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Historical Introduction

¿e purpose of this introductory chapter is to prepare the reader’s mind
for reverse mathematics. As its name suggests, reverse mathematics seeks
not theorems but the right axioms to prove theorems already known.¿e
criterion for an axiom to be “right” was expressed by Friedman () as
follows:

When the theorem is proved from the right axioms, the axioms can
be proved from the theorem.

Reversemathematics began as a technical �eld ofmathematical logic, but
its main ideas have precedents in the ancient �eld of geometry and the
early twentieth-century �eld of set theory.

In geometry, the parallel axiom is the right axiom to prove many the-
orems of Euclidean geometry, such as the Pythagorean theorem. To see
why, we need to separate the parallel axiom from the base theory of Eu-
clid’s other axioms, and show that the parallel axiom is not a theorem of
the base theory. ¿is was not achieved until . It is easier to see that
the base theory can prove the parallel axiom equivalent to many other
theorems, including the Pythagorean theorem. ¿is is the hallmark of a
good base theory: what it cannot prove outright it can prove equivalent
to the “right axioms.”

Set theory o�ers a more modern example: a base theory called ZF, a
theorem that ZF cannot prove (thewell-ordering theorem) and the “right
axiom” for proving it—the axiom of choice.

From these and similar examples we can guess at a base theory for
analysis, and the “right axioms” for proving some of its well-known
theorems.
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. EUCLID AND THE PARALLEL AXIOM

¿e search for the “right axioms” for mathematics began with Euclid,
around  bce, when he proposed axioms for what we now call Eu-
clidean geometry. Euclid’s axioms are now known to be incomplete; nev-
ertheless, they outline a complete system, and they distinguish between
really obvious “basic” axioms and a less obvious one that is crucial for
obtaining the most important theorems. For historical commentary on
the axioms, see Heath ().

¿e basic axioms say, for example, that there is a unique line through
two distinct points and that lines are unbounded in length. Also basic,
though expressed only vaguely by Euclid, are criteria for congruence of
triangles, such as what we call the “side angle side” or SAS criterion: if
two triangles agree in two sides and the included angle then they agree
in all sides and all angles. (Likewise ASA: they agree if they agree in two
angles and the side between them.)

Using the basic axioms it is possible to prove many theorems of a
rather unsurprising kind. An example is the isosceles triangle theorem: if
a triangle ABC has side AB = side AC then the angles at B and C are
equal. However, the basic axioms fail to prove the signature theorem of
Euclidean geometry, the Pythagorean theorem, illustrated by �gure ..

Figure . : ¿e Pythagorean theorem

As everybody knows, the theorem says that the gray square is equal
to the sum of the black squares, but the basic axioms cannot even prove
the existence of squares. To prove the Pythagorean theorem, as Euclid
realized, we need an axiom about in�nity: the parallel axiom.
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¿e Parallel Axiom

I call the parallel axiom an axiom about in�nity because it is about lines
that do not meet, no matter how far they are extended—and one of Eu-
clid’s basic axioms is that lines can be extended inde�nitely. ¿us paral-
lelism cannot be “seen” unless we have the power to see to in�nity, and
Euclid preferred not to assume such a superhuman power. Instead, he
gave a criterion for lines not to be parallel, since a meeting of lines can
be “seen” a �nite distance away.

Parallel axiom. If a line n falling on lines l and m (�gure .) makes
angles α and β with α + β less than two right angles, then l and mmeet
on the side on which α and β occur.

l

m
n

β

α

Figure . : Angles involved in the parallel axiom

It follows that if α+β equals two right angles (that is, a straight angle)
then l and m do not meet. Because if they meet on one side (forming
a triangle) they must meet on the other (forming a congruent triangle,
by ASA), since there are angles α and β on both sides and one side in
common (�gure .).¿is contradicts uniqueness of the line through any
two points.

l

m
n

α β

αβ

Figure . : Parallel lines
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¿usEuclid’s axiom about non-parallel lines implies that parallel lines
exist. From parallel lines we quickly get the theorem that the angle sum
of a triangle is a straight angle (or π, as we will write it from now on), by
the construction shown in �gure .. From this we �nd in turn that an
isosceles triangle with angle π~ between its equal sides has its other an-
gles equal to π~, so putting two such triangles together makes a square.

A B

C
α γ β

α β

Figure . : Angle sum of a triangle

¿e proof of the Pythagorean theorem can now get o� the ground,
and there are many ways to complete it. Probably the one most easily
“seen” is shown in �gure ., in which the gray square and the two black
squares both equal the big square minus four copies of the right-angled
triangle.

Figure . : Seeing the Pythagorean theorem

Equivalents of the Parallel Axiom

Many mathematicians considered the parallel axiom to be a “blemish”
on Euclid’s system—this is precisely what Saccheri () called it—so
they tried to show that it followed from the other axioms.¿eir attempts
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usually took the form of deducing the parallel axiom from a seemingly
more obvious statement, in the hope of reducing the problem to a simpler
one. Some of the statements found to imply the parallel axiom were:

• existence of rectangles (al-Haytham, al-Tusi in medieval times),
• existence of similar triangles of di�erent sizes (Wallis in ),
• angle sum of triangle = π (in Legendre’s Éléments de géométrie, ),
• three noncollinear points lie on a circle (Farkas Bolyai ()).

All of these theorems follow from the parallel axiom, so they are equiv-
alent to it in strength, in the sense that their equivalence to the parallel
axiom can be proved using only the other axioms. Of course, this no-
tion of equivalent strength is trivial if the parallel axiom itself is provable
from the other axioms, but by  the hopes of such a proof were fading.
Farkas Bolyai’s own son, János, was one of the main explorers of a hypo-
thetical non-Euclidean geometry in which the parallel axiom (and hence
the four theorems above) is false, yet Euclid’s other axioms are true.

But before seeing non-Euclidean geometry, it helps to look at geom-
etry on the sphere. Spherical geometry is clearly di�erent from the Eu-
clidean geometry of the plane—not only in the absence of parallels, but
also in the absence of in�nite lines—yet they share a common language
of “points,” “lines,” and “angles.” Seeing two di�erent interpretations of
these words will make it easier to grasp yet another interpretation, or
model—a model of non-Euclidean geometry.

. SPHERICAL ANDNON-EUCLIDEAN GEOMETRY

Just as circles and lines in the plane are part of two-dimensional Eucli-
dean geometry, spheres and planes are part of three-dimensional Eu-
clidean geometry. Indeed they arementioned, thoughnot deeply studied,
in Euclid’sElements, BookXI.¿e ancientGreeksmade a serious study of
spherical geometry, particularly spherical trigonometry, in their study of
astronomy, because the stars appear from the earth to be �xed on a heav-
enly sphere. Later, navigators on the earth also took an interest in spher-
ical geometry. For them, the natural concept of “line” is that of a great
circle—the intersection of the sphere with a plane through its center—
because a great circle gives the shortest distance between any two of its
points. ¿e concept of “angle” between any two such “lines” also makes
sense, as the angle between the corresponding planes (or, what comes to
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the same thing, the angle between the tangents to the great circles).
Indeed, it is o en easier to describe a spherical triangle by its angles

rather than the lengths of its sides. All spherical triangles with the same
angles in fact have the same size, because of a famous theoremofHarriot1
from : the angle sum of a spherical triangle, minus π, is proportional to
its area. ¿ere are several ways to tile the surface of the sphere with con-
gruent triangles. Figure . shows one in which the sphere is divided into
 triangles, each of which has angles π~,π~,π~. Alternate triangles
have been cut out of the sphere, to make it easier to see them all, and the
sphere has been illuminated from the inside. ¿is then is the standard

Figure . : Tiling the sphere with triangles

model of spherical geometry: “points” are ordinary points on the sphere,
“lines” are great circles, and “angles” are the angles between the tangents
to the great circles at their point of intersection. “Distance,” if we wish to
use the concept, is the distance between points on the sphere, measured
along the (shorter) piece of the great circle connecting them.

Now we move to another model, by projecting the sphere onto the
plane. Speci�cally, we use the light inside the sphere (at its north pole)
to cast a shadow on the plane. ¿e result is shown in �gure .. ¿e pic-

1¿omas Harriot was mathematical consultant to Sir Walter Raleigh, and traveled
with him on some of his voyages.
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Figure . : Projecting the sphere onto the plane

ture shows two remarkable features of projection from the north pole,
which is known as stereographic projection:

• circlesmap to circles (or, in exceptional cases, to straight lines, which
we might call “circles of in�nite radius”), and

• angles are preserved.

¿us “points” are still points, “lines” are still circles, and “angle” is still
the angle between the tangents to the circles. “Distance,” alas, is not a
Euclidean distance of any kind, since equal distances on the sphere can
be mapped to unequal Euclidean distances in the plane. Likewise, “area”
is not Euclidean area, but we can easily measure it by the angle sum
minus π.

Strictly speaking, we have not projected the whole sphere onto the
plane, but the sphere minus its north pole (the light source). To correct
for this we add a point at in�nity to the plane—a point approached by
the shadows of points on the sphere as they approach the north pole.¿e
point at in�nity completes each straight line to a closed curve, so that they
too become circles.¿us our second interpretation of spherical geometry
models all “lines” by circles, and “angles” by angles between circles. In the
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next subsection we will see a similar model of non-Euclidean geometry.

Models of Non-Euclidean Geometry

Beltrami () discovered several models of non-Euclidean geometry;
that is, of Euclid’s basic axioms plus a non-Euclidean parallel axiom stat-
ing that for any line l and a point P outside it, there is more than one line
m that does not meet l. ¿e easiest of Beltrami’s models to view in its
entirety is the one shown in �gure ..

Figure . : ¿e conformal disk model

In thismodel, “points” are points in the interior of the disk, “lines” are
circular arcs perpendicular to the boundary circle of the disk (counting
the straight line segments through the disk center as circles of in�nite
radius) and “angle” is the angle between circles. As in spherical geometry,
triangles are congruent if they have the same angles, so in this picture
the disk is �lled with in�nitely many congruent triangles, each with the
angles π~,π~,π~.¿ese are the smallest triangles that can tile the non-
Euclidean plane and, as in spherical geometry, their area is determined
by their angle sum: π minus the angle sum of a non-Euclidean triangle is



HISTORICAL INTRODUCTION ■ 

proportional to its area.
As with the plane model of spherical geometry, the precise de�nition

of “distance” is complicated. But here one gets a better feel for it because
there are so many triangles, each of the same non-Euclidean size. One
sees, for example, that in�nitely many triangles lie along each “line,” so
each “line” is of in�nite “length.” It is even possible to accept that each
“line” gives the least “distance” between any two points in the disk, since
one counts fewer triangles when travelling on a circular arc perpendic-
ular to the boundary than on any other route. ¿us one can understand
how the model satis�es the basic axioms of Euclid. But it clearly does not
satisfy the parallel axiom. If one takes the vertical “line” l through the
center of the disk and the point P, say, somewhat to its right, then there
are di�erent “lines” m and n through P that do not meet l, as is clear
from �gure ..

l m

n

P

Figure . : Failure of the parallel axiom

So, when the details of Beltrami’s construction are checked, one has
a model for the basic axioms of Euclid plus a counterexample to the par-
allel axiom. ¿erefore, the parallel axiom does not follow from the other
axioms of Euclid, and hence the theorems equivalent to the parallel ax-
iom (such as the four mentioned in the previous section) likewise do not
follow from Euclid’s other axioms. However, the equivalences between
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the parallel axiom and these theorems are provable from Euclid’s other
axioms. ¿is situation is typical of reverse mathematics: we have a base
theory which is too weak to prove certain desirable theorems, but strong
enough to prove equivalences between them.

New Foundations of Geometry and Mathematics

¿ediscovery of non-Euclidean geometry shook the foundations ofmath-
ematics, which before the nineteenth century had been implicitly based
on Euclid’s concepts of “line” and “plane.” By creating doubts about the
meaning of “line” and “plane,” non-Euclidean geometry prompted a
search for new foundations in arithmetic, since the fundamental prop-
erties of numbers were not in doubt.

In particular, the “line” was rebuilt as the system R of real numbers,
which has both algebraic and geometric properties.¿enext few sections
describe the emergence of geometry based on, or in�uenced by, the real
number concept. In chapter  we will see how the real numbers also be-
came the foundation of analysis.

. VECTOR GEOMETRY

¿e�rstmajor advance in geometry a er theGreekswasmade by Fermat
and Descartes in the s, and published in the Geometry of Descartes
(). ¿eir innovation was to use algebra in geometry, describing lines
and curves by equations, thereby reducing many problems of geometry
to routine calculations. But before they could “algebraicize” geometry
they had to arithmetize it, a step that already took them far beyond Eu-
clid. In fact, it was the �rst step towards a sweeping arithmetization of
geometry and analysis that occurred in the nineteenth century.

As every mathematics student now knows, the Euclidean plane is
arithmetized by assigning real number coordinates x and y to each point
P in the plane. ¿e numbers x and y are visualized as the horizontal
and vertical distances to P from the origin O, in which case the distance
SOPS of P from O is

»
x + y by the Pythagorean theorem (�gure .).

But P can be de�ned as the ordered pair2 `x, ye, and its distance from O
de�ned as

»
x + y. More generally, the distance from P = `x, ye to

2In this book I use `a,be to denote the ordered pair of a and b, because (a,b)will be
on duty to represent the open interval between a and b.
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P = `x, ye is de�ned by

SPPS =
»

(x − x) + (y − y).

Points `x, ye lie on a line if they satisfy an equation of the form ax+by+c
=  (which is why we call such equations linear), and equations for cir-
cles are quadratic equations expressing constant distance for a point. For
example, the points at distance  fromO satisfy the equation x+ y = .

O

P = `x, ye

x

y» x
+ y



Figure . : Coordinatizing the plane

¿usonehas an easy algebraic translation of all of Euclid’s geometry—
and more, since there is no obstacle, other than algebraic di�culty, to
the study of curves satisfying arbitrary polynomial equations. ¿us Eu-
clidean geometry and algebraic geometry are not a perfect match. Eu-
clidean geometry ought to be “more linear.”

Grassmann’s Linear Geometry

¿eperfect algebraic match for Euclidean geometry was found by Grass-
mann in the s, in the concept of a real vector space. His �rst works on
the subject, Grassmann () andGrassmann () were impenetrable
to other mathematicians, and his idea started to gain traction only when
Peano () gave axioms for real vector spaces.

De�nition. A real vector space is a set V of objects called vectors (de-
noted by boldface letters), which includes a vector called the zero vector,
and for each u > V a vector −u called the negative of u. V has operations
of addition and scalar multiplication (by a,b, c, . . . > R) satisfying the
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following conditions:

u + v = v + u
u + (v +w) = (u + v) +w

u + 0 = u
u + (−u) = 0

1u = u
a(u + v) = au + av
(a + b)u = au + bu
a(bu) = (ab)u

Typically V = Rn = {⟨x1 , . . . , xn⟩ ∶ x1 , . . . , xn ∈ R}, with 0 the origin,
+ the usual sum of n-tuples, and scalar multiplication by a ∈ R given by

a⟨x1 , . . . , xn⟩ = ⟨ax1 , . . . , axn⟩.

�is vector space is called the real n-dimensional a�ne space. It is not yet
a Euclidean space because it has no concept of distance or angle, but it
has considerable geometric content.Rn has lines, including parallel lines,
and also a concept of “length in a given direction.” For example, one can
say that 12v ∈ Rn is the midpoint of the line from 0 to v, and in general
av is a times as far from 0 as v is. Another concept that makes sense in
vector geometry is that of center of mass. In particular, the center of mass
of the triangle with vertices u, v ,w is the point 13 (u + v +w).
To promote vector geometry to Euclidean geometry one adds the

concept of inner product of vectors u and v, written u ⋅ v:

De�nition. If u = ⟨u1 , . . . , un⟩ and v = ⟨v1 , . . . , vn⟩ then

u ⋅ v = u1v1 +⋯ + unvn .

In particular, in R2 we have

u ⋅ u = u21 + u
2
2 ,

so the Euclidean length ∣u∣ of u is given by ∣u∣ =
√
u ⋅ u. As Grassmann

(1847) remarked, the de�nition of inner product makes the Pythagorean
theorem true almost by de�nition.

�e Euclidean angle concept also derives from the inner product be-
cause

u ⋅ v = ∣u∣∣v∣ cos θ ,
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where θ is the angle between the lines from  tou andv respectively.¿us
Grassmann () found another way to describe Euclidean geometry as
a “base theory” plus the “right axiom” to derive the Pythagorean theorem.
Interestingly, his base theory (the vector space axioms) admits extension
by a di�erent axiom that gives non-Euclidean geometry.

Making a Vector Space Non-Euclidean

¿e key property of Grassmann’s inner product is that it is positive def-
inite; that is, SuS = u ċ u A  if u x , so every nonzero vector has pos-
itive length. Einstein’s theory of special relativity motivated Minkowski
() to introduce a non-positive de�nite inner product on the spaceR

of spacetime vectors `t,x, y, ze, namely

`t,x, y, ze ċ `t,x, y, ze = −tt + xx + yy + zz.

With the Minkowski inner product u = `t,x, y, ze has “length” SuS given
by

SuS = −t + x + y + z,
which clearly is zero or negative for many vectors. To make visualization
easier we consider the corresponding concept of length on the space R

of vectors u = `t,x, ye, namely

SuS = −t + x + y.

¿is means that in R we have a “sphere3 of radius
º
− about O,” con-

sisting of the vectors u = `t,x, ye such that

−t + x + y = −.

¿is surface in R is the hyperboloid x + y − t = .
It turns out that the Minkowski distance on the surface of the hyper-

boloid gives a non-Euclidean geometry—the same as that of the Beltrami
model in the previous section. Figure ., which is derived from a pic-
ture by Konrad Polthier of the Freel University of Berlin, shows the con-
nection between the two. ¿e tiling of the disk projects to a tiling of the
hyperboloid by triangles that are congruent in the sense of Minkowski
distance.

3In a remarkable prophecy, Lambert () conjectured that there might be a geome-
try on the sphere of imaginary radius for which the angle sum of a triangle is less than π,
and where the area of a triangle is proportional to πminus its angle sum. ¿is is indeed
what happens in Beltrami’s non-Euclidean geometry.
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Figure . : ¿e hyperboloid model of non-Euclidean geometry

. HILBERT’S AXIOMS

Euclid’s Elements is the �rst organized presentation of mathematics that
survives from ancient times. It is best known for its treatment of geome-
try, deducing theorems from axioms in a style that became standard for
mathematics until the nineteenth century. ¿en the discovery of non-
Euclidean geometry put Euclid’s geometry under themicroscope, and by
the late nineteenth century his axiomswere found to have some gaps. But
this only strengthened the movement towards axiomatization. ¿e gaps
in Euclid were �lled by Hilbert () and, in the meantime, axiomatic
treatments of number theory and algebrawere given byDedekind, Peano,
and others.

Euclid also gave a deductive treatment of numbers in the Elements,
but it was complicated by the Greek discovery of irrationality, which was
thought to disqualify some geometric quantities (such as the diagonalº
 of the unit square) from being numbers at all. Irrational quantities

were not fully reconciled with whole or rational numbers until the pub-
lication of the Dedekind () book on irrational numbers. Dedekind
found that Euclid had been on the right track—the only new idea needed
to make his theory of irrational quantities part of his theory of numbers
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was acceptance of in�nite sets of rational numbers (see section .).
¿e two main threads of the Elements, geometry and the real num-

bers, were combined in the Grundlagen der Geometrie (foundations of
geometry) of Hilbert (). Here, Hilbert not only �lled the gaps in Eu-
clid’s geometric axioms, he also introduced two axioms that complete a
geometric path to the real number systemR.¿is was a historic achieve-
ment, thoughHilbert’s path is not the best for all mathematical purposes.
¿e arithmetization path to real numbers via the rational numbers ulti-
mately proved more useful for analysis, and we will take it up again in
chapter .

Hilbert () found that Euclid’s geometry and the arithmetic of real
numbers follow from  axioms, described below. All but two of them
are purely geometric. ¿e exceptions are the Archimedean axiom, which
says no line segment is “in�nitely large” compared with another, and the
completeness axiom, which says there are no “gaps” in the points on a
line. (¿ese two axioms were not needed by Euclid, who considered only
points constructible by ruler and compass.)¿eir purpose is to prove that
any line satisfying the axioms is essentially the line R of real numbers. It
follows that any plane satisfying the axioms is essentially the plane of
Descartes, so Euclid’s geometry has really only one model—the plane of
pairs of real numbers.

¿is very satisfying convergence of the geometric and arithmetic view-
points comes about becauseHilbert’s geometric axioms yield not just Eu-
clid’s geometric theorems—they also yield algebra, which Euclid did not
foresee. In fact, algebraic structure arises in stages corresponding to ax-
iom groups, which Hilbert introduces one by one.

Axioms of incidence.¿ese relate lines and points.¿ey include Euclid’s
axiom that two points determine a line, and a form of the parallel axiom:
for any line l and point P ~> l there is exactly one line m through P not
meeting l. Also (which went without saying in Euclid) each line has at
least two points, and there are three points not in a line.

Axioms of order.¿e �rst three of these axioms say the obvious things
about the order of three points on a line: if B is between A and C then
it is also between C and A; any A and C have a point B between them;
for any three points, one is between the other two. ¿e fourth, called
Pasch’s axiom, is about the plane: a line meeting one side of a triangle at
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an internal point meets exactly one of the other sides.

Axioms of congruence.¿e �rst �ve of these axioms are about equality
of line segments or angles, and the addition of line segments. ¿ey state
the existence and uniqueness of line segments or angles equal to given
ones, at a given position. ¿ey also say (as Euclid put it) “things equal to
the same thing are equal to each other.”¿e last congruence axiom is the
SAS criterion for congruence of triangles.

Circle intersection axiom. Two circles meet if one of them contains
points both inside and outside the other. (Euclid overlooked this axiom,
even though he assumed it in his very �rst proposition, constructing an
equilateral triangle.) Note that the points “inside” a circle of radius r are
those at distance < r from its center.

Archimedean axiom. For any nonzero line segments AB and CD there
is a natural number n such that n copies of AB are together greater than
CD.

Completeness axiom. Suppose the points of a line l are divided into two
nonempty subsetsA andB such that no point ofA is between two points
ofB and no point ofB is between two points ofA.¿en there is a unique
point P, in eitherA orB, that lies between any other two points, of which
one is inA and the other is in B. (¿us, there is no “gap” betweenA and
B.)

¿ese axioms give precise meaning to the idea of a theorem being
equivalent to the parallel axiom: namely, the equivalence is provable in
the base theory ofHilbert’s axiomsminus the parallel axiom.All theorems
previously thought to be equivalent to the parallel axiom (such as those
mentioned in section .) are equivalent to it in this sense. As suggested
at the end of section ., proving equivalences in a weaker system is the
hallmark of reverse mathematics. We will see further historical examples
in the later sections of this chapter. Today, the idea has been most fully
developed in systems of analysis, and we will see some its main results in
chapters  and .
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Algebraic Content of Hilbert’s Axioms

¿e incidence axioms allow us to de�ne sum and product of points on a
line by means of the constructions shown in �gures . and ..

¿e sum construction chooses a point  on the line then, for any
points a and b on the line, constructs a point a + b with the help of the
parallels shown. In e�ect, the parallels allow the point b to be “translated”
along the line by the distance between  and a.

 a b a + b
Figure . : Adding points on a line

¿eproduct construction also requires a point  on the line (the “unit
of length”), and various parallels now allow us to “magnify” the distance
from  to b by the distance from  to a, producing the point ab.

  a b ab

Figure . : Multiplying points on a line

With the help of the congruence axioms one can prove that the sum
and product operations just de�ned have the following algebraic prop-
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erties, the �eld properties (also used as the axioms that de�ne a �eld):

a + b = b + a a ċ b = b ċ a (commutativity)
a + (b + c) = (a + b) + c a ċ (b ċ c) = (a ċ b) ċ c

(associativity)

a +  = a a ċ  = a (identity)
a + (−a) =  a ċ a− =  for a x  (inverse)

a ċ (b + c) = a ċ b + a ċ c (distributivity)

It is easiest to deduce the �eld properties from the congruence ax-
ioms, but there is in fact a pure incidence axiom—the so-called Pappus
theorem—from which all the �eld properties follow with the help of the
other incidence axioms.4¿us the algebraic structure of a �eld emerges
from axioms that Euclid almost completely overlooked: the incidence ax-
ioms describing how points and lines interact.

¿e order axioms give the points on a line an ordering, B, with the
properties that, for any a,b, c:

• a B a,
• if a x b then either a < b or b < a, but not both,
• if a B b and b B c then a B c.

¿e order relationmeshes with the �eld properties to produce an ordered
�eld. Its de�ning properties, beyond the �eld properties above, are that:

• if a B b then a + c B b + c,
• if  B a and  B b then  B ab.

Finally, the Archimedean and completeness axioms say that the or-
der relation isArchimedean and complete in the sense described by those
axioms. It can be proved that a complete Archimedean ordered �eld is iso-
morphic to the �eld R of real numbers. Given such a �eld F, the idea of
the proof is to build a copy ofR insideF in the following stages. (Readers
not yet familiar with the construction of the real numbers as Dedekind
cuts may wish to take these steps on faith and con�rm them later when
reading chapter .)

4Incidentally, the �eld properties can be proved in the setting of projective geometry,
where all axioms are incidence axioms and the parallel axiom is replaced by the axiom
that any two lines meet in a unique point. ¿e above constructions can be carried out in
this setting when we call one line a “line at in�nity” and call lines “parallel” when they
meet on the line at in�nity.
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. From the element  > F build the “positive integers” of F, namely

,  + ,  +  + ,  +  +  + , . . . ,

using the + operation of F.
. Build “integers” of F using  and the − operation.
. Build “rational numbers” of F using inverse and product opera-
tions.

. Use the order and completeness properties ofF to build “real num-
bers” of F as Dedekind cuts in the “rational numbers” of F.

. Check that the “real numbers” of F exhaust the members of F and
have the same properties as the actual real numbers.

¿is proof shows that any complete Archimedean ordered �eld is es-
sentially the “same” asR, so every line in Hilbert’s geometry is essentially
the real number line.¿e next question is: howwell dowe understandR?

. WELL-ORDERING AND THE AXIOMOF CHOICE

In Book V of the Elements, Euclid gave a very sophisticated treatment
of the geometric line and its relationship to the rational numbers. He
stopped short of declaring irrational points to be numbers, but he es-
sentially showed that each point is approximated arbitrarily closely by
rational numbers. ¿is means that each point is determined by rational
numbers (those to the le of the point, for example), so we need only ac-
cept in�nite sets as mathematical objects in order to view points as arith-
metical objects.

However, until themid-nineteenth century, most mathematicians re-
jected the idea of in�nite sets as mathematical objects. ¿ey were in-
�uenced by the ancient Greek distinction between “potential” and “ac-
tual” in�nity. For example, it was permissible to view the natural num-
bers as an open-ended process—start with  and keep adding —but not
as a completed or “actual” entity N = �, ,, . . .�. Today, this seems a
rather hair-splitting distinction, because—as far as anyone knew in the
mid-nineteenth century—all in�nite sets could be viewed as “potential”
in�nities.

For example, the integers, Z, can be viewed as a potential in�nity by
listing them in the order

, , −, , −, , −, . . . .



 ■ CHAPTER 

¿e positive rationals can likewise be viewed as a potential in�nity by
listing them in the order



,



,



,



,



,



,



,



,



, . . . .

(¿e rule is to list fractions m~n in order of the sums m + n: �rst those
withm+n = , then those withm+n = , then those withm+n = , and
so on.) And then we can view all the rationals, Q, as a potential in�nity
by listing positive and negative elements alternately as we did with Z:

,


, − 


,



, −


,



, − 


,



, −


,



, − 


, . . . .

¿us N, Z, and Q, which we now regard as sets, could all be �nessed as
“potential” in�nities by mathematicians who were fastidious about the
distinction between potential and actual.

A much more serious problem arose in , when Cantor showed
that R is not by any means a potential in�nity.

Uncountability

¿e means by which we showed the sets N, Z, and Q to be potential
in�nities was by counting, or ordering their members in a sequence:

st member, nd member, rd member, . . .

—with an implied process for countingmembers that reaches eachmem-
ber at some �nite stage. Cantor () showed that R is uncountable in
the sense that no such ordering of R exists.

He showed that any sequence x,x,x, . . . of real numbers fails to
include some real number x. In fact, given the decimal expansions of
x,x,x, . . . we can compute the decimal expansion of x. For example,
we can use the rule:

nth decimal digit of x =
¢̈̈
¦̈
¤̈

 if nth decimal digit of xn x 
 if nth decimal digit of xn = .

¿en x x each xn because x di�ers from xn in the nth decimal place.
¿us if we acceptRwe have to accept it as an actual in�nity.¿e proof

given here is essentially one given by Cantor (). It is, incidentally, a
harbinger of many proofs about R that we will see later in this book.
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Given an arbitrary object, such as a sequence or a function, we prove
existence of some other object by computing it from the given object.¿e
computation of one object relative to others is seldomnoticed in classical
analysis—in fact, manymathematicians have thought that Cantor’s proof
is nonconstructive—but it is important, as we will see in later chapters.

Well-ordering

Cantor’s theorem shows thatR cannot be ordered in the simple way that
N, Z, and Q can: st member, nd member, rd member, . . . . Neverthe-
less Cantor () stated his belief in a more general kind of order:

In a later article I shall discuss the law of thought that says that it
is always possible to bring any well-de�ned set into the form of a
well-ordered set—a law which seems to me fundamental and mo-
mentous and quite astonishing. (Ewald (), vol. II, p. )

Cantor called a set S well-ordered if the ordering is such that every non-
empty subset T of S has a least member. ¿is is clearly the case for the
orderings of N, Z, and Q above, where each member is labeled with a
positive integer (take the member of T whose integer is least). It is also
the case for the following ordering of Z,

, , , , . . . , −, −, −, −, . . . ,

in which  and the positive integers precede all the negative integers. If
T is a nonempty subset of Z then the least member of T in the above
ordering is

the least non-negative integer in T, if T has any non-negative members,
or

the greatest negative integer in T, if T has only negative members.

When it comes toR, however, all human ingenuity fails to �nd a well-
ordering of the real numbers.¿e usual ordering < fails dismally, because
subsets such as �x > R �  < x� have no least member. ¿us Cantor was
very bold to assume that well-orderings exist for all “well-de�ned” sets—
which surely include R.

¿eWell-ordering¿eorem and Zermelo’s Axioms

Cantor perhaps thought that his “fundamental law of thought” should
be an axiom of set theory. But he did not suggest a set of axioms for set
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theory, so it remained unclear whether well-ordering should be an axiom
or a theorem. ¿e picture became clearer when Zermelo () proved
well-ordering from an intuitively simpler assumption, now known as the
axiom of choice.

Axiom of choice (AC). For any set X of nonempty sets x there is a choice
function; that is, a function f such that f(x) > x for each x > X.

To provide a precise framework for his proof (and at the same time
to clear up some doubts about the foundations of set theory) Zermelo
() gave the �rst set of axioms for set theory. Within his system, now
calledZ, it was possible to prove thatAC is equivalent to thewell-ordering
theorem. Fraenkel () strengthened one of Zermelo’s axioms, obtain-
ing a system now known as ZF set theory.

¿e ZF axioms of set theory have remained stable since  and
have become generally accepted as a foundation for all of mainstream
mathematics, at least when supplemented by AC. Indeed, it was proved
in ZF that AC is equivalent to many sought-a er theorems, including
the well-ordering theorem, that were apparently not provable outright
in ZF.

¿is put AC in a position, relative to ZF, like that of the parallel axiom
relative to the other axioms of Euclid (or, more precisely, relative to the
other axioms of Hilbert). ¿eorems proved equivalent to AC in ZF were
not of clear interest until it was known that AC is not provable in ZF.¿is
was done byCohen (). As Beltrami in  did for the parallel axiom,
Cohen showed the unprovability of AC by constructing amodel of ZF in
which AC is false. His construction, like Beltrami’s, was a breakthrough
that completely changed the face of the subject. It is unfortunately too
technical to be described in this book, but we can describe some of its
consequences.

AMathematical Equivalent of the Axiom of Choice

Like the parallel axiom in geometry, AC in set theory occupies an im-
portant position “above” the basic (ZF) axioms. ZF cannot prove AC,
but ZF is a good base theory because it can prove that AC is equivalent
to many other interesting statements of set theory and general mathe-
matics. In this sense, AC is the “right axiom” to prove these statements.
As we know, one such statement is the well-ordering theorem. Another
is the following property of vector spaces over an arbitrary �eld F. (We
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de�ned a real vector space in section .. ¿e de�nition of an arbitrary
vector space is the same, except with F in place of R.)

Existence of a vector space basis. Any vector space V has a basis; that is,
a subset U of vectors u such that:

(i) For any v > V there are u, . . . ,uk > U and f, . . . , fk > F such that
v = fu +� + fkuk. (“U spans V.”)

(ii) For any distinct u, . . . ,uk > U and f, . . . , fk > F,  = fu +� +
fkuk if and only if f = � = fk = . (“U is an independent set.”)

¿e existence of a basis is clear for �nite-dimensional real vector
spaces, where we can take the basis vectors u to be the unit points on the
coordinate axes. ¿e �rst case in which a basis is hard to �nd—in fact
utterly mysterious—is whenR is viewed as a vector space overQ. Hamel
() showed existence of a basis with the help of a well-ordering of R,
but the so-called Hamel basis is no easier to de�ne than a well-ordering
of R itself.

¿us it is no surprise that all proofs of the existence of a basis for an
arbitrary vector space depend on AC.We now know that AC is unavoid-
able because Blass () showed that existence of such a basis can be
proved equivalent to AC in ZF.

. LOGIC AND COMPUTABILITY

¿eprevious sections of this chapter suggest that the real number system
R is an essential part of the foundations of mathematics. When we turn
to analysis, in the next chapter, the unavoidability ofRwill become even
more obvious. At the same time, we have seen that our understanding of
R can never be complete, if only because of the uncountability of R.

Since we cannot list all real numbers we certainly cannot list all facts
about real numbers, let alone set up an axiom system for proving them.
¿is observation is the �rst step on the road towards the profound theo-
rems of Gödel () and Turing () about unprovable theorems and
unsolvable algorithmic problems—a road we will describe inmore detail
in chapter .

Gödel’s theorem rules out any possibility of a complete axiom system
for analysis. Yet it also presents an opportunity. If we are lucky wemay be
able to �nd a base theory for analysis, in which we can prove that sought-
a er theorems are equivalent to certain axioms—axioms that play a role,
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like that of the parallel axiom in geometry or AC in set theory, of attract-
ing desirable theorems into their “orbit” of equivalent theorems.

¿is indeed is what happens.We now know a good base theory, called
RCA, and at least four set existence axioms that play this role for the-
orems of analysis. Moreover, the axioms are of increasing strength, in
the sense that each implies the one before, so they classify theorems of
analysis by increasing strength. ¿e crucial axioms state “set existence”
rather than “real number existence” because it is technically convenient
to encode real numbers by sets of natural numbers (see next chapter for
details). ¿e axioms in question state there is a set of natural numbers n
corresponding to each property φ(n) in a certain class.

For RCA we assert set existence for the class of computable proper-
ties φ(n). ¿ese are the properties for which there is an algorithm that
decides, for each n, whetherφ(n)holds. It turns out, becausenoncompu-
table properties exist, that RCA is too weak to prove many important
theorems of analysis. But RCA can provemany equivalences, since these
o en involve computing an object (such as a sequence or a function)
from a given object. For example, RCA cannot prove the Bolzano-
Weierstrass theorem, but it can prove that Bolzano-Weierstrass is equiva-
lent to an axiom stating the existence of sets realizing each arithmetically
de�nable property φ(n). ¿us, if we add the latter axiom to RCA, we
obtain a stronger system in which Bolzano-Weierstrass is provable.

In this way we �nd, rather surprisingly, that most of the well-known
theorems of analysis can be assigned a precise level of “strength.” ¿ey
are either at the lowest level—provable in RCA—or at a higher level
represented by one of four set existence axioms. In this book we focus
mainly on the lower three levels, wheremost of thewell-known theorems
of analysis are known to reside (see chapters  and ).

Arithmetization

From the discussion abovewe can see that a study of arithmetic and com-
putation will be needed before we can de�ne the system RCA. Arith-
metic itself is axiomatized in a fairly standard way that goes back to the
Peano axioms of Peano (). But before that we have to talk about
arithmetization—both in the nineteenth-century sense of making anal-
ysis “arithmetical,” and in the s sense of making logic and computa-
tion “arithmetical.”
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¿e remarkable convergence of analysis and computation to a com-
mon source in arithmetic is whatmakes the reversemathematics of anal-
ysis possible. ¿e arithmetization of analysis is discussed in chapter ,
computation is discussed in chapter , and its arithmetization in chapter
. We also give a refresher course on the real numbers and continuity in
chapter , including classical proofs of the best-known theorems.
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of Q, 
of sequence, 
of set, 

line
at in�nity, 
in Euclid Book V, 

low degree, , 
and Turing jump, 
model of WKL, 
paths in trees, 

lower Dedekind cut, , , 

mathematical physics, xi
Matijasevič, Yuri, 

unsolvability of Hilbert’s tenth, 
maximal ideal, 

of countable commutative ring, 
measure theory, 
Minkowski, Hermann, 
model, , 

hyperboloid, 
of ACA, 
of arithmetic without induction, 
of Euclidean geometry, 
of non-Euclidean geometry, 
of RCA, , 
of spherical geometry, 
of WKL, , 
of ZF, 
showing unprovability, 

modus ponens, , 
monotone convergence theorem, , 

equivalent to arithmetical comprehen-
sion, 

equivalent to Bolzano-Weierstrass, 
implies arithmetical comprehension, 
implies range existence, 
unprovable in computable analysis, 

N, 
natural number, xii, , 
neighborhood, 
non-Euclidean geometry, , 

area, , 
disk model, 
distance, 
falsi�es parallel axiom, 
hyperboloid model, 
in vector space, 
satis�es basic Euclidean axioms, 
triangle, 

number
complex, 
integer, 
irrational, 
natural, xii, , 
negative, 
rational, xii, , 
real, xi, , 

addition, 
as lower Dedekind cut, 
multiplication, 
ordering, 
positive, 

numeral
base , 
base , 
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dyadic, 
in PA, 
unary, 

open interval, , 
open set, 
ordered pair, , , 
ordering, 

of Q, 
of R, , 

PA. See Peano arithmetic
Pacioli, Luca, 
pairing function, 

and k-tupling functions, 
in PA, 

Pappus theorem, 
parallel axiom, xi, 

concerns in�nity, 
equivalent to Pythagorean theorem, 
equivalents, , 
falsi�ed by non-Euclidean geometry, 
in Euclid, 
right axiom for Euclid, 

Paris-Harrington theorem, , 
not provable in PA, 

Peano arithmetic, 
and analysis, 
as basis for analysis, 
contained in ACA, 
de�nable properties, 
de�nable relations, 
in ACA, 
is incomplete, 
language, 

for analysis, 
pairing function, , 
projection functions, 

Peano axioms, xii, 
in foundations of mathematics, 

Peano, Giuseppe, 
axioms for arithmetic, 
axioms for vector space, 

Π
 , 

Π
 comprehension, 

Π
-CA, 

Poincaré, Henri, xi
on arithmetization of analysis, 

Polthier, Konrad, 
Pólya, Georg, 
Post, Emil, 

analysed Principia Mathematica, 
and the word problem, 

co-discovered Turing machines, 
computably enumerable sets, , 
discovered incompleteness, , , 
formalized computability, 
normal systems, 
translation of Turing machines, 

predicate logic, 
completeness, 

and weak Kőnig lemma, 
falsi�cation rules, 
language, 
rules of inference, 
validity problem, 

prenex form, , , 
prime number theorem, , 

elementary proofs, 
Principia Mathematica, 
problem, 

Entscheidungs, 
halting, , 
Hilbert’s tenth, 
membership, , 
self-examination, 
validity, 

projection
function, , , 
of EFS-generated set, 
stereographic, 

projective geometry, 
Pythagorean theorem, xi, 

arithmetized, 
equivalent to parallel axiom, 
proof by areas, 
statement, 
via inner product, 

Q, 
completion of, 
is a �eld, 
ordering, 

quanti�er, 
alternation, 
bounded, 

by EFS, 

R, , , 
algebraic characterization, 
an actual in�nity, 
and foundations, 
completeness, 

Cauchy criterion, 
least upper bound, 
nested interval, , 
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R (continued)
completeness properties, 
geometric characterization, 
has no gaps, , 
is a �eld, 
is uncountable, 
least upper bound property, 
ordering, 
well-ordering of, 

Ramsey theorem, 
baby, 
�nite, 
for triples, 

equivalent to arithmetical compre-
hension, 

in�nite, 
for pairs, 
not provable in ACA, , 
provable in ACA, 

range existence, 
implies Σ comprehension, 
not provable in RCA, , 

rational number, xii
RCA, xii, , 

adapts constructive mathematics, 
and algebraic closure, 
and arithmetic, 
and computability, 
and constructive mathematics, 
as computable analysis, 
axioms, 
base theory for analysis, , , , 
cannot prove range existence, , 
compares theorem strengths, 
de�nition of, 
encoding of computable sequences, 
encoding of continuous functions, 
equivalence proofs, , 
�nds equivalents of

arithmetical comprehension, 
weak Kőnig lemma, 

has Σ induction, , 
incompleteness, 
lacks least upper bound principle, 
minimal model, , 
non-theorems, , 
proves FTA, , 
proves intermediate value theorem, ,


proves uncountability of R, 
real number concept, , 
realizes Σ condition by function, 

reason for name, 
real number, xi, , 

as lower Dedekind cut, 
in RCA, 
ordering, 

real vector space, 
axioms, , 

recursion
arithmetization of, , 
de�nition by, , 

recursive
de�nition, , , 

arithmetized, 
usage of word, , , 

recursive comprehension, , , , 
reverse mathematics, xi, , , , 

and constructiveness, 
big �ve, –, 
of algebra, 
of analysis, 
of number theory, , 
seeks equivalents of axioms, 

Riemann integral, , 
and weak Kőnig lemma, 

Riemann mapping theorem, 
implies arithmetical comprehension, 

ring
axioms, 
properties, , 

via induction, 
Robertson-Seymour theorem, 

not provable in Π
-CA, 

rule of inference, 

Saccheri, Girolamo, 
SAS, , 
Schön�ies theorem, 
self-reference, , 
sequence, 

as function on N, , 
computable, 
convergent, 
in RCA, 
limit of, , 
noncomputable, 
of nested intervals, , 
of real numbers, 
with noncomputable least upper bound,


with noncomputable limit, 
set

arithmetically de�nable, , 
Cantor, 
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computable, xii, , 
computably enumerable, , , 
containment orders R, 
EFS-generated, 
encoding, 
in�nite, 

as mathematical object, , 
limit point, 
noncomputable, 
of low degree, 
of rational numbers, 
of real numbers, 
open, 
uncountable, 
well-ordered, 

set existence axiom, xii, , , , , 
set theory, xi, 

base theory ZF, , , 
Σ, , 
Σ , , 

as range of function in Σ and Π

 , 

by existential quanti�cation of Σ, 
comprehension, 

implies arithmetical comprehension,

implies range existence, 

induction, , 
is computably enumerable, , 
is EFS-generated, , 
property, 

Simpson, Stephen, 
Sir Walter Raleigh, 
Skolem form, , 
Skolem function, 
Skolem term, 
Smullyan, Raymond, , 
Sperner’s lemma, , 
spherical geometry, 

planar model, 
standard model, 
triangle, 

area, º
, 

stereographic projection, 
strength, xii

of ACA in arithmetic, 
of analysis theorems, 
of axiom, xii
of parallel axiom, 
of RCA, WKL, ACA, 
of set existence axiom, 
relative to RCA, , 

theorem
Bolzano-Weierstrass, , 
Brouwer �xed point, 
Cantor-Bendixson, 
extreme value, xii, , 
Harriot, 
Heine-Borel, xii, , 
intermediate value, xii, 
isosceles triangle, 
Jordan curve, 
Kruskal, 
monotone convergence, , 
Pappus, 
Paris-Harrington, 
prime number, 
Pythagorean, xi, , 
Ramsey, 
Riemann mapping, 
Robertson-Seymour, 
Schön�ies, 
uniform continuity, 
well-ordering, , 

tree
arithmetization, , 
as set of binary strings, 
as set of �nite sequences, 
binary, , 
complete binary, 
computable, 

with no computable in�nite path, 
concept in analysis, , 
embedding, 
fallen leaf, 
�nitely branching, , 
for in�nite bisection, 
in�nite path in, , 
vertex labeling, 

truth tables, 
Turing, Alan, , 

analysis of computation, 
convinced Gödel, 

computable numbers, 
degree, 
jump, 
machine, , 

con�guration, 
simulated by EFS, 
universal, 

reducibility, 
unsolvability

of Entscheidungsproblem, 
of halting problem, 
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uncountability of R, 
leads to incompleteness, 
provable in RCA, 

uniform continuity
classical proof, 
equivalent to weak Kőnig, 
implies Riemann integrability, 
modulus of, 
via sequential Heine-Borel, 

universal
algorithm, 
computably enumerable set, 
elementary formal system, 
Turing machine, 

unsolvability
degree of, , 
implies incompleteness, 
of Entscheidungsproblem, 
of halting problem, 
of Hilbert’s tenth problem, 
of membership problem, , 
of self-examination problem, 
of validity problem, 
of word problem, 

vector geometry, 
vector space, 

addition, 
basis, 

equivalent to AC, 
over arbitrary �eld, 
real, 
scalar multiplication, 

von Neumann, John
co-discovered second incompleteness,


prompted arithmetization, 

Wallis, John, 
weak Kőnig lemma, , 

and analysis, , 
and binary trees, , 
and logic completeness, 
and predicate logic, 
and Riemann integrability, 
de�nes WKL, , 
equivalent to uniform continuity, 
implies extreme value theorem, 
implies sequential Heine-Borel, 
in logic, 
really is weaker, 

well-ordering, , 
countable, 
of R, 
of Z, 
theorem, , 

Weyl, Hermann, 
WKL, xii, , 

and algebraic closure, 
and weak Kőnig lemma, 
de�nition of, 
has Σ induction, 
model in ACA, 
modeled by low sets, , 
theorems, 

WWKL, 

Z, 
Zermelo, Ernst, 

axioms for set theory, 
introduced AC, 

ZF, , 
base theory for set theory, 

Zorn’s lemma, 




