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C H A P T E R  1

The Ethics Gap in Contemporary Engineering

TWO VIGNETTES

During the night of December 2–3, 1984, one of the worst industrial 
disasters in history occurred at Union Carbide’s plant in Bhopal, Madhya 
Pradesh, India. Methyl isocyanate (MIC) liquid, an intermediate used 
in making Sevin, Union Carbide’s name for the pesticide carbaryl, came 
into contact with water, boiled violently, and turned into MIC gas. Un-
checked by various safety systems, tons of highly toxic MIC gas escaped 
from storage tank E610.1 A cloud of MIC gas descended upon crowded 
shantytowns just outside the plant, as well as on Bhopal city. Estimates 
of the death toll from exposure to the gas, immediately or in the first few 
days afterward, range from 2,000 to 10,000.2

In February 1992, I attended a conference on professional ethics at the 
University of Florida, Gainesville. On the shuttle bus to the conference 
hotel, the only other passenger turned out to be a chemical engineer. I 
asked him whether there was any consensus in the chemical engineering 
community about what had caused the Bhopal disaster. His response was 
immediate and succinct: “Sabotage.” Union Carbide has given the same 
explanation for three decades and continues to do so on its website.3

1 Tank E610 contained 42 metric tons of MIC. See Chouhan (2005), p. 205. Estimates 
of how many tons of MIC gas escaped into the air range from “approximately 27 tons” 
(Cullinan, 2004) to “some 40 tons” (Peterson, 2009a).

2 Edwards (2002), Broughton (2005), and Shetty (2014). If one counts those who died 
prematurely, months or years later, from effects of MIC exposure, the estimated death toll 
is much higher.

3 See http://​www​.unioncarbide​.com​/history. On the company’s historical timeline, the 
item for “1984” reads, “In December, a gas leak at a plant in Bhopal, India, caused by an act 
of sabotage, results in tragic loss of life.” See also http://​www​.bhopal​.com​/Cause​-of​-Bhopal​
-Tragedy. Under “Frequently Asked Questions About the Cause of the Bhopal Gas Trag-
edy,” the second question posed is “Who could have sabotaged plant operations and caused 
the leak?” The answer given reads, “Investigations suggest that only an employee with the 
appropriate skills and knowledge of the site could have tampered with the tank. An inde-
pendent investigation by the engineering consulting firm Arthur D. Little, Inc., determined 
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On January 28, 1986, about 14 months after the Bhopal disaster, the 
U.S. space shuttle Challenger exploded and disintegrated 73 seconds after 
launch from Kennedy Space Center in Florida. The entire crew perished: 
six astronauts and Christa McAuliffe, the first “Teacher in Space.”4

President Ronald Reagan appointed the late Arthur Walker Jr., at the 
time a faculty member at Stanford University, to serve on the Presidential 
Commission on the Space Shuttle Challenger Accident. Reagan charged 
the commissioners with determining the cause of the accident. In late 
1987, after the commission had submitted its final report, I ran into Pro-
fessor Walker on the Stanford campus and invited him to give a talk 
about his commission experience to a faculty seminar on technology in 
society. After his talk, I asked Walker what was the single most impor-
tant lesson to be learned from the Challenger disaster. He replied, “Hire 
smarter engineers.”

A GAP BETWEEN EDUCATION AND EXPERIENCE

The responses quoted in these vignettes are simplistic. The engineering 
outcomes involved cannot be explained as simply as those succinct re-
plies suggest. The proffered explanations probably reflect the narrow 
educational backgrounds of those who offered them. Few intending en-
gineers (or scientists) ever take ethics or social science classes that focus 
on engineering (or science) projects or practices. They are therefore pre-
disposed to attribute the outcomes of destructive engineering episodes 
to technical failures or clear-cut, nontechnical factors. The latter include 
individual cognitive shortcomings, such as mediocre intellectual capabil-
ity on the part of project engineers, and individual political motives, such 
as vengeful sabotage by a disgruntled employee.

Part of the appeal of such explanations is that they point up problems 
that can be readily “solved” by making specific changes, for example, hir-
ing smarter engineers, and screening potential employees more rigorously. 
Engineers who never took ethics or social science classes closely related 

that the water could only have been introduced into the tank deliberately, since process 
safety systems—in place and operational—would have prevented water from entering the 
tank by accident.” On Union Carbide’s sabotage theory, see Weisman and Hazarika (1987) 
and Peterson (2009b), pp. 9–11.

4 Besides the loss of human life, the harm caused by this accident also had a financial 
component. “The space shuttle Endeavor, the orbiter built to replace the space shuttle Chal-
lenger, cost approximately $1.7 billion.” See http://​www​.nasa​.gov​/centers​/kennedy​/about​
/information​/shuttle​_faq​.html​#1.
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to engineering endeavor rarely consider the possibility that some harmful 
engineering episodes may be partly attributable to ethically problematic 
conduct on the part of engineer-participants. They also rarely consider 
the possibility that social or technical features of the often-complex con-
texts involved can help set the stage for and elicit such conduct.

Not only does contemporary engineering practice pose many ethical 
challenges to engineers, engineers are rarely adequately prepared to grap-
ple with them in a thoughtful manner. There is an ethics gap in contem-
porary engineering, that is, a mismatch or disconnect between the ethics 
education of contemporary engineering students and professionals, and 
the ethics realities of contemporary engineering practice. One purpose of 
this book is to help narrow that gap.

EVIDENCE

Is there evidence of a gap between engineering ethics education for en-
gineering students and the ethics realities of contemporary engineering 
practice? If there is, does it suggest that the ethics gap is substantial? 
Consider the following.

Between 1997 and 2001, the author conducted an informal survey 
of Stanford undergraduate engineering students and the practicing engi-
neers they contacted about two topics: the study of engineering-related 
ethical issues in undergraduate engineering education, and the presence 
of ethical issues in engineering practice.5

Of the 516 undergraduate engineering majors who responded and 
ventured an opinion,6 about 17 of every 20 (86.1%) indicated they ex-
pected to face ethical issues or conflicts in their engineering careers.7 But 
how well did respondents believe their education had prepared them to 
deal “thoughtfully and effectively with such ethical challenges as they 
might encounter”? About a seventh (14.2%) responded “a good deal” or 
“a great deal,” whereas more than half (54.3%) responded “a little bit” 
or “not at all.”8

The undergraduates’ responses did yield some encouraging find-
ings. About three-fifths (62.2%) indicated that during their engineering 

5 McGinn (2003).
6 One hundred forty-seven engineering majors did not respond because they did not plan 

to become practicing engineers; 28 others indicated they had no opinion.
7 Ibid., p. 521.
8 Ibid., p. 523.
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education they had received the message that “there’s more to being a 
good engineering professional in today’s society than being a state-of-the-
art technical expert.”9 However, that finding was offset by the sobering 
fact that only 14.9% of the respondents indicated they had learned “any-
thing specific” from their engineering instructors “about what’s involved 
in being an ethically and socially responsible engineering professional in 
contemporary society.”10

Thus, while a healthy majority of the respondents had gotten a mes-
sage that there’s more to being a good engineering professional in con-
temporary society than being technically competent, the message often 
lacked specifics. Most students learned nothing concrete about the ethical 
responsibilities of engineers from their engineering instructors. As they 
left their classrooms and headed for workplaces where most expected to 
encounter ethical issues, few engineering students took with them specific 
knowledge of the ethical responsibilities of engineers.

But how likely is it that engineers will actually confront ethical issues 
in professional practice? Of the 285 practicing engineers who responded 
and expressed an opinion, 84.2%11 agreed that current engineering stu-
dents are “likely to encounter significant ethical issues in their future en-
gineering practice.”12 Indeed, almost two-thirds (65.4%) of the respond-
ing engineers indicated they had already been personally “faced with an 
ethical issue in the course of [their] professional practice.” Almost the 
same percentage (64.3%) stated they knew or knew of one or more other 
engineers “who have been faced with an ethical issue in their profes-
sional practice.”13 Not surprisingly, a remarkable 92.8% of the practicing 
engineer respondents who ventured an opinion agreed that engineering 
students “should be exposed during their formal engineering education 
to ethical issues of the sort that they may later encounter in their profes-
sional practice.”14

Unless these two groups of respondents are atypical of engineering 
students and practicing engineers in general,15 these findings suggest a 

9 Ibid., p. 524.
10 Ibid., p. 525.
11 Nine of the 294 practicing engineer respondents did not express an opinion on the 

matter. Ibid., p. 527.
12 Ibid. Interestingly, this percentage is close to the percentage of surveyed engineering 

students who expect to encounter ethical issues in their future engineering careers.
13 Ibid.
14 Ibid.
15 This possibility cannot be ruled out. The 691 Stanford undergraduate engineering 

students and the 294 practicing engineers who completed the relevant parts of the survey 
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serious disconnect: between the levels of engineering-student expectation 
and practicing-engineer experience of being confronted by ethical issues 
in engineering work, and the amount of effective engineering-related eth-
ics education provided to U.S. undergraduate engineering students.

IMPORTANCE

I shall proceed on the assumption that this disconnect persists16 and is 
substantial. Why is it important to bridge or at least narrow the gap 
between engineering-related ethics education and the ethics realities of 
contemporary engineering practice?

First, as the case studies in Chapter 4 make clear, misconduct by engi-
neers sometimes contributes to causing significant harm to society. Mak-
ing engineering students aware of ethical challenges in engineering prac-
tice and illustrating the serious social costs attributable to engineering 
misconduct could help prevent or lessen some of those societal harms.

Second, it makes sense for engineering students to learn upstream, for 
example, during their undergraduate studies, about material pertinent to 
challenges they are likely to face downstream, such as being faced with 
ethical issues during their engineering careers. For many years there was a 
disconnect between engineers’ need for good technical writing and other 
communications skills, and the scarcity of training dedicated to cultivat-
ing such skills in undergraduate engineering education. Happily, in recent 
years technical communication classes and programs for undergraduates 
have emerged in a number of U.S. engineering schools, to the benefit of 
those able to access them. The same attention should be given to cultivat-
ing engineering-related ethics awareness and skills as it eventually was 
to technical communications skills. Failure to nurture the former does 
as much a disservice to engineering students as did failure to develop 
the latter. It sends them out into engineering workplaces ill-equipped to 
recognize and effectively grapple with another important type of profes-
sional challenge they are likely to face.

Third, acquiring intellectual resources useful for making thoughtful 
ethical judgments about engineering conduct can help empower engineers 

questionnaire were not probabilistically random samples of the populations of U.S. under-
graduate engineering students and U.S. practicing engineers, respectively.

16 This disconnect might have decreased if a widespread increase in meaningful 
engineering-related ethics education had occurred since 2001. However, to the best of the 
author’s knowledge, this has not happened.
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to make up their own minds about the ethical acceptability of prevailing 
workplace culture and practices. Engineers who lack the skills to make 
thoughtful ethical judgments about questionable features of workplace 
culture or suspect work practices are more likely to yield to pressure to 
go along with prevailing attitudes and practices.

Fourth, equipped with an understanding of responsible engineering 
decision-making and practices, young engineers in the job market can 
better assess how committed the firms recruiting them are to supporting 
ethically responsible engineering work. It would be useful for would-be 
ethically responsible engineering students and practicing engineers in the 
job market to know to what degree the firms they are considering joining 
expect and exert pressure on their new engineer-employees to follow or-
ders uncritically, even when the engineers have concerns about the ethical 
acceptability of some of the tasks they are assigned.

Fifth, the ability to recognize and comprehend the ethical issues in an 
engineering situation should make inadvertent irresponsible behavior by 
engineers less frequent. That recognition and understanding will dimin-
ish appeals to the classic excuse “I didn’t realize there were ethical issues 
involved in that situation.” Presumably, some engineers who are able to 
recognize ethical issues in professional practice will choose to avoid con-
duct they deem ethically irresponsible.

Sixth, a quite different kind of reason for the importance of bridging 
the ethics gap in contemporary engineering is that in recent years, pres-
sure to provide engineering students with opportunities to study ethi-
cal issues in engineering has grown. This pressure stems from multiple 
sources:

•	 In a 2003 request for proposals, the U.S. National Science Foundation 
(NSF) stipulated that each group of universities submitting a proposal for 
funding to establish a network of nanotechnology research laboratories 
had to indicate how it was going to “explore the social and ethical implica-
tions of nanotechnology” as part of its mission.17

•	 In 2004, the U.K. Royal Academy of Engineering recommended that “con-
sideration of ethical and social implications of advanced technologies . . . 
should form part of the formal training of all research students and staff 
working in these areas.”18

17 http://​www​.nsf​.gov​/pubs​/2003​/nsf03519​/nsf03519​.pdf.
18 The Royal Society and the Royal Academy of Engineering (2004), Recommendation 

17, p. 87.
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•	 In 2006, a survey of 1,037 nanotechnology researchers at 13 U.S. universi-
ties posed this question: “How much do you believe that study of ethical 
issues related to science and engineering should become a standard part 
of the education of future engineers and scientists?” About three-tenths 
(30.1%) of the respondents replied “quite a bit,” while another third (33%) 
replied “very much.”19 This suggests that significant interest in relevant eth-
ics education exists among engineering students and young engineers them-
selves, not just on the part of accrediting agencies, professional societies, 
and engineering-related funding organizations.

•	 In 2009, NSF took a step toward requiring ethics education for engineer-
ing students. In implementing the America COMPETES Act of 2007, NSF 
stipulated that, as of January 2010, when an institution submits a funding 
proposal to NSF it must certify that it has “a plan to provide appropriate 
training and oversight in the responsible and ethical conduct of research to 
undergraduates, graduate students, and postdoctoral researchers who will 
be supported by NSF to conduct research.”20

•	 The U.S. Accreditation Board for Engineering and Technology (ABET) cur-
rently requires that engineering programs seeking initial or renewed ac-
creditation of their bachelor’s degrees “document” that most graduates 
of the programs in question have realized 11 “student outcomes.” Among 
them are “an ability to design a system, component, or process to meet 
desired needs within realistic constraints, such as economic, environmental, 
social, political, ethical, health and safety, manufacturability, and sustain-
ability [constraints]”; and “an understanding of professional and ethical 
responsibility.”21

In short, there are individual, organizational, and societal reasons why 
providing engineering students with meaningful engineering-related eth-
ics education makes excellent sense.

UNFRUITFUL APPROACHES TO BRIDGING THE GAP

It is hoped that the reader is now persuaded that, all things consid-
ered, it would be worthwhile to expose engineering students to study 
of engineering-related ethical issues in their formal education. But even 

19 McGinn (2008), p. 117.
20 https://​www​.nsf​.gov​/bfa​/dias​/policy​/rcr​.jsp.
21 http://​www​.abet​.org​/DisplayTemplates​/DocsHandbook​.aspx​?id​=​3149.
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if that is so, the question remains: what kind of approach to providing 
engineering students with education about engineering-related ethical is-
sues is likely to be fruitful?

I shall first describe two general approaches to engineering-related eth-
ics education I believe are unlikely to be fruitful and then shall identify 
and briefly characterize one approach I regard as more promising. The 
two unfruitful approaches are (1) requiring engineering students to en-
roll in a traditional philosophy-department ethics course and (2) incor-
porating engineering-related ethics education into technical engineering 
classes.

Requiring a Typical Philosophy-Department Ethics Class

Requiring engineering students to enroll in a traditional philosophy-
department ethics course is unlikely to be fruitful. Few such courses in 
the U.S. pay any attention to ethical issues in engineering. They tend to 
be concerned with ethical concepts and theories, the nature of ethical 
reasoning, and the status and justification of ethical judgments. With rare 
exceptions, the examples explored in such courses rarely involve profes-
sional contexts.22

It is not surprising that engineering-related examples and cases are 
typically absent from such courses. Few philosophy-department faculty 
members in U.S. research universities or liberal arts colleges have sub-
stantial knowledge of or interest in engineering (as distinguished from 
science). The same is true of the kinds of concrete situations in which 
engineers can find themselves that may give rise to ethical issues. In more 
than four decades of teaching at Stanford University, to the best of my 
knowledge no ethics course offered by the Department of Philosophy 
has paid any attention to ethical issues in engineering. I suspect that the 
same is true of philosophy-department ethics courses at virtually all U.S. 
universities and colleges.23 Consequently, requiring engineering students 
to take a traditional philosophy-department ethics course with the hope 

22 The most common exception is that some such courses include exploration of phe-
nomena that arise in medical professional contexts, for example, abortion, assistive repro-
ductive technology, and organ transplantation.

23 Engineering ethics courses are most often taught by instructors in academic units with 
names like General Engineering; Technology in Society; Engineering and Society; and Sci-
ence, Technology, and Society, almost always at institutes of technology or universities with 
large engineering schools. Occasionally, an engineering ethics course is taught in an engi-
neering department, such as computer science and civil engineering.
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they will learn something useful about ethical issues in engineering would 
leave it completely up to the student to work out how the ideas and theo-
ries explored in such courses apply to engineering situations. It would 
therefore not be surprising if most engineering students perceived such 
courses as irrelevant to their future careers.

Integrating Ethics Study into Technical Engineering Classes

A second option is to attempt to cover engineering-related ethical issues 
in technical engineering classes. This could be done by a nonengineer 
guest instructor with expertise in engineering ethics, or by the primary 
engineer-instructor of the course.

If a nonengineer guest instructor with expertise in engineering ethics 
provides the engineering-related ethics education, it is likely to be limited 
to one or two lectures. Unfortunately, class members will almost inevita-
bly perceive the (limited) material covered in such sessions as peripheral 
to the course. Moreover, the material covered will probably not be well 
integrated (by the main instructor) into discussion of the technical mate-
rial encountered elsewhere in the course.

If the course’s main engineer-instructor provides the coverage of ethi-
cal issues in engineering, then the consideration of ethical issues is likely 
to be intuitive and not grounded in ethics fundamentals. Having an 
engineer-instructor cover ethical issues in engineering is an excellent idea 
in principle; however, in practice it faces two problems: one pedagogical, 
the other temporal.

First, effectively integrating ethics into a technical engineering class is 
likely to be more pedagogically demanding for the engineer-instructor 
than getting back up to speed on a body of technical subject matter with 
which she or he was once familiar but has forgotten over time. Doing that 
integration well requires a grasp of key ethical concepts and principles, 
familiarity with a range of ethical issues in engineering, detailed knowl-
edge of various cases, and the ability to apply key ethical concepts and 
principles to concrete cases in an illuminating way. It is difficult for an 
engineer (or anyone else) without formal ethics education and teaching 
experience to acquire such knowledge and ability in short order.

Second, required technical engineering classes are already tightly 
packed with technical subject matter. Engineer-instructors of such courses 
often complain that, in their classes as they now stand, they do not have 
enough time to cover even all the important technical subject matter that 
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students need to know. But the more time that is devoted in such a class 
to studying engineering-related ethics issues, in hopes of making cover-
age of that topic nonsuperficial, the less time will remain for important 
technical engineering material. Hence, study of the latter would have to 
be diluted or truncated. That is extremely unlikely to happen.

Thus, what may sound ideal in principle—having instructors who are 
engineers provide education about ethical issues in engineering in techni-
cal engineering classes—faces serious practical barriers in the real cur-
ricular world of undergraduate engineering education.24

PREFERRED APPROACH

I favor a third kind of pedagogical approach to teaching engineering stu-
dents about engineering-related ethical issues. In this approach, engineer-
ing students explore ethical issues in engineering in a separate course 
dedicated to such study. They read and discuss at length real-life cases in 
which engineering-related ethical issues arose, and make presentations 
on original cases of ethical issues in engineering they have researched and 
developed. The instructor has expertise and experience in teaching engi-
neering ethics, has an abiding interest in engineering education, and is 
familiar with the realities of engineering practice. He or she is a full-time 
engineering school faculty member who believes analysis of ethical issues 
in engineering and evaluation of engineers’ conduct from an ethics view-
point are important tasks. Further, she or he believes such analysis and 
evaluation must be carried out with due attention to the specific contexts 
in which those issues arise and the related actions unfold.

* * *

24 To “learn how to incorporate ethics into engineering science classes,” one mechanical 
engineering professor attended an Ethics Across the Curriculum Workshop given by Illinois 
Institute of Technology’s Center for the Study of Ethics in the Professions. Shortly thereafter, 
he added an ethics component to his Automatic Control Systems course. It included explo-
ration of two “Ethics Cases” inspired by actual events. Students were asked to generate a list 
of possible courses of action open to the engineer(s) who faced an “ethical dilemma” about 
what to do. The instructor “asked students to vote on their preferred choice” of action in 
each case. Encouragingly, a survey revealed that most students believed that the course had 
“increased their awareness of ethics issues.” However, given the limited time available in 
the course for discussion of ethical issues, the “mini-ethics lessons” do not appear to have 
tried to impart to students any ethics fundamentals that they could draw upon in making 
thoughtful ethical judgments about engineering conduct in the future. See Meckl (2003).
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Chapters 2 and 3 present background and foundational materials in-
tended to help engineering students and engineering professionals de-
velop the ability to make thoughtful judgments about ethical issues in 
engineering and related engineering conduct. Then, making use of those 
materials, Chapter 4 explores a wide range of cases from different fields 
of engineering and analyzes various ethical issues raised therein. Almost 
all the cases are real-life ones, and some include engineers speaking in 
their own voice as they wrestle with the ethical issues involved.

Subsequent chapters discuss noteworthy ideas and lessons distilled 
from the case studies (Chapter 5), identify resources and options that 
might be useful to those who care about ethically responsible engineering 
practice (Chapter 6), and discuss the author’s general approach to explor-
ing ethical issues in engineering in somewhat greater detail (Chapter 7).

By reading and reflecting on the wide range of cases presented, and 
by grasping the intellectual resources used in exploring them, engineer-
ing students and practicing engineers should become more aware of and 
better able to come to grips with the ethical dimension of engineering 
practice. More specifically, such exposure should also help them develop 
sensitive antennae with which to detect ethical issues present in concrete 
engineering situations, and improve their ability to unpack and think 
clearly, critically, and contextually about such issues. With careful study, 
engineering students and practicing engineers will acquire concepts and 
principles that can be added to their personal ethics tool kits and used to 
come to grips in a thoughtful way with ethical challenges in their profes-
sional careers.
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