CONTENTS

Preface and Notes
vii

Acknowledgments
 xv

1. Before Animals
 1

2. Phylogenetics and the Base of the Animal Tree of Life
 15

3. Ctenophora
 23

4. Porifera
 33

5. Planulozoa
 46

6. Placozoa + Cnidaria clade
 49

7. Placozoa
 50

8. Cnidaria
 55

9. Bilateria
 80

10. Xenacoelomorpha
 85

11. Xenoturbellida
 88

12. Acoelomorpha
 91

13. Nephrozoa
 98

14. Deuterostomia
 102

15. Ambulacraria
 108

16. Hemichordata
 109

17. Echinodermata
 115

18. Chordata
 139

19. Protostomia
 154

20. Ecdysozoa
 156

21. Scalidophora
 162

22. Priapulida
 166

23. Kinorhyncha
 173

24. Loricifera
 179

25. Nematoida
 186

For general queries, contact webmaster@press.princeton.edu
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Nematoda</td>
<td>188</td>
</tr>
<tr>
<td>27. Nematomorpha</td>
<td>203</td>
</tr>
<tr>
<td>28. Panarthropoda</td>
<td>209</td>
</tr>
<tr>
<td>29. Tardigrada</td>
<td>215</td>
</tr>
<tr>
<td>30. Onychophora</td>
<td>224</td>
</tr>
<tr>
<td>31. Arthropoda</td>
<td>231</td>
</tr>
<tr>
<td>32. Spiralia</td>
<td>258</td>
</tr>
<tr>
<td>33. Dicyemida (= Rhombozoa)</td>
<td>263</td>
</tr>
<tr>
<td>34. Orthoneuctida</td>
<td>268</td>
</tr>
<tr>
<td>35. Chaetognatha</td>
<td>273</td>
</tr>
<tr>
<td>36. Gnathifera</td>
<td>280</td>
</tr>
<tr>
<td>37. Micrognathozoa</td>
<td>283</td>
</tr>
<tr>
<td>38. Gnathostomulida</td>
<td>287</td>
</tr>
<tr>
<td>39. Rotifera</td>
<td>293</td>
</tr>
<tr>
<td>40. Platytrechozoa</td>
<td>310</td>
</tr>
<tr>
<td>41. Rouphezoa</td>
<td>311</td>
</tr>
<tr>
<td>42. Gastrotricha</td>
<td>313</td>
</tr>
<tr>
<td>43. Platyhelminthes</td>
<td>324</td>
</tr>
<tr>
<td>44. Lophotrochozoa</td>
<td>346</td>
</tr>
<tr>
<td>45. Cyclophora</td>
<td>351</td>
</tr>
<tr>
<td>46. Mollusca</td>
<td>358</td>
</tr>
<tr>
<td>47. Annelida</td>
<td>392</td>
</tr>
<tr>
<td>48. Nemertea</td>
<td>412</td>
</tr>
<tr>
<td>49. Lophophorata</td>
<td>424</td>
</tr>
<tr>
<td>50. Bryozoa</td>
<td>427</td>
</tr>
<tr>
<td>51. Entoprocta</td>
<td>439</td>
</tr>
<tr>
<td>52. Brachiozoa</td>
<td>446</td>
</tr>
<tr>
<td>53. Phoronida</td>
<td>449</td>
</tr>
<tr>
<td>54. Brachiopoda</td>
<td>455</td>
</tr>
<tr>
<td>55. Problematica</td>
<td>467</td>
</tr>
</tbody>
</table>

Bibliography 469

Index 571
BEFORE ANIMALS

Despite anecdotal results from the early days of molecular phylogenetics (e.g., Field et al., 1988), all extant animals (Metazoa) unite as a monophyletic group, sharing a common ancestor that evolved from unicellular organisms in the Precambrian (Sebé-Pedrós et al., 2017). The nature and age of this ancestor are a matter of intense debate, one that may not be resolved anytime soon for many reasons. Nonetheless, progress has been made in terms of the genomic complement of such an ancestor by comparing the genomes of metazoans and their closely related unicellular holozoans (choanoflagellates, ichthyosporeans and filastereans) (fig. 1.1) with those of other outgroups (e.g., King et al., 2008; Sebé-Pedrós et al., 2017; Paps and Holland, 2018; Richter et al., 2018) and reconstructing the common repertoire of genes found across metazoans (see Lewis and Dunn, 2018).

This has shown that the addition of novel groups of genes at the node that leads to Metazoa is considerably larger than the novel genes at any nodes surrounding it. Indeed, 25 groups of metazoan-specific genes have been established as essential for this clade (Paps and Holland, 2018), facilitated by the complete genome sequences of four unicellular holozoans (Sebé-Pedrós et al., 2017): two choanoflagellates (*Monosiga brevicollis* and *Salpingoeca rosetta*), a filasterean (*Capsaspora owczarzaki*), and an ichthyosporean (*Creolimax fragrantissima*) (King et al., 2008; Fairclough et al., 2013; Suga et al., 2013; de Mendoza et al., 2015). This data set enables reconstructing the gene content of the unicellular ancestor of animals at an unprecedented level of detail—including the so-called multicellularity genes that have roles in cell–cell recognition, signaling, and adhesion. The study of these genomes resulted in a quite surprising result; although there has been gene innovation at the origin of Metazoa (see Paps and Holland, 2018), the unicellular ancestor of animals already had a rich repertoire of genes that are required for cell adhesion, cell signaling, and transcriptional regulation in modern animals (Sebé-Pedrós et al., 2017).

Another recent study, sampling transcriptomes of nineteen additional choanoflagellates, also suggested that a large number of gene families were gained at the stem of Metazoa (Richter et al., 2018). However, whereas Paps and Holland (2018) estimated that the number of gains was much larger than the number of losses, Richter et al. (2018) found that these numbers are very similar, which has been portrayed as evidence for an “accelerated expansion of gene families” versus an “accelerated churn of gene families” along the metazoan stem (Lewis and Dunn, 2018). Perhaps most important, the new study thoroughly sampling choanoflagellate transcriptomes has provided evidence that hundreds of gene families previously thought to be animal-specific, including Notch, Delta, and homologs of
The animal Toll-like receptor genes, are also found in choanoflagellates (but not in the two highly derived, previously sequenced genomes) and thus predate the choanoflagellate–metazoan divergence. It is anticipated that the early history of the animal gene repertoire will continue to be refined as the genomes of more closely related holozoans are brought into the picture.

The history of the origins of metazoans goes back to Haeckel and Metschnikoff (see a recent historical account in Nielsen, 2012a). Among historical hypotheses, Remane (1963) argued explicitly for a colonial spherical choanoflagellate as an ancestor to Metazoa, instead of the hypothesis of a multinucleated plasmodial cell (e.g., Hadži, 1953), a hypothesis that at least is supported from a sister group perspective between Choanoflagellata and Metazoa. However, from a traditional morphological perspective, reconstructing the nature of the oldest metazoan requires optimization of characters on phylogenetic trees. Optimizing characters on a well-resolved phylogeny is especially difficult when few characters are shared between the deepest nodes. Supposing that groups like Ctenophora, Porifera or even
Placozoa were the first offshoots of animal evolution, meaningful character optimization would be reduced to a handful of molecular markers and subcellular structures, something that would not help us in reconstructing the external morphology of an ancestor.

Likewise, such characters are unlikely to be recognized in the fossil record and thus if the last common ancestor of all animals looked like a comb jelly, a sponge, or a placozoan they would be recognized as stem groups of each of those three lineages, but probably not as the so-called Urmetazoan. Only one scenario, that of sponge paraphyly at the base of the animal tree, would provide the necessary power to say something about such an ancestor, as proposed by Nielsen (2008) in his “choanoblastaea” hypothesis. Sponge paraphyly is, however, disfavored in most recent phylogenetic analyses of sponges and metazoans.

Two facts are important for this book. First is the position of Metazoa in the broader tree of life within a clade of Opisthokonta named Holozoa. Holozoa includes, in addition to animals, choanoflagellates, filastereans and ichthyosporideans. Metazoa is well supported in all molecular phylogenetic analyses as sister group of Choanoflagellatae (e.g., Torruella et al., 2015) [fig. 1.1]. The resemblance of choanoflagellates to sponge choanocytes is striking and has been used a synapomorphy for the clade containing choanoflagellates and metazoans (= Choanozoa), reinforced in those topologies that suggest sponge paraphyly at the base of animals (Nielsen, 2012a). However, few real comparisons have been made between choanoflagellates and choanocytes until recently (Mah et al., 2014), and these authors indicated that although these cells are similar in some aspects, they differ in others, concluding that homology cannot be taken for granted. Similarities in collar- flagellum systems separated by 600 million years of evolution, whether homologous or convergent, suggest that these form important adaptations for optimizing fluid flow at microscale levels (Mah et al., 2014).

Irrespective of whether or not these two cell types are homologous, animal biologists have much to learn from animals’ closest relatives. The first choanoflagellate genome, for the unicellular species Monosiga brevicollis, was thus sequenced to better understand the transition to multicellularity and tissue integration in metazoans. This genome, consisting of approximately 9,200 intron-rich genes, includes genes that encode for cell adhesion and signaling protein domains that were thought to be restricted to metazoans (King et al., 2008), but abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. Nonetheless, a series of molecular synapomorphies of metazoans is still supported in the presence of special signaling, adhesion, and transcriptional regulation factors, including Wnt, Frizzled, Hedgehog, EGFR, classical cadherin, HOX, ETS, and POU, or the exclusive metazoan extracellular matrix components such as collagen type IV, nidogen, and perlecan. A list of core animal-specific gene families is given in Richter et al. (2018).

Second is the age of the oldest metazoan fossils, a much more controversial matter (see Sperling and Stockey, 2018, for a recent review). We begin this section by discussing some key paleontological facts and hypotheses in relation to the origin of metazoans.
WHAT IS A METAZOAAN?

Defining Metazoa as a term is not trivial, and we now mostly recognize monophyletic groups as they are defined in phylogenies. Metazoa therefore includes any organism that shares a common ancestor with Ctenophora, Porifera, and Bilateria but excludes Choanoflagellatea. We do not consider here therefore the plethora of “protozoan” groups that used to be included in some textbooks as “unicellular animals,” for these are not necessarily the closest sister groups of animals. Metazoans are organisms of multicellular organization, as opposed to unicellular or colonial ones, which means that there are special cell–cell junction molecules (Leys and Riesgo, 2012). That said, multicellularity is not exclusive to metazoans, as it occurs in multiple lineages of eukaryotes, even within Opisthokonta (Ruiz-Trillo et al., 2007). This has allowed division of labor, and even the simplest extant metazoans have multiple cell types.

All metazoans are also ingestive heterotrophic, but that is not equivalent to having a mouth, as pinocytosis and phagocytosis are the sole feeding mechanism of sponges and extracellular digestion with endocytosis by the lower epithelium occurs in placozoans. Virtually all other free-living metazoans ingest food through a mouth, with some exceptions of parasitic or symbiotic species. Nevertheless, the ability of metazoans to phagocytize food is unique among the multicellular eukaryotes (Mills and Canfield, 2016). A prevalent hypothesis is that the first metazoans—the common ancestor of all living metazoans—likely subsisted on picoplankton (planktonic microbes 0.2–2 μm in diameter) and dissolved organic matter, as sponges do nowadays and that therefore, through their feeding, helped bridge the strictly microbial food webs of the Proterozoic Eon (2.5–0.541 billion years ago) to the more macroscopic, metazoan-sustaining food webs of the Phanerozoic Eon (the past 541 million years) (Mills and Canfield, 2016). This hypothesis, however, relies upon a similarity between the last common ancestor of modern metazoans and modern sponges. Alternative phylogenetic hypotheses placing ctenophores more basally than sponges have been informally criticized for requiring carnivory to have evolved at the base of the animal tree, but this is not necessarily the case, as extant ctenophores seem to have diversified relatively recently, and there could have been other ecologies earlier in the stem ctenophore lineages. Furthermore, it is difficult to predict the feeding mode of possible extinct stem metazoans, but it is not unlikely that they would have fed on phytoplankton, as many animal larvae do nowadays.

Because multicellular animals must begin as unicellular, metazoan development shares some basic principles in sexual animals. While most nonsexual species tend to have sexual sister species, a few lineages of long-term asexual (mostly parthenogenetic) animals are supposed to exist, for example, bdelloid rotifers (Mark Welch and Meselson, 2000). This phenomenon has, however, recently been disputed, suggesting that bdelloids may have some sort of infrequent or atypical sex, in which segregation occurs without requiring homologous chromosome pairs (Signorovitch et al., 2015). Therefore, the presence of eggs and sperm cells could be considered the typical metazoan condition. After fertilization, metazoan zygotes develop from one of the four cells resulting from meiosis, whereas the other three cells become
polar bodies and often degenerate. Embryogenesis in animals is, however, extremely diverse, and polar bodies can carry information or have specific functions. For example, they are key in fertilization of eggs in parthenogenetic animals, or have a role as extra-embryonic tissue in some parasitic wasps (Schmerler and Wessel, 2011).

Some authors have also attempted to identify metazoan-specific markers, including special glycoproteins such as collagens (a large family of proteins found in the extracellular matrix of metazoans), protein kinase C for cell signaling, or even specific neurotransmitters, but many of these molecules are now known from the genome of Monosiga brevicollis, suggesting a premetazoan history of protein domains required for multicellularity (King et al., 2008), and even neurotransmission may have a common origin with the primordial secretion machinery of choanoflagellates (Burkhardt et al., 2011; Hoffmeyer and Burkhardt, 2016). Some recent research may indicate that while fibrillar collagen motifs evolved in the common ancestor of choanoflagellates and metazoans, fibrillar collagen with covalent cross-links between individual fibrils are metazoan synapomorphies (Rodriguez-Pascual and Slatter, 2016). From these, type IV collagen or a type IV–like form (spongin short chain collagen) is present in the basement membrane of all metazoans (Leys and Riesgo, 2012). TGF-β is also found in all animals but nowhere outside animals, although there are some differences in the complement of genes between sponges and ctenophores with the rest of animals (Pang et al., 2011).

In addition to protein-coding genes, animal cis-regulatory complexity (i.e., distinct enhancers and transcription factor binding sites for different genes that regulate their spatial and temporal expression), once thought to be the trademark of complex animals, is now known to be present in sponges (Gaiti et al., 2017; Hinman and Cary, 2017), but this has not been studied in ctenophores or placozoans.

Germ cells play a unique role in gamete production and thus in heredity and evolution. They can be specified either by maternally inherited determinants (preformation) or by inductive signals (epigenesis) (Extavour and Akam, 2003). At the molecular level, metazoans seem to share a germline multipotency program (GMP) with 18 GMP genes present in representatives of sponges, ctenophores, cnidarians, and bilaterians (Fierro-Constain et al., 2017), showing that some of them evolved in Metazoa. Likewise, while homologizing germ layers across animals may be difficult, the expression of the transcription factor GATA in the sponge inner-cell layer suggests a shared ancestry with the endomesoderm of other metazoans and that the ancestral role of GATA in specifying internalized cells may precede the origin of germ layers (Nakanishi et al., 2014). This may imply that germ layers and gastrulation evolved early in eumetazoan evolution from developmental programs used for the simple patterning of cells in the first multicellular animals (Nakanishi et al., 2014).

THE EARLIEST METAZOAN FOSSIL RECORD—THE PRECAMBRIAN

Most of the characters discussed above as likely apomorphies of Metazoa have negligible fossilization potential and, as is often the case, fossils may be assigned to a
group because they possess diagnostic characters of one or more of its subgroups. A review of metazoan characters proposed by Ax (1996), for example, noted that radial cleavage was the only one with reasonable fossilization potential (Cunningham et al., 2017). This particularly applies to the body fossil record of the earliest metazoans and impedes chances of identifying a stem-group metazoan, very few compelling candidates of which are known from the Proterozoic Eon (the late Precambrian), and these are confined to its latest period, the Ediacaran (635–541 Mya) (fig. 1.2).

Evidence from behavior in the form of trace fossils (=ichnofossils) has generally been regarded as providing the strongest evidence of Metazoa before the Ediacaran–Cambrian boundary (fig. 1.3). Trace fossils from the late Ediacaran (ca. 555 Ma) have the most widespread acceptance as having been made by animals, and some of these traces are generally ascribed to Bilateria (Gaidos et al., 2007; Gehling et al., 2014; Oji et al., 2018), some likely even made by bilaterians with paired appendages (Chen et al., 2018). That said, the situation is less straightforward than it might seem, as locomotory traces that have classically been attributed to Bilateria, such as bilobed trails with a median groove, have been observed to have been made by large
protists (Matz et al., 2008), and other claimed bilaterian traces (Chen et al., 2013) have been attributed to nonanimal behavior, such as by slime molds (Retallack, 2013). Various sources have argued for bilaterian locomotory and feeding traces from earlier sediments, for example >585 Ma (Pecoits et al., 2012). Well-dated locomotory traces from the deep-water Ediacaran deposits in Newfoundland at least indicate that relatively large organisms (trace widths up to 13 mm) were motile by 565 Ma, and the form of the traces is consistent with muscular locomotion as in metazoans (Liu et al., 2010).

The trace fossil record for Ediacaran metazoans is potentially supplemented by biomarkers. At the center of the debate is the discovery of 24-isopropylcholestanes (24-ipc), the hydrocarbon remains of sterols interpreted as having been produced by marine demosponges, derived from rocks as early as 635 Myr old and extending into the Cambrian (Love et al., 2009). This hypothesis was later questioned, as several modern marine algae are also able to produce compositional isomers that are identical to the claimed sponge biomarker (Antcliffe, 2013) and a recent reexamination of the sponge fossil record was unable to unambiguously assign any Precambrian fossil to Porifera (Antcliffe et al., 2014). However, the hypothesis of the sponge biomarker again gained support based on molecular analyses of the origin of the sponge and plant 24-isopropylcholestanes (Gold et al., 2016a), suggesting indeed a gap on the order of 100 Myr for siliceous sponge spicules in the fossil record (Sperling et al., 2010). An additional demosponge-specific biomarker, 26-methylstigmatane (26-mes), has also been identified in Ediacaran sediments (see a summary of demosponge biomarkers in Sperling and Stockey, 2018). However, both 24-ipc and 26-mes have been found to be abundantly biosynthesized

Figure 1.3. Metazoan trace fossils from the Ediacaran–Cambrian transition. A, *Helminthoidichnites* from the Ediacaran, scale 2 cm; B, *Treptichnus pedum*, index fossil for the base of the Cambrian, scale 1 cm; C, *Rusophycus burjensis*, a middle Cambrian arthropod resting trace, scale 5 mm. Image credits: B, Sören Jensen; C, Gabriela Mángano.
by unicellular protists in the clade Rhizaria, and the appearance of this group in
the fossil record matches the geological appearance of the biomarkers better than
does that that of sponges (Nettersheim et al., 2019). Irrespective of this debate over
demosponges, lipid biomarkers from organic films on Ediacaran dickinsoniid
meagafossils have been identified as cholesterol (Bobrovskiy et al., 2018), dis-
cussed below as evidence for total-group Metazoa.

A series of phosphatized and silicified microfossils (Muscente et al., 2015a) from
the Doushantuo Formation, South China, known as the Weng’an biota, has yielded
an abundance of three-dimensional fossils, including what have been interpreted
as metazoan embryos (Chen et al., 2000; Xiao and Knoll, 2000; Chen et al., 2006;
Chen et al., 2009b) and small postembryonic stages of metazoans (Xiao et al., 2000;
Wang et al., 2008). However, subsequent reexamination or reinterpretation of the
Doushantuo specimens has in several cases disputed the proposed evidence for
metazoan identities, with many of the putatively biological structures being rein-
terpreted as geological in origin (reviewed by Crosby and Bailey, 2018). With re-
gards to the putative embryos (fig. 1.4 A), some workers have accepted an identity
as embryos but questioned their identification as metazoans, suggesting alterna-
tives such as non-metazoan Holozoa, whereas others have proposed that these fos-
sils are algal or bacterial (Huldtgren et al., 2011; Bengtson et al., 2012; Cunningham
et al., 2012; Cunningham et al., 2015).

Another proposed indicator of metazoans in the Ediacaran are acritarchs, known
as large ornamented Ediacaran microfossils (fig. 1.4 B, C), some of which have been
interpreted as the encysted resting stages of Metazoa (Yin et al., 2007; Cohen et al.,
2009). These acritarchs have a temporal range from approximately 635 to 560 Ma,
but their precise affinities remain unclear and appear to be phylogenetically var-
ied (Liu et al., 2014b), although some encase embryo-like Doushantuo fossils (Yin
et al., 2007).

Perhaps the most fascinating Precambrian biota is the famous Ediacaran mega-
fossils, a series of large (sometimes more than a meter long), soft-bodied, mostly
sessile organisms originally described from the Flinders Ranges in Australia (fig. 1.4
G–J) but later extended to be a globally distributed marine biota, now known from
all continents but Antarctica (Fedonkin et al., 2007a). Three different assemblages—
the Avalon, White Sea Ediacaran, and Nama—are identified, the differences
between them reflecting a mix of temporal, biogeographic, and especially envi-
ronmental/biofacies differences (the Avalon, named for a classic site in New-
foundland, being the oldest and deepest water, and the Nama, first described from
Namibia, being the youngest and shallowest). Together they span the interval
from ca. 571–542 Mya, and span biofacies from lower-energy inner shelf settings
(Avalon-type), wave- and current-agitated shoreface (White Sea Ediacaran) to high-
energy distributary systems (Nama) (Grazhdankin, 2014).

Ediacaran organisms like Dickinsonia, Mawsonites, Rangea, and Charniodiscus,
among others, have been discussed in the context of modern metazoan taxa, espe-
cially Cnidaria, but a plethora of other interpretations have been proposed, includ-
ing that of a protozoan affinity (Seilacher et al., 2003) or being a wholly extinct ra-
diation of nonanimal life, collectively grouped as Vendobionta. Dickinsonia (fig. 1.4 J),
historically allied to annelids or cnidarians, exemplifies the diversity of current
opinion on the question of affinities for Ediacaran macrofossils. Its feeding traces (grazing on a microbial mat by absorption across its ventral surface) characteristic of external digestion have been argued to support a placozoan affinity (Sperling and Vinther, 2010). Its inferred mode of growth has alternatively been interpreted

Figure 1.4. Fossils from the Ediacaran Period. A, Weng’an microfossils, scale 0.1 mm; B, C, ornamented acritarchs, B, *Allicoesphaeridium lappaceum*, scale 50 μm; C, *Meghystrichosphaeridium reticulatum*, scale 50 μm; D, *Cloudina carinata*, field context, scale 5 mm; E, *Cloudina hartmanae*, SEM, scale 200 μm; F, *Namcalathus hermanastes*, field context; G–J, South Australian Ediacaran macrofossils; G, *Charniodiscus arboreus*, scale 3 cm; H, *Spriggina floundersi*, scale 5 mm; I, *Marywadea ovata*, scale 5 mm; J, *Dickinsonia costata*, scale 1 cm. Photo credits: A–C, F, Andrew Knoll; D, E, Iván Cortijo; G–J, John Paterson.
as involving repeated units being added at one pole and compared to terminal addition in metazoans, prompting an assignment to Bilateria (Gold et al., 2015) or instead involving preterminal addition of new units as in Metazoa more generally (Hoekzema et al., 2017; Dunn et al., 2018). *Dickinsonia* is confidently identified as being a mobile organism (Evans et al., 2015), but like the spectrum of Ediacaran macrofossils it lacks any structures that can be convincingly interpreted as a mouth or gut. Cholesteroids as the dominant lipids in *Dickinsonia* and the allied *Andiva* (Bobrovskiy et al., 2018) support an affinity of these organisms with Filozoa, the clade that unites metazoans with Filasterea and Choanoflagellatea (see fig. 1.1). This evidence, combined with large size, motility and mode of growth, amplifies the case for such dickinsoniids (and, by association, other Ediacaran megafossils with similar preterminal addition of new units and their subsequent inflation; Dunn et al., 2018) being total-group Metazoa. There is evidence for some frondose Ediacaran-type organisms surviving until the Cambrian (Jensen et al., 1998; Shu et al., 2006; Hoyal Cuthill et al., 2018).

The most widely endorsed body fossil evidence for Ediacaran metazoans comes from its terminal part, in the Nama Group (550–541 Ma) of Namibia and coeval, terminal Ediacaran biotas in Brazil, Russia, China, and other parts of the world. The key fossils are biomineralized and assume quite variable forms. Collectively they represent the earliest experiment in likely animal skeletonization. Such early skeletal fossils include *Cloudina*, a tiny tubular fossil organized as nested calcareous cones (fig. 1.4 D, E), and *Namacalathus*, which has a goblet-shaped calyx with several apertures (fig. 1.4 F), attached to a stalk (see chapters 3 and 44). Both of these as well as the tubular *Corumbella* have been compared to Cnidaria (see chapter 8) as well as other metazoan phyla.

To summarize, early skeletal fossils and a substantial body of indirect evidence suggests a Precambrian origin of Metazoa, in addition to support from nearly all analyses of molecular dating. Indeed, the latter converge on a minimal age for crown-group Metazoa in the Tonian, more than 720 Ma (Sperling and Stockey, 2018). While unambiguous consensus on the animal identity of any of these fossils is yet lacking, biomarkers and developmental modes are consistent with some Ediacaran megafossils being total-group metazoans. In the chapter on Cnidaria (chapter 8), the most likely cases of Ediacaran-age metazoan body fossils are discussed.

THE PRECAMBRIAN–CAMBRIAN BOUNDARY

The dearth of definite metazoans in the Precambrian may of course be the result of multiple factors. Soft-bodied pelagic animals do not fossilize well, and neither do the smallest meiofaunal animals (although Cambrian loriciferans preserved as small carbonaceous fossils provide a fascinating exception; Harvey and Butterfield, 2017). Being small, thin, rare, and of low population density would severely impede the possibility of preservation (Sperling and Stockey, 2018). It is not out of the realm of possibility that some of the earliest animals may have looked like sponge larvae or like many of the microscopic meiofaunal taxa inhabiting water bodies all over the world nowadays.
Most of the animals that today branch out early in the Animal Tree of Life are either pelagic (most ctenophores and jellies, plus several other cnidarians) or, if benthic, are sessile (sponges and many cnidarians). Placozoans, another early animal lineage probably related to cnidarians (Laumer et al., 2018), have been observed swimming but are often collected on glass slides, crawling on surfaces. None of these early animals make burrows or penetrate marine sediments. That said, in contradiction to predictions from molecular dating, there is a sound basis for doubting that animals existed deep into the Proterozoic but failed to be preserved because of deficiencies or preservational biases in the fossil record. Precambrian sediments do in fact preserve fossils in cellular detail (Brasier, 2009), and it is increasingly understood that exceptionally preserved biotas in the late Ediacaran and the Cambrian have similar taphonomy (Daley et al., 2018).

The Ediacaran provides a fossil record in phosphorites, in cherts, as organic fossils, and as compression fossils, yet in striking contrast to the early Cambrian, the abundant and often exquisitely preserved fossil remains from the late Ediacaran are not crown-group animals (Daley et al., 2018). The sequential increase in complexity and diversity of trace fossils across the Ediacaran to middle Cambrian interval (Mángano and Buatois, 2014) is an especially powerful indication that the early Cambrian records key aspects of animal behavior and ecology evolving in real time.

Originally defined by the first appearance of fossil metazoans with mineralized skeletons, such as trilobites, the dating of the Precambrian–Cambrian boundary has changed considerably in the past decades. In the 1970s, with the discovery of small shelly fossils (SSF) below the oldest Cambrian trilobites—a fauna composed of spicules, sclerites, and ossicles of animals plausibly interpreted as sponges, molluscs (including extinct scleritome-bearing groups such as halkieriids), stem-group brachiopods, and so on—the base of the Cambrian was revised. Nowadays it is defined by the first occurrence of the trace fossil *Treptichnus pedum* (fig. 1.3 B), one of the first penetrative burrows, suggesting a metazoan trace maker able to move between layers of sediments and probably also causing a great deal of bioturbation that oxygenated and mixed the sediment at a depth not previously attained—the so-called agronomic revolution that provides one of the possible ecological explanations for the Cambrian “explosion” of animal life (Brasier, 2009).

The nature of the animal that left the trace fossil *T. pedum* has been a matter of speculation, but it must have been a relatively large (macroscopic) animal based on the size of the burrows. Comparisons with the feeding traces of extant priapulans are consistent with *T. pedum* having been produced by a priapulan-like animal (Vannier et al., 2010), and exceptionally preserved treptichnid traces from the early Cambrian of Sweden closely replicate the morphology of priapulans as well as actualistic observations on burrowing behavior by *Priapulus caudatus* (see Kesidis et al., 2019). *Treptichnus pedum* has also often been associated with the presence of some sort of hydrostatic skeleton, such as a coelomic or a large pseudocoelomic cavity, that allowed the animals to burrow but probably lacked a well-developed cuticle.

Although the presence of a cuticle is quite widespread across animals, a cuticle is in fact difficult to define (Rieger, 1984; Ruppert, 1991b) but may be characterized
as an apical extracellular matrix secreted by and covering the epidermis. Cuticles can be a simple glycocalyx or complex ones consisting of an organic matrix with protein fibers, such as collagen or keratin, or polysaccharides, such as chitin and cellulose. The cuticle can also be mineralized to form spicules or shells. The fossilization potential of different macroscopic coelomate worms can thus be radically different in animals with complex cuticles (e.g., annelids) and those with a simpler ciliated epidermis (e.g., nemerteans), as the latter decay rapidly after death. A bias in sediments that affects fossilization need also be acknowledged. Trace fossils in the earliest Cambrian are often in coarser-grained siliciclastic rocks that typically lack body fossils, particularly nonshelly ones, whereas nonbiomineralized body fossil preservation almost requires a lack of burrowing and disruption/oxygenation of the sediment. This means the two styles of preservation—the traces and the bodies—are almost exclusive of each other.

THE CAMBRIAN EXPLOSION

The term “Cambrian explosion” refers to the relatively sudden appearance of a large number of mostly large-bodied animals during the early Cambrian, including the first records of disparate animal phyla and, ultimately, the rise of metazoan-dominated marine ecosystems. It seems clear now that animal diversification during the Cambrian, giving origin to many animal phyla, was not an explosive radiation per se but that such diversity was made apparent to us through a series of narrow fossilization windows, giving the appearance of a sudden origin of so many animal lineages. Mineralization of course plays a key role in recognizing such diversity (Kouchinsky et al., 2012; Briggs, 2015), given that in several lineages (such as chaetognaths, represented by their organophosphatic grasping spines known as “protoconodonts”), mineralized microfossils precede the first appearance of non-biomineralized parts of the body. For some of the major groups of animals, the latter coincides with the opening of a taphonomic window known as “Burgess Shale-type preservation” (Gaines, 2014), after the eponymous Burgess Shale in British Columbia, Canada, in which recalcitrant nonbiomineralized tissues are preserved as largely two-dimensional carbonaceous compressions.

This style of preservation is known from the late Proterozoic (Dornbos et al., 2016), exemplified by the Miaofei biota in China, which preserves abundant and diverse macroscopic algae (An et al., 2015), but it is especially characteristic of offshore siliciclastic rocks from a temporal window spanning Cambrian Stage 3 (ca. 518 Ma) to the Early Ordovician (fig. 1.5). For groups like arthropods and priapulids, the skeletal fossil record commences with Burgess Shale-type preservation in the Chengjiang and Qingjiang biotas in China (Hou et al., 2017; Fu et al., 2019) and the nearly synchronous Sirius Passet biota in Greenland (Cambrian Series 2), but the trace fossil record indicates that the lineages extend to or close to the base of the Cambrian.

Other styles of fossil preservation provide vital information about the diversity and ecology of Cambrian animal communities, such as secondarily phosphatized fossils known as Orsten. First and most comprehensively documented from the Guzhangian–Furongian (late Cambrian) of Sweden, Orsten-style preservation is
also known from the early Cambrian, permitting embryos, early postembryonic and larval stages to be documented for various groups of animals, including ecdysozoans and cnidarians (Donoghue et al., 2015). Taken together, exceptionally preserved fossil biotas from the Cambrian include a large diversity of animals in extant and extinct lineages. Although it is often said that all major animal phyla except bryozoans appear already in the Cambrian fossil record, this is not true; about half of the currently recognized phyla, including some with numerous species and large sized-animals, like Platyhelminthes and Nemertea, do not have a confirmed Cambrian fossil record.

Many hypotheses have been discussed in the context of the Cambrian explosion of animal life, including a series of intrinsic (genetics, arms race hypothesis) and extrinsic abiotic (changes in ocean circulation patterns, and sea level rise that induced continental flooding and regolith erosion on a vast scale, the Great Unconformity; Peters and Gaines, 2012) and biotic (availability of oxygen and/or food)
factors. For some, the timing of the onset may be constrained by the environment, whereas the duration may be conditioned by developmental innovation (Marshall, 2006). Understanding why this event was unique is often explained by factors ranging from developmental constraints to ecological saturation (Erwin and Valentine, 2013). Conversely, a fundamental distinction between the Cambrian “explosion” and earlier (Ediacaran) events of evolutionary radiation at the base of Metazoa has been questioned, these being seen as part of a longer phase in which animals evolved in response to changes in the Earth’s biogeochemical cycles (Wood et al., 2019). It is inescapable that the Cambrian explosion is in fact a pattern of profound but sequential ecological change that resulted from an interconnected set of biotic and abiotic factors (Smith and Harper, 2013), including carnivory and food availability (Sperling et al., 2013).
INDEX

Aarchaphanostoma ylvae, 97
Aberrantospermata, 93
Acaenoplax hayae, 388, 389
Acanhaster: A. planci, 128; A. solaris, 134
Acanthobdellida, 398, 401
Acanthopriapulus, 167
Acentrosomata, 328
Aciculata/aciculate, 395, 397, 403, 410–411
Acoela, 85, 91, 92, 93, 94, 326
Acoelomorpha/a coelomorph, 21, 84–87, 91–97, 98; digestive system, 94; fossil record, 97; genomics, 97; nervous system, 91, 94; synopsis, 93–97; systematics, 92–93
Acraspeda, 57–58
acritarchs, 8, 9
Acropora, 68, 71; A. digitifera, 74; A. palmata, 75
Acrosomata, 47
Acrotretida, 456, 458
Actiniaria/actiniarian, 57, 64, 74
Actinistia, 142
Actinoceratoidea, 362
Actinoptyrygii, 142
actinotroch larva, 451–453
Actinotrocha branchiata, 449
Actinulida, 58
Aculifera/aculiferan, 346, 361, 362, 364, 368, 376–377, 384, 386, 388, 389, 446
Adenogonogastropoda, 363
Adiaphanida, 327–328, 329
Adineta: A. ricciae, 307; A. vaga, 307
Aegina cirea, 26
Agnatha/agnathan, 142
Agnathiellidae, 288
Agronomic revolution, 11
Aiptasia pallida, 74
Alyconacea, 57–58, 60, 67
Alcyonidium, 429
Aldanella, 385
Alceosphaeridium lappaceum, 9
Alitta succinea, 259, 408
Allomalorhagida, 174, 178
Allonautilus, 391
Allotriocarida, 234, 235, 236
Alticrustacea, 235, 236
Alvinella pompeiana, 393
Amathia, 430; A. verticillata, 427
Ambulacria, 21, 108; fossil record, 108
Amiskwia sagittiformis, 262, 282, 292, 423
Ammonoidea/ammonoid, 362, 390, 391
Amphidiscophora, 35
Amphidiscus fenestrafer, 66
Amphimedon queenslandica, 34, 41–42
Amphinomidae/amphinomid, 393, 394, 398, 401, 404, 405, 406
Anamorphosis, 251
Ancestry of the Vertebrates, The (Jefferies), 136
Ancylostoma duodenale, 199
Anchylotroch larva, 451–453
Anomalocaris, 254; A. canadensis, 255
Anomalodesmata, 363
Antalis entalis, 368
Australonemertes, 412
Agnathia, 142
Agnathiellidae, 288
Agronomic revolution, 11
Aiptasia pallida, 74
Alyconacea, 57–58, 60, 67
Alcyonidium, 429
Aldanella, 385
Alceosphaeridium lappaceum, 9
Alitta succinea, 259, 408
Allomalorhagida, 174, 178
Allonautilus, 391
Allotriocarida, 234, 235, 236
Alticrustacea, 235, 236
Alvinella pompeiana, 393
Amathia, 430; A. verticillata, 427
Ambulacria, 21, 108; fossil record, 108
Amiskwia sagittiformis, 262, 282, 292, 423
Ammonoidea/ammonoid, 362, 390, 391
Amphidiscophora, 35
Amphidiscus fenestrafer, 66
Amphimedon queenslandica, 34, 41–42
Amphimeneidae, 362
Amphinomida, 396–397
Amphinomidae/amphinomid, 393, 394, 398, 401, 404, 405, 406
amphioxus, 103, 113, 139–141, 145, 148, 151. See also Cephalochordata
Amphipholis squamata, 269
Amplexidiscus fenestrafer, 66
Amplimetricata, 328
Amynthas: A. corticis, 409; A. mekongianus, 393
Anabarella australis, 385, 389
anhydrobiosis: Nematoda, 196–197; Panarthropoda, 212; Rotifera, 293; Tardigrada, 215, 221–222
animal phylogenetics, 17, 18
Animal Tree of Life, 11; base, 18–20, 22; historical introduction, 15–18; phylogeny, 21
Anomalocaris, 254; A. canadensis, 255
Anomalodesmata, 363
Antalis entalis, 368
Australonemertes, 412
Agnathia, 142
Agnathiellidae, 288
Agronomic revolution, 11
Aiptasia pallida, 74
Alyconacea, 57–58, 60, 67
Alcyonidium, 429
Aldanella, 385
Alceosphaeridium lappaceum, 9
Alitta succinea, 259, 408
Allomalorhagida, 174, 178
Allonautilus, 391
Allotriocarida, 234, 235, 236
Alticrustacea, 235, 236
Alvinella pompeiana, 393
Amathia, 430; A. verticillata, 427
Ambulacria, 21, 108; fossil record, 108
Amiskwia sagittiformis, 262, 282, 292, 423
Ammonoidea/ammonoid, 362, 390, 391
Amphidiscophora, 35
Amphidiscus fenestrafer, 66
Amphimedon queenslandica, 34, 41–42
Amphimeneidae, 362
Amphinomida, 396–397
Amphinomidae/amphinomid, 393, 394, 398, 401, 404, 405, 406
amphioxus, 103, 113, 139–141, 145, 148, 151. See also Cephalochordata
Amphipholis squamata, 269
Amplexidiscus fenestrafer, 66
Amplimetricata, 328
Amynthas: A. corticis, 409; A. mekongianus, 393
Anabarella australis, 385, 389
anhydrobiosis: Nematoda, 196–197; Panarthropoda, 212; Rotifera, 293; Tardigrada, 215, 221–222
animal phylogenetics, 17, 18
Animal Tree of Life, 11; base, 18–20, 22; historical introduction, 15–18; phylogeny, 21
Aiptasia pallida, 74
Alyconacea, 57–58, 60, 67
Alcyonidium, 429
Aldanella, 385
Alceosphaeridium lappaceum, 9
Alitta succinea, 259, 408
Allomalorhagida, 174, 178
Allonautilus, 391
Allotriocarida, 234, 235, 236
Alticrustacea, 235, 236
Articulata (versus Ecdysozoa), 156–158; Articulata (Brachiopoda), 455–457, 458
Ascaris lumbricoides, 193, 195, 197, 199
Ascidiacea, 141
ascidians, 146, 150
Ascocerida, 362
Ascopariidae, 93
asexual reproduction. See reproduction and development
Askepasma toddense, 465
Aspidochirotida, 120
Aspidogastrea, 328
Aspidosiphonidae, 397
Asplanchna: A. girodi, 304, 305; A. priodonta, 300
Asterina gibbosa, 117
Asteroidea/asteroidean, 115, 117, 118–119, 122, 134, 335
Asterozoa, 118–119
astogeny, 427
Asymmetron, 141, 142
Atacama Trench (Chile), 173
Atelocerata, 234
Athyridida, 457, 458, 466
Atrypida, 457, 458
Attenborough, Sir David, 412
Auanema, 199
Aurelia aurita, 69, 70, 74
Australohalkieria superstes, 388
Australonuphis, 393
Australoricus: A. oculatus, 182
Australostichopus mollis, 134
Austrognathia microconulifera, 289
Austrognathiidae, 288
Autobranchia, 363, 369
Autolamellibranchiata, 363
automated sequencers, 16
avicularia, 432, 437, 438
Ax, Peter, 287
Aysheaia, 157; A. pedunculata, 213, 214, 223
Baikalobia, 333
Balanoglossus: B. carnosus, 113; B. clavigerus, 113
Bankia setacea, 383
Barentsia, 445; B. gracilis, 442, 444
Barentsiidae/barentsiid, 439–441, 443
basal lamina, 86
basal membrane, 86
Bässodiscus, 419
Bathybelidae, 274, 275
Bathybelos typhlops, 274, 275, 277
Bathymeriscus platifrons, 383
Bdeloida/bdeloid, 4, 282, 286, 293–297, 301, 303, 304, 306–308
Bdelonemertes, 413
Bdelloura, 332
Beatogordius latastei, 205
Belenoidea, 362
Beorn leggi, 223
Beroe, 23; B. ovata, 29
bilateral animals, 154
Bilateria, 4, 6, 18, 19, 20, 21, 46, 80–83, 88; axial properties, 80–82; bilateral symmetry, 80; body cavities and coeloms, 83–84; evolutionary scenario of expression of Hox genes, 81; fossil record, 84; gastrulation, 82; mesoderm, 82–83
bioluminescence: annelids, 392–393; chaetognaths, 276, 278
biomineralization, 36, 123, 237, 370, 384, 463–464. See also mineralization
Biomphalaria, 340, 359; B. glabrata, 383
Bipalium, 325, 332
biphasic life cycle, Cnidaria, 55, 70
Bilaterality, 93
Bivalvia/bivalve, 68, 361, 363, 364, 366, 376, 384, 390
blastostyle, 62
Blastozoa, 138
Blaxter, Mark, 191
body-plan: Arthropoda, 231–232, 237, 242–245; Bilateria, 83–84; Chaetognatha, 275–276; Cnidaria, 55, 60–66; deuterostome trimeric, 103; Echinodermata, 120; Entoprocta, 440–441; Kinorhyncha, 175–177; Loricifera, 181–182; Mollusca, 365, 366–368, 376; Nemertea, 415–416; Placozoa, 51–53; Platyhelminthes, 329–331; Priapulida, 35–38; Priapula, 171; Rotifera, 296–299; Tardigrada, 218–219
book lung, 234, 237, 245, 256
Bothriocephalida, 328
Bothrioplana, 339; B. semperi, 327
Bothrioplanida, 327–328, 329
Bothriopsis schlosseri, 149, 151
Brachionus, 340, 359
box jellies, 56. See also Cnidaria
Brachionus: B. calyciflorus, 281, 307; B. manjavacas, 306, 308; B. plicatilis, 294, 304
Brachiopoda, 21, 424, 425, 455–466; circulatory system, 461; digestive system, 460–461; fossil record, 464–466; generalized articulate rhychonelliform brachiopod, 461; genomics, 463–464; nervous system, 462; phylogenetic diversity through time, 458; reproduction and development, 463; synopsis, 457–463; systematics, 455–457
Brachiozoa, 21, 446–448; fossil record, 447, 448
Brachiobdella, 411
Brachiobdellida, 398
Branchionus plicatilis, 307
Branchiopoda/brachiopod, 235, 236, 243, 245, 246, 248, 250, 253, 257
Branchiostoma, 141, 142, 153; B. floridae, 151; B. lanceolatum, 141, 145, 148
Branchiostomatidae, 142
Branchiura/branchiuran, 209, 235, 236, 250
Brenner, Sydney, 189
Bridgingida, 119
Brugia malayi, 200
Bryozoa, 21, 424, 425, 427–438; fossil record, 437–438; genomics, 437; nervous system, 434; reproduction and development, 434–437; synopsis, 431–437; systematics, 429–431
Buddenbrockia, 64, 156, 467; B. plumatellae, 59, 467
Bugula: B. minima, 437; B. neritina, 437
Bugulina stolonifera, 435, 437
Bulinus, 340, 359
Burgess Shale: Amiskwia sagittiformis, 282, 292, 423; Annelida, 410; Arthropoda, 254; Aysheaia pedunculata, 214, 223; British Columbia, Canada, 12, 13, 32; chordates, 152–153; ecdysozoans, 172; Eopriapulites sphinx, 164; Haplophrentis carinatus, 425; hemichordate, 114; lobopodians, 230; Mollusca, 386, 387, 389, 390; nemerteans, 423; Ottoia prolifica, 160; Porifera, 43–44; priapulans, 172
Bursalia, 93
Bursovaginoidea/bursovaginoid, 288, 290–291
Burykhia hunti, 153
Caecosagitta macrocephala, 276, 278
Caenorhabditis Genicos Center, 189
Caenorhabditis elegans, 16, 148, 160, 187, 189, 192, 193, 195–197, 253, 300, 344; early cleavage and fate map, 198; excretory system, 196; genome, 192, 201–202; life cycles, 197–199; nervous system, 195–196; Nobel Prize for work on, 189. See also Nematoda
Caenorhabditis Genetics Center, 189
Calcarea/calcarean, 34, 35, 39, 43–45, 75
Calcarea, 35
Calcinea, 35
Callochitonida, 362
Calloria inconspicua, 462
Calvapilosa kroegeri, 388, 389
Camaroidea, 111, 114
Cambraster cannati, 137
Cambrian explosion, 12–14; fossil assemblages, 6; temporal occurrence of fossil assemblages, 13
Cambroernids, 105–106, 108
camenellans, 447
Campyloplacidae, 174
Cancer magister, 420
Capilloventrida, 398
Capitella teleta, 81, 261, 394, 401, 403, 409
Capitellida, 397, 398, 405
Carpaspora ovzczarzaki, 1
Carbasca curva, 428
Carcinonemertes errans, 420
cardiac stomach, 128
Carinina, 419
Cárino, 419; C. tremaphoros, 422
Carybdea, 58
Caryophyllia, 67
INDEX

Cassiopea, 56, 63, 68
Ctenula lemnae, 325
Catenulidea, 327
Cateriidae, 174
Cathagynus diadexis, 152
Caudofoveata/caudofoveate, 362, 364, 369, 380–381, 389
Chitin, 12, 62, 158, 168, 175, 192, 204, 218, 238, 281, 318, 368, 374, 458–459
Chitina, 362
Chitonoida, 362
Chitonoida, 362
Chonorchis sinensis, 340
choanoblastaea, 3, 34
choanocytes, 3, 22, 33, 35; in sponges, 35, 36
Choanoflagella, 1–5, 10, 33, 37
Choanoflagellata/choanoflagellate, 1–5, 10, 33, 37
Choanozoa, 3
Cholesterol, 8, 10
Chordate, 21, 102, 104–105, 108, 136, 139–153, 234; evolutionary relationships, 143; fossil record, 152–153; genomics, 151–152; nervous system, 147–148; notochord, 144–145; reproduction and development, 148–151; synopsis, 143–147; systematics, 140–143
Chordoid cells, 91
Chordoid organ, 318, 352, 356
Chordoid larva, 318, 349, 352, 354, 356
Chromadorea, 190–191
Chromadoria, 191
Chromadorida, 190, 191
Chromodoris quadricolor, 38
Chromoplana, 325
Chrysomallon squamiferum, 373
Chun, Carl, 25
Cidaroidea/cidaroid, 116, 119, 127, 129
Ciliary pits, 291
Ciliocincta, 270
Ciona robusta, 141, 148, 151
Cirratuliformia, 397, 398
cladistics, 15
Clathrina clathrus, 42
Clausognathiidae, 288
Clavelina, 149
Clitellata/clitellate, 392, 396, 399–404, 407–408, 411
clonogenic neoblasts, 335
Cloudina, 10; C. carinata, 9; C. hartmanae, 9
Cnidaria/cnidarian, 8, 18, 19, 20, 21, 26, 46–48, 49, 55–79; biphasic life cycle, 55, 70; body plan, 55, 60–66; development, 73–74; early fossil cnidarians, 77; fossil record, 75–76, 78–79; gastrovascular cavity, 63–65; genomics, 74–75; nervous system, 66–67; predators, 56; relationship with Placozoa, 49; reproduction and life cycles, 69–72; skeletal structures and support, 67–68; synopsis, 60; systematics, 57–60
Cnidocytes, 26, 56, 65, 66
Coelenterata, 23, 26, 47
coeloms: Annelida, 399–402; Arthropoda, 237, 243–244; Bilateria, 83–84; Brachiopoda, 460–462; Brachiozoa, 446; Bryozoa, 431–435; Chaetognatha, 275; Chordata, 145–146; Deuterostomia, 102–103; Echinodermata, 120–124, 130, 132,
INDEX

134; Hemicordata, 111–112; Lophophorata, 424–425;
Lophotrochozoa, 347; Mollusca, 376; Nemertea, 412–413, 415,
417, 422; Nephrozoa, 100–101; Onychophora, 226–228;
Phoronida, 451–453; Priapulida, 171

Coeoploana, 30
coeosclerites, 346
Coeloscleritophora/coeloscleritophoran, 45, 346
Coleiarcus sprinkled, 137
Colesoidea, 362, 364, 390–391
Collembo/a collembola, 234, 235, 236, 249, 257
Coelumensis ciliorem, 230
collobrasts, 23, 24, 26, 30
Collotheccae, 295–296
Coloniales, 439–440, 443
Colubraria reticulata, 383
Comatulida, 119
combi jellies, 23. See also Ctenophora
compound eyes: Annelida, 406–407; ark clams, 378: Arthrop-
oda, 247–248; Echinodermata, 126–127
Conchifera/conchiferan, 288, 289, 291
Constellation, 428
Conus tribulus, 383
Coenostriulobla longifissura, 81, 92
Copepoda/copepod, 231, 235, 236, 244, 273, 339, 351, 356
Copula sivicki, 70
coral reproduction, 71
Corallimorpharia/corallimorpharian, 55, 57, 66
Corallium, 67
coralomorph, 79
corals, 56, 57, 48, 64, 67–68, 71, 72, 73–74, 75, 79. See also
Scleractinia
Corbicula fluminea, 383
Coronatae, 58
coronate larva, 434, 436
Corumbella, 10; C. werneri, 76, 77
Cotyledon tyloides, 445
Courtessolea, 135
Craniata, 21, 139, 142, 456, 458
Craniida, 456, 458, 460, 464
Craniiformea, 456, 458, 463–464
Craniopsida, 457, 458, 464
Crassiclitellata, 398
Crassitubus, 76
Crassostrea gigas, 383
Cratenemertea, 414
creeping larva, 348, 440–443
Creolimax fragrantissima, 1
Crepidula fornicata, 260–261, 379–381
Cretachordodes burmiticus, 208

Cretoperipatus burmiticus, 225, 230
Crinidea/crinoid, 103, 115–116, 117, 118–120, 122, 125, 127,
130–132, 134, 136, 138
Crinoida, 119
Cristatella mucedo, 428
Crucimusculata, 93
‘Crustacea’, 234, 242
Crustoidea, 111, 114
Crustacea, 428, 431
Cryptopora boettgeri, 462
Cryptopora, 428, 431
Ctenocystis utahensis, 137
Ctenophora, 2, 4, 18, 19, 20, 21, 22, 23, 24–32, 46–47; digestive
caudity, 25–26; ecology, 29–30; fossil record, 31–32; genomics,
30–31; mesoderm, 29; nervous system, 27; reproduction and
development, 28–29; symmetry, 25; synopsis, 24–27; systems,
23, 24
Ctenophora-sister hypothesis, 18, 20, 31–32
cylindrical larva, 434, 436
Cubozoa/cubozoan, 56–58, 67, 69–70, 78
Culexiregiloricus, 180
cuticle, 11–12; Arthropoda, 232, 237–238, 244; Ecdysozoa,
157–158; Gastrotricha, 31–318; Mollusca, 368, 372; Nematoda,
192–193; Nematoida, 186; Nematomorpha, 204–206;
Priapulida, 168; Tardigrada, 218
Cycliophora, 21, 351–357, 424–425; genomics, 357; life cycle, 351,
354–356; synopsis, 353–356; systematics of, 352–353
Cycloneuralia/cycloneuralian, 157–161, 164–165, 172, 186, 195,
214, 219–220, 282, 311, 320
Cyclostomata, 428, 430, 431, 436, 438
cydippid larva, 24, 28
Cydippidae, 24
cyphonautes larva, 434, 436
Cyrtocrinida, 119
cyrtothinida, 418
Cysticercosis, 342, 343
Cystoporata, 428, 431
Ctenocephalides spinosa, 135
Ctenophora, 2, 4, 18, 19, 20, 21, 22, 23, 24–32, 46–47; digestive
cavity, 25–26; ecology, 29–30; fossil record, 31–32; genomics,
30–31; mesoderm, 29; nervous system, 27; reproduction and
development, 28–29; symmetry, 25; synopsis, 24–27; systemat-
ics, 23, 24
Ctenophora-sister hypothesis, 18, 20, 31–32
cylindrical larva, 434, 436
Cubozoa/cubozoan, 56–58, 67, 69–70, 78
Culexiregiloricus, 180
cuticle, 11–12; Arthropoda, 232, 237–238, 244; Ecdysozoa,
157–158; Gastrotricha, 31–318; Mollusca, 368, 372; Nematoda,
192–193; Nematoida, 186; Nematomorpha, 204–206;
Priapulida, 168; Tardigrada, 218
Cycliophora, 21, 351–357, 424–425; genomics, 357; life cycle, 351,
354–356; synopsis, 353–356; systematics of, 352–353
Cycloneuralia/cycloneuralian, 157–161, 164–165, 172, 186, 195,
214, 219–220, 282, 311, 320
Cyclostomata, 428, 430, 431, 436, 438
cydippid larva, 24, 28
Cydippidae, 24
cyphonautes larva, 434, 436
Cyrtocrinida, 119
cysticerccosis, 342, 343
Cystophorata, 428, 431

Dactylobiotus: D. octavi, 219; D. parthenogeneticus, 216
Dactylopoloda baltica, 316
Dactylopolodidae, 315
dactylozooids, 61–62
Daithua, 32
Dailydina axon, 448
Dakuidae, 93
Dalysophoplanida, 328
Daphnia pulex, 248
Darwin, Charles, 273
Decapodiformes, 363
Demosponge/demosponge, 7, 8, 34–35, 37, 41–44, 47
Dendrochirotida, 120
Dendrocoelum lacteum, 330
INDEX

Dendrogramma, 59, 62
Dendroidea, 111, 114
Dendrophyllia, 68
Dentaliida, 363, 364, 390
Dermatophagoidea, 233
Desmodorida, 191
Desmodoridae, 190
Desmoscoleida, 190, 192
Desmoscolex, 190
Deuterostomia, 21, 102–107, 154; fossil record, 104–107; genomics, 104; nervous system, 104
development. See reproduction and development
Diania cactiformis, 213
Dibrachicystis purujoensis, 137–138
Dichaeotria, 317
Dichaeturidae, 315
Dickinsonia, 8–10, 54, 75; D. costata, 9
Dicondyla, 235
Diacrocelium dendriticum, 341
Dicyma japonicum, 267
Dicyemida/dicyemid (= Rhombozoa), 21, 80, 98, 155, 259, 263–267; genomics, 267; life cycle, 266; synopsis, 264–265; systematics, 263–264
Dicyemidae, 264
Didemnum vexillum, 151
Digenea/digenean, 328, 329, 334, 339–340
digestive system: Annelida, 403–404; Arthropoda, 242–243; Brachiopoda, 460–461; Echinodermata, 127–130; Entoprocta, 441; Gastrotricha, 319; Kinorhyncha, 177; Loricifera, 181; Mollusca, 374–376; Nematoda, 194–195; Platyhelminthes, 330, 333; Priapulida, 171; Rotifera, 299
Dignatha, 235, 236
Dinomischus, 32
Dinophilidae, 395–397, 398
Diocotephymatida, 191
Diopisthoporidae, 93
dipleural larva, 108, 151
Diplichnites, 254
Diplopoda/diplopod, 235, 236, 256–257
diplozoon hypothesis, 102
Diplura, 234, 235, 236, 250
Dipnoi, 142
Dirofilaria, 200
Discinosa tentis, 463
Distromatoneortea, 414
Diurodrilus, 395, 399, 467
Diurodonutus, 317, 321; D. aspetto, 316
DNA (deoxyribonucleic acid): discovery of structure of, 15–16; sequencing, 15, 16
Dolabella auricularia, 359
doliolaria larva, 134
Doliolida/doliolid, 139, 142, 144–145, 149
Dorylaimia, 190–191
Dorylaimida, 191
Doryteuthis pealeii, 377
Doushantuo Formation, 8, 262
Dracoderidae, 174
Draconomatidae, 190
Dreissena, 373; D. polymorpha, 383
Drosophila melanogaster, 16, 18, 81, 148, 160, 189, 212, 232, 239, 251–253, 344; development, 251–252; Hox gene expression, 252; model organism, 253
duet cleavage, 92, 95
Dugesia japonica, 334, 336
Dujardin, Félix, 173
Dunagan, T. T., 303
Eccentrotheca, 447; E. helenia, 448
Ediacaran: fossil assemblages, 6, 11; fossils, 75–76, 84; metazoan trace fossils, 7; organisms, 8–10
Edrioasteroids, 138
Eiffelia globosa, 43
Eisenia fetida, 409–410
Elastipodida, 120
eledoniids, 105
Eleutherozoa/eleutherozoan, 116, 118–119, 134, 138
Ellesmereoceratida, 362
Ellipura/ellipuran, 234, 235, 249
Emarginimantas angulatus, 385
Emu Bay Shale (Australia), 13
Encentrum astridae, 281
Enchytraeidae, 398, 405
Endoceratoidea, 362
Endocnidazoan/endoconidazoan, 57, 59, 69, 82
Enoplea, 190–191
Enoplia, 190–191, 196
Enoplida, 191, 194
Enoplius brevis, 198
Enteroebius vermiciarius, 199
Enterogona, 141–142, 143
Entoconcha mirabilis, 116
Eooacanthocephala, 295–296
Eoelaeodonta octobranchiata, 31
Eocyathispongia qiania, 43
Eohypsidioidea, 216
Eokinorhynchus rarus, 164, 178
Eolorica, 185; E. deadwoodensis, 184
Eoperipatus, 226
Eophoron chengjiangensis, 453
Eopriapulites sphinx, 418
Eopriapulites sphinx, 418
Epigonichthys, 141–142
Epimenia babai, 261
Epineural canal, 126
Epiperipatus biolleyi, 228
Epiphanes senta, 300–301
Epsiloneta, 190
Errantia, 395–398, 404–406
Eubilatera, 98
Eucidaris tribuloides, 134
Eucyclophora, 353
eudoxids, 62
Euchinoidea, 119, 129
Euhaplorchis californiensis, 340
Euheterodonta, 363
Eukrohnia fouleri, 276, 278
Eukrohniidae, 275
Eumetazooa/eumetazoan, 5, 18, 47, 54
Eunice aphroditois, 393
Euneoophora, 328, 329, 337
Eunicida/eunicid, 397, 398, 410
Euperipatoides: E. kanangrensis, 229; E. rowelli, 229
Euprymna vulgaris, 383–384
Euvrotatoria, 295–296
Eurylida, 119
Eurythomata, 430–431
Eutardigrada/eutardigrade, 216, 217, 218, 220, 223
Eutriploblastica, 98
excretion, 38, 98
Eximipriapulus globocaudatus, 172
exoskeleton: Cnidaria, 61; Arthropoda, 231, 232, 237–244, 249, 253
expressed sequence tags (ESTs), 17
extracellular matrix (ECM), 3, 5, 12, 36, 48, 53, 64, 99, 171, 192, 204, 237, 263, 278, 419, 451
extreme extremophiles, Tardigrada, 221–222
extremophiles, 212, 221, 294, 392–393, 399
Fasciculipora ramosa, 428
Fascicus vesanus, 32
Fasciola; F. hepatica, 340
Fecampiida/fecampiid, 328, 329, 338
feeding behavior: Chaetognatha, 278; Echinodermata, 127–130.
See also digestive system
Fenestra, 431
Fenestra (Morocco), 13
Filariae, 199, 200
Filasterea/filasterean, 1–3, 10
Filospermoidea/filospermoid, 288, 289, 291
Filozoa, 2, 10
Flagellophora apelti, 86
flame cells, 417
flatworm, 324. See also Platyhelminthes
Flinders Ranges, 8, 9
Flosculariaceae, 295–296
Flustrellidra, 428
foot and locomotion, Mollusca, 371–373
Fordilla troyensis, 389
fossil assemblages: Cambrian, 6; Ediacaran, 6; temporal occurrence, 13
fossil record: Acoelomorpha, 97; Ambulacraria, 108; Annelida, 410–411; Arthropoda, 236, 253–257; Bilateria, 84; Brachiopoda, 464–466; Brachiozoa, 447, 448; Bryozoa, 437–438; Chaetognatha, 279; Chordata, 152–153; Cnidaria, 75–76, 78–79; Ctenophora, 31–32; Deuterostomia, 104–107; Ecdysozoa, 160–161; Echinodermata, 135–138; Entoprocta, 445; Gastrotricha, 323; Gnathifera, 282; Gnathostomulida, 292; Hemichordata, 114; Kinorhyncha, 178; Lophophorata, 425–426; Lophotrochozoa, 349–350; Loricifera, 184–185; Micrognathozoa, 286; Nematoda, 202; Nematomorpha, 208; Nemertea, 423; Nephrozoa, 101; Onchophora, 230; Panarthropoda, 212–214; Phoronida, 453–454; Placozoa, 54; Platyhelminthes, 345; Porifera, 43–45; Priapulida, 172; Protostomia, 155; Rouphozoa, 312; Scalidophora, 164–165; Spiralia, 262; Tardigrada, 223; Xenoturbellidea, 90
Franciscideridae, 174
Frenzel, Johannes, 468
Frodozone Ediacaran megafossils, 32, 75
Funch, Peter, 283, 351
Fuxianhuia protensa, 255
Gadilida, 363, 364
Galacophomus abilus, 114
Galathea expedition, 360
gamete fusion, echinoderms, 132
gap junctions, 18
Gastroidea, 30
Gastropoda/gastropod, 80, 116, 261, 311, 348, 358–377, 379–386, 389; body plan, 366
Gastrotricha World Portal, 313
gastrovascular cavity, 48: Ctenophora, 25; Cnidaria, 55, 60, 61, 63–65, 70
gastrozooid, 61–62
gastrulation, 5
Gemmactaena, 31
Generelle Morphologie der Organismen (Haeckel), 15
genomics: Acoelomorpha, 97; Annelida, 409–410; Arthropoda, 253; Brachiopoda, 463–464; Bryozoa, 437; Chaetognatha, 278–279; Chordata, 151–152; Cnidaria, 74–75; Ctenophora, 30–31; Cyclophora, 357; Deuterostomia, 104; Dicyemida (=Rhombozoa), 267; Echiropoda, 160; Phoronida, 453; Placozoa, 53–54; Platychelminthes, 342–344; Porifera, 42–43; Priapulida, 172; Tardigrada, 222
Xenoturbellida, 90
erg germ cells, 5
erg germ layers, 47–48
erg germ plasm, 65
germline, 36, 41, 65, 197, 300, 340, 409
germline multipotency program (GMP), 5
ergmovitellarium, 305, 337
Gibbula varia, 368
Gigantorhynchus gigas, 305
gill slits, 103, 113, 140, 145–146
Glycera, 393; G. dibranchiata, 393
Gnathopoda, 209
Gnathostomaria lutheri, 287
Gnathostomata/gnathostome, 142, 145
Gnathostomula: G. armata, 281; G. jenneri, 291; G. peregrina, 289
Gnathostomulidae, 288
Gnesiotrocha/gnesiotrochae, 293, 295–297, 305
Gnosonesimida, 328, 329
Gnosonesimora, 328
Goeze, Johann August Ephraim, 215
Golfingiidae, 397
gonangium, 62
gonozooids: Cnidaria, 61–62; Bryozoa, 432
Gordian knot, 203
Gordian worm, 203. See also Nematomorpha
Gordioidea/gordioid, 186, 204, 206–207
Gordius, 204, 205; G. violaceus, 205
Graptholithoidea, 109, 110–111
graptolites, 109, 110, 114
Great Ordovician Biodiversification Event (GOBE), 79, 114, 138, 390, 465
Grell, Karl Gottlieb, 50
Guanshan (China), 13
Guilding, Lansdown, 224
Gymnolaemata/gymnolaemate, 429–434, 437, 438
Gyrocystis platessa, 137
Gyrodactylus salaris, 342
Haeckel, Ernst Heinrich Philipp August, 15
Haeckelia: H. bimaculata, 26–27; H. rubra, 26
Haemodice carunculata, 394
Haikouella lanceolata, 105
Haikouichthys ercaicunensis, 153
hairy bellies, 313. See also Gastrotricha
Halicryptidae, 167
Halicryptus, 167; H. spinulosus, 169, 171
Haliothis discus hannai, 383
Halikiera, 384, 389, 446; H. evangelistae, 387–388
Hallucigenia, 161, 230; H. fortis, 213
Halobiotus crispae, 220
Hamlet larva, 179
Haothia, 76; H. quadriformis, 76–77
Hapalochlaena, 378
Haplognathia, 288, 290; H. rosea, 289; H. ruberrima, 290
Haplognathiidae, 288
Haplopharyngida, 327
Haplopharynx, 328; H. rostratus, 333
Haplophrentis carinatus, 425
Haploscleromorpha, 35
Harrimaniidae, 110
Hatschek’s pit, 146, 147
heart-glomerulus complex, 111–112
Helcionella histosia, 385
helicocystid, 137–138
Helicocystis morrocoensis, 137–138
helicoplacoids, 136, 138
Helicoplacus gilberti, 137
Heliomedusa orienta, 464–465
Helioporacea, 57
Helminthoidnites, 7
Helobdella: H. robusta, 409–410; H. triseriata, 409
Hemicentrotus pulcherrimus, 134
Hemichorda/hemichordate, 21, 34, 82, 102–104, 108,
109–114, 135–136, 140, 279, 321, 347, 467; fossil record, 114;
genomics, 113–114; graptolites, 109, 114; reproduction and
development, 112–113; synopsis, 111–112; systematics,
110–111
Hemirotatoria, 295–296
Hemirotifera, 295–296
hemocoeel, 136, 228, 244, 363, 441
hemocyanin, 228, 237, 245, 359, 376
hemoglobin, 245, 318, 376, 402, 415, 417
Hennig, Willi, 15
Henry, Jonathan Q., 28
Herpetogaster, 106; H. collinsi, 105
Heterobranchia/heterobranch, 363, 371, 373, 375, 379
Heteroconchia, 363, 364
Heterodonta/heterodont, 363, 373, 375, 383
Heterokrohniidae, 275
Heteronemertea/heteronemertean, 413–415, 418–420, 423
Heteroscleromorpha, 35
Heterotardigrada/heterotardigrade, 212, 216, 217–218, 221
Heterotheuthis dispar, 379
Hexacorallia, 55, 57–58
Hexactinellida, 34, 35, 42, 47
Hexapoda/hexapod, 209, 233–235, 236, 237, 241, 242, 244–245,
247–253, 257
hexapod gap, 257
Hexasterophora, 35
Higgins larva, 179, 181–184
Hirudinida, 396, 398
Hirudinoidea, 398, 401
Histozoa, 18
Hochberg, Rick, 320
Hofstenia miamia, 95–97
Holaxonia/holaxonian, 57, 67
Holothuria: H. lentigenosa, 92; H. priapus, 166
Holothuroidea/holothroid, 115, 117, 118–121, 123–128, 130, 132,
134, 166
Holozoas/holozoan, 1–3, 8
Homarus, 352, 355; H. americanus, 351; H. gammarus, 351
Homoscleromorpha, 34, 35, 42, 47
Hoplonemertea/hoplonemertean, 413–414, 416–420, 422
Hoploplana inquilina, 338
horn corals, 79
horsehair worms, 186, 203. See also Nematomorpha
INDEX

Madreporite, 121–123
Magelona johnstoni, 394
Magelonidae, 394, 396–397, 398, 402, 405
Malacodella, 420
Malacosporea/malacosporean, 58–59
Malacostraca/malacostracan, 231, 235, 236, 238–239, 242, 244–245, 246, 250, 253, 257
Maldanomorpha, 397
Malongitubus kuangshanensis, 114
Malpighian tubules, 99, 218, 243, 257
Mansonia, 200
mantle cavity: Brachiopoda, 457, 460–462; Mollusca, 375, 377, 379, 380, 420
manubrium, 63
Maotianascus, 31
Marinermithida, 191
Markelia, 164–165
Martindale, Mark Q., 28
Maryanda ovata, 9, 212
Mawsonites, 8
maximal indirect development, echinoderms, 116
McConnell, James V., 336
Meara, 92; M. stichopi, 92
mechanosenory sensilla, Arthropoda, 249
medusae and polyps, Cnidaria, 60–66
Medusozoa/medusozoan, 57–59, 60, 63, 66–67, 75–76, 78, 82
Megadasy, 313
Megadictyon haikouensis, 254
Megalomma, 406–407
Megacoscidia maoricus, 394
Megathura crenulata, 359
Meginoverta, 167
Meiohiopulidae, 167
Meiopriapulus, 162, 163, 167, 169, 181; M. fijiensis, 167–171
Meloidogyne, 200
Membranipora membranacea, 430, 435, 436
Mermithida, 191
Mertensia ovum, 28
Mesacanthion, 194
mesenterial filament, 61
Mesobdella gemmata, 394
mesoderm, 29, 47, 48, 64; Annelida, 409; Arthropoda, 244; Bilateria, 80–83; Brachiopoda, 462; Chordata, 144; Ctenophora, 29; Deuterostomia, 103; Echinodermata, 133; Gastrotricha, 222; Mollusca, 381; Nemertea, 422; Onychophora, 228; Panarthropoda, 210; Phoronida, 451; Platytelminthes, 329, 339; Spiralia, 260–261; Tardigrada, 220
mesoglea, 27, 29, 48, 60, 61, 63, 64
Mesognathariidae, 288
Mesonychoteuthis hamiltoni, 359
Mesoperipatus, 226; M. tholloni, 225
Mesotardigrada, 217
Mesozoa/mesozoan, 80, 263, 268, 467–468
metacercaria, 339
metamorphosis of tadpole larva, 150
Metaspriggina walcotti, 153
Metazoa, 1–3; defining, 4–5
26-methylstigmatane (26-mes), 7
Miaohe biota (China), 12
Micrira, 447, 448, 464
Microdictyon, 214: M. sinicum, 213
Micrognathozoa, 21, 99, 283–286; fossil record, 286; genomics, 286; nervous system, 285; synopsis, 284–286; systematics, 283
Micromitra burgessensis, 465
Microstomum spiculifer, 334
Micrura, 422
Mid-American Trench, 166
Miller, D. M., 303
millipede, 238, 249, 250, 251, 253, 256. See also Diplopoda
Milnesiidae, 217, 223
Milnesium: M. swolenskyi, 223; M. tardigradum, 215, 222
mineralization, 12, 101, 238, 346, 459. See also biomineralization
miracidium, 339–340, 341; oncomiracidium, 339
mitralia larva, 407
mixed cleavage, 251
mixocoel, 83, 210, 226, 228, 243
Mnemiopsis, 29; M. leidyi, 26, 28–31
Mnemiopsis, The, 365
Mollusca Caribbaeana (Guilding), 224
Mollusca, The, 365
Mollusca Caribbaeana (Guilding), 224
Mollusca, The, 365
Mollusca Caribbaeana (Guilding), 224
molluscan cross, 16, 381
Molluscoidea, 155, 424
Molpadida, 120
Monhysterida, 191
Monobryozoon, 428
Monogenea/monogenean, 327–328, 334, 339, 342, 345
Monograptus tumescens, 109
Monomorphichnus, 254
For general queries, contact webmaster@press.princeton.edu
INDEX

Monosiga brevicollis, 1, 3, 5
Monostilifera, 413–414
Mopaloidea, 362
moss animals, 427. See also Bryozoa
mRNA (messenger RNA), sequencing, 17
mud dragons, 173. See also Kinorhyncha
Müller, J., 449
Müller’s larva, 329, 338
multicellularity genes, 1
Multicrustacea, 234, 235, 236
Multitubulatina, 314, 315
Muselliferidae, 315, 321
mushroom bodies: Annelida, 406; Arthropoda, 246
Muspiceida, 191
Mylokummingia fengjiaoa, 153
Myolaimina, 192
myonemes, 64
Myopsida, 363
Mystacocarida/mystacocarid, 235, 236, 243, 245
Mytilus, 384; M. galloprovincialis, 383
Myxobolus cerebralis, 72, 73, 75
Myxosporea/myxosporean, 58–59
Myxozoa/myxozoan, 55–57, 59, 60, 69, 72, 73, 75, 156, 201, 429, 467
Myzostomida/myzostome, 294, 326, 352, 392, 395–396, 398, 399–401, 404, 410
Naididae, 398, 403
Namaloricathus, 10, 31, 32, 350; N. hermanastes, 9, 349
Namibia, 8, 10, 153, 349
Namaloricida, 180
Namaloricidae, 180
Namaloricus, 180–182; N. mysticus, 163, 179, 182, 183
Narcomedusae, 58, 60
Nautiloida, 362
Nautilus, xii, 371, 391
Nealia, 293, 295
Nectocaris pteryx, 390
Nectonema, 186, 204–206; N. munidae, 204
Nectonematoidea, 204
Negombata magnifica, 38
nematocyst, 26, 27, 56, 59, 60, 65, 66, 92, 94, 332
nematocyst sequestration, 66, 92, 332
Nematoida, 21, 156, 159, 160, 162, 186–187; fossil record, 187; genomics, 187
Nematomorpha, 21, 155, 156, 159, 160, 162, 163, 167, 182, 186, 187, 203–208; fossil record, 208; genomics, 208; life cycle, 206–208; synopsis, 204–206; systematics, 203–204
Nematostella, 66; N. vectensis, 48, 64–66, 73–74, 80–81
Nemertea/nemertean, 13, 21, 83, 100, 154–155, 262, 268, 270, 290, 310, 326, 332, 346–400, 412–423, 468; circulatory system, 417; excretory system, 417; fossil record, 423; genomics, 423; nervous system, 418; proboscis apparatus, 416–417; reproduction and development, 421–423; schematic with proboscis retracted and everted, 416; sensory organs, 419–420; synopsis, 415–420; systematics, 413–415
Nemertoderma westbladi, 92
Nemertodermatida/nemertodermatid, 85, 86, 90–95, 97, 116, 327
Nemertodermatidae, 93
Neocentrophyidae, 174
Neochildia fusca, 95
Neodasyidae, 315
Neodasys, 314, 315, 317–319, 321
Neomeniomorpha/neomeniomorph, 362, 375
neoophoran, 337, 339
Neotricula, 340
neotroch, 108
nephridium/nephridia, 100, 101, 147, 158
nephridium of Hatschek, 147
Nephrops, 355; N. norvegicus, 351
Nephrozoa/nephrozoan, 21, 80–83, 87, 88, 97, 98–101; evolution of circulatory systems, 101; fossil record, 101; metanephridia, 99, 100; protonephridia, 99–100; schematics of filtration structures, 99
Neptunea contraria, 365
Neriitiformoa, 363, 364, 373
nerve: Acoelomorpha, 91, 94; Arthropoda, 245–249; Bilateria, 81; Brachiopoda, 462; Bryozoa, 434; Chaetognatha, 276–277; Chordata, 147–148; Cnidaria, 66–67; Ctenophora, 27; Deuterostomia, 104; Ecdysozoa, 159; Echinodermata, 124–127; Entoprocta, 442–443; Gastrotricha, 320; Gnathostomulida, 291; Kinorhyncha, 177; Loricifera, 182; Micrognathozoa, 285; Mollusca, 376–379; Nematoda, 195–196; Nemertea, 418; Onychophora, 227; Panarthropoda, 210; Phoronida, 452; Platyhelminthes, 330, 334–335; Priapulida, 169–171; Rotifera, 301–303; Tardigrada, 219–220; Xenacoelomorpha, 86–87
Neuralia, 18, 20, 47, 50
neuroblasts, 247
neurocysticercosis, 342
Nielsen, Claus, 348, 351, 443
Nipponemertes, 419
Nobel Prize, 189
Notentera ivanovi, 328
notochord, 103, 104, 139–145, 148–150, 152, 153, 318

For general queries, contact webmaster@press.princeton.edu
Notomyotida, 119
Notospermus geniculatus, 423
Novocrania anomala, 459, 461, 463

Obama, 324
Obolellata, 457, 458
Octocorallia, 55, 57–58
Octopoda, 362
Octopodiformes, 362
Octopus: O. bimaculoides, 383; O. vulgaris, 383

INDEX

Ocular Plate Rule, 123
Odontogriphus, 387; O. omalus, 386–387
Oegopsida, 363
Oesia, 114; O. disjuncta, 114, 279
Oesophagostomum dentatum, 192
Oestergrenia digitata, 117
Oikopleura dioica, 149, 151
Oligochoerus, 92; O. limnophilus, 92
Oligostraca, 235, 236, 253
Olivooides, 77, 78
Onchocerca volvulus, 200
Onecoceratida, 362
Oncomelania, 340, 359
Oncomiracidium, 339
Onychodictyon, 157; O. ferox, 211, 213
Onychognathiidae, 288
Onychophora/onychophoran, 21, 83, 100, 155, 156, 157, 159, 161, 163, 178, 209–213, 216, 218–220, 224–230, 239, 245–247; appendages, 227; development, 228; fossil record, 230; genomic, 229–230; nervous system, 227; reproduction, 228; respiration, 228; synopsis, 226–229; systematics, 225–226

INDEX

Ooperipatellus, 225
Ooperipatus, 228
Opposca minuta, 42
Opheliidae, 397, 398
Ophiocoma, 127
Ophiuroidae, 134
Ophiuroidia, 139
Opisthokonta, 2–4
Oratosquilla nata, 240
Orbinidae, 397, 398
Orchidacea, 241
Orchidaceae, 241
Orcepinor, fossil assemblages, 13
Orcen (Sweden), 13–18, 257
Orcus, 119
Orcus, 119
Orthocerida, 362, 391
Orthonecida, 21, 80, 98, 155, 259, 268–272, 392, 395, 467; genomics, 271–272; life cycle, 270–271; synopsis, 270; systematics, 270

Orthrozanclus, 389
Osarella: O. carmela, 42; O. lobularis, 41, 42
Osean, 392, 396, 403, 408, 411
Osteichthyes, 142
Ostracoda/ostracod, 235, 236, 253, 257
Otocelididae, 93
Otoia, 161; O. prolifica, 160
Owenia, 394
Oweniidae/oweniid, 394, 396, 397, 398, 404, 405, 406, 407

Palaeoacanthocephala, 295–296
Palaeoannelida/palaeoannelid, 396–397, 398, 404, 405
Palaeonema phyticum, 187, 202
Palaeonemertea/palaeonemertean, 348, 413–415, 417–420, 422
Palaeopriapulites, 165
Palaeosoma balticus, 345
Pambdelurion, 161; P. whittingtoni, 254, 255
Panarthropoda, 21, 157–161, 173, 186, 209–216, 233; appendages, 212–214; genomics, 212; name origin, 209; nervous system, 210
Panarthropoda/panarthropodan, 158, 193, 207, 233–235, 236, 244, 245, 247, 248, 252, 253
Panarthropoda, 21, 157–161, 173, 186, 209–216, 233; appendages, 212–214; genomics, 212; name origin, 209; nervous system, 210
Parabola tecta, 158, 193, 207, 233–235, 236, 244, 245, 247, 248, 252, 253, 257
Paracentrotus lividus, 117
Parachela, 217, 219
Paracornularia, 76
Paracoralliidae, 67
Parafossarulus, 340
Paragordius, 204; P. obamai, 208; P. varius, 205, 206
Parahoxcluster, 18, 46, 50, 97, 148, 453
Pareximella, 18, 46
Parapodia, 16, 399, 401, 402, 406, 408, 410, 411
Parascaris equorum, 197
Parasitida, 295
parasite increased trophic transmission (PITT), 340–341
parasitoid, 203, 232
Paraspadella gotoi, 277
Paraspinella, 367
Paraspinella, 367
Parietula, 240
Parietes, 240
Patella vulgata, 377
Patellidae, 363, 364, 371, 373–374, 382
Patellocladus, 447, 448
Pateterina, 465
Paterina, 456, 458
Paterinida/paterinid, 447, 456, 458, 464–465
paternal genome elimination, 250

For general queries, contact webmaster@press.princeton.edu
INDEX

Patinopespect yessoensis, 383
Patria miniata, 134
Pauidentulidae, 288
Pauropoda/pauropod, 235, 236, 244, 251, 256–257
Paxillosida, 119
Pectinatella magnifica, 428
Pedicellaria/pedicellariae, 123, 124, 127, 128
Pedicellaria, 123
Pedicellina, 444
Pedicellinidae/pedicellinid, 439–441
Pedunculotheca diania, 426
Pelagica, 414, 419–420
Pelagiella, 385, 386; P. subangulata, 385
Pelmatozoa, 270
Pelmatozoolaeidae, 270
Penicillaria, 57
Penicillata, 247, 256
Penins worms, 166. See also Priapulida
Pennatulaceae/pennatulacean, 57, 60, 62, 74, 75
Pentamerida, 457, 458
Pentastomida/pentastomid, 158, 209, 235, 238, 250, 253
pericalyyma, 382
Peripatopsis alba, 225
peripatus, 224. See also Onychophora
Peripatus juliformis, 224
peritrophic membrane, 242
Peru-Chile Trench, 324
phagocytosis, 4, 35
Phanerozoic Eon, 4
Phascolosomatidae, 397
Philactinoposthia, 86
Philodina: P. megatrotrocha, 293; P. roseola, 303
Phlebobranchiata, 141–142, 143, 144
Phlocinoloricus, 180
Pholidoskepia, 362
Phoronis, 449, 450; P. australis, 453; P. embryolabi, 452; P. hippocrepia, 449, 450; P. megalotrocha, 451, 453; P. ovalis, 449, 450, 451, 452; P. psamophila, 453; P. vancouverensis, 452
Phoropopsis, 449, 450; P. harmeri, 451, 453
Phosphatocopina, 257
photonic crystal, 27
Phragmophora, 274, 275
Phylactolaemata/phylactolaemate, 427, 438, 429–431, 433–436, 438
Phyllodocida/phyllodocidan, 397, 398, 411
Phyllorhiza punctata, 64
phylogenetics, animal, 15–22
phylogenomics, 17
phyllum, term, 15
Physalia, 62; P. physalis, 62
Physella acuta, 383
Pikaia, 152; P. gracilens, 152
Pilidiophora/pilidiophoran, 414, 418–419, 422
Pinctada: P. fucata, 383; P. imbricata, 383
pinules: Ctenophora, 32; Echinodermata, 117, 120, 122, 127
pinnocytosis, 4
Placozoa/placozoan, 3–5, 9, 11, 18–22, 25, 27, 46–48, 49, 50–54; body plan, 51–53; fossil record, 54; genomics, 53–54; reproduction and development, 53; schematic of cross section of Trichoplax, 52; synopsis, 51–53; systematics, 51
Placozoa + Cnidaria clade, 49
Planctosphaera, 111: P. pelagica, 110, 467
Planodasyidae, 315
plana larva, 60, 69, 73
Planoluszoa, 20, 22, 46–48, 50, 74; Cnidaria, Placozoa and Bilateria, 46; diploblasts, 47–48; triploblasts, 47–48
plasmidium, 268, 271
Platydusmus manokwari, 333
Platynectida, 27–30
Platynereis, 406; P. dumerili, 100, 401, 404, 406, 409
Platytrochozoa, 21, 310, 347
Plectida, 192
Plecotida, 363
Pleistomollusca, 361
Pleistomollusca, 361
Pleiochronotina, 406
Pleishanasella, 396–398, 405, 410
Pleistomollusca, 361
Pleurobrachia brachei, 30–31
Pleurogona, 142
Plioclineidae, 180, 184–185
Pliciloricus, 180; P. diva, 182; P. hadalis, 179
Ploima, 295–296
pluteus larva, 118, 133, 134
pneumatophores, 62
podocytes, 98, 100, 101, 111, 112, 376, 462
Pojetaia, 389; P. runnegari, 385, 389
Polian vesicles, 121–123
Polycarpia mytiligera, 149
Polygordius, 394, 399
polymerase chain reaction (PCR), 16
Polycladophora/polyplacophoran, 358, 361, 362, 364, 366, 368, 389
Polyplacophora mediterranea, 50, 51
Polypodiozoa, 57, 59
INDEX

Polypodium, 57, 59, 60, 64; P. hydriforme, 59, 72, 75
polyps and medusa, Cnidaria, 60–66
poly-p-stage, cnidarians, 55
Polystilifera, 413–414
Polystyphora, 325
Pomacea canaliculata, 383
Porifera/poriferan, 2, 4, 7, 18–22, 25, 32, 33–47, 50, 66, 75, 101;
body plan, 35–38; classes, 34–35; fossil record, 43–45;
genomics, 42–43; reproduction and development, 41–42;
synthesis, 35–41; systematics, 34–35. See also sponges
“Porifera-sister” hypothesis, 18
Porites, 68; P. astreoides, 72; P. rus, 74
Pratynchus coffeae, 201–202
Precambrian, 1, 5–10; metazoan fossil record, 5–10
Precambrian–Cambrian boundary, 10–12
Prendini, Lorenzo, 17
Priapulida/priapulan, 11, 21, 83, 102, 154–159, 161–165,
166–172 178, 179, 181, 182, 184, 196, 218, 360, 454; body cavity,
171; digestive system, 171; fossil record, 172; genomics, 172;
nervous system, 169–171; synopsis, 167–172; systematics,
166–167
Priapulites koneneiorum, 172
Priapulus, 167, 168
Priapulus, 167; P. abyssorum, 166; P. caudatus, 11, 169, 171, 172
Priapus (fertility god), 166
Priapus humanus, 166
Problematica, 387, 467–468
Probognathiidae, 288
Procambus clarkii, 246
Prochaetodermatidae, 362
Progoneata/progoneate, 235, 236, 250, 257
Prosopharyngida, 93
Proseriata, 325, 328, 329, 332
Protobalanus spinicoronatus, 388
Protobranchia, 363, 364, 369
Protoconodonts, 12, 279
Protodrilida, 395, 397, 398
Prototrochus bruuni, 116
Protozoans, 263

Protura, 234, 235, 236, 249
Psammillidae, 396–397, 398, 405
Psammodrilidae, 396–397, 398, 405
Pseudobicus bedfordi, 325
Pseudocoelomate, 83
Pseudocoelomates, 26
Pseudotalorchida, 235
Ptychodera, 295–296
Ptychoderidae, 110
Punctatus, 78
Pycnogonida/pycogonid, 158, 233, 235, 236, 241, 242–244,
250–251, 253, 429
Pycnophyes kielensis, 178
Pycnophyidae, 174
Pycnogonida/ pycogonid, 158, 233, 235, 236, 241, 242–244,
250–251, 253, 429
Pycnophyes kielensis, 178
Pycnophyidae, 174
Pyrosoma, 139, 140–142, 144, 149
Pyrosoftida/ pyrosome, 139, 140–142, 144, 149
Pyunday bay, 437
Qingjiang biota (China), 12, 13, 178, 254
Quadratitubus, 76
Radigrina, 254–255
Radix auricularia, 383
Rahm, Gilbert, 217
Ramazzottius varieornatus, 212, 222
Ramitubus, 76
Ranysillis, 408
Rangea, 8
Rastrogastriidae, 288
Redlichia takooensis, 255
Redudasyidae, 315
reef’s paradox, 33
regeneration: Annelida, 407; Gastrotricha, 322; Nemertea, 421;
Platyhelminthes, 335–342
Reisenger, Eric, 91
Reinhardtia, 100
Remane, Adolf, 287, 313
Remipedia/remipede, 231, 233, 235, 236, 245–250, 253, 257
Renilla reniformis, 74
Reproduction of Marine Invertebrates, 365
Reproductive Biology of Invertebrates, 365

For general queries, contact webmaster@press.princeton.edu
Siphonosoma cumanense, 394
Siphonosomatidae, 397
Siphonotretida, 456, 458
Siphusautum, 32, 350
Sipuncula/sipunculan, 381, 391, 394, 395–397, 398, 399–404, 405, 411, 449
Sipunculidae/sipunculid, 392, 394, 397
Siriloricus, 185
Sirius Passet biota (Greenland), 12, 13, 185, 387, 410
skeletal structures and support, Cnidaria, 67–68
small shelly fossils (SSF), 11, 346. See also Lophotrochozoa
Solitaria, 439–440
Spadella cephaloptera, 277
Spadellidae, 275
Spartobranchus tenuis, 114
Spence Shale, 32, 425
Spengelidae, 110
Sphaeroidinum gracilis, 196
Sphenodriza poseidon, 173
sphinctozoans, 44
Spinolaricus, 180
Spinther, 396
Spintheridae, 397, 398
Spinulosida, 119
spiny-skinned animals: echinoderms, 115. See also
Echinodermata
Spionida, 397, 398
Spiralia, 21, 155, 258–262, 310, 395; cell lineages and fates, 259–262; fossil record, 262; phylogeny, 258–259
Spirifer striata, 465
Spiriferinae, 457, 458
Spiriferinida, 457, 458
spiroloph, 466
Spirula spirula, 371
Spirularia, 57
Spirulida, 363
Spiruridae, 192
sponge loop, 33
sponges, 22, 33–34; anatomy, 37, 38; asconoid condition, 38, 39; body, 36–38; calcareous, 38; Cambrian, 43–44; carnivorous, 37–38; leuconoid condition, 39; morphology, 39–40; neontology and paleontology, 44; schematic cross sections, 39; solenoid condition, 39; syconoid condition, 38, 39; sylleibid condition, 38, 39; taxonomy, 39. See also Porifera
sporocyst, 339–341
Spriggina floundersi, 9, 212
Stauromedusae, 58, 63
Staurozoa, 57–58, 63, 76
Stephanoporella, 428
Steinböck, Otto, 91
Stenolaemata, 429–431, 438
Stenostomum leucops, 335, 344
Stephanella hina, 429
Sterrer, Wolfgang, 288
Stictoporellina, 428
Stoecharthrum, 270
Stolidobranchiata, 141–142, 143, 144
Stolonoidea, 114
Strigamina maritima, 253
stromatoporoids, 44
Stromatoveris psygmoglena, 32
Strongylocentrotus purpuratus, 129, 131, 134–135
Strongyloides stercorealis, 199
Strophomenata/strophomenate, 457, 458, 466
subepidermal membrane complex, 86
Succinea, 341
superficial cleavage, 251
Sycon ciliatum, 42
Symbida, 353
Symbiidae, 353
Symbiodinium, 68
Symbion: S. americanus, 353, 354, 357; S. pandora, 351, 353, 355, 357
symmetry: bilateral, 80, 84, 118, 130, 135; hexaradial, 55, 163, 164, 185, 350; metazoan body, 25: octoradial, 31, 55; pentaradial, 25, 78, 80, 118, 120, 125, 131, 135, 138; radial, 44, 55, 60, 131, 136; rotational, 24–25; tetraradial, 31, 136
Symphyla/symphylan, 235, 236, 251, 256–257
Synchaeta tavina, 301
Syndermata, 280, 293, 294
Systema Naturae (Linnaeus), 166
systematics: Acoelomorpha, 93–97; Annelida, 399–404; Arthropoda, 237; Brachiopoda, 455–457; Bryozoa, 431–437; Chaetognatha, 275–278; Chordata, 143–147; Cnidaria, 60; Ctenophora, 24–27; Ctenophora, 353–356; Dicyemida (= Rhombozoa), 264–265; Echinodermata, 120–124; Entoprotea, 440–444; Gastrotricha, 316–321; Gnathostomulida, 289–291; Hemichordata, 111–112; Kinorhyncha, 174–178; Loricifera, 181–182; Micrognathozoa, 283–284; Mollusca, 363–368; Nematoda, 192–197; Nematomorpha, 204–206; Nemertea, 415–420; Priapulida, 166–167; Rotifera, 296–301; Tardigrada, 218–220; Xenoturbellida, 89–90
for general queries, contact webmaster@press.princeton.edu
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactopoda, 211</td>
<td></td>
</tr>
<tr>
<td>tadpole larva, 149, 150</td>
<td></td>
</tr>
<tr>
<td>Taenia solium, 342, 343</td>
<td></td>
</tr>
<tr>
<td>tagmosis, 230, 231, 238, 239</td>
<td></td>
</tr>
<tr>
<td>Tanarctus bubulalus, 216</td>
<td></td>
</tr>
<tr>
<td>Tanaella elinorae, 388, 390</td>
<td></td>
</tr>
<tr>
<td>Tannuella, 448, 464</td>
<td></td>
</tr>
<tr>
<td>Tardigrada, 21, 215–223; extreme extremophiles, 221–222; fossil</td>
<td></td>
</tr>
<tr>
<td>record, 223; genomics, 222; synopsis, 218–220; systematic,</td>
<td></td>
</tr>
<tr>
<td>216–217</td>
<td></td>
</tr>
<tr>
<td>Tarphyroida, 362</td>
<td></td>
</tr>
<tr>
<td>Tentaculata, 424. See also Lophophorata</td>
<td></td>
</tr>
<tr>
<td>Teniloricus, 180; T. shirayamai, 182, 184</td>
<td></td>
</tr>
<tr>
<td>Terebelliformia, 397, 398</td>
<td></td>
</tr>
<tr>
<td>Terebratalia transversa, 459, 462, 463</td>
<td></td>
</tr>
<tr>
<td>Terebratulida, 456–457, 458</td>
<td></td>
</tr>
<tr>
<td>Terebratulina retusa, 463</td>
<td></td>
</tr>
<tr>
<td>Terigipes antarcticus, 359</td>
<td></td>
</tr>
<tr>
<td>Tetracapsuloides bryosalmonae, 429</td>
<td></td>
</tr>
<tr>
<td>Tetraplalia, 59–60</td>
<td></td>
</tr>
<tr>
<td>Tetrapoda/tetrapod, 140, 142</td>
<td></td>
</tr>
<tr>
<td>Thalassemia sp., 394</td>
<td></td>
</tr>
<tr>
<td>Thaliacea/thaliacean, 139, 141–142, 143, 144–146</td>
<td></td>
</tr>
<tr>
<td>Thaumastoderma heideri, 316</td>
<td></td>
</tr>
<tr>
<td>Thaumastodermatidae, 315</td>
<td></td>
</tr>
<tr>
<td>Thecideida, 456–457, 458</td>
<td></td>
</tr>
<tr>
<td>Thecostraca, 235, 236</td>
<td></td>
</tr>
<tr>
<td>Themiste lageniformis, 403</td>
<td></td>
</tr>
<tr>
<td>Thermozodium esakii, 217</td>
<td></td>
</tr>
<tr>
<td>Thulinius stephaniae, 220</td>
<td></td>
</tr>
<tr>
<td>Tiedemann’s bodies, 121, 122</td>
<td></td>
</tr>
<tr>
<td>Titaniloricus, 180</td>
<td></td>
</tr>
<tr>
<td>Tjalfiella tristoma, 23, 30</td>
<td></td>
</tr>
<tr>
<td>tommotiids, 447</td>
<td></td>
</tr>
<tr>
<td>tornaria larva, 103, 108, 111, 113</td>
<td></td>
</tr>
<tr>
<td>Torquaratoriidae/torquaratorid, 110, 112–114</td>
<td></td>
</tr>
<tr>
<td>torsion, Gastropoda, 25, 365, 367, 368, 369, 375, 377, 379, 382</td>
<td></td>
</tr>
<tr>
<td>Toxopneustes pileolus, 124</td>
<td></td>
</tr>
<tr>
<td>trace fossil record, Ediacaran metazoans, 7</td>
<td></td>
</tr>
<tr>
<td>Tracheata, 234</td>
<td></td>
</tr>
<tr>
<td>Trachymina, 58</td>
<td></td>
</tr>
<tr>
<td>Trachymedusae, 58</td>
<td></td>
</tr>
<tr>
<td>transient anus, 101, 290</td>
<td></td>
</tr>
<tr>
<td>transmission electron microscopy, 74, 168, 169, 177, 179, 182,</td>
<td></td>
</tr>
<tr>
<td>219–220, 291, 298–299, 301, 313, 320, 434, 452</td>
<td></td>
</tr>
<tr>
<td>Trematodini/trematode, 326–328, 342</td>
<td></td>
</tr>
<tr>
<td>Trenton Limestone (Quebec), 411</td>
<td></td>
</tr>
<tr>
<td>Trepxonemata, 328, 329</td>
<td></td>
</tr>
<tr>
<td>Trepostomata, 431</td>
<td></td>
</tr>
<tr>
<td>Treptichnus pedum, 7, 11, 97</td>
<td></td>
</tr>
<tr>
<td>Treptoplas reptans, 51</td>
<td></td>
</tr>
<tr>
<td>Trichinella spiralis, 199</td>
<td></td>
</tr>
<tr>
<td>Trichinellida, 191</td>
<td></td>
</tr>
<tr>
<td>trichinosis, 199</td>
<td></td>
</tr>
<tr>
<td>trichobothria, 249</td>
<td></td>
</tr>
<tr>
<td>Trichogramma, 250</td>
<td></td>
</tr>
<tr>
<td>Trichoplax, 20; T. adhaerens, 50, 51, 52, 53, 54, 467</td>
<td></td>
</tr>
<tr>
<td>Trichuris trichiura, 199</td>
<td></td>
</tr>
<tr>
<td>Tricladiida/triclad, 325, 328, 329, 330, 332, 333, 334, 337, 339</td>
<td></td>
</tr>
<tr>
<td>Tridacna, 68, 375</td>
<td></td>
</tr>
<tr>
<td>Trigoniulus corallinus, 253</td>
<td></td>
</tr>
<tr>
<td>Trilobita/trilobite, 11, 231, 254</td>
<td></td>
</tr>
<tr>
<td>Trimerellida, 457, 458, 464</td>
<td></td>
</tr>
<tr>
<td>Triops longicaudatus, 246</td>
<td></td>
</tr>
<tr>
<td>Tripedalia cystophora, 70</td>
<td></td>
</tr>
<tr>
<td>Triploblastica, 80</td>
<td></td>
</tr>
<tr>
<td>Triplonchida, 191</td>
<td></td>
</tr>
<tr>
<td>Tritia obsoleta, 260</td>
<td></td>
</tr>
<tr>
<td>Triticella, 191</td>
<td></td>
</tr>
<tr>
<td>Triticoidida, 87</td>
<td></td>
</tr>
<tr>
<td>true worms, 392. See also Annelida</td>
<td></td>
</tr>
<tr>
<td>Tubiluchidae, 167, 172</td>
<td></td>
</tr>
<tr>
<td>Tubiluchus, 167, 169; T. troglodytes, 168</td>
<td></td>
</tr>
<tr>
<td>Tubipora musica, 67</td>
<td></td>
</tr>
<tr>
<td>Tubularia, 419, 421</td>
<td></td>
</tr>
<tr>
<td>Tubulidae flagellum, 465</td>
<td></td>
</tr>
<tr>
<td>Tubulichus, 164</td>
<td></td>
</tr>
<tr>
<td>Tubularides seminolii, 163</td>
<td></td>
</tr>
<tr>
<td>Tunicata/tunicate, 21, 98, 102, 104, 139, 140, 141–142, 143–144, 146</td>
<td></td>
</tr>
<tr>
<td>147, 153, 449</td>
<td></td>
</tr>
<tr>
<td>Turbanella: T. ambronensis, 322; T. cornuta, 320, 322</td>
<td></td>
</tr>
<tr>
<td>Turbanellidae, 315</td>
<td></td>
</tr>
<tr>
<td>“turbellarian” flatworms, 287. See also Gnathostomulida</td>
<td></td>
</tr>
<tr>
<td>turbellarians, 91. See also Acoelomorpha</td>
<td></td>
</tr>
<tr>
<td>Turritopsis, 56</td>
<td></td>
</tr>
<tr>
<td>Tylenchina, 192</td>
<td></td>
</tr>
<tr>
<td>Typhloperratus, 226</td>
<td></td>
</tr>
<tr>
<td>Unguiphora, 328, 335</td>
<td></td>
</tr>
<tr>
<td>urbilaterian, 8</td>
<td></td>
</tr>
<tr>
<td>urmetazoan, 3</td>
<td></td>
</tr>
<tr>
<td>Urnalloricidae, 180</td>
<td></td>
</tr>
<tr>
<td>Urnalloricus, 180; U. gadi, 182, 184</td>
<td></td>
</tr>
<tr>
<td>Urnatella, 440, 441; U. gracilis, 439, 442</td>
<td></td>
</tr>
<tr>
<td>Urochordata, 139, 142</td>
<td></td>
</tr>
<tr>
<td>Urodasy, 317</td>
<td></td>
</tr>
<tr>
<td>Valencinia, 419</td>
<td></td>
</tr>
<tr>
<td>Valvatida, 119</td>
<td></td>
</tr>
<tr>
<td>Vampyromorpha, 362</td>
<td></td>
</tr>
<tr>
<td>Velatida, 119</td>
<td></td>
</tr>
<tr>
<td>Vellela velella, 63</td>
<td></td>
</tr>
<tr>
<td>veliger larva, 224, 228, 230. See also Onychophora</td>
<td></td>
</tr>
<tr>
<td>Vendobionta, 8</td>
<td></td>
</tr>
<tr>
<td>Vendoconularia triradiata, 76</td>
<td></td>
</tr>
<tr>
<td>Venustaconula ellipsiformis, 383</td>
<td></td>
</tr>
<tr>
<td>Vertebrata/vertebrate, 102, 104, 139–140, 142, 143, 153</td>
<td></td>
</tr>
<tr>
<td>Vesicularia, 430</td>
<td></td>
</tr>
<tr>
<td>vesiculariform larva, 436</td>
<td></td>
</tr>
</tbody>
</table>
Vetigastropoda/vetigastropod, 363, 364, 367, 370–371, 373, 382
Vetulicolia cupreta, 106
Vetulicola/vetulicolian, 104–107, 152
Vetulocystida/vetulocystid, 106–107
Vetulocystis catenata, 106
Vibri (algiloneus), 278
Vittatusvermis annularis, 84

water bears, 215. See also Tardigrada
water vascular system, asteroids, 121, 122
Watsonella crosbyi, 385, 389
wheel animals, 293. See also Rotifera
wheel organ: cephalochordates, 146; rotifers, 296, 300, 349
Wilson, Edmund B., 258, 259
Wisangocaris barbarahardyae, 256
Wiwaxia, 386, 387, 389; W. corrugata, 386, 387
Wolbachia, 200, 250
WormAtlas, 189
Wormbase, 189
WormBook, 189
Wuchereria bancrofti, 200

Xenacoelomorpha, 21, 81, 85–87, 88, 94; anatomy, 87; development, 87; nervous system, 86–87
Xenodasyidae, 315

Xenopus laevis, 342
Xenostomata, 174
Xenotrichula velox, 316
Xenotrichulidae, 315
Xenoturbella, 87, 88–90; X. bocki, 88, 90; X. churro, 86; X. profunda, 90
Xenoturbellida, 85–87, 88–90, 98, 102, 467; fossil record, 90; genomics, 90; synopsis, 89–90; systematics, 88–89
Xenoturbellidae, 89
Xestospongia muta, 33
Xianguangia, 32, 78; X. sinica, 77, 78, 114
Xiaoheiqlingella peculiaris, 172
Xyloplax, 118, 128; X. janetae, 118; X. medusiformis, 118

Xypjiahella bicarpa, 136
Yuganotheca elegans, 447, 448
Yunnanoascus, 32
yunnanozoans, 104, 105, 152
Yunnanozoon lividum, 105, 106
Yunnanpriapulus halteroformis, 172

Zelinkaderidae, 174
Zoanthidea/zoanthidean, 57, 60
Zygentoma, 235
Zygoneura, 154

For general queries, contact webmaster@press.princeton.edu