CONTENTS

Preface ix

Chapter 1 The Ethics Gap in Contemporary Engineering 1
 Two Vignettes 1
 A Gap between Education and Experience 2
 Evidence 3
 Importance 5
 Unfruitful Approaches to Bridging the Gap 7
 Preferred Approach 10

Chapter 2 Sociological and Ethical Preliminaries 12
 Sociology of Engineering 12
 Professional Engineering Society Codes of Ethics 16

Chapter 3 The Fundamental Ethical Responsibilities of Engineers 22
 An Ethical Responsibilities Approach 22
 Ethical Issues and Harm 23
 The Fundamental Ethical Responsibilities of Engineers 26

Chapter 4 Case Studies of Ethical Issues in Engineering 40
 Case 1: The Cadillac DeVille/Seville Engine-Control Chip 43
 Case 2: SDI Battlefield Management Software 50
 Case 3: Collaborative Research Practices at Bell Labs 58
 Case 4: The Apple Newton MessagePad 67
 Case 5: An Employee Database Management System 73
 Case 6: The Citicorp Center Tower 80
 Case 7: The Union Carbide Pesticide Plant in Bhopal 92
 Case 8: The Space Shuttle Challenger 111
 Case 9: A Composite-Material Bicycle Project 124
 Case 10: Nanotechnology R&D 137
 Case 11: The Ford Pinto 149
 Case 12: Topf & Sons: Crematorium Ovens for the Nazi SS 161
 Case 13: TRW and the U.S. Ballistic Missile Defense System 175
 Case 14: The Hyatt Regency Kansas City Hotel 187
 Case 15: The Manhattan Westway Project 201
 Case 16: Innovations for Rural Kenyan Farmers 216
Case 17: Google Street View 228
Case 18: Opioid Biosynthesis and Neural Enhancement 244

Chapter 5 Key Case Ideas and Lessons 265

The Leading Precept in Most Current Codes of Engineering Ethics 265
The FEREs 266
Ethics and the Sociology of Contemporary Engineering 267
An Ethically Problematic Pattern of Engineering Practice 268
Whistleblowing and Ethical Responsibility 269
Risk and the Idealization of Technology in Society 270
Ethical Responsibility and the Culture of the Engineering Workplace 271
An Overlooked Ethical Responsibility of Engineers 272
An Engineering Professional 273
Engineering Design, Paradigm Departure, and the Ethics of Precaution 273
Normalization of Risk and Routinization of the Experimental Technology Transfer and Ethical Responsibility 275
“Two Cultures” and Ethical Responsibility 276
Decontextualization 277
The Politicization and Economization of Engineering Decision-Making 278
Negligence 278
Workplace Culture and the Ethically Responsible Engineer 279
Conflicts of Interest 280
“Design for . . .” 282
Ethical Issues in Engineering Research 284
Factors Conducive to Engineering Misconduct 286

Chapter 6 Resources and Options for Ethically Responsible Engineers 288
Organizational Resources 288
Legal Resources and Options 294
Employment-Related Options 299

Chapter 7 Conclusion 302
Bucciarelli’s Critique of U.S. Engineering-Ethics Education 302
A Foundational-Contextual Ethical Responsibilities Approach 307
Two Quotations 310

Bibliography 313
Index 329
CHAPTER 1

The Ethics Gap in Contemporary Engineering

TWO VIGNETTES

During the night of December 2–3, 1984, one of the worst industrial disasters in history occurred at Union Carbide’s plant in Bhopal, Madhya Pradesh, India. Methyl isocyanate (MIC) liquid, an intermediate used in making Sevin, Union Carbide’s name for the pesticide carbaryl, came into contact with water, boiled violently, and turned into MIC gas. Unchecked by various safety systems, tons of highly toxic MIC gas escaped from storage tank E610.1 A cloud of MIC gas descended upon crowded shantytowns just outside the plant, as well as on Bhopal city. Estimates of the death toll from exposure to the gas, immediately or in the first few days afterward, range from 2,000 to 10,000.2

In February 1992, I attended a conference on professional ethics at the University of Florida, Gainesville. On the shuttle bus to the conference hotel, the only other passenger turned out to be a chemical engineer. I asked him whether there was any consensus in the chemical engineering community about what had caused the Bhopal disaster. His response was immediate and succinct: “Sabotage.” Union Carbide has given the same explanation for three decades and continues to do so on its website.3

1 Tank E610 contained 42 metric tons of MIC. See Chouhan (2005), p. 205. Estimates of how many tons of MIC gas escaped into the air range from “approximately 27 tons” (Cullinan, 2004) to “some 40 tons” (Peterson, 2009a).

2 Edwards (2002), Broughton (2005), and Shetty (2014). If one counts those who died prematurely, months or years later, from effects of MIC exposure, the estimated death toll is much higher.

3 See http://www.unioncarbide.com/history. On the company’s historical timeline, the item for “1984” reads, “In December, a gas leak at a plant in Bhopal, India, caused by an act of sabotage, results in tragic loss of life.” See also http://www.bhopal.com/Cause-of-Bhopal-Tragedy. Under “Frequently Asked Questions About the Cause of the Bhopal Gas Tragedy,” the second question posed is “Who could have sabotaged plant operations and caused the leak?” The answer given reads, “Investigations suggest that only an employee with the appropriate skills and knowledge of the site could have tampered with the tank. An independent investigation by the engineering consulting firm Arthur D. Little, Inc., determined
On January 28, 1986, about 14 months after the Bhopal disaster, the U.S. space shuttle *Challenger* exploded and disintegrated 73 seconds after launch from Kennedy Space Center in Florida. The entire crew perished: six astronauts and Christa McAuliffe, the first “Teacher in Space.”

President Ronald Reagan appointed the late Arthur Walker Jr., at the time a faculty member at Stanford University, to serve on the Presidential Commission on the Space Shuttle *Challenger* Accident. Reagan charged the commissioners with determining the cause of the accident. In late 1987, after the commission had submitted its final report, I ran into Professor Walker on the Stanford campus and invited him to give a talk about his commission experience to a faculty seminar on technology in society. After his talk, I asked Walker what was the single most important lesson to be learned from the *Challenger* disaster. He replied, “Hire smarter engineers.”

A GAP BETWEEN EDUCATION AND EXPERIENCE

The responses quoted in these vignettes are simplistic. The engineering outcomes involved cannot be explained as simply as those succinct replies suggest. The proffered explanations probably reflect the narrow educational backgrounds of those who offered them. Few intending engineers (or scientists) ever take ethics or social science classes that focus on engineering (or science) projects or practices. They are therefore predisposed to attribute the outcomes of destructive engineering episodes to technical failures or clear-cut, nontechnical factors. The latter include individual cognitive shortcomings, such as mediocre intellectual capability on the part of project engineers, and individual political motives, such as vengeful sabotage by a disgruntled employee.

Part of the appeal of such explanations is that they point up problems that can be readily “solved” by making specific changes, for example, hiring smarter engineers, and screening potential employees more rigorously. Engineers who never took ethics or social science classes closely related that the water could only have been introduced into the tank deliberately, since process safety systems—in place and operational—would have prevented water from entering the tank by accident.” On Union Carbide’s sabotage theory, see Weisman and Hazarika (1987) and Peterson (2009b), pp. 9–11.

4Besides the loss of human life, the harm caused by this accident also had a financial component. “The space shuttle *Endeavor*, the orbiter built to replace the space shuttle *Challenger*, cost approximately $1.7 billion.” See http://www.nasa.gov/centers/kennedy/about/information/shuttle_faq.html#1.
to engineering endeavor rarely consider the possibility that some harmful engineering episodes may be partly attributable to ethically problematic conduct on the part of engineer-participants. They also rarely consider the possibility that social or technical features of the often-complex contexts involved can help set the stage for and elicit such conduct.

Not only does contemporary engineering practice pose many ethical challenges to engineers, engineers are rarely adequately prepared to grapple with them in a thoughtful manner. There is an ethics gap in contemporary engineering, that is, *a mismatch or disconnect between the ethics education of contemporary engineering students and professionals, and the ethics realities of contemporary engineering practice*. One purpose of this book is to help narrow that gap.

EVIDENCE

Is there *evidence* of a gap between engineering ethics education for engineering students and the ethics realities of contemporary engineering practice? If there is, does it suggest that the ethics gap is substantial? Consider the following.

Between 1997 and 2001, the author conducted an informal survey of Stanford undergraduate engineering students and the practicing engineers they contacted about two topics: the study of engineering-related ethical issues in undergraduate engineering education, and the presence of ethical issues in engineering practice.5

Of the 516 undergraduate engineering majors who responded and ventured an opinion,6 about 17 of every 20 (86.1%) indicated they expected to face ethical issues or conflicts in their engineering careers.7 But how well did respondents believe their education had prepared them to deal “thoughtfully and effectively with such ethical challenges as they might encounter”? About a seventh (14.2%) responded “a good deal” or “a great deal,” whereas more than half (54.3%) responded “a little bit” or “not at all.”8

The undergraduates’ responses did yield some encouraging findings. About three-fifths (62.2%) indicated that during their engineering

6 One hundred forty-seven engineering majors did not respond because they did not plan to become practicing engineers; 28 others indicated they had no opinion.
7 Ibid., p. 521.
8 Ibid., p. 523.
education they had received the message that “there’s more to being a
good engineering professional in today’s society than being a state-of-the-art technical expert.”9 However, that finding was offset by the sobering
fact that only 14.9% of the respondents indicated they had learned “any-
thing specific” from their engineering instructors “about what’s involved
in being an ethically and socially responsible engineering professional in
contemporary society.”10
Thus, while a healthy majority of the respondents had gotten a mes-
sage that there’s more to being a good engineering professional in con-
temporary society than being technically competent, the message often
lacked specifics. Most students learned nothing concrete about the ethical
responsibilities of engineers from their engineering instructors. As they
left their classrooms and headed for workplaces where most expected to
encounter ethical issues, few engineering students took with them specific
knowledge of the ethical responsibilities of engineers.
But how likely is it that engineers will actually confront ethical issues
in professional practice? Of the 285 practicing engineers who responded
and expressed an opinion, 84.2%11 agreed that current engineering stu-
dents are “likely to encounter significant ethical issues in their future en-
gineering practice.”12 Indeed, almost two-thirds (65.4%) of the respond-
ing engineers indicated they had already been personally “faced with an
ethical issue in the course of [their] professional practice.” Almost the
same percentage (64.3%) stated they knew or knew of one or more other
engineers “who have been faced with an ethical issue in their profes-
sional practice.”13 Not surprisingly, a remarkable 92.8% of the practicing
engineer respondents who ventured an opinion agreed that engineering
students “should be exposed during their formal engineering education
to ethical issues of the sort that they may later encounter in their profes-
sional practice.”14

Unless these two groups of respondents are atypical of engineering
students and practicing engineers in general,15 these findings suggest a

9 Ibid., p. 524.
10 Ibid., p. 525.
11 Nine of the 294 practicing engineer respondents did not express an opinion on the
matter. Ibid., p. 527.
12 Ibid. Interestingly, this percentage is close to the percentage of surveyed engineering
students who expect to encounter ethical issues in their future engineering careers.
13 Ibid.
14 Ibid.
15 This possibility cannot be ruled out. The 691 Stanford undergraduate engineering
students and the 294 practicing engineers who completed the relevant parts of the survey
serious disconnect: between the levels of engineering-student expectation and practicing-engineer experience of being confronted by ethical issues in engineering work, and the amount of effective engineering-related ethics education provided to U.S. undergraduate engineering students.

IMPORTANCE

I shall proceed on the assumption that this disconnect persists\(^\text{16}\) and is substantial. Why is it important to bridge or at least narrow the gap between engineering-related ethics education and the ethics realities of contemporary engineering practice?

First, as the case studies in Chapter 4 make clear, misconduct by engineers sometimes contributes to causing significant harm to society. Making engineering students aware of ethical challenges in engineering practice and illustrating the serious social costs attributable to engineering misconduct could help prevent or lessen some of those societal harms.

Second, it makes sense for engineering students to learn upstream, for example, during their undergraduate studies, about material pertinent to challenges they are likely to face downstream, such as being faced with ethical issues during their engineering careers. For many years there was a disconnect between engineers’ need for good technical writing and other communications skills, and the scarcity of training dedicated to cultivating such skills in undergraduate engineering education. Happily, in recent years technical communication classes and programs for undergraduates have emerged in a number of U.S. engineering schools, to the benefit of those able to access them. The same attention should be given to cultivating engineering-related ethics awareness and skills as it eventually was to technical communications skills. Failure to nurture the former does as much a disservice to engineering students as did failure to develop the latter. It sends them out into engineering workplaces ill-equipped to recognize and effectively grapple with another important type of professional challenge they are likely to face.

Third, acquiring intellectual resources useful for making thoughtful ethical judgments about engineering conduct can help empower engineers

\(^{16}\)This disconnect might have decreased if a widespread increase in meaningful engineering-related ethics education had occurred since 2001. However, to the best of the author’s knowledge, this has not happened.
to make up their own minds about the ethical acceptability of prevailing workplace culture and practices. Engineers who lack the skills to make thoughtful ethical judgments about questionable features of workplace culture or suspect work practices are more likely to yield to pressure to go along with prevailing attitudes and practices.

Fourth, equipped with an understanding of responsible engineering decision-making and practices, young engineers in the job market can better assess how committed the firms recruiting them are to supporting ethically responsible engineering work. It would be useful for would-be ethically responsible engineering students and practicing engineers in the job market to know to what degree the firms they are considering joining expect and exert pressure on their new engineer-employees to follow orders uncritically, even when the engineers have concerns about the ethical acceptability of some of the tasks they are assigned.

Fifth, the ability to recognize and comprehend the ethical issues in an engineering situation should make inadvertent irresponsible behavior by engineers less frequent. That recognition and understanding will diminish appeals to the classic excuse “I didn’t realize there were ethical issues involved in that situation.” Presumably, some engineers who are able to recognize ethical issues in professional practice will choose to avoid conduct they deem ethically irresponsible.

Sixth, a quite different kind of reason for the importance of bridging the ethics gap in contemporary engineering is that in recent years, pressure to provide engineering students with opportunities to study ethical issues in engineering has grown. This pressure stems from multiple sources:

- In a 2003 request for proposals, the U.S. National Science Foundation (NSF) stipulated that each group of universities submitting a proposal for funding to establish a network of nanotechnology research laboratories had to indicate how it was going to “explore the social and ethical implications of nanotechnology” as part of its mission.17
- In 2004, the U.K. Royal Academy of Engineering recommended that “consideration of ethical and social implications of advanced technologies . . . should form part of the formal training of all research students and staff working in these areas.”18

18The Royal Society and the Royal Academy of Engineering (2004), Recommendation 17, p. 87.
In 2006, a survey of 1,037 nanotechnology researchers at 13 U.S. universities posed this question: “How much do you believe that study of ethical issues related to science and engineering should become a standard part of the education of future engineers and scientists?” About three-tenths (30.1%) of the respondents replied “quite a bit,” while another third (33%) replied “very much.”19 This suggests that significant interest in relevant ethics education exists among engineering students and young engineers themselves, not just on the part of accrediting agencies, professional societies, and engineering-related funding organizations.

In 2009, NSF took a step toward requiring ethics education for engineering students. In implementing the America COMPETES Act of 2007, NSF stipulated that, as of January 2010, when an institution submits a funding proposal to NSF it must certify that it has “a plan to provide appropriate training and oversight in the responsible and ethical conduct of research to undergraduates, graduate students, and postdoctoral researchers who will be supported by NSF to conduct research.”20

The U.S. Accreditation Board for Engineering and Technology (ABET) currently requires that engineering programs seeking initial or renewed accreditation of their bachelor’s degrees “document” that most graduates of the programs in question have realized 11 “student outcomes.” Among them are “an ability to design a system, component, or process to meet desired needs within realistic constraints, such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability [constraints]”; and “an understanding of professional and ethical responsibility.”21

In short, there are individual, organizational, and societal reasons why providing engineering students with meaningful engineering-related ethics education makes excellent sense.

UNFRUITFUL APPROACHES TO BRIDGING THE GAP

It is hoped that the reader is now persuaded that, all things considered, it would be worthwhile to expose engineering students to study of engineering-related ethical issues in their formal education. But even

if that is so, the question remains: what kind of approach to providing engineering students with education about engineering-related ethical issues is likely to be fruitful?

I shall first describe two general approaches to engineering-related ethics education I believe are unlikely to be fruitful and then shall identify and briefly characterize one approach I regard as more promising. The two unfruitful approaches are (1) requiring engineering students to enroll in a traditional philosophy-department ethics course and (2) incorporating engineering-related ethics education into technical engineering classes.

Requiring a Typical Philosophy-Department Ethics Class

Requiring engineering students to enroll in a traditional philosophy-department ethics course is unlikely to be fruitful. Few such courses in the U.S. pay any attention to ethical issues in engineering. They tend to be concerned with ethical concepts and theories, the nature of ethical reasoning, and the status and justification of ethical judgments. With rare exceptions, the examples explored in such courses rarely involve professional contexts.22

It is not surprising that engineering-related examples and cases are typically absent from such courses. Few philosophy-department faculty members in U.S. research universities or liberal arts colleges have substantial knowledge of or interest in engineering (as distinguished from science). The same is true of the kinds of concrete situations in which engineers can find themselves that may give rise to ethical issues. In more than four decades of teaching at Stanford University, to the best of my knowledge no ethics course offered by the Department of Philosophy has paid any attention to ethical issues in engineering. I suspect that the same is true of philosophy-department ethics courses at virtually all U.S. universities and colleges.23 Consequently, requiring engineering students to take a traditional philosophy-department ethics course with the hope

22 The most common exception is that some such courses include exploration of phenomena that arise in medical professional contexts, for example, abortion, assistive reproductive technology, and organ transplantation.

23 Engineering ethics courses are most often taught by instructors in academic units with names like General Engineering; Technology in Society; Engineering and Society; and Science, Technology, and Society, almost always at institutes of technology or universities with large engineering schools. Occasionally, an engineering ethics course is taught in an engineering department, such as computer science and civil engineering.
they will learn something useful about ethical issues in engineering would leave it completely up to the student to work out how the ideas and theories explored in such courses apply to engineering situations. It would therefore not be surprising if most engineering students perceived such courses as irrelevant to their future careers.

Integrating Ethics Study into Technical Engineering Classes

A second option is to attempt to cover engineering-related ethical issues in technical engineering classes. This could be done by a nonengineer guest instructor with expertise in engineering ethics, or by the primary engineer-instructor of the course.

If a nonengineer guest instructor with expertise in engineering ethics provides the engineering-related ethics education, it is likely to be limited to one or two lectures. Unfortunately, class members will almost inevitably perceive the (limited) material covered in such sessions as peripheral to the course. Moreover, the material covered will probably not be well integrated (by the main instructor) into discussion of the technical material encountered elsewhere in the course.

If the course’s main engineer-instructor provides the coverage of ethical issues in engineering, then the consideration of ethical issues is likely to be intuitive and not grounded in ethics fundamentals. Having an engineer-instructor cover ethical issues in engineering is an excellent idea in principle; however, in practice it faces two problems: one pedagogical, the other temporal.

First, effectively integrating ethics into a technical engineering class is likely to be more pedagogically demanding for the engineer-instructor than getting back up to speed on a body of technical subject matter with which she or he was once familiar but has forgotten over time. Doing that integration well requires a grasp of key ethical concepts and principles, familiarity with a range of ethical issues in engineering, detailed knowledge of various cases, and the ability to apply key ethical concepts and principles to concrete cases in an illuminating way. It is difficult for an engineer (or anyone else) without formal ethics education and teaching experience to acquire such knowledge and ability in short order.

Second, required technical engineering classes are already tightly packed with technical subject matter. Engineer-instructors of such courses often complain that, in their classes as they now stand, they do not have enough time to cover even all the important technical subject matter that
students need to know. But the more time that is devoted in such a class to studying engineering-related ethics issues, in hopes of making coverage of that topic nonsuperficial, the less time will remain for important technical engineering material. Hence, study of the latter would have to be diluted or truncated. That is extremely unlikely to happen.

Thus, what may sound ideal in principle—having instructors who are engineers provide education about ethical issues in engineering in technical engineering classes—faces serious practical barriers in the real curricular world of undergraduate engineering education.24

PREFERRED APPROACH

I favor a third kind of pedagogical approach to teaching engineering students about engineering-related ethical issues. In this approach, engineering students explore ethical issues in engineering in a separate course dedicated to such study. They read and discuss at length real-life cases in which engineering-related ethical issues arose, and make presentations on original cases of ethical issues in engineering they have researched and developed. The instructor has expertise and experience in teaching engineering ethics, has an abiding interest in engineering education, and is familiar with the realities of engineering practice. He or she is a full-time engineering school faculty member who believes analysis of ethical issues in engineering and evaluation of engineers’ conduct from an ethics viewpoint are important tasks. Further, she or he believes such analysis and evaluation must be carried out with due attention to the specific contexts in which those issues arise and the related actions unfold.

* * *

24 To “learn how to incorporate ethics into engineering science classes,” one mechanical engineering professor attended an Ethics Across the Curriculum Workshop given by Illinois Institute of Technology’s Center for the Study of Ethics in the Professions. Shortly thereafter, he added an ethics component to his Automatic Control Systems course. It included exploration of two “Ethics Cases” inspired by actual events. Students were asked to generate a list of possible courses of action open to the engineer(s) who faced an “ethical dilemma” about what to do. The instructor “asked students to vote on their preferred choice” of action in each case. Encouragingly, a survey revealed that most students believed that the course had “increased their awareness of ethics issues.” However, given the limited time available in the course for discussion of ethical issues, the “mini-ethics lessons” do not appear to have tried to impart to students any ethics fundamentals that they could draw upon in making thoughtful ethical judgments about engineering conduct in the future. See Meckl (2003).
Chapters 2 and 3 present background and foundational materials intended to help engineering students and engineering professionals develop the ability to make thoughtful judgments about ethical issues in engineering and related engineering conduct. Then, making use of those materials, Chapter 4 explores a wide range of cases from different fields of engineering and analyzes various ethical issues raised therein. Almost all the cases are real-life ones, and some include engineers speaking in their own voice as they wrestle with the ethical issues involved.

Subsequent chapters discuss noteworthy ideas and lessons distilled from the case studies (Chapter 5), identify resources and options that might be useful to those who care about ethically responsible engineering practice (Chapter 6), and discuss the author’s general approach to exploring ethical issues in engineering in somewhat greater detail (Chapter 7).

By reading and reflecting on the wide range of cases presented, and by grasping the intellectual resources used in exploring them, engineering students and practicing engineers should become more aware of and better able to come to grips with the ethical dimension of engineering practice. More specifically, such exposure should also help them develop sensitive antennae with which to detect ethical issues present in concrete engineering situations, and improve their ability to unpack and think clearly, critically, and contextually about such issues. With careful study, engineering students and practicing engineers will acquire concepts and principles that can be added to their personal ethics tool kits and used to come to grips in a thoughtful way with ethical challenges in their professional careers.
ABET, 7, 302
American Association of University Professors (AAUP), 293
American Institute of Electrical Engineering (AIEE), 17
American Society of Civil Engineering (ASCE), 17–18, 194–195
American Society of Mechanical Engineering (ASME), 17–19
Apple Newton MessagePad case, 67–73
—ethical responsibilities of engineers in, 69–72
—FERE1, 71
—FERE3, 71–72
—FERE4, 70
—personal digital assistant (PDA), 68
—product development schedule, 68
—psychologists, 69
—Sculley, John, 67–69
—Silicon Valley work cultures, 71
—work practices, 70–71
Art Dealers Association of America (ADAA), 17
Association for Computing Machinery (ACM), 18–19
Augustine, Norman, 23
background materials, preliminary, 12–21
—ethical, 16–21
—sociological, 12–16
Bay Area Rapid Transit (BART) system, 289–290
Bell Laboratories, 58–59, 61, 72
Bhopal disaster case, 92–111
—contributory causal factors, 94
—cultural resources for safety, 110
—cultural systems and, 105, 108
—cultural systems lens, 110
—deaths and injuries, 93
—ethical issues in, 93
—ethical responsibilities of engineers in, 99, 105, 109
—ethically responsible process of international technology transfer (ERPITT), 105, 108
—international technology transfer, 105–106, 108–110
as cultural transfer, 106
as moving hardware, 106, 108, 110
—methyl isocyanate (MIC), 92–106, 109–111
—Munoz, Edward A., 102–103
—operator manual, 102,
—Pareek, Kamal, 95–96, 98–99, 101
—precipitating cause of, 93
—preventive maintenance, idea of, 100, 104, 106
practice of, 99
—sabotage, 1, 94
—safety systems, 94, 100–101
—stage-setting factors, 94, 95–102
—Union Carbide Corporation (UCC), 92–95, 98–99, 101–103, 105, 109
—Union Carbide of India Limited (UCIL), 92–93, 95–96, 98–99, 101–103, 105, 109, 111
—zoning, social institution of, 96, 104, 106
bioengineering, 24, 59, 244–249, 253, 255, 261–263
bioengineering R&D
—participating in, ethical issues related to, 261–263, 284–286
—publishing results of, ethical issues related to, 261–263, 284–86
biological engineering, 40, 244
Blankenzen, Max, 289
—BART automatic train-control system, 289
—IEEE CSIT Award, 290
—Boeing 787 Dreamliner, 122
Boisjoly, Roger, 116–121
—AAAS Award, 117–118
—acceptable risk, criterion for, 120
—caucus, offline, 114
Boisjoly, Roger (continued)
—Challenger and, 116–119
—Unger, Stephen and, 118
—whistleblowing
in-house, 116–117
post facto public, 117
Bratton, Joseph K., Col., 212
Bruder, Robert, 289
—BART automatic train-control system, 289
—IEEE CSIT Award, 290
Bucciarelli, Louis, 302–307
—concerns
failure to recognize engineering work as
social process, 304
myth-making about whistleblowers, 304
neglect of social context of engineering,
304
seeking root causes of engineering suc-
cesses and failures, 305
—critique of traditional ethics education
for engineers, 302–305
—engineering work as a social process, 305
—examples
Airbus software, 303
Challenger, 303–305
—exposing students to social complexities
of engineering practice, 303
Cadillac deVille/Seville engine-control case,
43–50
—carbon monoxide and, 43–44
—catalytic converters, 43, 43–46
—cognitive myopia, 48
—demarcation of system boundary for
design work, 47–49
—engine-control chip (ECC), 43–49
—ethical responsibilities and, 44, 47, 49
—General Motors, 43
—public harm of aggregation, 48–49
cause
—concept of, 41
—contributory causal factors, 41
immediate/precipitating/proximate/
triggering, 41
stage-setting, 41
Challenger disaster case, 111–124
—acceptable risk, 119–122
—Boisjoly, Roger, 116–121
—cause of
contributory causal factors: booster joint
design flaw, 116–117; normalization
of risk, 120; organizational com-
placency, 117; political-economic
interests, 116; routinization of the
experimental, 115, 123; weather, 113
immediate technical cause, 112
—economization of technical decision-
making, 113–115
—ethical responsibilities in
FERE1 and, 116, 121, 124
FERE2 and, 117, 121, 124
FERE3 and, 119, 124
—Hardy, George, 114
—Lund, Robert, 113–114, 116
—Mason, Jerald, 114, 304
—Morton-Thiokol Inc., 113–119, 122–
124, 279, 303–306
solid rocket boosters, 113, 306; sole
supplier to NASA of, 114
—Mulloy, Lawrence, 114, 120–121
—NASA, 113–120, 122–123
—negligence, 274
—normalization of risk, 119–120
—offline caucus, 114, 116, 118, 124, 303,
305–306
—organizational culture and, 123
—O-rings, 112–113, 116, 119–121, 124,
304
—politicization of technical decision-
making, 115
—routinization of the experimental,
122–123
—solid rocket boosters, 113, 306
—teleconference and launch authorization
decision, 113–114, 303–304
—whistleblowing, 116–119
Citicorp Center (CC) tower case, 80–92
—building code, N.Y.C., 82
—butt-welded vs. bolted joints, 83, 86,
199
—engineering design
normal, 89
radical, 89
—ethical issues in, 84
—FERE1 and, 89–91
—FERE2 and, 83–84, 92
—FERE3 and, 85–86, 92
—flawed structural design, 82
—Hartley, Diane, 82
—informing the public and FERE3, 85–86
—Kuhn, Thomas, 87
disciplinary paradigm, 87
—LeMessurier, William, 81–89, 91–92
cognitive, 87–89
 —organizational-cultural, 86–87
 —paradigm-departing engineering design
 ethical responsibilities and, 89
 —quartering winds, 82
 —retrofitting building, 83
 —risk, 83
 —sixteen-year storm, 83
 —structural changes, approval of, 83
 —whistleblowing
 FERE2 and, 83
Clean Air Act, 43, 205, 206,
Clean Water Act, 212, 295
coauthors
 —ethical responsibilities of, 62–63
coauthorship practices, 61–64, 67
codes of engineering ethics, 16–21
 —changes in, 17–18
 —letter and spirit of, 20
 —tax codes and, 20
 —vagueness in precepts, 19–20
cognitive myopia, 48, 109
collaborative research practices at Bell Laboratories case, 58–72
 —acknowledgment vs. coauthorship, 64
 —coauthorship practices and ethical responsibilities regarding
 collaborators, 64
 lab directors, 65
 providers of enabling resources, 62
 —Committee Report, 58–62, 64–65
 —engineering research in contemporary society, 66
 —ethically questionable research practices, 61
 —fabrication, falsification, and plagiarism (FFP), 59–60, 65–66
 —International Committee of Medical Journal Editors (ICMJE)
 recommended authorship criteria, 63
 —research misconduct, 58–59, 64–65, 67
 definition of, 59–60
 kinds of, 60
 Schön, Jan Hendrik, 58–67
 Sohn, Lydia, 59
composites-material bicycle frame case, 124–137
 —Brown, Bill, 124–125
 —contract with Velo, 125
 —meeting with Smith and Velo's technical staff, 125
 —optimization, 126, 131–134
option disclosure, 134–135
problem redefinition, 135–136
“simple business ethic,” 127
 —Clark, Charles, 126
 —ethical responsibilities of secondary engineering consultants, 136
 —FERE4 and, 134
 —Jones, Jim, 125
 —design ego, 132
 —order to Brown, 132
 —models of ethically responsible engineering professional
 following marching orders, 136
 fulfilling FEREs in engineering practice, 136–137
 —Smith, Steve, 124–127, 130–131, 137
 —Velo, 124–132, 134–137
conflict of interest, 280–282
 —apparent vs. real, 281
 —financial, 281
 —intellectual, 281
SDI case and, 54–55
 —TRW case and, 184–185
 —Westway case and, 209–211
Constant, Edward, 133
construction, fast track, 197
culture
 —as cultural system, 104
cultural resources for safety, 110, 284, 287
 —mismatch of in international technology transfer, 105–106, 108
culture, 103
 —as cultural system, 104
dehcontextualization, senses of, 277–278
dichotomies, 278
DeGeorge, Richard, 156
decisions for public whistleblowing to be an engineer’s presumptive ethical responsibility, 157–158
decisions for public whistleblowing to be ethically permissible for an engineer, 157
derivative ethical responsibilities of engineers, 22–23, 267
design, engineering
 —normal/conventional, 87, 89
 —radical/revolutionary/paradigm-departing, 133
 —role of marketing considerations in, 155
design for
 —ethical compatibility (DFEC), 78
 —local cultural compatibility (DFLCC), 217–221
 —manufacturability (DFM), 78
 —sustainability, 284
Dore, Ronald, 107
due diligence, 47, 56, 251, 254
Dueber, John, 247, 249, 253–254
Edgerton, Virginia, 290
Einstein, Albert, 310
employee database management system (DBMS) case, 73–80
design for ethical compatibility (DFEC), 78
Diane, software engineer, 73–77, 80
ethical issues in, 74
ethical responsibilities of DBMS designer, 74
 —FERE1 and, 74
 —FERE2 and, 74, 76
 —FERE3 and, 74
 —FERE4 and, 75
 —level of built-in security, 73
 “weak security,” 74
privacy, 74
risk of harm to employees, 74
—sensitive data, 73, 74
—unauthorized access to sensitive data, 74
employer interests, 75
—illegitimate, 75
—legitimate, ethical responsibilities of engineers and, 75
Endangered Species Act, 295
Engineer Doe, 231, 234–239
engineering
 —biological, 244
 —education, undergraduate, 5
 —misconduct in
general situational factors conducive to, 286–287
harm and, 23–26
—profession of, sociological changes in, 12–16
—research, ethical issues related to, 284–286
engineering conduct, making ethical judgments about
 —code-of-ethics approach, 16
 —ethical-responsibilities approach, 22–23
 —foundational-contextual ethical-responsibilities approach, 307–309
 FERE1 and, 26–38
likely harm-and-well-being-related consequences and, 309
macrosocietal features and, 309
social-organizational features of engineering work and, 309
sociotechnical features of engineering work and, 308
engineering decision-making
 —economization of, 113–115, 278
 — politicization of, 113–115, 278
engineering design
 —ego/hubris in, 132
 —for ethical compatibility, (DFEC), 78
 —for local cultural compatibility (DFLCC), 217–221
 —for manufacturability (DFM), 78
 —normal, 89, 273
 —radical/revolutionary, 89, 267
 —role of marketing considerations in, 155
 —for sustainability, 284
engineering product or system, experimental: routinization of, 122–123
engineering societies, professional
 —codes of ethics of, 16–21
 —support for ethically responsible engineering practice, 288–290
engineering successes and failures, seeking “root causes” of, 305
engineering work
 —contexts of, 310–311
 —multiple dimensions of, 310–311
 —multiple levels of, 310–311
 —changing locus of, 12–13
engineers
 —autonomy of, 13
 —changing career paths of, 13–14
 —conflicts of interest, 13
 —consulting, derivative ethical responsibilities of, 55, 136
 —ethical responsibilities of derivative, 22
 —fundamental, 26–39
 —large-scale organizations, 12–14
 —minority, 15
—socialization of young, 17
—start-up firms, 15
—women, 15
Engineers for a Sustainable World, 227
Engineers Without Borders, 227
environmental impact statement (EIS), 295
Environmental Protection Agency (EPA), 202, 295
ethical issues
—concrete engineering situations, 11
—engineering-related, 26
—harm and, 23–26
—senses of, 23–26
ethical issues in engineering
—case studies of
 Apple Newton MessagePad, 67–73
 Cadillac engine-control chip, 43–50
 Challenger space shuttle, 111–124
 Citicorp Center building, 80–92
 collaborative research practices at Bell Labs, 58–67
 composite-material bicycle frame, 124–137
 employee database management system, 73–80
 Ford Pinto, 149–161
 Google Street View, 228–244
 Kansas City Hyatt Regency Hotel walkways, 187–201
 Manhattan Westway project, 201–216
 nanotechnology, 137–149
 neural enhancement, 255–264
 opioid biosynthesis, 244–255
 product design for rural Kenyan farmers, 216–228
 SDI battle management software, 50–58
 Topf & Sons cremation ovens, 161–175
 TRW and the U.S. ballistic missile defense system, 175–187
 Union Carbide Bhopal plant, 92–111
 —definition of, 24
 —general kinds of conflict of interest, 280–282
 —consultant prioritization of private and public interests, 54–57
 —design compatibility with ethical values, 282–284
 —economization of technical judgment, 113–115, 278
 —integrity in communicating research findings, 60, 284–286
 —politicization of technical judgment, 113–115, 278
 —precaution in paradigm-departing engineering design work, 273–274
 —public whistleblowing, 269–270
 —relationship of engineer to those at risk of harm from her/his work, 35–36
 —situating engineering work in its full context, 310–311
—study of, 23–24
ethical responsibilities of engineers
—derivative, 22
—fundamental, 22, 26–38
 FERE1, 28–34
 FERE2, 34–35
 FERE3, 35–36
 FERE4, 36–38
ethical responsibilities of nanotechnology researchers
—macro social level, 143–148
—meso social level, 142–143
—micro social level, 140–142
ethically questionable research practices, 61
—coauthorship practices, 61–65
ethically responsible engineers, would-be
—resources and options for, 288–301
 case studies, 288
 employment-related options, 299–300
 legislative, 294–298
 organizational, 288–294
 personal, 301
 role models, 301
 wrongful termination suits, 298–299
ethics
—fundamentals, 23–26
—ethical issue, definition of, 24
—ethics as a cultural institution, 24
—FEREs, 26–39
—harm, 25–26
—tool kit, 11
—ethics antennae, 11, 20, 26
—ethics education, engineering-related
 —conventional ethics courses, 8–9
 —preferred approach, 10
—technical engineering courses, 9–10
 “ethics gap” in contemporary engineering
 —evidence for, 3–5
 —meaning of, 3
—fabrication, falsification, and plagiarism (FFP), 59, 65–67
Facchini, Peter, 247
False Claims Act (FCA), 294
Fisher, Martin, 216–219, 221–223
Ford Pinto case, 149–161
—compression of new-car development cycle, 156
ethical responsibility of engineers related to, 160
—conditions for public whistleblowing to be a presumptive ethical responsibility of an engineer, 157–159
—conditions for public whistleblowing to be ethically permissible for an engineer, 157
—Copp, Harley, 154, 157
—FERE1 and, 154
—FERE2 and, 154
—FERE3 and, 154
—fuel tank, 150–156
marketing considerations in choice of location of, 152
UCLA research into location of, 151
—Iacocca, Lee, 149, 156
—Mercury Capri, 151–154
—number of fatalities linked to fuel tank explosion, estimates of, 151
—Olsen, Francis G., 155
—safety testing, 152–153
—“upstream acquiescence, downstream misfortune” pattern, 156, 159–160

Foreign Corrupt Practices Act (FCPA), 294–295, 298
fundamental ethical responsibilities of engineers (FEREs), 26–38
—FERE1, 28–34
—FERE2, 34–35
—FERE3, 35–36
—FERE4, 36–38

Garcetti v. Ceballos, 296–297
General Motors, 43, 214, 292–293
Gillum, Jack, 191–196, 200
Griesa, Thomas, Judge, 203–204, 209, 213
Griffis, Fletcher, Col., 203–204, 211–214, 216
Google
—blog, 231, 236
—engineering workplace culture, 238, 243
—Maps, 228
—pixilation technology, 239
—Street View, 228–229
Google Street View case, 228–244
—Canada, 229
—Communications Act (1934), 230, 238
—Conroy, Stephen, 233
—conditional ethical acceptability, 240
court cases
Swiss Federal Supreme Court, 239–240
U.S. Attorneys General lawsuit, 240–241
data collected, kinds of
digital photographic images, 231–232
Wi-fi local area network-related data, 233
—Dutch Data Protection Agency, 235
—Engineer Doe, 234
design document, drafts of, 234
—Federal Communications Commission, Enforcement Bureau of, 230
report of, 231
—Germany, 229–230
—Google engineering workplace culture, possible role of, 238, 241
—location-based services, 234
—negligence, 235–238
—payload data, 233
—pixilation technology, 229
—precautionary steps, 232
—privacy, 229–231, 233–236, 239–241
—Stroz Friedberg, 230
—as trumping factor, 242
—wardriving, 233–234
Government Accountability Project, 291
Hardy, George, 114
harm
—aggregative, 48–49, 225–226
—alerting and informing about the risk of, 28, 35, 46–47, 69, 71–72, 74, 76, 92, 100, 111, 119, 156, 161, 222, 255, 266, 272
—causing, 41–42
—comprehensive, 25
—creating an unreasonable risk of, 28–29
—forms of, 25
—meaning of, 25
—narrow, 40
—prevent, try to, 34–35
—private or individual, 25
—public or societal, 25, 182
Hartley, Diane, 82–83
HINDs, 145–147
hired gun, 75, 225, 227, 273
Hjortsvang, Holger, 289
—BART’s automatic train-control system, 289
—IEEE CSIT Award, 290
INDEX • 335

home-brewing, 247, 252
hype, 142, 149

Iacocca, Lee, 149, 156, IEEE
—BART case and, 289
—Code of Ethics, 19
—Committee on the Social Implications of Technology (CSIT), 290
—Ethics and Member Conduct Committee, 293
—Ethics Committee, 291
—ethics hot line, 293
—ethics support fund, 293
—formation of, 19

Indian Institute of Technology (IIT), Kanpur, 223

Innovations for rural Kenyan farmers case, 216–228
—adaptation of design to local cultural milieu, 219, 221
—appropriate technology movement, 217
—contrast with UCC Bhopal case, 221–222
—design for ethical compatibility (DFEC), 221
—design for local cultural compatibility (DFLCC), 222
building-block press, 218
micro-irrigation pump, 219
oil-seed press, 218
—design for manufacturability (DFM), 221
—ERPITT and, 221
—ethical responsibility of engineers in more developed countries, 222–226
—FERE1, 216, 219, 221–222, 226
FERE1 and, 219
—income as development, 217
—Kickstart International, 217–222, 283–84
Technology Development Centre, 222
—pro bono engineering work, 227
—role of engineering in alleviating global poverty, 216
—social capital, 225
—social goods, consensual, 225
ideal of universal access to quality basic engineering services, 226

Intelligent Vehicle Highway System (IVHS), 76
—privacy and, 77

International Committee of Medical Journal Editors (ICMJE), 63
—authorship criteria, 63

Johnson, Samuel, 310

Kansas City Hyatt Regency Hotel walkways case, 187–201
—approval of change request, 192–197
—building industry and related professional associations and, 197–198
—change in design of rod-and-box-beam connections, 191–197
—Citicorp Center and, 199–200
—collapse of, 188–189
—deaths and injuries, 188
—derivative ethical responsibilities of engineers in, 191, 196, 198–200
—design for manufacturability (DFM), 221, 283
—drawings original, 190–191 revised, 191–197
—Duncan, Daniel, 192–194, 196, 200
—Engineer of Record/owner ethical responsibilities of, 191, 194 seal of approval of, 192, 193
—ethics of precaution, the, 194
—FERE1 and, 194
—FERE2 and, 196
—G.C.E. International, 191–193, 196
organization structure of, 194
workload and available personnel, 196, 199
—Gillum, Jack, 191–196, 200
—explanation of what went wrong in Hyatt Regency episode, 195–196
—hanger rods through box beams, 188
—Havens Steel, 191–193, 195, 200
change from 1-rod to 2-rod connections, 191–193
technical work outsourced by, 195
—safety, 191, 193, 199
—skywalks, 188–189,

Ketcham, Brian, 205–209, 216
Kickstart International, 217–222, 283–84
Kuhn, Thomas, 87
—dominant paradigm, 87
INDEX

Lederman, Leon, 143, 165
LeMessurier, William, 81–89, 91–92
—self-whistleblowing, 83
Lew, Ronald, Judge, 186
Mason, Jerald, “Take off your engineer’s hat, . . .” quote of, 114, 304
McDonald, Allan, 116
Morton-Thiokol Inc. (MTI), 113–119, 122–124, 279, 303–306
Mulloy, Lawrence, 114, 120–121, 124
Munoz, Edward, 102–103
Nader, Ralph, 293
nanotechnology case, 137–149
—nanomaterials, 138–139, 142
cardinal fact about, 140
—nanotechnology as controversial area of engineering research, 138
cooperation with mass media distortion about, 142
definition of, 138
as emerging area of technology, 137
ethical issues in, 139–148; and the macrosocial domain, 143–148; and the mesosocial domain, 142–143; and the microsocial domain, 140–142
ethical responsibilities related to, derivative, 142
HINDs, 145; and ethical acceptability of cognitive enhancement, 147; and ethical responsibilities related to, 145–148
hype and, 142
Lederman and, 143–144
misleading expression, 138
“NBIC convergence,” 145
novel properties, causes of: quantum effects, 138; surface effects, 138
orphan nanodevices, 147
research lab safety culture, 142
researcher shortcutting, 141–142
safety and, 140–141
National Academy of Engineering, Center for Engineering, Ethics, and Society, 293
National Aeronautics and Space Administration (NASA), 113–120, 122–124, 157, 279, 292, 304–306
National Environmental Policy Act (NEPA) of 1970, 295
National Institute of Engineering Ethics (NIEE), 293
National Science Foundation (NSF), 6–7, National Society of Professional Engineers (NSPE), 16–19, 28, 127–128, 289, negligence, 278–279
—Bhopal and, 279
—Challenger and, 279
—Citicorp Center and, 278–279
—Kansas City Hyatt Regency Hotel skyways and, 199–200
neural enhancement case, 255–264
—Battelle Memorial Institute achievement, 256–257
—brain chip, 256
—brain map, 257
—categories of T/S-based brain interventions, 259
—cognitive enhancement, 258–261
social results of, 259–260
economies of scale, 263
—FERE1, 257
—FERE2, 258
—inequality, socioeconomic, aggravation of, 260, 262
—innovation, standard evolving access pattern, 263
—“limb reanimation,” 256
—market economy, information-centric, 262–263
—microchip, implantation of, 262
—motor cortex region, 256
—neural engineering, 255
—neural engineers, likely ethical challenge to, 256
—neuroengineering, 255
—neurons, 256
—Pew Foundation survey, cognitive enhancement scenario, 258
—Rawls’s Difference Principle, 255
—societal harm, 262
—transcranial direct current stimulation (tDCS), 255–256
—trumping factor, 261
Office of Research Integrity (ORI), 60, 291
ombuds offices, 292
“omnipresent background client,” society as, 37, 56, 137, 265, 282
Online Ethics Center for Engineering and Research, 293
opioid biosynthesis case, 244–255
—benefits, projected, 246
—Dueber, John, 247
—enzymes, 246
—Facchini, Peter, 247
—FERE1, 249
—FERE2, 251
—FERE3, 254
—governance scheme, 251, 263
—home-brewing, 247, 252
—Martin, Vincent, 247
—methods and techniques, 246
—mousepox, genetically modified, 250
—9/11, 249
—“open deliberative process,” 253
—opium poppy plant, 245
—risks of harm, possible, 246–247
—Science publication, 247, 249, 251–253, 264
—Sinsheimer, Robert, and “inopportune knowledge,” 252
—Smolke, Christina, 245–249, 251–253, 264
—yeast, genetic engineering of, 246
—yields, 248

Papua New Guinea, 108
paradigm, design, 87–88
—departure from and derivative ethical responsibilities, 89
—overshooting, 88–89
—undershooting, 88–89
Pareek, Kamal, 95–96, 98–99, 101
Parnas, David, 50–57, 179, 185, 269, 271, 277
personal digital assistant (PDA), 68
Polanyi, Michael, 88
product development schedules, 70, 156
—compressed, 156
—ethical responsibilities of engineers and, 70, 156
professional engineering societies, 17–18
—codes of engineering ethics, 17–18
—support for ethically responsible engineering practice, 289–290
public harms of aggregation, 48–49
public welfare, 18, 28, 30, 34, 37, 51, 55, 65, 77, 224, 266

Rana, Kiran, 99
Rawls’s Difference Principle, 25, 32–33, 76, 207, 261, 309
—definition of, 59, 60
—fabrication, falsification, and plagiarism (FFP), 59, 60
Reynolds, Terry, 13
risk
—acceptable, 120, 124
—Bhopal and, 96–97, 99–100, 103, 108–111
—Challenger and, 113, 116–123
—Citicorp Center and, 83–86, 89–91
—idealization of how technology functions in society and, 270–271
—normalization of, 119–123
Royal Academy of Engineering (RAE), 6
rules
—R1, 31
—trumping factors and, 34
—“Thanks, but no thanks” rule, 33
sabotage, 1–2, 94
safety
—cultural resources for, 110, 276, 284
—cultural systems lens and, 110
—safety cultures, nanotechnology research labs and, 141–142
Schön, Jan Hendrik, 58–67
Schwartz, Nira, 176–186
SDI battlefield management software case, 50–58
—arms race and, 52
—conflicts of interest, 54–55
—engineering consultants, 55–56
—individual professional responsibility,
—Parnas, David
—autonomy of, 56
FERE2, 51
FERE4, 51
FERE4*, 57
—passive private resignation, 52
—whistleblowing and, 51, 53
—SDI, 50
—SDIO Panel, 50

For general queries, contact webmaster@press.princeton.edu
SDI battlefield management software case (continued)
—unknowable trustworthiness of SDI system, 50–51
Senegal
—transfer of rural water supply technology to, 106–107
role of social anthropologist, 107
short-handled hoe (el cortito), 78
—design for ethical compatibility (DFEC) and, 78
Sinsheimer, Robert, and “inopportune knowledge,” 252
situational factors conducive to engineering misconduct
—complacency or negligence in international technology transfer, 106
—design hubris by engineers, 287
—failure to monitor and review engineering work one outsourced, 287
—financial pressure put on engineers to compromise their work, 286
—lack of a strong ethical value system in an engineer, 287
—misprioritization of considerations engineers are expected to heed, 287
—negligent organizational culture re problematic engineering research practices, 287
—organizational complacency in addressing matters of engineering risk, 287
—organizational culture that allows or doesn’t penalize engineering misconduct, 287
—outsourcing critical engineering work to less qualified parties, 287
—tension between the cultures of technical professional groups involved in the same project, 287
—time pressure put on engineers that leads them to compromise their work, 286
skunkworks, 68
Smith, Walter, Col., 203, 209–211
Smolke, Christina, 245–249, 251–253, 264
Sohn, Lydia, 59
sociology of engineering, 12–17, 267–268
solid rocket boosters (SRBs), 113, 306, sustainable development, 18
system context
—cultural-environmental, 103
—socio-technical-environmental, 48, 173, technical, 47
technology transfer, international, 93
—cultural mismatch and, 106
—as cultural transfer, 106
—ethical responsibilities and, 105
—ethically responsible process of (ERPITT), requirements for, 105
—as moving hardware, 106
teleconference, 113, 118–119, 304, 306
—Challenger launch-authorization decision, 113, 304
Tesch, Bruno, 172
Thompson, Arnold, 116, 305
Tiwari, Sandip, 223
Topf & Sons cremation ovens case, 161–175
—cremation furnaces/ovens alleged neutrality of, 163
—commissions of works by Nazi SS, 164
—context, importance of macrosocietal, 173
—contributory causal factor, 165–166
—design of, 167–169
—elimination of bottleneck in process of human destruction, 166
—innovations in, 168
—installation of, 171
—Krema, 162
—number built for Nazi SS, 163
—preoccupation with technical challenges, 169
—relationship to Zyklon B, 166
—decontextualization, 173, 277
—ethical issue in, 164
—FERE1 and, 173
—FERE2 and, 173
—FERE4 and, 174
—Krema, 162
—Lederman, Leon, 165
—relationship to Nazi SS, 162–166, 172
—Topf engineers
—Braun, Gustav, 172
—complicity in mass murder, 166, 174
—excuses for working on projects commissioned by Nazi SS, 172
—Prüfer, Kurt, 167–168
—Sander, Fritz, 168–170
—Schultze, Kurt, Topf, 170–172
—Topf, Ernst-Wolfgang, 164–166
—ventilation systems, 171
—World War II, 161–162
—Zyklon B, 162, 166, 172
TRW and U.S. National Ballistic Missile Defense System case, 175–187
communications with Pentagon, 177–178
—conflicts of interest, possible, 184–185
—countermeasures, 179
—Danchick, Ray, 180, 184
—discrimination algorithms
 Baseline, 177
 Kalman Filter, 176–177
—discrimination of warheads from decoys, 179
—discriminator testing, 177, 179
—exoatmospheric kill vehicle, 176
—ethical issues in, 178
—Hughes, Robert D., 177, 180
—national ballistic missile defense system,
 nature of, 175–176
—Nichols Research, 184–185
—Schwartz, Nira, 176–187
 allegation of TRW misrepresentation of
discriminator performance to govern-
ment, 178
 contrast with Parnas, 185
 employment termination, 178
 FERE2 and, 178
 FERE4 and, 178–179
 lawsuit against TRW and Boeing North
America, 178; dismissal of, 186; and
state secrets privilege, 186
 public whistleblowing as an ethical re-
sponsibility, 178; motivation for, 179;
 uncertainty re fulfillment of conditions
for, 182–184
—sensors and exoatmospheric kill vehicle,
 177
—TRW defense against Schwartz charge,
 180–181
Unger, Stephen, 72, 118, 289–291
“upstream acquiescence, downstream
misfortune” pattern, 268–269
—Apple Newton MessagePad and, 71
—Ford Pinto and, 159–160
—Westway and, 212
Vincenti, Walter, 88, 133,
Walker, Arthur, 2
Weinstein, Joel S., 82–83
Westway project case, 201–216
—Army Corps of Engineers (ACE), 202–
 204, 206, 209, 211, 213–214
—Bratton, Joseph K., Gen., 212
—conflict of interest, possible, 210–211
—cultural conflict and, 214–215
—environmental impact statements (EIS),
 202, 204–206, 209, 212–214
—Environmental Protection Agency (EPA),
 202–203, 206, 209
—Griesa, Thomas, Judge, 203–204, 209, 213
 permanent injunction, 204
 temporary injunction, 203
—Griffis, Fletcher, Col., 211–214, 216
 FERE1 and, 214
two-winter fishery study: position on,
 212; truncation of, 212
“upstream acquiescence, downstream
misfortune” pattern, 268–269
views about biologists, 213–214
—habitat survey, 212
—Ketcham, Brian, 205–209
 Citizens for Clean Air and, 206
 EPA grant and, 206
 William Hennessy and, 206–209
—Lawler, Matusky, and Skelly Engineers
 (LMS) study, 202–203
—National Environmental Policy Act
 (NEPA) and, 203–204, 209
—nature of, 201–205
—political and economic pressures on
 engineering conduct, 213–214
—public interest, 205–206, 208–209, 211
—Smith, Walter, Col., 209–211
 fishery studies decision and FERE1, 211
potential conflict of interest, 211
—State of New York Commission of Inves-
tigation, 206–209
—striped bass fishery study
 compressed, 211–212
 habitat study, 212
—underwater barrier gates flood-control
 system in Venice, 215
whistleblowing
—private, Boisjoly and, 116–117
—public
 adjudication of claims by federal em-
ployees, 296–297
 Challenger disaster, and 117–118
 Citicorp Center and, 83–84
 conditions for public whistleblowing: to
be an engineer’s presumptive ethical
responsibility, 157–158; to be ethically
permissible for an engineer, 157
kinds of harm-related circumstances:
imminent-anticipatory, 269; post
facto, 270; remote-anticipatory, 269
whistleblowing, public *(continued)*	Whistleblower Protection Act (WPA) of 1989, 296
myth-making about whistleblowers, 304	Whistleblower Protection Enhancement Act (WPEA) of 2012, 297
SDI battlefield software and, 53	