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Programming  
Matter

IN THE EARLY 1700S,� the English carpenter and clockmaker 
John Harrison solved one of the most vexing puzzles that 
sailors faced at the time: how to calculate longitude while 
at sea. This challenge was so important for navigation—
and had been so confounding up to that point—that the 
British Parliament offered a substantial cash reward to 
anyone who could find a practical solution. As trade in-
creased, and ships sailed around the world with increas-
ing regularity, it was critical for the crew to understand 
where exactly their ship was along the earth’s horizon-
tal axis. Disrupted by the challenging conditions at sea, 
timekeeping and way-finding devices were inconsistent 
and unreliable. Consequently, navigation at the time was 
notoriously imprecise and shipwrecks were far too com-
mon as a result of ships losing their way.

While scientists and many others looked to astronomy, 
mathematics, or even magic in their quest to unlock an 
answer to the riddle, Harrison’s solution was amazingly 
simple and elegant. From wood, metal, and other simple 
material components, he crafted a “sea clock” that could 
keep reliable track of the time in relation to a given refer
ence location, which would allow sailors to calculate their 
position based on the difference from their local time. 
Earlier attempts at such clocks had been thwarted by 
the motion of the sea, changes in the environment, and 
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THINGS FALL TOGETHER2

accumulating errors in the mechanical clockwork. But 
Harrison’s design, by accounting for the ways in which 
materials would expand and contract, enabled his mech
anism to adapt naturally to even the most minor fluctu-
ations in temperature, pressure, moisture, and physical 
movement. As a master craftsman, Harrison understood 
that the dynamic and adaptive properties of his materials 
were the keys to a sea clock that could keep perfect time 
for long intervals, no matter the weather, the conditions 
of the sea, or the movement of the device.1

His invention became known as the marine chronom-
eter, and it revolutionized not only sea navigation but 
also the way we think about materials and their ability 
to adapt in intelligent ways. Harrison demonstrated 
how material properties could be exploited to solve no-
toriously challenging design and engineering problems. 
Since that time, similar material-based mechanisms 
have been applied to a number of novel devices that are 
abundant in our everyday lives. Thermostats, for exam
ple, take advantage of a bimetallic structure to regulate 
the temperature in our houses or maintain safe operat-
ing temperatures in an engine. Orthodontic devices are 
made from Nitinol, a nickel titanium alloy that can move 
teeth into precise locations based on a response to body 
temperature. Lifesaving medical devices like stents use 
similar bimetallic structures to morph from one shape 
into another. This behavior has been “preprogrammed” 
in the material through heating and molding it at high 
temperatures. When a stent is placed in the body, for 
example, it is collapsed to fit through small spaces, and 
then activated by body temperature, allowing it to morph 
into the memorized shape and open the vessel.

Yet this way of working with materials to craft elegant, 
simple, and transformative solutions is still largely con-
tained to a few niche applications, and not widely used 
today. Since Harrison’s time, we have moved from a so-
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Programming Matter 3

ciety that produced goods with localized crafts-based 
knowledge—one in which products and environments 
were intimately and intrinsically linked with material 
properties—to a system of industrially standardized 
mass production. The Industrial Revolution effectively 
ignored the intimate material knowledge of previous 
generations. Instead of taking advantage of the inherent 
material properties within wood or metal, for example, 
factories started to create standardized components 
that attempted to limit the amount of heterogeneity and 
differentiation. We attempted to standardize the trades 
and create repeatable outputs that did not rely on a 
single person’s skill set or knowledge in the craft—with 
some good reason: it was much more difficult to make 
a house out of logs and branches, or a stone wall out of 
geometrically unique elements, than it is to construct 
anything with repeatable components like bricks or two-
by-fours. Similarly, at an environmental scale, humans 
shifted from an intimate relationship working with the 
earth and the natural forces of rain, sun, storms, tidal 
shifts, or sediment movement to a top-down, brute-force 
dictation through the use of machines. We could build 
anywhere, create land, dredge, redirect water flows, and 
artificially construct nearly any environment. Most of 
this standardization in manufacturing, construction, 
and land use was attempting to fight the dynamics of 
materials, minimizing their movement, and resisting the 
forces of the environment (gravity, temperature changes, 
moisture changes, vibration, natural disasters, and so 
on). The goal was to produce more, and to do it faster, 
cheaper, and better.

This alienation from materials has only been exac-
erbated in recent times by the rise of computing and 
the digital revolution. Digitalization and virtualization 
have tended to disconnect the average person from ma-
teriality and led us to believe that creating something 
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THINGS FALL TOGETHER4

“intelligent” means either a human being or a digital 
system with software/hardware that simulates human 
intelligence. But all of our own human and biological 
intelligence is ultimately built from simple materials, 
not computer chips or robotic components. We have lost 
touch with our appreciation for material intelligence.

I often think of Harrison and his marine chronometer 
and wonder: if society were challenged with the same 
problem today, would we come up with the same ele-
gantly simple solution? Hundreds of years later, simple 
devices like this can encourage all of us to take a fresh 
look at the way we design with materials, even as new re-
search and technologies have us poised to surpass tradi-
tional craft-based production methods. The emergence 
of digital fabrication technologies and the rapid advance 
of new research in synthetic biology, materials science, 
and other fields are making it possible not just to tap 
into, but also to create material properties in a new way, 
bringing the possibility of a new industrial revolution 
into view—a materials revolution.

In this book, I offer you a glimpse inside this emerg-
ing materials revolution, from my vantage point as 
founder and codirector of MIT’s Self-Assembly Lab.2 
The Self-Assembly Lab is a group of architects, design-
ers, artists, engineers, scientists, computer scientists, 
and many others who work on a variety of research 
topics from self-assembly to new material behaviors 
or new fabrication processes. Through this work, we 
explore applications in product design, manufacturing, 
construction, and large-scale environments. Sitting at 
the intersection of design, science, and engineering, 
we are an academic research lab that blends creativity 
with exploration, elegant design aesthetics with tech-
nical performance, and the design principles needed to 
make those ideas reality. At its core, our work is moti-
vated by the conviction that smarter, higher-performing 
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Programming Matter 5

products and sustainable environments don’t require 
complicated, expensive, device-centered solutions to 
achieve. Instead, we seek to use simple materials and 
their relationships with environmental forces to de-
sign and create a more active, adaptive, lifelike world 
around us.

In this work, we are part of a broader community of 
scientists, engineers, and designers across research and 
industry who are finding ways to design, create, and 
program physical materials that can do more than even 
Harrison could have dreamed. These materials can take 
in information, perform logical operations, sense, react, 
and much more. Unique behaviors often seen only in liv-
ing natural systems—like the ability to correct errors, re-
configure, replicate, assemble themselves, grow, evolve, 
and so on—can now emerge in innate material objects. 
At the Self-Assembly Lab, for instance, we have explored 
phenomena where physical components assemble and 
self-organize to build structures from objects, furniture, 
electronic devices, and even land formations. By under-
standing and utilizing material capabilities, we can give 
simple materials and environments new functionality—
going beyond mass production or even mass customi-
zation, into material programmability with behavioral 
intelligence built into our products.

As we will explore throughout this book, recent mate-
rial advances are influencing various fields from robotics 
to apparel, furniture, medical devices, manufacturing, 
construction, and even coastal engineering. With novel 
material functions embedded within fibers, we are now 
creating clothing and textiles that can adapt to tempera-
ture or moisture fluctuations and keep you cool or dry 
on the fly. Furniture and products can transform in size, 
shape, or function and assemble themselves after being 
shipped flat. Novel medical devices are emerging that 
can be quickly multimaterial printed to be customized to 
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THINGS FALL TOGETHER6

the individual’s body. When they are inserted, they adapt 
to the person’s internal environment, expanding arteries 
or air passages without complex behaviors. At the largest 
of scales, a simple material like sand becomes a medium 
to promote the self-organization of new islands or coast-
lines by tapping into the energy of the ocean. These and 
many other material-driven performances are coming 
into reality where simple products are becoming more 
active and static things are becoming more lifelike and 
playful.

This kind of work ultimately requires a new way of col-
laborating with materials in our broader environment, 
new relationships with our products, a different mind-
set, and a fresh way of looking at the world. This book 
describes that new mindset through simple design prin-
ciples that offer new ways to think about traditionally 
“static” mechanisms, products, and environments—as 
well as a different definition of what makes a product 
“smart.” The world is crying out for highly intelligent, ac-
tive, and “smart” products, yet far too often we see smart 
products that are expensive, complex, battery-powered 
devices that are prone to failure. The principles in this 
book point to a different path forward. My hope is that 
they will make you stop and think, and wonder why some 
“smart products” might not be quite that smart after all. 
The aim is to show how we can take advantage of these 
hidden possibilities inherent in our physical world—and 
uncover a new relationship with materials, tapping into 
their built-in intelligence.

What do we mean when we talk about programming ma-
terials, and how has this reality emerged? We can start 
with a general definition: to program something is to 
create a set of executable instructions that an intended 
medium can perform or process. This is, obviously, a very 
general definition of programming—I’m using medium 
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Programming Matter 7

instead of computer, because, as I will explain, we can 
embed a program into any medium. Any time we perform 
a set of instructions, we’re executing a type of program. 
When we program materials, we’re embedding such in-
structions into a physical material, such that the material 
can make logical decisions and can sense and respond 
to its environment.

Thus, we can define a programmable material as a 
physical material structure that is embedded with infor-
mation and physical capabilities like logic, actuation, or 
sensing. A related term, active matter, is used through-
out this book to describe the expanded field of research-
ers that are programming materials from the smallest to 
the largest of scales to create highly active structures that 
can self-assemble or physically transform.3 I will both 
describe the ways to program a material and explore 
the applications of its active behavior. In essence, these 
emerging material systems are all based on the ability 
to take simple material components, activate them with 
energy, and then have them assemble, transform, and 
create new physical behaviors.

A diagram showing the key ingredients for programmable materials: materials, geometry, 
and energy to create physical transformations. Credit: Self-Assembly Lab, MIT
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THINGS FALL TOGETHER8

The idea of matter that can be programmed is a fairly 
old concept, but our understanding and realization of the 
idea has changed. People have been dreaming of pro-
gramming matter since at least the Star Trek Replica-
tor, with a machine that could instantly create anything.4 
There are many early examples from science fiction that 
dream of infinitely small programmable material units 
that can be easily fabricated and set free to live, grow, 
and transform.5 This dream has a long history of over-
promising and underdelivering, however, most likely due 
to the lack of material and fabrication capabilities, until 
very recently.

Of course, from another perspective, there is a sense 
in which matter has always been “programmed.” Every
thing around us is programmed to sense something or 
function based on built-in information. The most ob-
vious examples come from living systems: just think 
of our DNA, which encodes the instructions to build a 
human, or how a plant grows toward sunlight. But our 
everyday life is replete with materials that transform in 
this manner, according to built-in information. In addi-
tion to complex living things, we can also see physical 
transformation in natural, yet nonbiological materials, 
or even synthetic materials that sense and respond to the 
ambient environment. For example, crystals that grow 
and morph, or chopped wood, which is no longer alive 
yet will still warp in response to changes in humidity, and 
plastics that expand or contract based on temperature. 
All of these materials are nonbiological, coming from 
both natural and synthetic systems, and all demonstrate 
lifelike, information-rich behavior.

Craftspeople, master builders, or anyone with an 
intimate, hands-on relationship to materials like John 
Harrison are the forerunners of today’s “matter pro-
grammers,” having long taken advantage of the inherent 
characteristics of materials. For example, craftspeople 
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Programming Matter 9

have used wood’s inherent properties when making 
furniture or building joints, ship hulls, or whiskey bar-
rels, forging tighter and stronger joints by changing the 
amount of moisture in the environment in which they 
were made. Metalsmiths often use the expansion and 
contraction of metal based on temperature to make pre-
cise and strong connections. Or engineers design a metal 
component for an engine to be able to operate uniformly 
with ever-changing environmental fluctuations. Textile 
manufacturers often use temperature and moisture 
to control the contraction of a garment to create finely 
tuned shapes and sizes.

Today, however, new digital fabrication technologies 
can produce at speed and scale while also customizing 
material properties, giving us greater capabilities than 
ever before. Computing, fabrication, and materials share 
deep and long-standing links. The Jacquard loom, in-
vented in the 1800s and considered one of the earliest 
examples of computing, read punch cards as an analog 
program to create intricate and beautifully complex 
woven textiles.6 More recently, not long after the mod-
ern computer was born with the invention of the transis-
tor in 1947, scientists at MIT first linked a modern-day 
computer with a milling machine in 1952.7 This paved 
the way for the first computer-aided design (CAD) tool in 
1963 and today’s computer numerically controlled (CNC) 
machining with CAD to CAM (computer-aided manu-
facturing) design workflows. This allowed computers 
to be programmed to run fabrication equipment that 
produced material parts.8 Nearly every manufactured 
product today is made in some way with this sequence of 
technology—CAD to CAM to CNC—from electronic devices 
to cars, clothing, buildings, infrastructure, airplanes, 
and even children’s toys. In the twenty-first century, we 
have achieved an ever-increasing level of sophistication 
with digital fabrication capabilities using laser cutters 
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THINGS FALL TOGETHER10

and water jets, 3D printers, milling machines, industrial 
robot arms, and many other technologies. These are ac-
quainting more and more people with the properties of 
materials and machines, as well as eroding traditional 
boundaries between design and fabrication, materials 
and information.

This development in computing, fabrication, and 
materials research has led to the growing materials 
revolution and enabled programmable materials. Not 
only can we take advantage of the hidden abilities within 
materials to sense and transform, but we can customize 
the material with these rapidly advancing fabrication 
techniques. In the same way that we can alter the “in-
structions” coded into DNA using principles of synthetic 
biology and other technological advances like gene edit-
ing, we can now customize and produce complex com-
positions of many different materials, from scratch. We 
can go beyond the evolutionary mutations that have led 
to specific genes or material properties to now fabricate 
embedded material codes. For example, we can now 
produce synthetic wood that responds to moisture with 
customized grain patterns that would never be found 
naturally, complex metal components that adaptively 
tune engines, high-performance composites that morph 
for aerodynamics, and multimaterial printed structures 
for smart medical devices. All of these examples have 
both geometric complexity and a diversity of material 
properties, designed according to a set of instructions 
for tunable and adaptive performance.

This entire progression, from naturally evolved mate-
rials to synthetically designed and generated materials 
toward fully programmable materials, can be seen in 
the simple example of the continuing evolution of fash-
ion and footwear. We can trace the lineage from tradi-
tional natural spun-cotton garments to programmably 
controlled textile production, and now synthetic fibers 

Tibbits_FINAL.indd   10Tibbits_FINAL.indd   10 1/11/21   1:32 PM1/11/21   1:32 PM

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Programming Matter 11

and high-performance textile products. More recently, 
the industry is turning the corner toward smarter gar-
ments that have sensors and actuators embedded within 
the textile to inform and act on our body’s every move. 
These robotlike articles of “smart” clothing are quickly 
evolving from bulky garments with bulky devices to 
simple and smarter materials. The Self-Assembly Lab 
has worked with emerging companies, like Ministry of 
Supply, to develop highly active garments that can be 
made from material properties intelligently knit into in-
tricate garments, functioning through materials, rather 
than complicated devices.9 Garments can become po-
rous and breathe when the person is hot, or get thicker 
to insulate them when they get cold. The garment can 
morph to the person’s body shape and create the perfect 
fit, or change aesthetics for different occasions. Not only 
are we using novel materials, but we can now fabricate 
garments and other products in this new way, enabling 
active performance in everyday clothing.

One might assume that a programmable material 
would be more electronic or robotic, less human, static, 
and less active—just sitting there waiting to be pro-
grammed. But as I hope to show you, today’s digital capa-
bilities have actually reintroduced the human perspec-
tive and the craft of materials. Intimate knowledge of a 
material’s properties brings surprise and intuition back 
into discovery and invention. Programming materials 
is more about opening our eyes and designing in col-
laboration with materials rather than forcing them into  
place.

The ideas within this book seek to illuminate the sur-
prising, yet still mostly untapped, capabilities of mate-
rials through novel approaches to design and fabrica-
tion. We will uncover ways to seemingly reverse entropy, 
create simple material “robots,” and program everyday 
physical objects or environments to come alive. We will 
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THINGS FALL TOGETHER12

challenge the conventional idea that things fall apart: 
objects can get better with time, and we can program 
materials to become more active, to adapt, and to evolve 
on their own. We will question why so many objects and 
environments are designed to be static and why human-
made things typically don’t have lifelike properties— 
for example, why they can’t grow, transform, or repair 
themselves. Why does a “strong” structure usually mean 
it requires more material, more rigidity in its composi-
tion? Think of a plant or a tree, whose strength usually 
comes not from bulk or excess material, but from effi-
cient distribution, flexibility, and the ability to adapt to 
different forces, to error correct, or regrow when needed. 
We will discuss the reasons why we’ve become so com-
fortable with the notion of what a robot or a computer 
looks like and how it behaves, yet why that is rapidly 
changing. In this way, we arrive at the new reality of active  
matter.

These ideas have taken shape after years of play, ex-
perimentation, collaboration, failure, and some happy 
accidents at the Self-Assembly Lab, yet they go far be-
yond our own work, crossing many academic disciplines 
and offering surprising applications in many different 
fields. This emerging field is based on blending rigorous 
science and engineering with creativity, play, and imagi-
nation. Progress requires not only the solution of techni-
cal problems but also the freedom to explore creatively 
and to take big risks, tackle big questions, and propose 
radical ideas. Accordingly, throughout the book we’ll ex-
plore both concrete examples of technological advances 
being made today by talented designers, scientists, and 
engineers across different fields, as well as near-term 
thought experiments and possible futures. While this 
emerging field is rapidly growing and has shown prom-
ising advances, it is still early days. We are in just the 
beginning of this materials revolution, and much of the 
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Programming Matter 13

potential impact or applications have yet to be realized. 
At this exciting juncture, I am hoping to create purpose-
ful visions for the future to help catalyze these advances, 
inspire applications and new collaborations, and ener-
gize the field of active matter.
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