## Contents

Preface ..... $x i$
To the Student ..... xvii
To the Instructor ..... xix
Before You Begin ... ..... $x x i$
1 The Fast Track Introduction to Calculus ..... 1
1.1 What Is Calculus? ..... 1
Calculus as a Way of Thinking ..... 1
What Does "Infinitesimal Change" Mean? ..... 2
1.2 Limits: The Foundation of Calculus ..... 3
1.3 The Three Difficult Problems That Led to the Invention of Calculus ..... 5
2 Limits: How to Approach Indefinitely (and Thus Never Arrive) ..... 8
2.1 One-Sided Limits: A Graphical Approach ..... 8
2.2 Existence of One-Sided Limits ..... 11
2.3 Two-Sided Limits ..... 13
2.4 Continuity at a Point ..... 15
2.5 Continuity on an Interval ..... 17
2.6 The Limit Laws ..... 21
2.7 Calculating Limits—Algebraic Techniques ..... 25
2.8 Limits Approaching Infinity ..... 30
2.9 Limits Yielding Infinity ..... 33
2.10 Parting Thoughts ..... 37
Chapter 2 Exercises ..... 37
3 Derivatives: Change, Quantified ..... 43
3.1 Solving the Instantaneous Speed Problem ..... 43
3.2 Solving the Tangent Line Problem-The Derivative at a Point ..... 47
3.3 The Instantaneous Rate of Change Interpretation of the Derivative ..... 50
3.4 Differentiability: When Derivatives Do (and Don't) Exist ..... 51means without prior written permission of the publisher.
3.5 The Derivative, a Graphical Approach ..... 53
3.6 The Derivative, an Algebraic Approach ..... 55
Leibniz Notation ..... 59
3.7 Differentiation Shortcuts: The Basic Rules ..... 60
3.8 Differentiation Shortcuts: The Power Rule ..... 61
3.9 Differentiation Shortcuts: The Product Rule ..... 64
3.10 Differentiation Shortcuts: The Chain Rule ..... 65
3.11 Differentiation Shortcuts: The Quotient Rule ..... 68
3.12 (Optional) Derivatives of Transcendental Functions ..... 69
3.13 Higher-Order Derivatives ..... 74
3.14 Parting Thoughts ..... 75
Chapter 3 Exercises ..... 76
4 Applications of Differentiation ..... 82
4.1 Related Rates ..... 82
4.2 Linearization ..... 89
4.3 The Increasing/Decreasing Test ..... 93
4.4 Optimization Theory: Local Extrema ..... 98
4.5 Optimization Theory: Absolute Extrema ..... 101
4.6 Applications of Optimization ..... 106
4.7 What the Second Derivative Tells Us About the Function ..... 112
4.8 Parting Thoughts ..... 117
Chapter 4 Exercises ..... 118
5 Integration: Adding Up Change ..... 125
5.1 Distance as Area ..... 125
5.2 Leibniz's Notation for the Integral ..... 128
5.3 The Fundamental Theorem of Calculus ..... 130
5.4 Antiderivatives and the Evaluation Theorem ..... 133
5.5 Indefinite Integrals ..... 135
5.6 Properties of Integrals ..... 138
5.7 Net Signed Area ..... 139
5.8 (Optional) Integrating Transcendental Functions ..... 141
5.9 The Substitution Rule ..... 143
5.10 Applications of Integration ..... 148
5.11 Parting Thoughts ..... 152
Chapter 5 Exercises ..... 153
Epilogue ..... 159
Acknowledgments ..... 161
Appendix A: Review of Algebra and Geometry ..... 163
Appendix B: Review of Functions ..... 177
Appendix C: Additional Applied Examples ..... 215
Answers to Appendix and Chapter Exercises ..... 227
Bibliography ..... 239
Index of Applications ..... 241
Index of Subjects ..... 243

## 1 The Fast Track Introduction to Calculus

Chapter Preview. Calculus is a new way of thinking about mathematics. This chapter provides you with a working understanding of the calculus mindset, core concepts of calculus, and the sorts of problems they help solve. The focus throughout is on the ideas behind calculus (the big picture of calculus); the subsequent chapters discuss the math of calculus. After reading this chapter, you will have an intuitive understanding of calculus that will ground your subsequent studies of the subject. Ready? Let's start the adventure!

### 1.1 What Is Calculus?

Here's my two-part answer to that question:

> Calculus is a mindset-a dynamics mindset. Contentwise, calculus is the mathematics of infinitesimal change.

## Calculus as a Way of Thinking

The mathematics that precedes calculus-often called "pre-calculus," which includes algebra and geometry-largely focuses on static problems: problems devoid of change. By contrast, change is central to calculus-calculus is about dynamics. Example:

- What's the perimeter of a square of side length 2 feet? $\longleftarrow$ Pre-calculus problem.
- How fast is the square's perimeter changing if its side length is increasing at the constant rate of 2 feet per second? $\longleftarrow$ Calculus problem.

This statics versus dynamics distinction between pre-calculus and calculus runs even deeper-change is the mindset of calculus. The subject trains you to think of a problem in terms of dynamics (versus statics). Example:

- Find the volume of a sphere of radius $r$. Pre-calculus mindset: Use $\frac{4}{3} \pi r^{3}$ (Figure 1.1(a)).
- Find the volume of a sphere of radius $r$. Calculus mindset: Slice the sphere into a gazillion disks of tiny thickness and then add up their volumes (Figure 1.1(b)). When the disks' thickness is made "infinitesimally small" this approach reproduces the $\frac{4}{3} \pi r^{3}$ formula. (We will discuss why in Chapter 5.)


Figure 1.1: Visualizing the volume of a sphere via (a) a pre-calculus mindset and (b) a calculus mindset.

There's that mysterious word again-infinitesimal—and I've just given you a clue of what it might mean. I'll soon explain. Right now, let me pause to address a thought you might have just had: "Why the slice-and-dice approach? Why not just use the $\frac{4}{3} \pi r^{3}$ formula?" The answer: had I asked for the volume of some random blob in space instead, that static pre-calculus mindset wouldn't have cut it (there is no formula for the volume of a blob). The dynamics mindset of calculus, on the other hand, would have at least led us to a reasonable approximation using the same slice-and-dice approach.

That volume example illustrates the power of the dynamics mindset of calculus. It also illustrates a psychological fact: shedding the static mindset of pre-calculus will take some time. That was the dominant mindset in your mathematics courses prior to calculus mathematics courses, so you're accustomed to thinking that way about math. But fear not, young padawan (a Star Wars reference), I am here to guide you through the transition into calculus' dynamics mindset. Let's continue the adventure by returning to what I've been promising: insight into infinitesimals.

## What Does "Infinitesimal Change" Mean?

The volume example earlier clued you in to what "infinitesimal" might mean. Here's a rough definition:
> "Infinitesimal change" means: as close to zero change as you can imagine, but not zero change.

Let me illustrate this by way of Zeno of Elea (c. 490-430 BC), a Greek philosopher who devised a set of paradoxes arguing that motion is not possible. (Clearly, Zeno did not have a dynamics mindset.) One such paradox-the Dichotomy Paradoxcan be stated as follows:

To travel a certain distance you must first traverse half of it.
Figure 1.2 illustrates this. Here Zeno is trying to walk a distance of 2 feet. But because of Zeno's mindset, with his first step he walks only half the distance: 1 foot


Figure 1.2: Zeno trying to walk a distance of 2 feet by traversing half the remaining distance with each step.
(Figure 1.2(b)). He then walks half of the remaining distance in his second step: 0.5 foot (Figure 1.2(c)). Table 1.1 keeps track of the total distance $d$, and the change in distance $\Delta d$, after each of Zeno's steps.

Table 1.1: The distance $d$ and change in distance $\Delta d$ after each of Zeno's steps.

| $\Delta d$ | 1 | 0.5 | 0.25 | 0.125 | 0.0625 | 0.03125 | 0.015625 | 0.0078125 | $\cdots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $d$ | 1 | 1.5 | 1.75 | 1.875 | 1.9375 | 1.96875 | 1.984375 | 1.9921875 | $\cdots$ |

Each change $\Delta d$ in Zeno's distance is half the previous one. So as Zeno continues his walk, $\Delta d$ gets closer to zero but never becomes zero (because each $\Delta d$ is always half of a positive number). If we checked back in with Zeno after he's taken an infinite amount of steps, the change $\Delta d$ resulting from his next step would be $\ldots$ drum roll please . . . an infinitesimal change-as close to zero as you can imagine but not equal to zero.

This example, in addition to illustrating what an infinitesimal change is, also does two more things. First, it illustrates the dynamics mindset of calculus. We discussed Zeno walking; we thought about the change in the distance he traveled; we visualized the situation with a figure and a table that each conveyed movement. (Calculus is full of action verbs!) Second, the example challenges us. Clearly, one can walk 2 feet. But as Table 1.1 suggests, that doesn't happen during Zeno's walk-he approaches the 2 -foot mark with each step yet never arrives. How do we describe this fact with an equation? (That's the challenge.) No pre-calculus equation will do. We need a new concept that quantifies our very dynamic conclusion. That new concept is the mathematical foundation of calculus: limits.

### 1.2 Limits: The Foundation of Calculus

Let's return to Table 1.1. One thing you may have already noticed: $\Delta d$ and $d$ are related. Specifically:

$$
\begin{equation*}
\Delta d+d=2, \quad \text { or equivalently, } \quad d=2-\Delta d \tag{1.1}
\end{equation*}
$$

This equation relates each $\Delta d$ value to its corresponding $d$ value in Table 1.1. Great. But it is not the equation we are looking for, because it doesn't encode the dynamics inherent in the table. The table clearly shows that the distance $d$ traveled by Zeno approaches 2 as $\Delta d$ approaches zero. We can shorten this to

$$
d \rightarrow 2 \text { as } \Delta d \rightarrow 0 .
$$

(We are using " $\rightarrow$ " here as a stand-in for "approaches.") The table also reiterates what we already know: were we to let Zeno continue his walk forever, he would be closer to the 2 -foot mark than anyone could measure; in calculus we say: "infinitesimally close to 2." To express this notion, we write

$$
\begin{equation*}
\lim _{\Delta d \rightarrow 0} d=2, \tag{1.2}
\end{equation*}
$$

read "the limit of $d$ as $\Delta d \rightarrow 0$ (but is never equal to zero) is 2 ."
Equation (1.2) is the equation we've been looking for. It expresses the intuitive idea that the 2 -foot mark is the limiting value of the distance $d$ Zeno's traversing. (This explains the "lim" notation in (1.2).) Equation (1.2), therefore, is a statement about the dynamics of Zeno's walk, in contrast to (1.1), which is a statement about the static snapshots of each step Zeno takes. Moreover, the Equation (1.2) reminds us that $d$ is always approaching 2 yet never arrives at 2 . The same idea holds for $\Delta d$ : it is always approaching 0 yet never arrives at 0 . Said more succinctly:

Limits approach indefinitely (and thus never arrive).
We will learn much more about limits in Chapter 2 (including that (1.2) is actually a "right-hand limit"). But the Zeno example is sufficient to give you a sense of what the calculus concept of limit is and


Figure 1.3: The calculus workflow. how it arises. It also illustrates this section's title-the limit concept is the foundation on which the entire mansion of calculus is built. Figure 1.3 illustrates the process of building a new calculus concept that we will use over and over again throughout the book: start with a finite change $\Delta x$ in a quantity $Y$ that depends on $x$, then shrink $\Delta x$ to zero without letting it equal zero (i.e., take the limit as $\Delta x \rightarrow 0$ ) to arrive at a calculus result. Working through this process-like we just did with the Zeno example, and like you can now recognize in Figure 1.1-is part of what doing calculus is all about. This is what I meant earlier when I said that calculus is the mathematics of infinitesimal changecontentwise, calculus is the collection of what results when we apply the workflow in Figure 1.3 to various quantities $Y$ of real-world and mathematical interest.

Three such quantities drove the historical development of calculus: instantaneous speed, the slope of the tangent line, and the area under a curve. In the next section we'll preview how the calculus workflow in Figure 1.3 solved all of these problems. (We'll fill in the details in Chapters 3-5.)

### 1.3 The Three Difficult Problems That Led to the Invention of Calculus

Calculus developed out of a need to solve three Big Problems (refer to Figure 1.4): ${ }^{1}$

1. The instantaneous speed problem: Calculate the speed of a falling object at a particular instant during its fall. (See Figure 1.4(a).)
2. The tangent line problem: Given a curve and a point $P$ on it, calculate the slope of the line "tangent" to the curve at $P$. (See Figure 1.4(b).)
3. The area under the curve problem: Calculate the area under the graph of a function and bounded by two $x$-values. (See Figure 1.4(c).)

Figure 1.4 already gives you a sense of why these problems were so difficult to solve-the standard approach suggested by the problem itself just doesn't work. For example, you've been taught you need two points to calculate the slope of a line. The tangent line problem asks you to calculate the slope of a line using just one point (point $P$ in Figure 1.4(b)). Similarly, we think of speed as "change in distance divided by change in time." How, then, can one possibly calculate the speed at an instant, for which there is no change in time? These are examples of the sorts of roadblocks that stood in the way of solving the three Big Problems.

(a)

Slope of this line = ?

(b)

Area of the shaded region $=$ ?

(c)

Figure 1.4: The three problems that drove the development of calculus.

[^0]

Figure 1.5: The calculus workflow (from Figure 1.3) applied to the three Big Problems.
But recall my first characterization of calculus: calculus is a dynamics mindset. Nothing about Figure 1.4 says "dynamics." Every image is a static snapshot of something (e.g., an area). So let's calculus the figure. (Yep, I'm encouraging you to think of calculus as a verb.)

Figure 1.5 illustrates the application of the calculus workflow (from Figure 1.3) to each Big Problem. Each row uses a dynamics mindset to recast the problem as
the limit of a sequence of similar quantities (e.g., slopes) involving finite changes. Specifically:

- Row \#1: The instantaneous speed of the falling apple is realized as the limit of its average speeds $\frac{\Delta d}{\Delta t}$ (ratios of changes in distance to changes in time) as $\Delta t \rightarrow 0$.
- Row \#2: The slope of the tangent line is realized as the limit of the slopes of the secant lines $\frac{\Delta y}{\Delta x}$ (the gray lines in the figure) as $\Delta x \rightarrow 0$.
- Row \#3: The area under the curve is realized as the limit as $\Delta x \rightarrow 0$ of the area swept out from $x=a$ up to $\Delta x$ past $b$.

The limit obtained in the second row of the figure is called the derivative of $f(x)$ at $x=a$, the $x$-value of point $P$. The limit obtained in the third row of the figure is called the definite integral of $f(x)$ between $x=a$ and $x=b$. Derivatives and integrals round out the three most important concepts in calculus (limits are the third). We will discuss derivatives in Chapters 3 and 4 and integrals in Chapter 5, where we'll also fill in the mathematical details associated with the three limits in Figure 1.5.

This completes my big picture overview of calculus. Looking back now at Figures 1.1, 1.2, and 1.5, I hope I've convinced you of the power of the calculus mindset and the calculus workflow. We will employ both throughout the book. And because the notion of a limit is at the core of the workflow, I'll spend the next chapter teaching you all about limits-their precise definition, the various types of limits, and the myriad techniques to calculate them. See you in the next chapter.

## Index of Applications

## Physical Sciences

Acceleration of falling object, 75
Acceleration due to gravity as a function of altitude, 78
Acceleration due to gravity as a function of latitude, 42
Acceleration of gravity on the Moon, 127
Average low temperature of New York City, 207
Average speed, 43
Cosmic Microwave Background radiation (related to the Big Bang Theory), 121
Converting Celsius to Fahrenheit, 183
Einstein's Theory of Relativity (increasing mass), 216
Einstein's Theory of Relativity (length contraction), 215
Einstein's Theory of Relativity (time dilation), 39
Estimating distance to the horizon based on altitude, 210
Estimating Earth's radius using trigonometry, 200
Estimating the age of the universe, 210
Estimating the minimum runway length needed for a jetliner to safely take off, 226
Fermat's Principle of Least Time, 123
Fermat's proof of the Laws of Reflection and Refraction, 123
How temperature variations change the speed of sound, 78
Instantaneous speed, 43-46
Jerk (derivative of acceleration), 78
Loudness of a sound (decibel scale), 196
Newton's Universal Law of Gravity, 39
Planetary orbits around the Sun, 122
Projectile motion and the parabolic trajectories of sufficiently heavy airborne objects, 155
Radioactive decay and radioactive dating, 212
Range of a projectile, 110
Snell's/Ibn Sahl's Law of Refraction, 123
Terminal velocity (of a falling raindrop), 211

The trigonometry of electric current, 214
Thermostat (average temperature), 158
Velocity of a runner, 184
Wind chill temperature, 63
Wind power, 80, 121

## Life Sciences

Cardiac output, 154
Estimating the change in blood pressure due to artery constriction, 210
Lung capacity, 158
Mammals' lifespan and heart rate, 187
Maximizing airstream velocity during a cough, 106
Maximizing blood velocity, 119
Optimal branching angle of a blood vessel, 220
Population growth: exponential growth, 211;
Gompertz curves, 121; logistic equation, 224
Resting Metabolic Rate (RMR), 61
Spread of the common cold, 224
Vitamin intake, 10

## Business and Economics

Airfare revenue for an airline company, 91
Balance of savings account that pays interest $n$ times a year, 40, 212
Calculating a loan's payoff time, 212
Compound interest, 193
Continuous compounding of interest, A2
Cost of monthly cell phone service, 209
Income inequality (via the Gini coefficient), 150
Maximizing average revenue on Amazon.com, 119
Minimizing the amount of material used to construct a soda can, 107
Optimal holding time for an asset, 219
Rule of 70 (approximates the doubling time of a savings account balance), 40

Saving for retirement via the compounding effect, 212
Student loan payments, 78
Taxi fare, 39
Unemployment rate, 78

## Sports

Andersen Fitness Test, 149
Football and the quadratic equation, 209
Maximum heart rate, 56, 209
Minimizing time spent doing an aquathlon (a swim-run event), 119
Velocity of a runner, 184

## Social and Behavioral Sciences

Ebbinghaus forgetting curve, 79
Frequency of common words in a book, 210
Optimal decision-making between two parties, 216 Population density, 157

The cube rule in political science (relates U.S. presidential election outcome to the distribution of seats in the U.S. House of Representatives), 222
The experience curve, 156

## Other

Designing a rectangular bedroom with maximum living space, 103
Measuring time using a water clock, 155
Measuring time using a pendulum, 81
Minimizing commuting time to work, 108
Minimizing the force required to pull a heavy box, 122
The calculus of cooling coffee, 79
The normal distribution ("bell curve") in statistics, 120
The trigonometry of colors, 213
The trigonometry of music, 213

## Subject Index

absolute maximum and minimum values: definition of, 101; procedure for calculating, 102; theorem on the existence of, 105
absolute value function, definition of, 168
acceleration: 75; derivative of (jerk), 78; measured using a pendulum, 78
acceleration due to gravity on Earth: of a falling object, 125 ; as a function of altitude, 78 ; as a function of latitude, 42
acceleration due to gravity on the Moon, 127
age of the Universe, 210
addition formulas for sine and cosine, 204
allometric scaling laws, 187, 187n3
Andersen Fitness Test, 149
antiderivative(s): definition of, 133; general form of, 135; relation to indefinite integral (see indefinite integral), 135; usage in the Fundamental Theorem of Calculus, 134-135 (see also Fundamental Theorem of Calculus)
aquathlon, 119
arc length, 198-200
area: of a circle, approximated by using inscribed triangles, 214; of a circle, expressed as a limit, 41; formulas for various shapes, 166 ; under the graph of $f$ from $a$ to $b, 5-7,128-131$; relation to distance traveled by an object in motion, 125-128
Area under the Curve Problem, 5, 117, 125, 133, 135
asymptote(s): horizontal, 30-34, 192; vertical, 33-37, 187, 187n2, 188, 195
average revenue, 119
average rate of change: 50
average speed, 7, 43-45, 76
average temperature, 158, 207
average value of a function, 157
base: change of, 196; of an exponential function, 191; of a logarithm, 194
bell curve (normal distribution in statistics), 120

Big Bang Theory, 121, 210
blood pressure, 210
calculus: as the mathematics of infinitesimal change, 2,159 ; as a way of thinking, 1,159
cardiac output, 154
carrying capacity (of logistic function), 224. See also logistic function
Chain Rule, 65-66; as the differentiation counterpart of the Substitution Rule for integration, 143; in Leibniz notation, 67; used to differentiate an implicit function, 88
change of base in a logarithm, 196
composite function: definition of, 189; continuity of, 18; derivative of, 65-66 (see also Chain Rule)
compound interest, $40,193,212$
concavity: change in, 114 (see also inflection point); definition of, 113; test for, 113
Concavity Test, 113
continuity: criteria for (at a point), 16; definition of (at a point), 15 ; definition of (on an interval), 17
continuous compounding of interest, 230
cosine function: continuity of, 20 ; derivative of, 58 ; graph of, 205-206; hyperbolic, 157; integral of, 142; limits involving, 27
Cosmic Microwave Background radiation, 121
critical number(s), definition of, 94
critical point(s), definition of, 94
critical value(s), definition of, 94
Cube Rule (in political science), 222
decibel scale, 196
definite integral: 7, 129; evaluation of, 134 (see also Evaluation Theorem); interpretation as a net change, 150 ; interpretation as a net signed area, 140; interpretation of, 150; notation for, 129; properties of, 138
dependent variable, 177
derivative(s): 7, 43, 48; of a composite function, 66 (see also Chain Rule); of a constant function, 56; existence of, 51-52; of exponential functions, 57 , 69-70; as a function, 53-55; of a function $f$ at a number $a, 48$; higher-order, 74; of an integral, 131 (see also Fundamental Theorem of Calculus); interpretation as an instantaneous rate of change, 50 ; interpretation as the slope of a tangent line, 48; of logarithmic functions, 72 ; notation for, 48,59 ; of a power function, 62 (see also Power Rule); of a product, 65 (see also Product Rule); of a quotient, 68 (see also Quotient Rule); second, 74; of trigonometric functions, 58
Difference Rule for limits, 60
differentiable function: 52; relation to continuity, 53
differentiation: implicit, 88; as inverse process of integration, 133
differentiation operator, 59
displacement, 149
distance formula, 176
domain of a function, 178
$e$ (the number): 193; as a limit involving infinity, 32
Ebbinghaus forgetting curve, 79
eccentricity, 122
Einstein, Albert: Theory of Relativity (increasing mass), 35, 216; Theory of Relativity (length contraction), 19, 215; Theory of Relativity (time dilation), 39
electromagnetic wave, 213
electric current, 214
Erastosthenes, 200
Euclid, 159, 200-203
Euler's number, 32, 193-194. See also e (the number)
Evaluation Theorem, 134
even function, 156
experience curve, 156
exponential decay, 192
exponential function(s): definition of, 191;
derivative of, 57, 69-70; integration of, 141-142,
146; limits involving, 19-20, 32-33, 35
exponential growth, 192
Extreme Value Theorem, 105

Fermat, Pierre de: Law of Reflection, 123; Principle of Least Time, 123; theorem relating local extrema of a function $f$ to its critical numbers, 101
financial independence number, 198

First Derivative Test, 99-100, 115
function(s): absolute value, 168; algebraic, 185; average value of, 157; combinations of, 185-190; composite, 189; composition of, 189; concavity of, 113; continuous, 15,17 ; definition of, 178 ; derivative of, 55 ; differentiable, 52 ; domain of, 178; even, 156; exponential, 191; extreme values of, 101; graph of, 179; implicit, 88 ; limit of, 14 ; linear, 180; logarithmic, 193-194; natural exponential, 191; natural logarithm, 193-194; odd, 156; periodic, 205; piecewise defined, 190; polynomial, 185; position, $45 \mathrm{n} 1,149$; power, 185 ; quadratic, 185 ; range of, 179; rational, 188; trigonometric, 198; value of, 178
Fundamental Theorem of Calculus, 131. See also Evaluation Theorem

Galileo Galilei, 44, 125-126, 152
Gini coefficient, 150
Gompertz survival curves, 121
graph(s): of exponential functions, 192; of a function, 179; of logarithmic functions, 195; of power functions, 186; of trigonometric functions, 205-206
half-life, 212
heart rate: of mammals and humans, 187; maximum (in humans), 56, 76, 209
higher-order derivatives, 74
horizontal asymptote, 30
Hubble, Edwin, 210; Hubble's Law 210

Increasing/Decreasing Test, 93
implicit differentiation, 88
implicit function, 88
indefinite integral(s), 135
income inequality, 151. See also Gini coefficient
infinitesimal change, $1-4,8,37,45,59,68,75-76$, $128,128 n 1,130,159$
inflation, 193
inflection point(s): definition of, 114; procedure for calculating, 114
instantaneous rate of change, 50
integral(s): 7, 125, 129; definite, 129; derivative of, 131 (see also Fundamental Theorem of Calculus); evaluation of, 134 (see also Evaluation Theorem); indefinite, 135; properties of, 138
integral sign, 129
integrand, 129
integration: 128-131; of exponential functions, 141-142; limits of, 129 ; by parts, 143 ; of power functions, 136; by substitution, 143-148
Intermediate Value Theorem, 21
Instantaneous Speed Problem, 5-7, 43-44, 125
jerk (derivative of acceleration), 78
jump discontinuity, 53

Law of Cooling (Newton's), 79
Law of Reflection, 123. See also Fermat, Pierre de
Law of Refraction, 123. See also Fermat, Pierre de
Leibniz, Gottfried, 59, 59n2, 67, 74-75, 82-85, 88, $125,128-129,131,191 \mathrm{n} 5$
life span (of mammals and humans), 187
Limit Laws, 21-22
limit(s): 4, 6-7; approaching infinity, 30-33;
calculating, $8-10,25-29$; of a composite function, 22 ; $e$ (the number) as, 32 ; existence of, 11-13; of exponential functions, 19-20; of a function, 14 ; infinite, 33-37; intuitive definition of, 14; laws, 22; left-hand, 9 ; of logarithmic functions, ; one-sided, 9-11; properties of, ; right-hand, 9; two-sided, 13-15; of trigonometric functions, 20-21
limits of integration, 129
line: slope of, 181; tangent, 5-7, 47-48. See also derivative(s)
linear approximation, 89
linear function, 180
linear model, 183.
linearization, 89
local maximum and minimum values, 99
logarithmic function: definition of, 194; derivative
of, 72; graphs of, 195; limits involving, 19-20, 32,
35; natural, 194; properties of, 196
logistic function, 116, 224, 226
Lorentz contraction, 215
Lorenz curve, 150-151
lung capacity, 158
mathematical modeling, 183
Mean Value Theorem, 93n2, A4

Napier, John, 191n5, 197n7. See also Neper, Jhone Nash, John, 216-219
natural exponential function: definition of, 191-192; derivative of, 57; limit of, 19-20

Neper, Jhone, 191n5, 197. See also Napier, John net signed area (under a curve), 140
Newton, Isaac: 43-44, 122, 125, 152; Law of Cooling,
79; Universal Law of Gravity, 39, 78;
odd function, 156
one-sided limits, $8-13$
optimization problems: examples of, 106-111, 216-222; strategy for solving, 110
Oresme, Nicole, 126

Pascal: triangle, 174-175, 227; units of pressure, 197
payoff time for a loan, 212
period of a function, 205
piecewise defined function, 190
point-slope equation of a line, 182
polynomial function, 185
population density, 157
population growth: exponential model of, 211;
Gompertz model of, 121; logistic model of, 224
position function, $45 \mathrm{n} 1,149$
power function(s): definition of, 185; derivative of,
62 (see also Power Rule); integration of, 136
Power Rule, 62
Prime Number Theorem, 157
Principle of Least Time, 123. See also Fermat, Pierre de
Product Rule, 65
Pythagoras, 201. See also Pythagorean Theorem
Pythagorean Theorem, xvii, 84, 108, 166, 175-176, 201, 204, 213
quadratic formula, 171
Quotient Rule, 68
radian measure, 198
radioactive decay, 212
radiocarbon dating, 212
range: of a function, 179; of a projectile, 110
rate(s) of change: average, 50 ; derivative as, 50 , ;
instantaneous, 50
rational function: continuity, 18; definition of, 188
related rates: $82-87$, strategy for solving problems in, 85
Resting Metabolic Rate, 61, 61n4, 239
Riemann sum, 133
right-hand limit, 9

Rule of 70, 40
rules of exponents, 173
savings account balance, 40, 212
secant line, 7, 47
second derivative, 74-75, 112-115
Second Derivative Test, 115
sine function: continuity of, 20; derivative of, 58 ; graph of, 205-206; hyperbolic, 157; limits involving, 27; integration of, 142
slope-intercept equation of a line, 180
Snell's Law, 123-124
speed: instantaneous, 6-7, 43-47, 50, 75-76, 125, 127, 153; of sound, 78;
strategy for solving: optimization problems, 110; related rates problems, 85
Substitution Rule, 144
tangent, vertical, 51-52
tangent function: derivative of, 73; graph of, 205-206; integration of, 146-147
tangent line: 5-7, 47-48. See also derivative(s)

Tangent Line Problem, 5, 43, 47-48
third derivative, 74
trigonometric function(s): 205-208. See also sine function; cosine function; tangent function
unemployment rate, 78
Universal Law of Gravity (Newton's), 39, 78, 122
variables, dependent and independent, 177
velocity: of blood flowing through an artery, 119; as the instantaneous rate of change of position, 45 n 1 ; of a runner, 184; terminal, 41, 211-212
vertical asymptote, 33-34, 36-37, 187, 187n2, 188, 195, 216
Vertical Line Test, 194, 211
vertical tangent line, 51-52
water clock, 155
wind chill temperature, 63
wind power, 80,121
Zeno of Elea, 2-4, 8
Zipf's law, 210


[^0]:    ${ }^{1}$ These may not seem like important problems. But their resolution revolutionized science, enabling the understanding of phenomena as diverse as gravity, the spread of infectious diseases, and the dynamics of the world economy.

