 677
effective potential for radial part of
motion, 673f, 676
qualitative description of, 674f
impact parameter, 672
critical impact parameter for capture,
673
escape versus capture as a function of
propagation direction, 675
scattering cross section, 676-679
capture cross section, 679
wave propagation in
effective potentials for, 868, 870
scalar field, analyzed in detail, 863,
8681F
electromagnetic field, Newman-Penrose
constants, 870f
fields of zero rest mass, integer spin,
866
Dirac equation in, 1164
perturbations of
high-frequency, analyzed by geometric
optics, 640
wave equations for, related to
Hamilton-Jacobi equation, 640
stability against small, 884
applications
as external field of a static star, 607
as exterior of a collapsing star, 846-850
matched to Friedmann geometry to

produce model for collapsing star,
851fF
many Schwarzschild solutions joined in
lattice to form closed universe,
739f
Schwarzschild lattice universe, 739f
Schwarzschild radius. See Gravitational
radius
Schwarzschild surface. See Gravitational
radius
Schwarzschild’s uniform-density stellar
model, 609-612
Second, changing definitions of, 23-29
Second law of black-hole dynamics, 931ff
formulated with assumptions ignored,
889, 891
reversible and irreversible
transformations, 889f, 907-910, 913
used to place limits on gravitational
waves from hole-hole collisions, 886
Second law of thermodynamics, 563, 567f
Second moment of mass distribution,
defined, 977
Selector parameter
defined, 265-266
used in analysis of geodesic deviation,
Chap. 11
“Self-energy,” infinite, 474
“Self-force,” 474
Semicolon notation for covariant derivative,
210
Semimajor axis of an elliptic orbit, 647
“Sense.” See Orientation
Separation vector, 291f, 218f, 265-270
“Shear”
of a congruence of world lines, 566
of a bundle of null rays, 582
in spinor language, 1165
Shear stress
idealized away for perfect fluid, 140
produced by viscosity, 567
in PPN formalism, 1074, 1075n
Shell crossing, 859
Shift function
as Lagrange multiplier, 487
metric interval as fixed by, 507
covariant and contravariant forms of,
507f
award of arbitrariness in, reversed, 532
two variational principles for, 538
Shock waves
hydrodynamic, 559, 564, 628
in spacetime curvature, 554
Signature, of metric, 311
Simple fluid, defined, 558
Simplex, 307, 380f, 1167ff
Simultaneity
in Newton, Minkowskii, and Einstein
spacetime, 296
as term for spacelike slice. See Spacelike
slice
Singularities, coordinate, 10-12
illustrated by Schwarzschild coordinates,
11, 823ff
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Singularities in geometry of spacetime
definitions of, 934
theorems on creation of, 934ff, 936, 938,
762
structures of, 935, 940, 804ff
cosmic censorship vs. naked singularities,
937
in Schwarzschild geometry,
and evolution of the geometry, 838f
remote possibility that infalling objects
might destroy, 840
and spherical gravitational collapse of
a star, 846, 860fT
Mixmaster, 805-813
is generic, 806, 940
changing standards of time near, 813f
initial, of the universe, 769f
what “preceded” it? 769f
prospects for understanding, 707
should one worry about singularities?
Misner’s viewpoint, 813f
Thorne’s neutrality
Wheeler’s viewpoint, 1196fF
unphysical, due to overidealization
surface layers, 552-556
shell crossings, 859
Signals, extraction of from noise, 1036-1038
Size
related to angular momentum, 162
of accelerated frame, 168f
Skeleton geometry, 309, 1169
Skeleton history, 499
Slicing of spacetime, 506. See also
Spacelike slice
“Slot” in machine concept of tensor. See
Tensor
Solar system, 752-756
ephemeris for (J.P.L.), 1095, 1097
relativistic effects in, magnitude of, 1048,
1068
Nordtvedt effect in, 1128
See also Earth, Moon, Planetary orbits,
Sun, Experimental tests of general
relativity
Space
Newtonian absolute, 19, 40, 291f
foamlike structure and quantum
fluctuations, 1204
not spacetime, as the dynamic object, 1181
See also Manifold, Differential geometry,
Differential topology, Affine
geometry, Riemannian geometry
Space theory of matter, 1202-1205
Source counts in cosmology, 798
Spacecraft, used to test general relativity,
1108f, 1114
“Spacelike relationship to.” See Causal
relationships
Spacelike slice
as ““‘moment of time” in spacetime, 713f
as the dynamic object in superspace,
423f, 1181
geometrodynamics and electrodynamics
derived from physics on, 419-423
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Spacelike slice (continued)
See also Embedding diagrams, Initial
value, Three-geometries
Spacetime geometry
Newtonian. See Newton-Cartan theory of
gravity.
Minkowskiian (Lorentz). See Lorentz
geometry
Einsteinian
modeled by apple, 4
Riemannian character tested by
stability of Earth, 398f
curvature of, implied by gravitational
red shift, 187f
stratification denied by locally Lorentz
character of physics, 304f
viewed as a “gravitational field,” 399f
as dynamic participant in physics, 337
response to matter, as heart of general
relativity, 404
as classical approximation, 1181f
as classical leaf slicing through
superspace, 1184
See also General Relativity,
Geometrodynamics, Curvature of
spacetime . T
Newtonian, Minkowskiian, and
Einsteinian, compared and
contrasted, 296, 437
Special relativity
briefly outlined, 47-48
spelled out, Chaps. 2-6
does not take in gravitation, Chap. 7
local validity as central feature of curved
spacetime, 304f
See also specific concepts, e.g.,
Electromagnetic field, Lorentz
transformations
Specific intensity, defined, 587, 589
Specific flux, defined, 1025
Sphere, 2-dimensional (S%)
two coordinate patches to cover, 12
topology of, 241f
metric on, 340
Riemann tensor of, 341
Sphere, 3-dimensional (S%)
volume of, 724
hyperspherical coordinates and metric
for, 723f
Riemann curvature tensor, 721
embedding diagram, 723
compared with spheres of lower
dimensionality, 704
isometric to manifold of rotation group,
725
Spherical symmetry, Killing vectors for, 658
Spherical systems, static
Schwarzschild coordinates for, 594-597
isotropic coordinates for, 595
orthonormal frames for, 598
rigorous derivation of line element, 616f
curvature tensors for, 360f
Spherical systems, dynamic
Schwarzschild coordinates for, 616f, 689

curvature tensors for, 361f
Birkhoff’s theorem for, 883f
Spin, as nonclassical two-valuedness, 1204
Spin matrices
in law of combination of rotations, 1136
as quaternions or rotation operators, 1136
Hermitian conjugate of, 1138
algebraic properties, 1137-1142
and 3-vectors, 1140f
and 4-vectors, 1142f
associated spin matrices, 1152f
multiplication law for, 1153
Spinning body
equation of motion for, 1120f
transport law for spin
Fermi-Walker, in absence of curvature
coupling, 165, 176f, 1117
modified by curvature coupling, 391f
spin precessions
“general,” 391f
Thomas, 175f, 1118, 1145fF
frame-dragging, 1119f
due to space curvature (“geodetic”),
1119f
Spindown of black holes, 886
Spinors
general account, Chap. 41
and orientation-entanglement relation,
1148ff
defined by their law of transformation,
1148fF
conjugate complex, 1150
with dotted indices, 1150
correspondence with vectors, 1150ff
of higher rank, 1151
algebra of, 1151-1155
spinor equivalent of tensors, 1153f
spin space and basis spinors, 1156
flagpole plus flag plus
orientation-entanglement relation,
1157-1160
in curved spacetime, 1164
analyze appearance of night sky,
1160-1164
as tool in gravitation theory, 1164f
Standard candle, 789
Standard hot big-bang cosmological model.
See under Cosmology
Star clusters, relativistic, 621, 635
creation by evolution of a galactic
nucleus, 634
analysis of structure, 679-683
equations of structure summarized, 683f
relativistic instability in, 621, 686f
collapse of, 884
possible roles in quasars and galactic
nuclei, 634, 687
specific models
with purely circular orbits, 683
self-similar, 683
isotropic, 683f
isothermal, spherical, 685fF
Star operations. See Duality
Starquake, 628
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Stars, evolution into final state, 621, 624,

627-629

Stars, Newtonian

equations of structure, 601-602, 605fF
gravitational energy, 606-607
uniform-density model, 609
pulsation theory
dynamical analysis, 697f
virial-theorem analysis, 1079f
volume-averaged analysis, 630f

Stars, relativistic, nonrotating

structure
in extenso, Chaps. 23, 24
equations of structure summarized,
608-609, 689
must be spherical, 593
Schwarzschild coordinate system, 597
isotropic coordinate system, 595
curvature tensors for, 360f
Newtonian limit of gravitational
potentials, 595
parameters describing matter, 597-600
proper reference frame of fluid, 598
equations of structure derived, 600-606
Newtonian limit of equations of
structure, 601-602, 605fF
mass-energy inside radius r, 602fF
must have 2m/r < 1, 605, 612f, 615
total number of baryons, 606
external gravitational field. See
Schwarzschild geometry.
monotonicity of r, 612-613, 615
embedding diagrams for, 613-615, 617
specific models
how to construct, 608f
Schwarzschild’s uniform-density model,
609-612
Fermi-gas model with p, = oo, 615ff
numerical models for white dwarfs and
neutron stars, 625ff, 696
radial pulsation of
dynamic analysis, 688-699
boundary conditions for, 694
eigenvalue problem for normal modes,

Newtonian limit, 697f
post-Newtonian limit, 698f, 1080
stability of
critical adiabatic index for radial
pulsations, 697ff
pulsational instability in massive stars,
632
relativistic instability, 605, 697ff
See also under White-dwarf stars,
Neutron stars, Supermassive stars
collapse of. See Collapse, Gravitational
nonradial pulsation of, 984f

Stars, relativistic, rotating

slowly rotating, spherical stars, 699
rapidly rotating disks, 621
stabilizing effects of rotation, 633f

Stars. See also Binary stars, Cepheid

variable stars, Neutron stars,
Supermassive stars, White dwarfs
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Static limit, 879fF, 894
Stationary gravitational field
hydrostatic equilibrium in, 566
thermal equilibrium in, 568
Steady coordinates, 964
“Steady flux of waves,” defined, 1019
Steady-state cosmology, 745, 750, 770
Stokes theorem, generalized, 96f, 127
content in pictures, 117
Gauss’s theorem as special case, 97, 150f
applications, 96f, 125, 378
Stress. See Stress-energy tensor
Stress-energy pseudotensor. See
Pseudotensor
Stress-energy tensor
summarized, 131-132
in extenso, Chap. 5
as machine to reveal energy density,
momentum density, and stress, 131f
physical interpretation of components,
137f
symmetry of, 141-142
vanishing divergence, 152
as functional derivative of Lagrangian,
485, 503ff
specific form for
nearly Newtonian fluid, 152, 154
perfect fluid, 132, 140
viscous fluid with heat flowing through
it, 567
stressed medium with no heat flow,
1086f
swarm of particles (kinetic theory),
138f, 589f, 680, 682
spherical star cluster, 680, 682
photons in geometric optics limit, 579f
geometric-optics waves, 579
electromagnetic field, 139-140, 480ff
scalar field, 504f
gravitational field in spin-2 theory, 425
gravitational field in general relativity.
Does not exist; see Pseudotensor
Structure
Cartan’s equation of, 378
constants, of rotation group, 243
deformation of, 530
differentiable, 242
symplectic, of Hamiltonian mechanics,
125-126
See also Global techniques, Horizons
Sum-for-inertia. See Mach’s principle
Sum over histories. See Feynman’s sum
over histories
Summation convention, Einstein’s, 9
Sun
mass deduced from planetary orbits, 638,
endpapers
quadrupole moment, 1112f, 1115f, 1053f
gravitational field in PPN formalism,
1097ff
velocity relative to Galaxy, local group,
and universe, 1114
effect on tides, 44
observed redshift of light from, 1058ff

radiation flux negligible compared to
pressure, 1075
See also under Experimental tests of
general relativity
Super-Hamiltonian
contrasted with Hamiltonian, 488f
for test-particle motion
in electromagnetic field, 488f
in gravitational field, 654
in combined electromagnetic and
gravitational fields, 897f
for mixmaster cosmology, 809-813
Supermassive stars, 620f, 634
convection in, 600
entropy constant in, 600
adiabatic index in, 633
pulsational instability in, 632-633
relativistic instability in, 605, 620, 633f
rotation as a stabilizer, 633-634
possible roles in quasars and galactic
nuclei, 634
See also Neutron stars, White dwarfs
Supernova, 619, 622
Crab nebula created by, ii, 619f
theoretical scenario for, 628

as source of gravitational waves, 982, 987,

1040, 1042
Superspace, 1180-1183
as starting point for Einstein’s
geometrodynamic law, 423
quantum fluctuations, 1180
spread-out wave versus wave packet,
1185
conserved probability current in, 1189
truncated, skeleton version, 1181
mixmaster version (“minisuperspace”),
806
of 2-geometries, 221
Surface integral. See Integration
Surface of last influence, 873f
Symmetry of tensor, indicated by round or
square bracket, 126
Symmetry operations as tensors, 126,
128-129
Symmetries, more subtle than symmetry
and antisymmetry, 86

Symmetries of spacetime. See Killing vector

fields

Symmetrization, of tensor, 83

Synchronous coordinate system, 717. See
also Gaussian normal coordinate
system

Systéme International (SI) second, 28

T

Tails of waves in curved spacetime, 957,
864f, 869
Tangent space, 205, 227-231
at neighboring points, linked, 246f, 252
Tangent vector. See Vector, tangent.
Taub-NUT space, 940
TCP, experimental tests of, 1054
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Teichmiiller space, 221
Temperature. See Thermodynamics
Temperature, redshift of, 568, 588, 685
Tensors
summaries of formalism for manipulating
in global Lorentz frame, 85
in manifold without metric, 233f
in curved manifold with metric, 203f,
223f
machine-with-slots definition, 22, 74ff,
131, 133f, 233f, 310f
ambiguity of slots removed by component
notation, 84
rank, defined, 75f, 234
components of
in Lorentz frame, 75f
in general frame, 201-204, 312
operations on, introduced in global
Lorentz frame
indices, raising and lowering, 75-76
addition, 76
multiplication by scalar, 76
tensor product, 76
basis tensors, 76
gradient, 81-82, 84
contraction, 82, 84
divergence, 82
transpose, 83
symmetrization, antisymmetrization.
83, 85f, 126
wedge product, 83
duality, 85, 87, 88
integration, 147ff
algebraic operations extended to general
frames, 201-207, 233f
covariant derivative introduced, 208fT,
257-261
Lie derivative introduced, 517
spinor representation of, 1153-1155
Tensors, first rank. See Vectors, Forms,
1-forms
Tensors, second-rank symmetric,
decomposition of, 947
Tensors, completely antisymmetric. See
Forms, differential
Tensor density, 501f
“Test body,” defined, 1050n
Tests of general relativity. See Experimental
tests of general relativity
Test particle, freely falling, defines geodesic,
196
Test particles
three needed to explore Lorentz force, 72
more needed to explore Riemann
curvature, 72
Tetrad
carried by a uniformly accelerated
observer, 169-170
in Fermi-Walker transport, 170-171
carried by accelerated observer, 328-332
Tetrahedron, 307, 309
Theories of gravitation. See Gravitation,
theories of
Thermal conductivity. See Heat conduction
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Thermal equilibrium in a stationary
gravitational field, 568
Thermodynamics
in extenso, 557-562
basic references, 557n, 568
basic concepts defined
simple fluid, 558
multicomponent fluid, 558
baryon number density, 558
density of total mass-energy, 558
chemical potential, 558, 561, 562
entropy per baryon, 558
entropy 4-vector, 567
temperature, 508
heat-flux 4-vector, 567
pressure, 558
primary thermodynamic potential, 561
physical free energy, 561
chemical free energy, 561
equations of state, 560
adiabatic index, 692
viscosity coefficients, 567
laws and equations of
law of heat conduction, 559
Maxwell relations, 561, 564
See also Conservation laws, baryons;
First law of thermodynamics;
Second law of thermodynamics;
Equation of state
extension of formalism when nuclear
burning occurs, 558
some applications and processes
injection energy, 561f
shock waves, 559
pair production at high temperatures,
558
chemical potential for an ideal Fermi
gas, 565
See also Hydrodynamics
Thin-sandwich conjecture, 534
Thomas precession, 175-176, 1118, 1146f
Three-geometry
of initial and final spacelike
hypersurfaces, 488
as carrier of information about time, 488,
533
fixed at surface in ADM formulation, 522
conformal
in York’s formulation of initial-value
problem, 540-541
pure spin-2 representation via York
curvature, 541
YES vs. NO vs. quantum probability for,
1184f
See also Initial value, Spacelike slice
Three-plus-one split of spacetime, 486, 505
sandwiches and rigidification, 506
via 3-metric plus lapse and shift, 506-507
4-metric vs. 3-metric in, 508
choice of slicing doesn’t matter, 526
Tidal forces, 823, 860ff. See also Curvature
of spacetime, Geodesic deviation
Tides, produced by sun and moon, 38, 44,
391f

Time
standards of, 23-29
defined so motion looks simple, 23-29
end of, in gravitational collapse, Chap. 44
many-fingered, 495, 498, 527
proper. See Interval
imaginary coordinate for, not used, 51
Newtonian universal, 40, 299
See also Bubble-time derivative, Clocks,
Day
Time dilation, experimental tests of, 1054f
Tired light, 775
Tolman universe, 733
Topology, point-set, 241, 926n
Topology of spacetime
various possibilities for Schwarzschild
geometry, 837-840
various possibilities for Friedmann
cosmological models, 725
Einstein vs. flat space views of, 437
See also Differential topology
Torque of sun and moon on Earth, 391-392
Torsion
not present in affine connection if
equivalence principle is valid, 250
vanishes in Riemannian geometry, 378
possible incorporation into general
relativity, 1049, 1068
Tortoise coordinate, 663, 665-666
Torus, three-dimensional, 284, 725
Transformations
active vs. passive, 1140
of tensors, 201-204
of connection coefficients, 262
of spinors, 1149f
Transpose of tensor, 83
Transverse-traceless gauge
in linearized theory, 946-950
in a curved background, 969
Trapped surface, 934, 936
Trivector, defined, 83
Tubes of force, 102, 114
Twin “paradox,” 167
Two-length-scale expansion, 571f
Twistors, 937
Two-form. See under Forms, differential

U

Unified theory of electricity and gravitation,
Riemann’s unsuccessful search for, 32,
221
Uniqueness of free fall (“weightlessness,”
“weak equivalence principle”), 13-19,
197, 1050-1054
formulation of this book, 1050
Einstein’s 1908 formulation, 5
contained in Einstein’s 1911 equivalence
principle, 17
experimental tests of 13-17, 1051-1054.
See also Eotvos-Dicke experiment
Universal Time (UTO, UT1, UT2), 28
Universe. See Cosmological models,
Cosmology

GRAVITATION

\"

Variational principles for spin-0, spin-1,
and spin-2 theories of gravity in flat
spacetime, 178-181

Variational principles for test particle motion

extremal proper time, 314-324
“dynamic” principle, 322f
Variational principles for geometrodynamics
Hilbert’s, 434
in extenso, Chap. 21
in brief, 418, 485
what fixed at limits, 485
scalar curvature as integrand in, 491,
519
grounded in quantum character of
physics, 499f
in space-plus-time split, 519f
put into ADM form, 520
Sakharov renormalization of, 426
Hilbert’s, by Palatini’s method
sketched, 491
analogy with mechanics, 491-495
analogy with electrodynamics, 495-498
connection as independently variable
in, 492
Arnowitt, Deser, Misner
in simplest form, 521
exploited, 526
specialized to mixmaster cosmology,
808f
thin-sandwich, for lapse and shift, 538
in shortwave approximation, 927f
in Regge calculus, 1170
in superspace formulation, 1186
Vector, tangent
introduced, 8-13
definitions of
as arrow, 49
as parametrized straight line, 49
as derivative of point, 49, 205, 226-229
as directional derivative operator, 205,
227-230
manipulations summarized. See under
Tensor
formalism of, in global Lorentz frames,
timelike, null, and spacelike, 53
defining directional derivative, 591
correspondence to 1-form, 58ff
from 1-form by raising index, 62
test for linear dependence, 83
transition to curved spacetime, 201-207,
230f
commutator, 204
formula for determining components of,
232
transformation laws for, 230ff
comparison by parallel transport, 245-263
correspondence of, with spinors, 1150ff
covariant components from spinor
analysis, 1153

Vector, p-vector, 91

Vectors, three-dimensional (spatial),
introduced, 64
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Vector potential for electromagnetic field,
in curved spacetime, 569f
Velocity 4-vector
defined, 49
components, 50
unit length, 54
related to energy-momentum 4-vector,
53f
Velocity parameter, in Lorentz
transformation, 67
Vierbein. See Tetrad
Virial theorems in Newtonian theory of
gravity, 1078
evaluated for spherical stars, 607
Viscosity and viscous stresses
formalism for, 567
damping of primordial chaos by, 769,
802fF
Vlasoff equation, 680. See also Collisionless
Boltzman equation
Volume, Hero-Tartaglia formula for, 307
Volume 1-form, 133-137
4-volume, 147
volume integrals, 147-151
Volume in phase space, 584-587, 590

w

“Wave-dominated detector,” defined, 1019
Wave vector, 573ff
Wave function. See Probability amplitude

Wave operators
d’Alembertian, 89, 120, 177, 183
de Rham, for vector fields, 569
Lichnerowicz-de Rham, for tensor fields,
382
conformally invariant, 542
Wave number 1-form, 55-58
related to energy-momentum 4-vector, 57
Weak equivalence principle. See
Uniqueness of free fall.
Wedge product
of tensors and of forms, 83, 91f
rules for addition and multiplication, 92
other names for, 83, 99
of permutation tensors, 128f
Weight, of a tensor density, 501
Weightlessness. See Uniqueness of free fall
White-dwarf matter
thermal pressures negligible, 599-600
electron capture in, 619
equation of state for, 624ff
White-dwarf stars, 619
models for, 625-626
Chandrasekhar mass limit, 619
stability of, 605, 619, 626f, 696
Whitehead’s theory of gravity. See under
Gravitation, theories of
“Wire up” source to field, 367ff, 405
World line, 4, 13. See also Geodesic
World sheet, swept out by one face of
3-volume, 133
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World tube, analysis of balance of
4-momentum in, 473
Wormbholes in space
and Betti numbers, 221
of Schwarzschild geometry, 837ff, 842
of Reissner-Nordstrom geometry, 921
probably do not exist in real universe at
classical level, 842f
at quantum level, 1200f, 1203
electric charge as lines of force trapped
in, 1200

X

X-ray diffraction, related to 1-forms, 232
X-ray sources, 761-762
X-rays from gas around black holes, ix, 885

Y

York momenta measure deformation,
recoordinatization, and scaling, 542

York’s curvature, 541

Young symmetry diagrams 86

V4
Zero-point energy, 426ff
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