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1 The Fast Track Introduction to Calculus

Chapter Preview. Calculus is a new way of thinking about mathematics. This
chapter provides you with a working understanding of the calculus mindset, core con-
cepts of calculus, and the sorts of problems they help solve. The focus throughout is on
the ideas behind calculus (the big picture of calculus); the subsequent chapters discuss
themath of calculus. After reading this chapter, you will have an intuitive understand-
ing of calculus that will ground your subsequent studies of the subject. Ready? Let’s start
the adventure!

1.1 What Is Calculus?

Here’s my two-part answer to that question:

Calculus is a mindset—a dynamics mindset. Contentwise, calculus is the
mathematics of infinitesimal change.

Calculus as a Way of Thinking

The mathematics that precedes calculus—often called “pre-calculus,” which in-
cludes algebra and geometry—largely focuses on static problems: problems devoid
of change. By contrast, change is central to calculus—calculus is about dynamics.
Example:

. What’s the perimeter of a square of side length 2 feet? ←− Pre-calculus
problem.

. How fast is the square’s perimeter changing if its side length is increasing at
the constant rate of 2 feet per second?←− Calculus problem.

This statics versus dynamics distinction between pre-calculus and calculus runs
even deeper—change is themindset of calculus. The subject trains you to think of a
problem in terms of dynamics (versus statics). Example:

. Find the volume of a sphere of radius r. Pre-calculus mindset: Use 4
3πr

3

(Figure 1.1(a)).

. Find the volume of a sphere of radius r. Calculus mindset: Slice the sphere
into a gazillion disks of tiny thickness and then add up their volumes
(Figure 1.1(b)). When the disks’ thickness is made “infinitesimally small” this
approach reproduces the 4

3πr
3 formula. (We will discuss why in Chapter 5.)
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(a) (b)

Figure 1.1: Visualizing the volume of a sphere via (a) a pre-calculus mindset and (b) a calculus
mindset.

There’s that mysterious word again—infinitesimal—and I’ve just given you a clue
ofwhat itmightmean. I’ll soon explain. Right now, letme pause to address a thought
you might have just had: “Why the slice-and-dice approach? Why not just use the
4
3πr

3 formula?” The answer: had I asked for the volume of some random blob in
space instead, that static pre-calculus mindset wouldn’t have cut it (there is no for-
mula for the volume of a blob). The dynamics mindset of calculus, on the other
hand, would have at least led us to a reasonable approximation using the same
slice-and-dice approach.

In
te
ra
ct
iv
eF

ig
ur
e

That volume example illustrates the power of the dynamics mindset of calculus.
It also illustrates a psychological fact: shedding the static mindset of pre-calculus will
take some time. That was the dominant mindset in your mathematics courses prior
to calculus mathematics courses, so you’re accustomed to thinking that way about
math. But fear not, young padawan (a Star Wars reference), I am here to guide you
through the transition into calculus’ dynamicsmindset. Let’s continue the adventure
by returning to what I’ve been promising: insight into infinitesimals.

What Does “Infinitesimal Change” Mean?

The volume example earlier clued you in to what “infinitesimal” might mean. Here’s
a rough definition:

“Infinitesimal change” means: as close to zero change as you can imagine,
but not zero change.

Let me illustrate this by way of Zeno of Elea (c. 490–430 BC), a Greek philosopher
who devised a set of paradoxes arguing that motion is not possible. (Clearly, Zeno
did not have a dynamics mindset.) One such paradox—the Dichotomy Paradox—
can be stated as follows:

To travel a certain distance you must first traverse half of it.

Figure 1.2 illustrates this. Here Zeno is trying to walk a distance of 2 feet. But
because of Zeno’s mindset, with his first step he walks only half the distance: 1 foot
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Figure 1.2: Zeno trying to walk a distance of 2 feet by traversing half the remaining distance with
each step.

(Figure 1.2(b)). He then walks half of the remaining distance in his second step: 0.5
foot (Figure 1.2(c)). Table 1.1 keeps track of the total distance d, and the change in
distance �d, after each of Zeno’s steps.

Table 1.1: The distance d and change in distance �d after each of Zeno’s steps.

�d 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 · · ·
d 1 1.5 1.75 1.875 1.9375 1.96875 1.984375 1.9921875 · · ·

Each change�d in Zeno’s distance is half the previous one. So as Zeno continues his
walk,�d gets closer to zero but never becomes zero (because each�d is always half
of a positive number). If we checked back in with Zeno after he’s taken an infinite
amount of steps, the change �d resulting from his next step would be . . . drum roll
please . . . an infinitesimal change—as close to zero as you can imagine but not equal
to zero.

This example, in addition to illustrating what an infinitesimal change is, also does
twomore things. First, it illustrates the dynamics mindset of calculus. We discussed
Zenowalking; we thought about the change in the distance he traveled; we visualized
the situation with a figure and a table that each conveyedmovement. (Calculus is full
of action verbs!) Second, the example challenges us. Clearly, one can walk 2 feet.
But as Table 1.1 suggests, that doesn’t happen during Zeno’s walk—he approaches
the 2-foot mark with each step yet never arrives. How do we describe this fact with
an equation? (That’s the challenge.) No pre-calculus equation will do. We need a
new concept that quantifies our very dynamic conclusion. That new concept is the
mathematical foundation of calculus: limits.

1.2 Limits: The Foundation of Calculus

Let’s return to Table 1.1. One thing you may have already noticed: �d and d are
related. Specifically:

�d+ d= 2, or equivalently, d= 2−�d. (1.1)
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This equation relates each�d value to its corresponding d value in Table 1.1. Great.
But it is not the equation we are looking for, because it doesn’t encode the dynamics
inherent in the table. The table clearly shows that the distance d traveled by Zeno
approaches 2 as �d approaches zero. We can shorten this to

d→ 2 as �d→ 0.

(We are using “→” here as a stand-in for “approaches.”) The table also reiterateswhat
we already know: were we to let Zeno continue his walk forever, he would be closer
to the 2-foot mark than anyone could measure; in calculus we say: “infinitesimally
close to 2.” To express this notion, we write

lim
�d→0

d= 2, (1.2)

read “the limit of d as �d→ 0 (but is never equal to zero) is 2.”
Equation (1.2) is the equation we’ve been looking for. It expresses the intuitive

idea that the 2-foot mark is the limiting value of the distance d Zeno’s traversing.
(This explains the “lim” notation in (1.2).) Equation (1.2), therefore, is a statement
about the dynamics of Zeno’s walk, in contrast to (1.1), which is a statement about
the static snapshots of each step Zeno takes. Moreover, the Equation (1.2) reminds
us that d is always approaching 2 yet never arrives at 2. The same idea holds for �d:
it is always approaching 0 yet never arrives at 0. Said more succinctly:

Limits approach indefinitely (and thus never arrive).

Finite change ∆x in Y
(Not a calculus concept)

Infinitesimal change in Y
(Calculus concept)

lim
∆x→0

Y

Figure 1.3: The calculus workflow.

We will learn much more
about limits in Chapter 2 (in-
cluding that (1.2) is actually
a “right-hand limit”). But the
Zeno example is sufficient to
give you a sense of what the
calculus concept of limit is and
how it arises. It also illustrates
this section’s title—the limit concept is the foundation on which the entire mansion
of calculus is built. Figure 1.3 illustrates the process of building a new calculus con-
cept that we will use over and over again throughout the book: start with a finite
change �x in a quantity Y that depends on x, then shrink �x to zero without letting
it equal zero (i.e., take the limit as �x→ 0) to arrive at a calculus result. Working
through this process—like we just did with the Zeno example, and like you can now
recognize in Figure 1.1—is part of what doing calculus is all about. This is what I
meant earlier when I said that calculus is the mathematics of infinitesimal change—
contentwise, calculus is the collection of what results when we apply the workflow
in Figure 1.3 to various quantities Y of real-world and mathematical interest.
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Three such quantities drove the historical development of calculus: instantaneous
speed, the slope of the tangent line, and the area under a curve. In the next section
we’ll preview how the calculus workflow in Figure 1.3 solved all of these problems.
(We’ll fill in the details in Chapters 3–5.)

1.3 The Three Difficult Problems That Led to the Invention
of Calculus

Calculus developed out of a need to solve three Big Problems (refer to Figure 1.4):1

1. The instantaneous speed problem: Calculate the speed of a falling object at a
particular instant during its fall. (See Figure 1.4(a).)

2. The tangent line problem:Given a curve and a point P on it, calculate the slope
of the line “tangent” to the curve at P. (See Figure 1.4(b).)

3. The area under the curve problem: Calculate the area under the graph of a
function and bounded by two x-values. (See Figure 1.4(c).)

Figure 1.4 already gives you a sense of why these problems were so difficult to
solve—the standard approach suggested by the problem itself just doesn’t work. For
example, you’ve been taught you need two points to calculate the slope of a line.
The tangent line problem asks you to calculate the slope of a line using just one
point (point P in Figure 1.4(b)). Similarly, we think of speed as “change in distance
divided by change in time.” How, then, can one possibly calculate the speed at an
instant, for which there is no change in time? These are examples of the sorts of
roadblocks that stood in the way of solving the three Big Problems.

(a) (b)

x x

yy

P

y = f (x)
y = f (x)

a b

(c)

Speed at this instant = ? Slope of this line = ? Area of the shaded region = ?

Figure 1.4: The three problems that drove the development of calculus.

1These may not seem like important problems. But their resolution revolutionized science, enabling the
understanding of phenomena as diverse as gravity, the spread of infectious diseases, and the dynamics of the world
economy.
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picture
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Figure 1.5: The calculus workflow (from Figure 1.3) applied to the three Big Problems.

But recall my first characterization of calculus: calculus is a dynamics mindset.
Nothing about Figure 1.4 says “dynamics.” Every image is a static snapshot of some-
thing (e.g., an area). So let’s calculus the figure. (Yep, I’m encouraging you to think
of calculus as a verb.)

Figure 1.5 illustrates the application of the calculus workflow (from Figure 1.3)
to each Big Problem. Each row uses a dynamics mindset to recast the problem as
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the limit of a sequence of similar quantities (e.g., slopes) involving finite changes.
Specifically:

. Row #1: The instantaneous speed of the falling apple is realized as the limit
of its average speeds �d

�t (ratios of changes in distance to changes in time) as
�t→ 0.

. Row #2: The slope of the tangent line is realized as the limit of the slopes of
the secant lines �y

�x (the gray lines in the figure) as �x→ 0.

. Row #3: The area under the curve is realized as the limit as �x→ 0 of the
area swept out from x= a up to �x past b.

The limit obtained in the second row of the figure is called the derivative of f (x)
at x= a, the x-value of point P. The limit obtained in the third row of the figure is
called the definite integral of f (x) between x= a and x= b. Derivatives and inte-
grals round out the three most important concepts in calculus (limits are the third).
We will discuss derivatives in Chapters 3 and 4 and integrals in Chapter 5, where
we’ll also fill in themathematical details associatedwith the three limits in Figure 1.5.

This completes my big picture overview of calculus. Looking back now at Fig-
ures 1.1, 1.2, and 1.5, I hope I’ve convinced you of the power of the calculus mindset
and the calculus workflow. We will employ both throughout the book. And because
the notion of a limit is at the core of the workflow, I’ll spend the next chapter teach-
ing you all about limits—their precise definition, the various types of limits, and the
myriad techniques to calculate them. See you in the next chapter.
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Ebbinghaus forgetting curve, 79
eccentricity, 122
Einstein, Albert: Theory of Relativity (increasing
mass), 35, 216; Theory of Relativity (length
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inflection point(s): definition of, 114; procedure for
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instantaneous rate of change, 50
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131 (see also Fundamental Theorem of Calculus);
evaluation of, 134 (see also Evaluation Theorem);
indefinite, 135; properties of, 138

integral sign, 129
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integrand, 129
integration: 128–131; of exponential functions,
141–142; limits of, 129; by parts, 143; of power
functions, 136; by substitution, 143–148

Intermediate Value Theorem, 21
Instantaneous Speed Problem, 5–7, 43–44, 125

jerk (derivative of acceleration), 78
jump discontinuity, 53

Law of Cooling (Newton’s), 79
Law of Reflection, 123. See also Fermat, Pierre de
Law of Refraction, 123. See also Fermat, Pierre de
Leibniz, Gottfried, 59, 59n2, 67, 74–75, 82–85, 88,
125, 128–129, 131, 191n5

life span (of mammals and humans), 187
Limit Laws, 21–22
limit(s): 4, 6–7; approaching infinity, 30–33;
calculating, 8–10, 25–29; of a composite function,
22; e (the number) as, 32; existence of, 11–13; of
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line: slope of, 181; tangent, 5–7, 47–48. See also
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linear model, 183.
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logarithmic function: definition of, 194; derivative
of, 72; graphs of, 195; limits involving, 19–20, 32,
35; natural, 194; properties of, 196

logistic function, 116, 224, 226
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Lorenz curve, 150–151
lung capacity, 158

mathematical modeling, 183
Mean Value Theorem, 93n2, A4

Napier, John, 191n5, 197n7. See also Neper, Jhone
Nash, John, 216–219
natural exponential function: definition of, 191–192;
derivative of, 57; limit of, 19–20

Neper, Jhone, 191n5, 197. See also Napier, John
net signed area (under a curve), 140
Newton, Isaac: 43–44, 122, 125, 152; Law of Cooling,
79; Universal Law of Gravity, 39, 78;

odd function, 156
one-sided limits, 8–13
optimization problems: examples of, 106–111,
216–222; strategy for solving, 110

Oresme, Nicole, 126

Pascal: triangle, 174–175, 227; units of
pressure, 197

payoff time for a loan, 212
period of a function, 205
piecewise defined function, 190
point-slope equation of a line, 182
polynomial function, 185
population density, 157
population growth: exponential model of, 211;
Gompertz model of, 121; logistic model of, 224

position function, 45n1, 149
power function(s): definition of, 185; derivative of,
62 (see also Power Rule); integration of, 136

Power Rule, 62
Prime Number Theorem, 157
Principle of Least Time, 123. See also Fermat,
Pierre de

Product Rule, 65
Pythagoras, 201. See also Pythagorean Theorem
Pythagorean Theorem, xvii, 84, 108, 166, 175–176,
201, 204, 213

quadratic formula, 171
Quotient Rule, 68

radian measure, 198
radioactive decay, 212
radiocarbon dating, 212
range: of a function, 179; of a projectile, 110
rate(s) of change: average, 50; derivative as, 50, ;
instantaneous, 50

rational function: continuity, 18; definition of, 188
related rates: 82–87, strategy for solving problems in,
85

Resting Metabolic Rate, 61, 61n4, 239
Riemann sum, 133
right-hand limit, 9
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Rule of 70, 40
rules of exponents, 173

savings account balance, 40, 212
secant line, 7, 47
second derivative, 74–75, 112–115
Second Derivative Test, 115
sine function: continuity of, 20; derivative of, 58;
graph of, 205–206; hyperbolic, 157; limits
involving, 27; integration of, 142

slope-intercept equation of a line, 180
Snell’s Law, 123–124
speed: instantaneous, 6–7, 43–47, 50, 75–76, 125,
127, 153; of sound, 78;

strategy for solving: optimization problems, 110;
related rates problems, 85

Substitution Rule, 144

tangent, vertical, 51–52
tangent function: derivative of, 73; graph of,
205–206; integration of, 146–147

tangent line: 5–7, 47–48. See also
derivative(s)

Tangent Line Problem, 5, 43, 47–48
third derivative, 74
trigonometric function(s): 205–208. See also sine
function; cosine function; tangent function

unemployment rate, 78
Universal Law of Gravity (Newton’s), 39, 78, 122

variables, dependent and independent, 177
velocity: of blood flowing through an artery, 119; as
the instantaneous rate of change of position, 45n1;
of a runner, 184; terminal, 41, 211–212

vertical asymptote, 33–34, 36–37, 187, 187n2, 188,
195, 216

Vertical Line Test, 194, 211
vertical tangent line, 51–52

water clock, 155
wind chill temperature, 63
wind power, 80, 121

Zeno of Elea, 2–4, 8
Zipf ’s law, 210
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