Contents

Acknowledgments xi
1 Introduction 1
2 CAT(0) Cube Complexes 3
2.a Basic Definitions 3
2.b Right-Angled Artin Groups 3
2.c Hyperplanes in CAT(0) Cube Complexes 4
2.d Geodesics and the Metric 4
2.e Properties of Minimal Area Cubical Disk Diagrams 5
2.f Convexity 12
2.g Hyperplanes and Their Carriers 13
2.h Splaying and Rectangles 17
2.i Annuli 20
2.j Annular Diagrams and Malnormality 22
2.k Convex Cores 24
2.1 Superconvexity 27
3 Cubical Small-Cancellation Theory 30
3.a Introduction 30
3.b Cubical Presentations 31
3.c Pieces 33
3.d Some Small-Cancellation Conditions to Bear in Mind 37
3.e Disk Diagrams and Reduced Disk Diagrams 37
3.f Rectified Disk Diagrams 44
3.g Gauss-Bonnet Theorem 50
3.h Assigning the Angles 51
3.i Nonpositive Curvature of Shards 54
3.j Tables of Small Shards 58
3.k Nonpositive Curvature of Cone-Cells via Small-Cancellation 58
3.1 Internal Cone-Cells That Do Not Self-Collide 64
3.m More General Small-Cancellation Conditions and Involved Justification 67
3.n Informal Discussion of the Limits of the Theory 69
3.0 Nonpositively Curved Angling Rules 70
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
3.p Positive Curvature along Boundary 71
3.q Ladder Theorem 72
3.r Trichotomy for Reduced Diagrams 76
3.s Examples 76
3.t Examples Arising from Special Cube Complexes 78
3.u Graded Small-Cancellation 80
3.v Some Graded Examples 81
3.w Graded Metric Small-Cancellation 82
3.x Missing Shells and Injectivity 86
3.y Short Innerpaths and Quasiconvexity 89
4 Torsion and Hyperbolicity 94
4.a Cones Embed 94
4.b Torsion 94
4.c Hyperbolicity 97
5 New Walls and the $B(6)$ Condition 99
5.a Introduction 99
5.b Total Defects of Paths in Cones 99
5.c Generalization of the $B(6)$ Condition 100
5.d Cyclic Quotients and the $B(6)$ Condition 102
5.e Embedding Properties of the Cones and Hyperplane Carriers 103
5.f Defining Immersed Walls in X^{*} 109
5.g No Inversions 120
5.h Carriers and Quasiconvexity 121
5.i Bigons 130
5.j Square Cones 133
5.k 1-Dimensional Linear Separation 136
5.1 Obtaining Proper Actions on the Dual 138
5.m Codimension-1 Subgroup Preserved 147
5.n Elliptic Annuli 148
5.o Annular Diagrams and the $B(8)$ Condition 151
5.p Doubly Collared Annular Diagrams 157
5.q Malnormality of Wall Stabilizers 161
5.r Artin Groups 164
6 Special Cube Complexes 166
6.a Immersed Hyperplanes 166
6.b Hyperplane Definition of Special Cube Complex 166
6.c Right-Angled Artin Group Characterization 167
6.d Canonical Completion and Retraction 168
6.e Double Cosets and Virtual Specialness 171
6.f Extensions of Quasiconvex Codimension-1 Subgroups 171
6.g The Malnormal Combination Theorem 180
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
7 Cubulations 181
7.a Wallspaces 181
7.b Sageev's Construction 182
7.c Finiteness Properties of the Dual Cube Complex 183
7.d Virtually Cubulated 187
7.e Sparse Complexes 189
7.f Useful Subwallspaces 203
7.g Cubulating Amalgams 215
8 Malnormality and Fiber-Products 218
8.a Height and Virtual Almost Malnormality 218
8.b Fiber-Products 220
8.c Graded Systems 223
9 Splicing Walls 225
9.a Finite Cover That Is a Wallspace 225
9.b Preservation of Small-Cancellation and Obtaining Wall Convexity 226
9.c Obtaining the Separation Properties for Pseudographs 228
10 Cutting X^{*} 232
10.a Hierarchies of Cubical Presentations 232
10.b Inflations 233
10.c Some Persistent Properties 235
10.d Additional Splitting along Conepoints 237
11 Hierarchies 242
12 Virtually Special Quotient Theorem 246
12.a Malnormal Special Quotient Theorem 246
12.b Proof of the Special Quotient Theorem 249
12.c Adding Higher Grade Relators 251
12.d Controlling Intersections in Quotient 255
13 Amalgams of Virtually Special Groups 266
13.a Virtually Special Amalgams 266
14 Large Fillings Are Hyperbolic and Preservation of Quasiconvexity 272
14.a Hyperbolic Fillings 272
14.b Quasiconvex Image 276
15 Relatively Hyperbolic Case 281
15.a Introduction 281
15.b Parabolic Fillings That Are Virtually Special 283
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
15.c Separability for Relatively Hyperbolic Hierarchies 286
15.d Residually Verifying the Double Coset Criterion 287
15.e Relative Malnormality and Separability 291
15.f The Hierarchy in the Relatively Hyperbolic Setting 292
16 Largeness and Omnipotence 304
16.a Virtual Separation and Largeness 304
16.b Omnipotence 306
17 Hyperbolic 3-Manifolds with a Geometrically Finite Incompressible Surface 310
17.a Some Background on 3-Manifolds 311
17.b Aparabolic Hierarchy 313
17.c Virtual Specialness of Hyperbolic 3-Manifolds with Boundary 314
17.d Cutting All Tori with First Surface 316
18 Limit Groups and Abelian Hierarchies 321
18.a Limit Groups 321
18.b Abelian Hierarchies 325
19 Application Towards One-Relator Groups 333
19.a Overview 333
19.b The Magnus-Moldavanskii Hierarchy 334
19.c Quasiconvexity Using the Strengthened Spelling Theorem 337
19.d Staggered 2-Complex with Torsion 340
20 Problems 343
References 345
Index 353

Chapter One

Introduction

This text has several parts:
In the first part of the text we develop a small-cancellation theory over cube complexes. When the cube complex is 1-dimensional, we obtain the classical small-cancellation theory, as well as the closely related Gromov graphical smallcancellation theory.

It is hard to say what the main result is in the first part, since it seems the definitions are more important than the theorems. For this and the second part, the reader might wish to scan the table of contents to get a feel for what is going on. We give the following sample result to give an idea of the scope here. In ordinary small-cancellation theory, when W_{1}, \ldots, W_{r} represent distinct conjugacy classes, the presentation $\left\langle a, b, \ldots \mid W_{1}^{n_{1}}, \ldots, W_{r}^{n_{r}}\right\rangle$ is "small-cancellation" for sufficiently large n_{i}. In analogy with this we have the following:

C6-sample. Let X be a nonpositively curved cube complex. Let $Y_{i} \rightarrow X$ be a localisometry with Y_{i} compact for $1 \leq i \leq r$ such that each $\pi_{1} Y_{i}$ is malnormal, and $\pi_{1} Y_{i}, \pi_{1} Y_{j}$ do not share any nontrivial conjugacy classes. Then $\left\langle X \mid \widehat{Y}_{1}, \ldots, \widehat{Y}_{r}\right\rangle$ is a "small-cancellation" cubical presentation for sufficiently large "girth" finite covers $\widehat{Y}_{i} \rightarrow Y_{i}$.

Many other general small-cancellation theories have been propounded. For instance two such graded theories directed especially towards Burnside groups were produced by Olshanskii and McCammond. Stimulated by Gromov's ideas of small-cancellation over word-hyperbolic groups, there have been later important works of Olshanskii, followed by more recent theories "over relatively hyperbolic groups" by Osin [Osi06] and Groves-Manning [GM08]. The theory we propose is decidedly more geometric, and arguably favors explicitness over scope. However, although it may be more limited by presupposing a nonpositively curved cube complex as a starting point, it has the advantage of not presupposing (relative) hyperbolicity - yet some form of hyperbolicity must lurk inside for there to be any available small-cancellation.

In the second part of the text we impose additional conditions that lead to the existence of a wallspace structure on the resulting small-cancellation presentation. We can illustrate the nature of the results with the following sample:

B6-sample. Let G be an infinite word-hyperbolic group acting properly and cocompactly on a CAT(0) cube complex. Let H_{1}, \ldots, H_{k} be quasiconvex subgroups that are not commensurable with G. And suppose that each H_{i} has separable hyperplane stabilizers. There exist finite index subgroups $H_{1}^{\prime}, \ldots, H_{k}^{\prime}$ such that the quotient $G /\left\langle\left\langle H_{1}^{\prime}, \ldots, H_{k}^{\prime}\right\rangle\right.$ has a codimension-1 subgroup.

Here $\langle\langle A, B, \ldots\rangle\rangle$ denotes the normal closure of $\{A \cup B \cup \cdots\}$ in the group.
In the third part of the text, we probe further and seek a virtually special cubulation.

We then prove the following:
Theorem A (Special Quotient Theorem). Let G be a word-hyperbolic group that is virtually the fundamental group of a compact special cube complex. Let H_{1}, \ldots, H_{r} be quasiconvex subgroups of G. Then there are finite index subgroups $H_{i}^{\prime} \subset H_{i}$ such that: $G /\left\langle\left\langle H_{1}^{\prime}, H_{2}^{\prime}, \ldots, H_{r}^{\prime}\right\rangle\right\rangle$ is virtually special.

We then prove the following:
Theorem B (Quasiconvex Hierarchy \Rightarrow Virtually Special). Let G be a wordhyperbolic group with a quasiconvex hierarchy, in the sense that it can be decomposed into trivial groups by finitely many HNN extensions and amalgamated free products along quasiconvex subgroups. Then G is virtually special.

There are two important applications of the virtual specialness of groups with a quasiconvex hierarchy: It is applied to hyperbolic 3-manifolds with a geometrically finite incompressible surface to reveal their virtually special structure. This resolves the subgroup separability problem for fundamental groups of such manifolds. It also completes a proof that Haken hyperbolic 3-manifolds are virtually fibered. It is also applied to resolve Baumslag's conjecture on the residual finiteness of one-relator groups with torsion.

The fourth part of the text deals with groups that are hyperbolic relative to virtually abelian subgroups, and provides similar structural results for many such groups when they also have quasiconvex hierarchies.

Index

0 -cube, 3
$B(6)$ condition, 100
$B(8)$ condition, 151
$C^{\prime}(\alpha), 83$
$C^{\prime}(\alpha)$ contextual condition, 37
$C(n), 37$
$C_{\star}(P), 185$
K-deep, 171
K-partition, 171
K-shallow, 171
K-wall, 171, 172
$N(D), 4$
$N(H), 105$
$N(W), 119$
P-essential, 185
W-annuladder, 152
W-ladder, 111, 122
$X^{*}, 32$
$Y^{\circledast}, 83$
$Y^{+a}, 26$
$Z^{+}, 174$
$[Y, H), 130$
Aut $_{X}(Y), 32$
Proj $(\rightarrow), 33$
$\varangle(c), 50$
$\partial_{\mathrm{p}} D, 5$
$\mathrm{C}(Y \rightarrow X) \rightarrow X, 168$
$\mathbb{C}_{G}(H), 219$
$\kappa(f), 50$
$\kappa(v), 50$
defect(\varangle), 50
ϵ-thin, 98
$\frac{\pi}{2}$-strong separation property, 136
$\mathcal{I}(p, q), 16$
$\langle\langle A, B, \ldots\rangle\rangle, 2$
$\mathcal{N}_{r}(S), 25$
$|S|_{Y}, 83$
$\{\{P\}\}, 99$
θ-shell, 71
θ-shells, 31
$\widetilde{X}^{\square}, 203$
i-shell, 30
n-cube, 3
r-star, 211
\#(p,q), 136
2-sided, 166
abelian hierarchy, 325
absolute $C^{\prime}(\alpha)$ condition, 37
abstract cone-piece, 35
abstract contiguous cone-piece, 33
abstract contiguous wall-piece, 33
abstract piece, 35
abstract wall-piece, 35
accidental parabolic, 282, 313
admitted, 45
almost malnormal, 218
almost malnormal quasiconvex
hierarchy, 242
angle, 50
angling rule, 70
annuladder, 152
annular diagram, 20
aparabolic, 216
area, 5
Artin, 164
ascends, 267
asynchronously κ-fellow travel, 272

Ball-Wall separation, 183
Ball-WallNbd separation, 195
base, 234
base vertex, 338
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
base-wall, 233
bicollared, 125
bigon, 6
bigonal shard, 55
boundary cycle, 5,20
boundary path, 5,20
bridge, 338
cage, 292
cancellable pair, 40
canonical completion, 168
canonical retraction, 168
carried, 130
carrier, 4, 105, 118
CAT(0) cube complex, 4
class, 157
closeable, 208
cluster, 62
co-large, 304
codimension-1, 171, 182
collared diagram, 113
collared diagrams with k-corners, 113
combinable pair, 39
combinatorial $C(n)$ condition, 37
commensurator, 219
compact graded system, 223
compatible, 189
complete, 228
completely full, 291
complexity, 38, 334
cone, 32
cone vertices, 109
cone-cell, 38, 44
cone-cell at infinity, 45
cone-piece, 35,59
coned-off space, 32
conepoint, 32
conepoint of $D, 38$
conical, 264
connecting strip, 35
contiguous cone-piece, 35
contiguous piece, 35
contiguous wall-piece, 35
convex, 12, 13
convex core property, 201
convex hull, 16
convex subcomplex core property, 201
corner, 113
cornsquare, 9,55
cosparsely, 191
cross, 14, 167, 233
crosses, 121
crosses itself, 166
cube complex, 3
cubical disk diagram, 6
cubical map, 169
cubical presentation, 31
cubical small-cancellation
presentation, 76
cubical thickening, 26
curvature, 50
cuts, 139
deep, 171, 182
defect of P in $Y_{i}, 99$
Dehn filling, 312
diagram in a complex $X, 6$
diameter, 5
disk diagram, 5
distance, 5
distinct, 219
distinct conjugates, 218
divisive, 182
doubly-external, 71
drum, 43
dual, 4, 6, 166, 182
dual curve, 44
dual curves, 6
dull, 54
dummy squares, 237
edge spaces, 240
ejectable, 123, 127
elevation, 221
elliptic, 148
elliptic annulus, 148
end in parallel, 51
equivalent, 22
equivariantly, 241
essential, $22,89,148,185$
essential carrier, 121
essentially, 121
expanded edge group, 292
explicit cornsquare, 48
exponent, 338
extended carrier, 122
extends, 172
extension property for
K-partitions, 172
external, 39, 71
external boundary, 44
extreme, 337
extreme 2-cell, 338
fiber-product, 220
flag complex, 3
flat annulus, 20
frontier, 15
full, 291
fully residually free, 321
generalized $B(6)$ condition, 100
geodesic, 5
geometric K-wall, 172
geometric wall, 172
geometric wallspace, 181
graded complexity, 80
graded cubical presentation, 83
graded small-cancellation, 80
graded system, 223
grading, 83
graph group, 3
grid, 19
gridded ladder, 142
Haken, 311
halfspaces, 15, 181, 182
height, 218, 223
hexagon move, 8
hierarchy, 232, 233, 242, 311
hierarchy terminating at cube
complexes with virtually abelian
$\pi_{1}, 232$
highest, 267
hyperplane, 4
hyperplane vertices, 109
immersed hyperplanes, 166
immersion, 12
implicitly, 52
incompressible surface, 311
independent, 306
induced angling rule, 226
induced presentation, 87
induced wallspace structure, 226
inflate, 234
inflated cone, 233
initial, 44
injectivity radius, 248
innermost, 48
innerpath, 30, 71
inter-osculate, 36, 167
internal, 39, 71
internal part, 45
intersecting conjugator, 267
interval, 16
isocore, 203
isolated, 5
isometric core property, 201
ladder, 72
large, 305, 313
length, 242
length 0,149
length n path from x to $y, 5$
liftable shells, 87
limit group, 321
linear ordering, 45
linear separation property, 136
link, 3
local-isometry, 12
locally-convex, 12
locally-convex core, 25
loxodromic, 261

Magnus subcomplex, 341
Magnus subgroup, 334
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
major halfspace, 15
major vertex spaces, 240
malnormal, 22, 218, 242
map between cubical presentations, 86
maximal cone, 84
medium innerpaths, 90
midcube, 4
minimal, 209, 259
minimal complexity, 38
minor vertex spaces, 240
monogon, 6
monogonal shard, 54
negatively curved angling rule, 71
negatively curved smallcancellation presentation, 76
new generators, 335
new relators, 335
nil-external, 71
no acute corners, 104
no inversions, 121
no missing shells, 86
no missing teleshells, 276
no self-grazing, 161
nondegenerate, 44
nongon, 6
nonpositively curved, 3
nonpositively curved angling rule, 70
nonsingular, 72
nontrivial, 35, 45
omnipotent, 306
oscugon, 6
osculate, 167
osculates, 42
outermost, 338
outerpath, 30, 71, 338
outerpath of the cornsquare, 9
parabolic, 216
parallel, 33, 59
peripheral, 216
piece, 35
piecefully convex, 139
preferred, 140
projection, 33
proximate, 139
pseudo-grid, 72
pseudograph, 228
quasiconvex, 242
quasiconvex malnormal virtual
hierarchy, 244
quasiflat, 189
quasiline, 190
raag, 3
ranked complexity, 44
ranking, 43
rectangle, 44
rectified disk diagram, 45
reduced, 38,150
relative height, 291
relatively malnormal, 291
remotely combines, 42
repetition complexity, 334
replace, 39
residually finite, 169
residually finite rational solvable, 310
RFRS, 310
right-angled Artin group, 3
segregated, 169
self-collides, 64
self-grazing, 161
self-osculates, 167
semi-collared, 123
semi-standard, 48
separable, 169
separated cyclic hierarchy, 324
separates, 181, 336
shallow, 171
shard, 46
sharp, 54
shell, 71
shells, 31
short innerpaths, 90
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
shuffle, 9
simple, 122
singly-external, 71
singular, 5
singular 0-cell, 5
singular doubly-external, 71
small-cancellation presentation, 76
small subcones, 84
sparse relative to, 192
special, 167
splayed, 18
split-angling, 51
spur, 5
square disk diagram, 5
stable, 247
staggered, 340
star, 211
strong quasiflat, 189
strongly cosparsely, 191
strongly separated, 136
structure graph, 109
subpresentation, 83
superconvex, 27
superconvex graded system, 223
symmetric, 222
teleshell, 276
terminal, 44, 242
thick, 157
thickened carrier, 122
thin, 157
tight innerpaths, 90
tiny innerpaths, 90
trace, 299
transition, 60
triangular shard, 56
trivial, 5, 33
trivial ladder, 73
type-angling, 51, 54
typing, 51
virtually almost malnormal, 219
virtually cyclic index, 283
wall, 100, 182
wall-ladder, 122
wall-piece, 35
wall-pieces, 59
WallNbd-WallNbd separation, 195
wallray, 130
walls, 109, 181
wallspace, 181
well-embedded cones, 83

