Contents

Ac	Acknowledgments		xi	
1	Intr	oduction	1	
2	CA	Γ(0) Cube Complexes	3	
		Basic Definitions	3	
	$2.\mathrm{b}$	Right-Angled Artin Groups	3	
	2.c	Hyperplanes in CAT(0) Cube Complexes	4	
	2.d	Geodesics and the Metric	4	
	2.e	Properties of Minimal Area Cubical Disk Diagrams	5	
	2.f	Convexity	12	
	2.g	Hyperplanes and Their Carriers	13	
	$2.\mathrm{h}$	Splaying and Rectangles	17	
	2.i	Annuli	20	
	2.j	Annular Diagrams and Malnormality	22	
	2.k	Convex Cores	24	
	2.1	Superconvexity	27	
3	Cubical Small-Cancellation Theory		30	
	3.a	Introduction	30	
	$3.\mathrm{b}$	Cubical Presentations	31	
	3.c	Pieces	33	
	3.d	Some Small-Cancellation Conditions to Bear in Mind	37	
	3.e	Disk Diagrams and Reduced Disk Diagrams	37	
	3.f	Rectified Disk Diagrams	44	
	$3.\mathrm{g}$	Gauss-Bonnet Theorem	50	
	$3.\mathrm{h}$	Assigning the Angles	51	
	3.i	Nonpositive Curvature of Shards	54	
	3.j	Tables of Small Shards	58	
	3.k	Nonpositive Curvature of Cone-Cells via Small-Cancellation	58	
	3.1	Internal Cone-Cells That Do Not Self-Collide	64	
	$3.\mathrm{m}$	More General Small-Cancellation Conditions and		
		Involved Justification	67	
	3.n	Informal Discussion of the Limits of the Theory	69	
	3.0	Nonpositively Curved Angling Rules	70	

CONTENTS

	$3.\mathrm{p}$	Positive Curvature along Boundary	71
	3.q	Ladder Theorem	72
	3.r	Trichotomy for Reduced Diagrams	76
	3.s	Examples	76
	3.t	Examples Arising from Special Cube Complexes	78
	3.u	Graded Small-Cancellation	80
	3.v	Some Graded Examples	81
	3.w	Graded Metric Small-Cancellation	82
	3.x	Missing Shells and Injectivity	86
	3.y	Short Innerpaths and Quasiconvexity	89
4	Torsion and Hyperbolicity		
	4.a	Cones Embed	94
	4.b	Torsion	94
	4.c	Hyperbolicity	97
5	Nev	v Walls and the $B(6)$ Condition	99
	5.a	Introduction	99
	$5.\mathrm{b}$	Total Defects of Paths in Cones	99
	5.c	Generalization of the $B(6)$ Condition	100
	5.d	Cyclic Quotients and the $B(6)$ Condition	102
	5.e	Embedding Properties of the Cones and	
		Hyperplane Carriers	103
	5.f	Defining Immersed Walls in X^*	109
	5.g	No Inversions	120
	$5.\mathrm{h}$	Carriers and Quasiconvexity	121
	5.i	Bigons	130
	5.j	Square Cones	133
	5.k	1-Dimensional Linear Separation	136
	5.1	Obtaining Proper Actions on the Dual	138
		Codimension-1 Subgroup Preserved	147
	5.n	Elliptic Annuli	148
	5.0	Annular Diagrams and the $B(8)$ Condition	151
	5.p	Doubly Collared Annular Diagrams	157
	5.q	Malnormality of Wall Stabilizers	161
	5.r	Artin Groups	164
6	Special Cube Complexes		
	6.a	Immersed Hyperplanes	166
	6.b	Hyperplane Definition of Special Cube Complex	166
	6.c	Right-Angled Artin Group Characterization	167
	6.d	Canonical Completion and Retraction	168
	6.e	Double Cosets and Virtual Specialness	171
	6.f	Extensions of Quasiconvex Codimension-1 Subgroups	171
	6.g	The Malnormal Combination Theorem	180

viii

CONTENTS

7	Cubulations	181	
	7.a Wallspaces	181	
	7.b Sageev's Construction	182	
	7.c Finiteness Properties of the Dual Cube Complex	183	
	7.d Virtually Cubulated	187	
	7.e Sparse Complexes	189	
	7.f Useful Subwallspaces	203	
	7.g Cubulating Amalgams	215	
8	Malnormality and Fiber-Products		
	8.a Height and Virtual Almost Malnormality	218	
	8.b Fiber-Products	220	
	8.c Graded Systems	223	
0	Splicing Walls	225	
9	Splicing Walls9.aFinite Cover That Is a Wallspace	225 225	
	9.b Preservation of Small-Cancellation and Obtaining	220	
	Wall Convexity	226	
	9.c Obtaining the Separation Properties for Pseudographs	220	
	G T	-	
10	Cutting X^*		
	10.a Hierarchies of Cubical Presentations	232	
	10.b Inflations	233	
	10.c Some Persistent Properties	235	
	10.d Additional Splitting along Conepoints	237	
11	Hierarchies	242	
12	Virtually Special Quotient Theorem	246	
	12.a Malnormal Special Quotient Theorem	246	
	12.b Proof of the Special Quotient Theorem	249	
	12.c Adding Higher Grade Relators	251	
	12.d Controlling Intersections in Quotient	255	
13	Amalgams of Virtually Special Groups	266	
10	13.a Virtually Special Amalgams	266	
	Tota (notani, special rinaganis	200	
14	Large Fillings Are Hyperbolic and Preservation		
	of Quasiconvexity	272	
	14.a Hyperbolic Fillings	272	
	14.b Quasiconvex Image	276	
15	Relatively Hyperbolic Case	281	
	15.a Introduction	281	
	15.b Parabolic Fillings That Are Virtually Special	283	

CONTENTS

	15.c Separability for Relatively Hyperbolic Hierarchies	286
	15.d Residually Verifying the Double Coset Criterion	287
	15.e Relative Malnormality and Separability	291
	15.f The Hierarchy in the Relatively Hyperbolic Setting	292
16	Largeness and Omnipotence	304
	16.a Virtual Separation and Largeness	304
	16.b Omnipotence	306
17	Hyperbolic 3-Manifolds with a Geometrically Finite	
	Incompressible Surface	310
	17.a Some Background on 3-Manifolds	311
	17.b Aparabolic Hierarchy	313
	17.c Virtual Specialness of Hyperbolic 3-Manifolds	
	with Boundary	314
	17.d Cutting All Tori with First Surface	316
18	Limit Groups and Abelian Hierarchies	321
	18.a Limit Groups	321
	18.b Abelian Hierarchies	325
19	Application Towards One-Relator Groups	
	19.a Overview	333
	19.b The Magnus-Moldavanskii Hierarchy	334
	19.c Quasiconvexity Using the Strengthened Spelling Theorem	337
	19.d Staggered 2-Complex with Torsion	340
20	Problems	343
References		
Index		

Chapter One

Introduction

This text has several parts:

In the first part of the text we develop a small-cancellation theory over cube complexes. When the cube complex is 1-dimensional, we obtain the classical small-cancellation theory, as well as the closely related Gromov graphical smallcancellation theory.

It is hard to say what the main result is in the first part, since it seems the definitions are more important than the theorems. For this and the second part, the reader might wish to scan the table of contents to get a feel for what is going on. We give the following sample result to give an idea of the scope here. In ordinary small-cancellation theory, when W_1, \ldots, W_r represent distinct conjugacy classes, the presentation $\langle a, b, \ldots | W_1^{n_1}, \ldots, W_r^{n_r} \rangle$ is "small-cancellation" for sufficiently large n_i . In analogy with this we have the following:

C6-sample. Let X be a nonpositively curved cube complex. Let $Y_i \to X$ be a localisometry with Y_i compact for $1 \le i \le r$ such that each $\pi_1 Y_i$ is malnormal, and $\pi_1 Y_i, \pi_1 Y_j$ do not share any nontrivial conjugacy classes. Then $\langle X | \hat{Y}_1, \ldots, \hat{Y}_r \rangle$ is a "small-cancellation" cubical presentation for sufficiently large "girth" finite covers $\hat{Y}_i \to Y_i$.

Many other general small-cancellation theories have been propounded. For instance two such graded theories directed especially towards Burnside groups were produced by Olshanskii and McCammond. Stimulated by Gromov's ideas of small-cancellation over word-hyperbolic groups, there have been later important works of Olshanskii, followed by more recent theories "over relatively hyperbolic groups" by Osin [Osi06] and Groves-Manning [GM08]. The theory we propose is decidedly more geometric, and arguably favors explicitness over scope. However, although it may be more limited by presupposing a nonpositively curved cube complex as a starting point, it has the advantage of not presupposing (relative) hyperbolicity—yet some form of hyperbolicity must lurk inside for there to be any available small-cancellation.

In the second part of the text we impose additional conditions that lead to the existence of a wallspace structure on the resulting small-cancellation presentation. We can illustrate the nature of the results with the following sample:

CHAPTER 1

B6-sample. Let G be an infinite word-hyperbolic group acting properly and cocompactly on a CAT(0) cube complex. Let H_1, \ldots, H_k be quasiconvex subgroups that are not commensurable with G. And suppose that each H_i has separable hyperplane stabilizers. There exist finite index subgroups H'_1, \ldots, H'_k such that the quotient $G/\langle\langle H'_1, \ldots, H'_k \rangle\rangle$ has a codimension-1 subgroup.

Here $\langle\!\langle A, B, \ldots \rangle\!\rangle$ denotes the normal closure of $\{A \cup B \cup \cdots \}$ in the group.

In the third part of the text, we probe further and seek a virtually special cubulation.

We then prove the following:

Theorem A (Special Quotient Theorem). Let G be a word-hyperbolic group that is virtually the fundamental group of a compact special cube complex. Let H_1, \ldots, H_r be quasiconvex subgroups of G. Then there are finite index subgroups $H'_i \subset H_i$ such that: $G/\langle\langle H'_1, H'_2, \ldots, H'_r \rangle\rangle$ is virtually special.

We then prove the following:

Theorem B (Quasiconvex Hierarchy \Rightarrow Virtually Special). Let G be a wordhyperbolic group with a quasiconvex hierarchy, in the sense that it can be decomposed into trivial groups by finitely many HNN extensions and amalgamated free products along quasiconvex subgroups. Then G is virtually special.

There are two important applications of the virtual specialness of groups with a quasiconvex hierarchy: It is applied to hyperbolic 3-manifolds with a geometrically finite incompressible surface to reveal their virtually special structure. This resolves the subgroup separability problem for fundamental groups of such manifolds. It also completes a proof that Haken hyperbolic 3-manifolds are virtually fibered. It is also applied to resolve Baumslag's conjecture on the residual finiteness of one-relator groups with torsion.

The fourth part of the text deals with groups that are hyperbolic relative to virtually abelian subgroups, and provides similar structural results for many such groups when they also have quasiconvex hierarchies.

Index

0-cube, 3B(6) condition, 100 B(8) condition, 151 $C'(\alpha), 83$ $C'(\alpha)$ contextual condition, 37 C(n), 37 $C_{\star}(P), 185$ K-deep, 171 K-partition, 171 K-shallow, 171 K-wall, 171, 172 N(D), 4N(H), 105N(W), 119P-essential, 185 W-annuladder, 152 W-ladder, 111, 122 $X^*, 32$ $Y^{*}, 83$ $Y^{+a}, 26$ $Z^+, 174$ [Y, H), 130 $\operatorname{Aut}_X(Y), 32$ $Proj(\rightarrow), 33$ $\triangleleft(c), 50$ $\partial_{\mathbf{p}}D, 5$ $C(Y \rightarrow X) \rightarrow X, 168$ $\mathbb{C}_G(H), 219$ $\kappa(f), 50$ $\kappa(v), 50$ $defect(\sphericalangle), 50$ ϵ -thin, 98 $\frac{\pi}{2}$ -strong separation property, 136 $\mathcal{I}(p,q), 16$ $\langle\!\langle A, B, \ldots \rangle\!\rangle, 2$ $\mathcal{N}_r(S), 25$ $|S|_{Y}, 83$

 $\{\{P\}\}, 99$ θ -shell, 71 θ -shells, 31 $X^{\square}, 203$ i-shell, 30 *n*-cube, 3 r-star, 211 #(p,q), 1362-sided, 166 abelian hierarchy, 325 absolute $C'(\alpha)$ condition, 37 abstract cone-piece, 35 abstract contiguous cone-piece, 33 abstract contiguous wall-piece, 33 abstract piece, 35 abstract wall-piece, 35 accidental parabolic, 282, 313 admitted, 45 almost malnormal, 218 almost malnormal quasiconvex hierarchy, 242 angle, 50 angling rule, 70 annuladder, 152 annular diagram, 20 aparabolic, 216 area, 5 Artin, 164 ascends, 267 asynchronously κ -fellow travel, 272Ball-Wall separation, 183 Ball-WallNbd separation, 195 base, 234

base vertex, 338

354

INDEX

base-wall, 233 bicollared, 125 bigon, 6 bigonal shard, 55 boundary cycle, 5, 20 boundary path, 5, 20 bridge, 338 cage, 292 cancellable pair, 40 canonical completion, 168 canonical retraction, 168 carried, 130 carrier, 4, 105, 118 CAT(0) cube complex, 4 class, 157 closeable, 208 cluster, 62 co-large, 304 codimension-1, 171, 182 collared diagram, 113 collared diagrams with k-corners, 113combinable pair, 39 combinatorial C(n) condition, 37 commensurator, 219 compact graded system, 223 compatible, 189 complete, 228 completely full, 291 complexity, 38, 334 cone, 32cone vertices, 109 cone-cell, 38, 44 cone-cell at infinity, 45 cone-piece, 35, 59 coned-off space, 32 conepoint, 32 conepoint of D, 38conical, 264 connecting strip, 35 contiguous cone-piece, 35 contiguous piece, 35 contiguous wall-piece, 35 convex, 12, 13

convex core property, 201 convex hull, 16 convex subcomplex core property, 201corner, 113 cornsquare, 9, 55 cosparsely, 191 cross, 14, 167, 233 crosses, 121 crosses itself, 166 cube complex, 3 cubical disk diagram, 6 cubical map, 169 cubical presentation, 31 cubical small-cancellation presentation, 76 cubical thickening, 26 curvature, 50 cuts, 139 deep, 171, 182 defect of P in Y_i , 99 Dehn filling, 312 diagram in a complex X, 6diameter, 5 disk diagram, 5 distance, 5 distinct, 219 distinct conjugates, 218 divisive, 182 doubly-external, 71 drum, 43 dual, 4, 6, 166, 182 dual curve, 44 dual curves, 6 dull, 54 dummy squares, 237 edge spaces, 240 ejectable, 123, 127 elevation, 221 elliptic, 148 elliptic annulus, 148 end in parallel, 51 equivalent, 22

INDEX

equivariantly, 241 essential, 22, 89, 148, 185 essential carrier, 121 essentially, 121 expanded edge group, 292 explicit cornsquare, 48 exponent, 338 extended carrier, 122 extends, 172 extension property for K-partitions, 172 external, 39, 71 external boundary, 44 extreme, 337 extreme 2-cell, 338 fiber-product, 220 flag complex, 3 flat annulus, 20 frontier, 15 full, 291 fully residually free, 321 generalized B(6) condition, 100 geodesic, 5 geometric K-wall, 172 geometric wall, 172 geometric wallspace, 181 graded complexity, 80 graded cubical presentation, 83 graded small-cancellation, 80 graded system, 223 grading, 83 graph group, 3 grid, 19 gridded ladder, 142 Haken, 311 halfspaces, 15, 181, 182 height, 218, 223 hexagon move, 8 hierarchy, 232, 233, 242, 311 hierarchy terminating at cube complexes with virtually abelian $\pi_1, 232$

highest, 267 hyperplane, 4 hyperplane vertices, 109 immersed hyperplanes, 166 immersion, 12 implicitly, 52 incompressible surface, 311 independent, 306 induced angling rule, 226 induced presentation, 87 induced wallspace structure, 226inflate, 234 inflated cone, 233 initial, 44 injectivity radius, 248 innermost, 48 innerpath, 30, 71 inter-osculate, 36, 167 internal, 39, 71 internal part, 45 intersecting conjugator, 267 interval, 16 isocore, 203 isolated, 5 isometric core property, 201 ladder, 72 large, 305, 313 length, 242 length 0, 149length n path from x to y, 5liftable shells, 87 limit group, 321 linear ordering, 45 linear separation property, 136 link. 3 local-isometry, 12 locally-convex, 12 locally-convex core, 25 loxodromic, 261 Magnus subcomplex, 341

Magnus subgroup, 334

356

INDEX

major halfspace, 15 major vertex spaces, 240 malnormal, 22, 218, 242 map between cubical presentations, 86 maximal cone, 84 medium innerpaths, 90 midcube, 4 minimal, 209, 259 minimal complexity, 38 minor vertex spaces, 240 monogon, 6 monogonal shard, 54 negatively curved angling rule, 71 negatively curved smallcancellation presentation, 76 new generators, 335 new relators, 335 nil-external, 71 no acute corners, 104 no inversions, 121 no missing shells, 86 no missing teleshells, 276 no self-grazing, 161 nondegenerate, 44 nongon, 6 nonpositively curved, 3 nonpositively curved angling rule, 70nonsingular, 72 nontrivial, 35, 45 omnipotent, 306 oscugon, 6 osculate, 167 osculates, 42 outermost, 338 outerpath, 30, 71, 338 outerpath of the cornsquare, 9 parabolic, 216 parallel, 33, 59 peripheral, 216 piece, 35

piecefully convex, 139 preferred, 140 projection, 33 proximate, 139 pseudo-grid, 72 pseudograph, 228 quasiconvex, 242 quasiconvex malnormal virtual hierarchy, 244 quasiflat, 189 quasiline, 190 raag, 3 ranked complexity, 44 ranking, 43 rectangle, 44 rectified disk diagram, 45 reduced, 38, 150 relative height, 291 relatively malnormal, 291 remotely combines, 42 repetition complexity, 334 replace, 39 residually finite, 169 residually finite rational solvable, 310RFRS, 310 right-angled Artin group, 3 segregated, 169 self-collides, 64 self-grazing, 161 self-osculates, 167 semi-collared, 123 semi-standard, 48 separable, 169 separated cyclic hierarchy, 324 separates, 181, 336 shallow, 171 shard, 46 sharp, 54 shell, 71 shells. 31 short innerpaths, 90

INDEX

shuffle, 9 simple, 122singly-external, 71 singular, 5 singular 0-cell, 5 singular doubly-external, 71 small-cancellation presentation, 76small subcones, 84 sparse relative to, 192 special, 167 splayed, 18 split-angling, 51 spur, 5 square disk diagram, 5 stable, 247 staggered, 340 star, 211 strong quasiflat, 189 strongly cosparsely, 191 strongly separated, 136 structure graph, 109 subpresentation, 83 superconvex, 27 superconvex graded system, 223symmetric, 222

teleshell, 276 terminal, 44, 242 thick, 157 thickened carrier, 122 thin, 157 tight innerpaths, 90 tiny innerpaths, 90 trace, 299 transition, 60 triangular shard, 56 trivial, 5, 33 trivial ladder, 73 type-angling, 51, 54 typing, 51 virtually almost malnormal, 219 virtually cyclic index, 283 wall, 100, 182 wall-ladder, 122 wall-piece, 35 wall-pieces, 59 WallNbd-WallNbd separation, 195 wallray, 130 walls, 109, 181 wallspace, 181

well-embedded cones, 83