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Certifying the Thurston Norm via

SL(2,C)-twisted Homology

Ian Agol and Nathan M. Dunfield

In memory of Bill Thurston: his amazing mathematics will live on,
but as a collaborator, mentor, and friend he is sorely missed.

1 INTRODUCTION

For a compact orientable 3-manifold M , the Thurston norm on H2(M,∂M ;Z)∼=
H1(M ;Z) measures the minimal topological complexity of a surface representing a
particular homology class. Twisted Alexander polynomials are a powerful tool for
studying the Thurston norm; such a polynomial τ(M,φ, α) depends on a class φ∈
H1(M ;Z) and a representation α : π1(M)→GL(V ), where V is a finite-dimensional
vector space over a field K. The polynomial τ(M,φ, α) is constructed from the
homology with coefficients twisted by α of the cyclic cover of M associated to φ.
The degree of any such τ(M,φ, α)∈K[t±1] gives a lower bound on the Thurston
norm of φ [FK1]. Remarkably, Friedl and Vidussi [FV2] showed that given M and
φ one can always choose α so that this lower bound is sharp, with the possible
exception of when M is a closed graph manifold; their results rely on the fact that
most Haken 3-manifold groups are full of cubulated goodness [Wis, Liu, PW1, PW2]
so that [A] applies.

Here, we explore whether one can get sharp bounds from just representations
to SL2C, especially those that originate in a hyperbolic structure on M . When
M is the exterior of a hyperbolic knot K in S3, there is a well-defined hyperbolic
torsion polynomial TK ∈C[t±1] which is (a refinement of) the twisted Alexander
polynomial associated to a lift to SL2C of the holonomy representation π1(M)→
Isom+(H3)=PSL2C. The experimental evidence in [DFJ] forcefully led to

Conjecture 1.1 (DFJ). For a hyperbolic knot in S3, the hyperbolic torsion poly-
nomial determines the Seifert genus g(K); precisely, degTK =4g(K)− 2.

Here, we prove this conjecture for a large class of knots, which includes infinitely
many knots whose ordinary Alexander polynomial is trivial. We call a knot K ⊂S3

libroid if there is a collection Σ of disjointly embedded minimal genus Seifert surfaces
in its exterior X =S3 \N(K) so that X \Σ is a union of books of I-bundles in a
way that respects the structure of X \Σ as a sutured manifold; see Section 6.3 for
the precise definitions. We show
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Theorem 6.2. Conjecture 1.1 holds for libroid hyperbolic knots in S3.

Libroid knots generalize the notion of a fibroid surface introduced in [CS], and includes
all fibered knots. The class of libroid knots is closed underMurasugi sum (Lemma 6.6)
and contains all special arborescent knots obtained from plumbing oriented bands
(this includes 2-bridge knots), as well as many knots whose ordinary Alexander poly-
nomial is trivial (Theorem 6.1). Previous to Theorem 6.2, Conjecture 1.1 was known
only in the case of 2-bridge knots, by work of Morifuji and Tran [Mor, MT].

1.2 Motivation

While twisted Alexander polynomials give sharp bounds on the Thurston norm if
one allows arbitrary representations to GLnC by [FV2], there are still compelling
reasons to consider questions such as Conjecture 1.1. First, if the Thurston norm
is detected by representations of uniformly bounded degree, then one should be
able to use ideas from [Kup] to show that the KNOT GENUS problem of [AHT]
is in NP∩ co-NP for knots in S3 using a finite-field version of τ(M,φ, α) as the
co-NP certificate. (As with the results in [Kup], this would be conditional on
the Generalized Riemann Hypothesis. Subsequent to our work here, Lackenby has
shown that KNOT GENUS is in NP∩ co-NP by different methods [Lac].) Second,
since TK is easily computable in practice, a proof of Conjecture 1.1 should lead
to an effectively polynomial-time algorithm for computing g(K) for knots in S3.
Finally, Conjecture 1.1 would be another beautiful Thurstonian connection between
the topology and geometry of 3-manifolds.

1.3 Sutured manifolds

The Thurston norm bounds associated to twisted Alexander polynomials can be
understood in the following framework of [FK2]. Throughout, see Section 2 for
precise definitions. Let M =(M,R−, R+, γ) be a sutured manifold. Given a repre-
sentation α : π1(M)→GL(V ), we say that M is an α-homology product if the
inclusion-induced maps

H∗(R+;Eα)→H∗(M ;Eα) and H∗(R−;Eα)→H∗(M,Eα)

are all isomorphisms; here Eα is the system of local coefficients associated to α. An
α-homology product is necessarily a taut sutured manifold (see Theorem 3.2 for
the precise statement). Conversely, every taut sutured manifold is an α-homology
product for some representation α by [FK2]. A weaker, less geometric, parallel to
Conjecture 1.1 is

Conjecture 1.4. For a taut sutured manifold M , there exists α : π1(M)→SL2C

for which M is a homology product.

Theorem 6.2 will follow easily from the next result, establishing a strong version of
Conjecture 1.4 for books of I-bundles (see Section 4.3 for the definitions).

Theorem 4.1. Let M be a taut sutured manifold which is a book of I-bundles.
Suppose α : π1(M)→SL2C has tr

(
α(γ)

) �=2 for every curve γ which is the core of
a gluing annulus for an I-bundle page. Then M is an α-homology product.
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In trying to attack Conjecture 1.4, an intriguing aspect of Theorem 4.1 is the very
weak hypothesis on the representation α. Unfortunately, for more complicated taut
sutured manifolds one must put additional restrictions on α to get a homology
product, as the next result shows.

Theorem 5.7. There exists a taut sutured manifold M with a faithful discrete and
purely hyperbolic representation α : π1(M)→SL2C where M is not an α-homology
product. The manifold M is acylindrical with respect to the pared locus consisting
of the sutures.

Another instance where we can prove Conjecture 1.4 is

Theorem 4.2. Suppose M is a sutured manifold which is a genus 2 handlebody
with suture set γ a single curve separating ∂M into two once-punctured tori. If
the pared manifold (M,γ) is acylindrical and M \ γ is incompressible, then M is a
homology product with respect to some α : π1(M)→SL2C.

With both Theorems 4.1 and 4.2, it is easy to construct sutured manifolds satisfying
their hypotheses which are not homology products with respect to H∗( · ;Q).

1.5 Outline of contents

After reviewing the needed definitions in Section 2, we establish the basic properties
of homology products in Section 3 and so relate Conjectures 1.1 and 1.4. Section 4
is devoted to proving Conjecture 1.4 in the two cases mentioned above. Section 5
studies one sutured manifold in detail, characterizing which SL2C-representations
make it a homology product (Theorem 5.5); Theorem 5.7 is an easy consequence of
this. Finally, Section 6 is devoted to studying libroid knots, both showing that this
is a large class of knots and also proving Theorem 6.2 follows from Theorem 4.1.
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2 BACKGROUND

We begin with the precise definitions of the basic objects we will be working with.
Throughout, all manifolds will be assumed orientable and moreover oriented.

2.1 Taut surfaces

For a connected surface, define χ−(S)=max
(−χ(S), 0); extend this to all sur-

faces via χ−(S �S′)=χ−(S)+χ−(S′). For a 3-manifoldM and a (possibly empty)
subsurface A⊂ ∂M , the Thurston norm of z ∈H2(M,A;Z) is defined by
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‖z‖=min {χ−(S) |S is a properly embedded surface representing z with ∂S⊂A}.

A properly embedded compact surface S in a 3-manifold M is taut if S is incom-
pressible and realizes the Thurston norm for the class [S, ∂S] in H2

(
M,N(∂S);Z

)
.

2.2 Sutured manifolds

A sutured manifold (M,R+, R−, γ) is a compact 3-manifold with a partition of
∂M into two subsurfaces R+ and R− along their common boundary γ. The surface
R+ is oriented by the outward-pointing normal, and R− is oriented by the inward-
pointing one. Note that the orientations of R± induce a common orientation on γ.
A sutured manifold is taut if it is irreducible and the surfaces R± are both taut. A
connected sutured manifoldM is balanced if it is irreducible, χ(R−)=χ(R+), not a
solid torus with γ=I, and if any component of R± has positive χ> 0 thenM is D3

with a single suture. A disconnected sutured manifold is balanced if each connected
component is. Note that any taut sutured manifold is necessarily balanced.

2.3 Notes on conventions

We follow [Sch] in requiring taut surfaces to be incompressible; this is not universal,
and the difference is just that the more restrictive definition excludes a solid torus
with no sutures and a ball with more than one suture. Like [FK2] but unlike many
sources, we do not allow torus sutures consisting of an entire torus component of
∂M . Our definition of balanced is slightly more restrictive than that of [FK2] and
also differs from that of [Juh].

2.4 Twisted homology

Suppose X is a connected CW complex with a representation α : π1(X)→GL(V ),
where V is a vector space over a field K. Let Eα be the system of local coefficients
over X corresponding to α; precisely, Eα→X is the induced vector bundle where
we give each fiber the discrete topology so that Eα→X is actually a covering map.
(Alternatively, you can view Eα as an ordinary vector bundle equipped with a flat
connection.) Throughout, we use the geometric definition of homology with local
coefficients H∗(X;Eα) given in [Hat, pg. 330–336] which does not require a choice of
basepoint; it is equivalent to the more algebraic definition of, e.g., [Hat, pg. 328–330].
More generally, if X is not connected, we can consider a bundle E→X with fiber
V and the associated homology H∗(X;E). We also use the geometrically defined
cohomology H∗(X;E) of [Hat, pg. 333]. Of course, both H∗(X;E) and H∗(X;E)
satisfy all the usual properties: a relative version for (X,A), long exact sequence of
a pair, Mayer-Vietoris, etc.

If X is a compact oriented n-manifold with ∂X partitioned into two submani-
folds with common boundary A and B then one has Poincaré duality:

DM : Hk(X,A;E)
∼=−−→Hn−k(X,B;E) (2.5)

where DM is given by cap product with the ordinary relative fundamental class
[X, ∂X]∈Hn(X, ∂X;Z).
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Let E∗→X denote the bundle where we have replaced each fiber with its dual
vector space; for Eα, this corresponds to using the dual or contragredient representa-
tion α∗ : π1(X)→GL(V ∗) defined by α∗(g)=

(
ρ(g−1)

)∗
. WhenX has finitely many

cells, the relevant version of universal coefficients is that Hk(X;E)∼=Hk(X;E∗) as
K-vector spaces.

When E∗∼=E as bundles overX, we say that E is self-dual. Examples include Eα
where α : π1(X)→SL2K; specifically, α∗ is conjugate to α via

(
0 1−1 0

)
. Seen another

way, the action of SL2K on K2 preserves the standard symplectic form x1y2−x2y1
and hence Eα has a nondegenerate inner product on each fiber allowing us to iden-
tify Eα with E∗α. Representations that are unitary with respect to some involution
on K may not be self-dual, but still satisfy H∗(X,A;Eα)∼=H∗(X,A;Eα), as K-
vector spaces, for any A⊂X; we call such representations/bundles homologically
self-dual.

3 BASICS OF TWISTED HOMOLOGY PRODUCTS

Throughout this section, E will be a system of local coefficients over a sutured
manifold M with fiber a vector space of dimension n≥ 1. As in the introduction,
we say that M is an E-homology product if the inclusion induced maps H∗(R±;E)
→H∗(M ;E) are both isomorphisms. This is equivalent to the notion of an E-
cohomology product where H∗(M ;E)→H∗(R±;E) are isomorphisms: the former
is the same as H∗(M,R±;E)= 0, the latter is the same as H∗(M,R±;E)= 0, and
by Poincaré duality one has Hk(M,R±;E)∼=H3−k(M,R∓;E). These concepts are
parallel to [FK2], where they consider unitary representations of balanced sutured
manifolds where H1(M,R−;Eα)= 0 because of:

Proposition 3.1. Suppose M is a connected balanced sutured manifold with both
R± nonempty. If E is homologically self-dual, then M is an E-homology product
if and only if any one of the following eight groups vanish: Hk(M,R±;E) and
Hk(M,R±;E) for 1≤ k≤ 2.

Proof. Since both of R± are nonempty, it follows that H0(M,R±;E)=
H0(M,R±;E)= 0, and so by Poincaré duality we have H3(M,R∓;E)= 0. We focus
on the case where H1(M,R−;E)= 0; the other cases are similar. Since M is bal-
anced, we have χ(R−)=χ(M) and hence χ

(
H∗(M,R−;E)

)
=0. Since we know

that Hk(M,R−;E)= 0 for every k �=2, this forces H2(M,R−;E)= 0 as well. By
Poincaré, we have H∗(M,R+;E)= 0. Since E is homologically self-dual, this gives
H∗(M,R+;E)= 0, and so M is an E-homology product as claimed.

Our motivation for studying twisted homology products is the following two results:

Theorem 3.2 (FK2, §3). Suppose M is an irreducible sutured manifold which is an
E-homology product and where no component of M is a solid torus without sutures.
Then M is taut.

Theorem 3.3 (FK2, §4). Suppose X is a compact irreducible 3-manifold with
∂X a (possibly empty) union of tori. For φ∈H1(X;Z) nontrivial and α : π1(X)→
GL(V ), the torsion polynomial τ(X,φ, α) gives a sharp lower bound on the Thurston
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norm ‖φ‖ if and only if when S is a taut surface without nugatory tori dual to φ
the sutured manifold M which is X cut along S is an α-homology product.

Here, a set of torus components of a taut surface S are nugatory if they collectively
bound a submanifold of X disjoint from ∂X. Theorem 3.2 is explicit and Theo-
rem 3.3 is implicit in Sections 3 and 4 of [FK2] respectively; however, to make this
paper more self-contained, we include proofs of both results.

Let S be a properly embedded compact surface in a 3-manifold N ; we do not
assume either S or N is connected, and N is allowed to be noncompact and have
boundary. We say S separates N into N+ and N− if N =N+ ∪S N−, the positive
side of S is contained in N+, the negative side of S is contained in N−, and every
component of N± meets S. The linchpin for Theorems 3.2 and 3.3 is the follow-
ing lemma, where all homology groups are with respect to some system E of local
coefficients on N , and all maps on homology are induced by inclusion:

Lemma 3.4. Suppose S separates N into N±. If both H∗(N±)→H∗(N) are sur-
jective then so are H∗(S)→H∗(N±) and H∗(S)→H∗(N). Moreover, if for some k
both Hk(N±)→Hk(N) are isomorphisms then so are Hk(S)→Hk(N±) and
Hk(S)→Hk(N).

Proof. Since both H∗(N±)→H∗(N) are surjective, the Mayer-Vietoris sequence for
N =N+ ∪S N− splits into short exact sequences

0→Hk(S)
i+⊕i−−−−−→Hk(N+)⊕Hk(N−)

j+−j−−−−−→Hk(N)→ 0. (3.5)

To see that Hk(S)→Hk(N+) is surjective, take c+ ∈Hk(N+) and choose c− ∈
Hk(N−) which maps to the same element in Hk(N) as c+; then (c+, c−) �→ 0 under
j+− j− and hence c+ is the image of some element of Hk(S) by exactness of (3.5).
Symmetrically, Hk(S)→Hk(N−) is also surjective, proving the first part of the
lemma.

Suppose in addition that both Hk(N±)∼=Hk(N). Since S is compact and Hk(S)
surjects Hk(N±) and Hk(N), it follows that all four K-vector spaces are finite-
dimensional. Since Hk(N±)∼=Hk(N), exactness of (3.5) forces Hk(S)∼=Hk(N), and
hence the surjections Hk(S)→Hk(N±) must be isomorphisms as claimed.

We now show that a sutured manifold which is a homology product must be
taut.

Proof of Theorem 3.2. We may assume that M is connected. All homology groups
will have coefficients in E unless otherwise indicated, and let n be the dimension
of the fiber of E. We first reduce to the case where every component of R± has
χ≤ 0. If a component of R± is a sphere, then M must be D3 by irreducibility
with (say) R+ = ∂M and R−=I. Since E must be trivial over D3, we get that
dim(H0(M))=n. However, H0(R−)= 0 contradicting that M is an E-homology
product. If some component of R± is a disc, say D⊂R+, then dim(H0(D))=n
and since a connected space will have H0 of dimension at most n, we conclude
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that dim(H0(M))=n. However, then E must be the trivial bundle, since nontrivial
monodromy around some loop would reduce dim(H0(M)) below n. It follows that
M is also a homology product with respect to H∗( · ;K), and hence R± are both
connected and thus discs; by irreducibility, M is D3 with one suture and hence
taut. So from now on we assume that every component of R± has χ≤ 0.

Since we have excluded M from being a solid torus with no sutures, all of the
torus components of R± are incompressible. Thus to prove thatM is taut it remains
to show thatR± realize the Thurston norm of their common class inH2(M,N(γ);Z).
Note this is automatic if R+ =I since the homology product condition implies
χ(R−)= 0, so from now on we assume both R± are nonempty. Suppose S is any
other surface in that homology class. Throwing away components of S that bound
submanifolds of M that are disjoint from ∂M , we can assume that S separates M
intoM±, where eachM± contains R± respectively. We next show that the theorem
follows from:

Claim 3.6. The maps Hk(R±)→Hk(M±) are isomorphisms for k �=1 and injective
for k=1. The maps Hk(S)→Hk(M±) are isomorphisms for k �=1 and surjective
for k=1.

From the claim we get thatHk(S)∼=Hk(R±) for k �=1 and dimH1(S)≥ dimH1(R±);
hence

n ·χ(S)=χ
(
H∗(S)

)≤χ(H∗(R±)
)
=n ·χ(R±)

and so
χ−(S)≥−χ(S)≥−χ(R±)=χ−(R±).

Thus R± must realize the Thurston norm in its class, establishing the proposition
modulo Claim 3.6.

To prove the claim, first note that S, R±, andM± are all homotopy equivalent to
2-complexes and so we need only consider k≤ 2. Since R± ↪→M gives isomorphisms
on H∗, we know H∗(R±)→H∗(M±) is injective and H∗(M±)→H∗(M) is surjec-
tive. Since every component of M± meets R±, it follows that H0(R±)→H0(M±)
is onto and hence an isomorphism; consequently, so is H0(M±)→H0(M). Since
H∗(M,R±)= 0, the long exact sequence of the triple (M,M±, R±) gives that
H2(M±, R±)∼=H3(M,M±); by excision and Poincaré duality, we have H3(M,M±)∼=H3(M∓, S)∼=H0(M∓, R∓) and the latter vanishes since each component of M∓
meets R∓. Thus we have shown H2(M±, R±)= 0, and hence H2(R±)→H2(M±) is
an isomorphism.

By Lemma 3.4, we know that each H∗(S)→H∗(M±) is surjective and more-
over is an isomorphism for ∗=0. To see that H2(S)→H2(M±) is an injection (and
hence an isomorphism), just note that H3(M±, S)∼=H0(M±, R±)= 0. This proves
the claim and thus the theorem.

The last part of this section is devoted to proving the relationship between the
homology product condition and the Thurston norm bounds coming from twisted
torsion/Alexander polynomials.

Proof of Theorem 3.3. Let n=dimV . All homology groups will have coefficients
in Eα. Let X̃ denote the infinite cyclic cover of X corresponding to φ; it has the
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structure of a Z’s worth of copies of M stacked end to end so that the R+ on one

block is glued to the R− on the next. (Note that if φ is not primitive then X̃ is
disconnected; you can reduce to the case of φ primitive to avoid this issue if you
prefer.) Let S̃ be a lift of S to X̃ corresponding to the top of a preferred copy of

M in X̃, and note that S̃ separates X̃ into X̃+ and X̃− which consist of the blocks
“above” and “below” S respectively.

Unwinding the definitions, the precise form of the lower bound given in
Theorem 14 of [FV1] (which is Theorem 6.6 in the arXiv version) is equivalent to

‖φ‖≥ 1

n

(
dimH1(X̃)− dimH0(X̃)− dimH2(X̃)

)
(3.7)

where if H1(X̃) is infinite-dimensional the convention is to declare the right-hand

side as 0. (When H1(X̃) is finite-dimensional so is H2(X̃), see, e.g., [FV1].)
The only if direction is easy: ifM is an α-homology product, the Mayer-Vietoris

sequence and the fact that homology is compactly supported imply that S̃ ↪→ X̃
gives an isomorphism on H∗; thus one has

‖φ‖=χ−(S)≥−χ(S)=− 1

n
χ
(
H∗(S)

)
=− 1

n
χ
(
H∗(X̃)

)
=RHS of (3.7) (3.8)

where we have used that H3(X̃) must be 0 since X̃ is noncompact.
Conversely, suppose that (3.7) is sharp. We will show:

Claim 3.9. The maps H∗(S̃)→H∗(X̃±)→H∗(X̃) are all isomorphisms.

The claim implies the theorem as follows: if we take X̃
′
− to be X̃− shifted down by

one, we have X̃ = X̃
′
− ∪˜S

′ M ∪
˜S X̃+. Applying the Mayer-Vietoris sequence to this

decomposition, the claim gives that H∗(M)→H∗(X̃) is an isomorphism. Again by

the claim, the inclusions of S̃=R+ and S̃
′
=R− into M induce isomorphisms on

H∗, and so M is a homology product.
To prove the claim, begin by noting that H∗(X̃) is finitely generated, and the

Z-action on X̃ can take any particular generating set to one which lies entirely in
X̃+; hence H∗(X̃+)→H∗(X̃) is onto, as is H∗(X̃−)→H∗(X̃). By Lemma 3.4, we

know H∗(S̃)→H∗(X̃±) is onto and an isomorphism when ∗=2 since H3(X̃, X̃±)∼=
H3(X̃∓, S̃)∼=0 since (each component of) X̃∓ is noncompact. For ∗=0, we can

build a compact subset A of X̃± so that H0(A)→H0(X̃±) is onto and H0(A)→
H0(X̃) is an isomorphism; consequently, H0(X̃±)→H0(X̃) is an isomorphism and

hence so is H0(S)→H0(X̃±) by Lemma 3.4. Finally, from (3.8), we see that
χ(H∗(S))=χ(H∗(X)) and hence the surjection H1(S)→H1(X) must be an iso-
morphism, proving the claim and thus the theorem.

4 SOME HOMOLOGY PRODUCTS

This section is devoted to the proof of Conjecture 1.4 in two nontrivial cases, both
of which include many examples which are not Q-homology products:
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Theorem 4.1. Let M be a taut sutured manifold which is a book of I-bundles.
Suppose α : π1(M)→SL2C has tr

(
α(γ)

) �=2 for every curve γ which is the core of
a gluing annulus for an I-bundle page. Then M is an α-homology product.

Theorem 4.2. SupposeM is a sutured manifold which is a genus 2 handlebody with
suture set γ a single curve separating ∂M into two once-punctured tori. If the pared
manifold (M,γ) is acylindrical and M \ γ is incompressible, then M is a homology
product with respect to some α : π1(M)→SL2C.

4.3 Books of I -bundles

Recall that a book of I-bundles is a 3-manifold built from solid tori (the bindings)
and I-bundles over possibly nonorientable compact surfaces (the pages) glued in
the following way. For a page P which is an I-bundle over a surface S, the vertical
annuli are the components of the preimage of ∂S. One is allowed to glue such
a vertical annulus to any homotopically essential annulus in the boundary of the
binding. We do not require that all vertical annuli are glued; those that are not are
called free. For a page P , the vertical boundary ∂vP is the union of all the vertical
annuli; the horizontal boundary ∂hP is ∂P \ ∂vP . We say a sutured manifold is
a book of I-bundles if the underlying manifold has such a description where the
sutures are exactly the cores of the free vertical annuli.

Lemma 4.4. If M is a taut sutured manifold which is a book of I-bundles, then it
has such a structure where all the pages are product I-bundles. If the base surface
of a page P is not an annulus, then one component of the horizontal boundary is
contained in R+ and the other contained in R−. The cores of the vertical annuli in
the alternate description are homotopic to those in the original one.

Proof. Suppose some page P is a twisted I-bundle over a connected nonorientable
surface S. Then the horizontal boundary ∂hP is connected and hence contained
entirely in one of R±, say R+. Then (R+ \ ∂hP )∪ ∂vP is a surface homologous to
R+ with Euler characteristic χ(R+)− 2χ(S). Since R+ is taut, we must have that
S is a Möbius band. The pair (P, ∂vP ) is homeomorphic to a solid torus B with an
annulus that represents twice a generator of π1(B). Thus we can replace P with a
product bundle over the annulus to which we have attached a new component of
the binding.

If a page P is a product I-bundle over an orientable surface S, the same argu-
ment shows that if ∂hP is contained in just one of R+ and R− then the base surface
must be an annulus. This proves the lemma.

The proof of Theorem 4.1 rests on the following simple observation.

Lemma 4.5. Suppose α :π1(S
1)→SL2C is such that tr

(
α(γ)

) �=2 where γ is a
generator of π1(S

1). Then H∗(S1;Eα)= 0.

Proof. As with any space, H0(S
1;Eα) is the set of co-invariants of α, that is, the

quotient of C
2 by

{
α(g)v− v ∣∣ g ∈π1(S1), v ∈C

2
}
. If α(γ) is diagonalizable, then

this is 0 since neither eigenvalue of α(γ) can be 1 by the trace condition; alterna-
tively, if α(γ) is parabolic then by the trace assumption it is conjugate to

(−1 1
0 −1

)
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and again the co-invariants vanish. Since 0=2χ(S1)=χ
(
H∗(S1;Eα)

)
it follows that

H1(S
1;Eα)= 0 as well, proving the lemma.

We next establish the first main result of this section.

Proof of Theorem 4.1. As usual, all homology will have coefficients in Eα. Consider
the decomposition of M into B ∪A P , where B is the binding, P is the union of all
the pages, and A is the union of attaching annuli. By Lemma 4.4, we can assume
that P =(S× [−1, 1])∪Y where S×{±1}⊂R± and Y is a union of (annulus)× I.
By our hypothesis on α, Lemma 4.5 implies that H∗(A)= 0 and H∗(Y )= 0. More-
over, H∗(B)= 0 since the generator of π1(component of B) has a power which has
tr(α) �=2 and hence must have tr(α) �=2 as well. Set B′=B ∪Y and let A′⊂A be
the interface between B′ and S× [−1, 1]. Applying Mayer-Vietoris to the decom-
position M =B′ ∪A′ (S× [−1, 1]) immediately gives that H∗(S× [−1, 1])→H∗(M)
is an isomorphism. The same reasoning shows that H∗(S×±1)→H∗(R±) are iso-
morphisms. Combining, we get that H∗(R±)→H∗(M) are isomorphisms, and so
M is an α-homology product as claimed.

4.6 Acylindrical sutured handlebodies

We turn now to the proof of Theorem 4.2. The following is an immediate conse-
quence of the results in [MFP].

Theorem 4.7. Suppose M is a sutured manifold where each component of R± is
a torus. If the interior of M has a complete hyperbolic metric of finite volume,
then there exists a lift α : π1(M)→SL2C of its holonomy representation so that
H∗(M ;Eα)= 0 and H∗(R±;Eα)= 0. In particular, M is an α-homology product.

Proof. By Lemma 3.9 of [MFP], there is a lift α of the holonomy representation
so that for each component of ∂M there is some curve c with tr

(
α(c)

)
=−2.

Corollary 3.6 of [MFP] now implies that H∗(∂M ;Eα)= 0, and Theorem 0.1 of
[MFP] then gives that H∗(M ;Eα)= 0 as well. Since Eα is self-dual, it follows that
H∗(∂M ;Eα)=H∗(M ;Eα)= 0; since H∗(∂M ;Eα)=H∗(R−;Eα)⊕H∗(R+;Eα) we
are done.

Lemma 4.8. Let M be a sutured manifold and N be the sutured manifold resulting
from attaching a 2-handle to M along a component of the suture set γ. Let E be
a system of local coefficients on N . If N is an E-homology product then M is an
E|M -homology product.

This is a natural result since if N is taut then so is M , though the converse is not
always true.

Proof. Throughout, all homology is with coefficients in E. Let R+⊂ ∂N be the
extension of R+ to the new sutured manifold N . Note that R+ =R+ ∪D2 and N =
M ∪ (D2× I). Consider the associated Mayer-Vietoris sequences and natural maps:
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−−−−→ Hk(S
1) −−−−→ Hk(R+)⊕Hk(D

2) −−−−→ Hk(R+) −−−−→
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

−−−−→ Hk(S
1× I) −−−−→ Hk(M)⊕Hk(D

2× I) −−−−→ Hk(N) −−−−→

The leftmost vertical arrow is an isomorphism since it comes from a homotopy equi-
valence. The rightmost vertical arrow is an isomorphism by hypothesis. By the five
lemma, the middle arrow must be an isomorphism; since it is the direct sum of the
maps Hk(R+)→Hk(M) and Hk(D

2)→Hk(D
2× I) we conclude that Hk(R+)→

Hk(M) is an isomorphism. The symmetric argument proves that Hk(R−)→Hk(M)
is an isomorphism for every k and so M is indeed an E-homology product.

Theorem 4.9. Suppose that M is a sutured manifold so that each component of
R± is a (possibly) punctured torus. If adding 2-handles to M along all the sutures
results in a hyperbolic manifold, then there exists α : π1(M)→SL2C so that M is
an α-homology product.

Proof. LetN be the result of adding 2-handles to the sutures ofM . Let α : π1(N)→
SL2C be the lift of the holonomy representation of the hyperbolic structure on N
given by Theorem 4.7. Applying Lemma 4.8 inductively shows thatM is a homology
product with respect to the induced representation π1(M)→SL2C as needed.

We can now prove the other main result of this section.

Proof of Theorem 4.2. By Theorem 4.9 it suffices to prove that the result Mγ of
attaching a 2-handle to M along γ is hyperbolic. Being a handlebody, M is irre-
ducible and atoroidal. Since ∂M is compressible and M \ γ is incompressible, The-
orems A, 1, and 2 of [EM] together imply that Mγ is irreducible, acylindrical,
atoroidal, and has incompressible boundary (when applying Theorems 1 and 2,
note that γ is separating, which is one of the special cases mentioned in the final
paragraph of the statements of these results). Thus int(Mγ) has a complete hyper-
bolic metric of finite volume as needed.

Remark 4.10. The representation α given in the proof of Theorem 4.2 may seem a
bit unnatural since it is reducible on π1(R±). However, it can be perturbed to β for
which M is still a homology product and where β is parabolic free on π1(M) and
hence faithful. The point is just that the set of all such β is the complement of a
countable union of proper Zariski closed subsets in the character variety X(M)∼=
C

3, and hence is dense in X(M). Specifically, as discussed in Section 5, the locus
where M is not a homology product is Zariski closed, as of course is the set where
a fixed nontrivial γ ∈π1(M) is parabolic.

5 AN EXAMPLE

Suppose M is a balanced sutured manifold which is homeomorphic to a genus 2
handlebody. Assuming that each of R± is connected, then either R± are both tori
with one boundary component or both pairs of pants. In this section, we compute
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H1(M,R+;Eα) in a specific example as α varies over the SL2C character variety
of π1(M), and so characterize the α for which M is an α-homology product. This
leads to the proof of Theorem 5.7 which was discussed in the introduction.

5.1 Basic setup

Both π1(R+) and π1(M) are free groups of rank two, say generated by 〈x, y〉 and
〈a, b〉 respectively; let i∗ : π1(M)→π1(R+) be the map induced by the inclusion
i : R+ ↪→M . For w∈ 〈x, y〉 we denote its Fox derivatives in Z[〈x, y〉] by ∂xw and
∂yw, where

∂xx=1, ∂xx
−1 =−x−1, ∂xy

±1 =0, and ∂x(w1 ·w2)= ∂xw1 +w1 · ∂xw2.

Now fix a representation α : π1(M)→GL(V ) where dim(V )= 2, and extend to a
ring homomorphism α : Z[π1(M)]→End(V ).

Proposition 5.2. The sutured manifold M is an α-homology product precisely
when the 4× 4 matrix

⎛

⎝ α
(
∂xi∗(a)

)
α
(
∂yi∗(a)

)

α
(
∂xi∗(b)

)
α
(
∂yi∗(b)

)

⎞

⎠

has nonzero determinant.

Proof. Consider the 2-complex W with one vertex v, four edges ex, ey, ea, eb, and
two faces ra, rb with attaching maps specified by the words i∗(a) · a−1 and i∗(b) · b−1.
For the subcomplex B= ea ∪ eb, there is a map j : (W,B)→ (M,R+) which induces
homotopy equivalencesW →M and B→R+ corresponding to the natural maps on
fundamental groups ([ex] �→x, [ea] �→ a, etc.). By the long exact sequence of the pair
and the five lemma, it follows that j∗ induces an isomorphism H∗(M,R+;Eα)→
H∗(W,B;Eα◦j∗).

By Proposition 3.1, to show M is an α-homology product, it remains to show
H1(W,B;Eα◦j∗)= 0. As a left module over Λ=Z[〈x, y〉], the chain complex of the

universal cover W̃ of W has the form:

C∗
(
W̃ ;Z

)
: 0→Λra⊕Λrb

∂2−→Λex⊕Λey ⊕Λea⊕Λeb
∂1−→Λv→ 0.

Since Λ is noncommutative, it is most natural to write the matrices [∂i] for the left
module maps ∂i so that they act on row vectors to their left, that is, ∂i(v)= v · [∂i].
In this form, we have the following, where we have denoted i∗(a) and i∗(b) in 〈x, y〉
by just a and b:

[∂1] =

⎛

⎜
⎜
⎝

x− 1

y− 1

a− 1

b− 1

⎞

⎟
⎟
⎠ [∂2] =

(
∂xa ∂ya −1 0

∂xb ∂yb 0 −1
)

Applying the functor Hom( · , Vα) to get C∗(W ;Eα◦j∗) has the effect of replacing
each copy of Λ with V , where the matrices of the coboundary maps di are the
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R+

R−

x

y

u

Figure 5.3: The sutured manifoldM sketched at left is D3 with open neighborhoods
of the two dark arcs removed, whereR+ andR− are the pairs of pants indicated. The
manifold M is homeomorphic to a handlebody, with π1(M) freely generated by the
loops x and y; the element u in π1(M) is yxyx−1y−1. These claims can be checked
by a straightforward calculation starting with a Reidemeister-like presentation for
π1(M).

result of applying α : Λ→End(V ) entrywise to the [∂i]; here the matrices [di] act on
column vectors to their right. Restricting to the subcomplex of cochains vanishing
on B gives:

C∗(W,B;Eα◦j∗) : 0←V 2 d1←−V 2← 0← 0

where d1 is precisely the matrix in the statement of the proposition; the result
follows.

5.4 Pants example

Let M be the sutured manifold shown in Figure 5.3, where the free group π1(R+)
has generators

π1(R+)=
〈
x, yxyx−1y−1

〉
.

Let X(M) be the SL2C character variety of π1(M)= 〈x, y〉. Now X(M)∼=C
3 with

coordinates {x, y, z} corresponding to the trace functions of {x, y, xy}. Despite the
fact that M is a product with respect to ordinary Z homology, we will show:

Theorem 5.5. The locus L of [α]∈X(M) where M is not an α-homology product
is a (complex) 2-dimensional plane, namely

{
x+ y− z=3

}
.

Remark 5.6. Unlike for irreducible representations, characters [α]∈X(M) consist-
ing of reducible representations may contain nonconjugate representations. For such
classes, there is thus ambiguity in which local system E to associate with [α]. How-
ever, it turns out that whether M is an E-homology product is independent of
this choice. Similar to [DFJ, Lemma 7.1], the point is that reducible representa-
tions with the same character share the same diagonal part and one uses this with
Proposition 5.2 to verify the claim; since our focus is on irreducible representations,
we leave the details to the interested reader.
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Proof. By Proposition 5.2, we are interested in when

det

(
α
(
1
)

0

α
(
y− yxyx−1) α

(
1+ yx− yxyx−1y−1)

)

=0

or equivalently when det
(
α(w)

)
=0 for w=1+xy−xyx−1 ∈Z[〈x, y〉]. Any irre-

ducible α can be conjugated so that

α(x)=

(
0 1

−1 x

)

and α(y)=

(
y −u
u−1 0

)

where u+u−1 = z.

Applying this α to w and eliminating variables yields that det
(
α(w)

)
=0 if and

only if x+ y− z− 3=0; thus L is as claimed.

One representation in L is (x, y, z)= (4, 4, 5) which can be realized by

α(x)=

(
1 1

2 3

)

and α(y)=

(
1 −2
−1 3

)

.

An easy calculation shows that the axes of these hyperbolic elements cross in H
2;

since α
(
xyx−1y−1

)
is also hyperbolic with negative trace, it follows that α

(〈x, y〉)
is a Fuchsian Schottky group [Pur]. In particular, α is discrete, faithful, and purely
hyperbolic. This proves:

Theorem 5.7. There exists a taut sutured manifold M with a faithful discrete and
purely hyperbolic representation α : π1(M)→SL2C where M is not an α-homology
product. The manifold M is acylindrical with respect to the pared locus consisting
of the sutures.

Remark 5.8. Representations that cover the same homomorphism π1(M)→PSL2C

need not give rise to isomorphic cohomology. For example, the Schottky representa-
tion above covers the same PSL2C representation as β where (x, y, z)= (−4, 4,−5),
which is not in L, and hence M is a β-homology product. In fact, in this example,
every irreducible representation to PSL2C has some lift to SL2C for which M is a
homology product.

Remark 5.9. For eachN ≥ 2, the group SL2C has a unique irreducibleN -dimensional
complex representation, which we denote ιN : SL2C→SLNC. Let LN be the locus
of [α] in X(M) where M is not an ιN ◦α homology product. A straightforward
calculation with Gröbner bases finds:

L3 =
{
2xyz−x2− y2− 3z2 +3=0

}

L4 =
{
3x2y2z− 3x2yz2− 3xy2z2 +x4− 2x3y− 2xy3 + y4 +2x3z

+3x2yz+3xy2z+2y3z− 3xyz2 +2xz3 +2yz3 + z4− 3x3− 3y3

+3z3− 3x2 +6xy− 3y2− 6xz− 6yz− 3z2 +6x+6y− 6z+9=0}.
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The intersection L2 ∩L3 ∩L4 is zero-dimensional, as one would expect from the
intersection of three (complex) surfaces in C

3. Computing out a bit farther, we found

that
⋂5
N=2 LN =

⋂10
N=2 LN contains a single point (x, y, z)= (2, 2, 1) outside the

reducible representations; in particular, there are no purely hyperbolic representa-
tions in this intersection.

6 LIBROID SEIFERT SURFACES

In this last section, we study libroid knots, a notion generalizing fibered knots and
fibroid surfaces which is defined in Section 6.3 below. We will show that this is a
large class of knots for which Conjecture 1.1 holds:

Theorem 6.1. All special arborescent knots, except the (2, n)–torus knots, are hyp-
erbolic libroid knots. Moreover, there are infinitely many hyperbolic libroid knots
whose ordinary Alexander polynomial is trivial.

Theorem 6.2. Conjecture 1.1 holds for libroid hyperbolic knots in S3.

6.3 Library sutured manifolds

We call a taut sutured manifold (M,R±, γ) a library if there is a taut surface
(Σ, ∂Σ)⊂ (M,N(γ)) such that [Σ]=n[R+]∈H2(M,N(γ);Z) for some n≥ 0, and
the sutured manifold M \Σ is a book of I-bundles in the sense of Section 4.3. Note
that M \Σ has at least n+1 connected components, and thus is a collection of
books of I-bundles, that is, a “library.” We say that a taut surface S⊂X3 is a
libroid surface if X \S is a library sutured manifold. This generalizes the notion
of a fibroid surface [CS], and in fact the surface S ∪Σ is a fibroid surface. We say
that a knot in S3 is libroid if it has a minimal genus Seifert surface which is libroid.
Definitions in hand, we now deduce Theorem 6.2 from Theorem 4.1.

Proof of Theorem 6.2. LetK be a libroid knot withX its exterior, and let α : π1(X)
→SL2C be a lift of the holonomy representation of the hyperbolic structure on X.
Let S be a minimal genus Seifert surface for K which is libroid. By Theorem 3.3, we
just need to show that the sutured manifold M =X \S is an α-homology product.
This is immediate if M is a product, so we will assume from now on that X is
not fibered. Let {Σi} be disjoint minimal genus Seifert surfaces cutting M up into
sutured manifolds that are each a book of I-bundles; for notational convenience,
set Σ0 =S. It is enough to show that each such book B is an α-homology product,
since they are stacked one atop another to formM . To apply Theorem 4.1, we need
to check that no core γ of a gluing annulus has tr

(
α(γ)

)
=2. Assume γ is such a

core, so in particular α(γ) is parabolic.
First note that γ is isotopic to an essential curve in some Σi. Since Σi is mini-

mal genus and not a fiber, by Fenley [Fen] it is a quasi-Fuchsian surface in X and
in particular the only embedded curve in Σi whose image under α is parabolic is
∂Σi, which is the homological longitude λ∈π1(∂X). But by [Cal, Corollary 2.6] or
[MFP, Corollary 3.11], one always has tr

(
α(λ)

)
=−2, which contradicts that α(γ)

has trace +2. So we can apply Theorem 4.1 as desired, proving the theorem.
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S1

S2

L1

L2

L
S

P

L

S2 P

(a) The initial surfaces. (b) The surfaceS. (c) The surfaceS

S

.

Figure 6.5: The Murasugi sum with k=2.

6.4 A plethora of libroid knots

We now turn to showing that there are many hyperbolic libroid knots. A key tool
for this will be the notion of Murasugi sum, which we quickly review. Consider
two oriented surfaces with boundary S1 and S2 in S3, and let Li= ∂Si⊂S3 be the
associated links. Suppose that S1 and S2 intersect so that there is a sphere S2⊂S3

with S3 =B1 ∪S2 B2, so that Si⊂Bi; see Figure 6.5(a, b), where the interface
between B1 and B2 is a horizontal plane separating S1 and S2, which have been
pulled apart slightly for clarity. Moreover, assume that S1 ∩S2 =P ⊂S2 is a 2k-
sided polygon, where the edges of ∂P are cyclically numbered so that the odd edges
lie in L1, and the even edges lie in L2. Also, assume that the orientations of S1 and
S2 agree on P . Let L= ∂(S1 ∪S2) be the link obtained as a boundary of the union
of the two surfaces. Then L is said to be obtained by Murasugi sum from L1 and
L2. If k=1, this is connected sum, and if k=2, then this operation is known as
plumbing. There are two natural Seifert surfaces for L shown in Figure 6.5(b, c),
given by S=S1 ∪S2, and S′=

(
(S1 ∪S2)−P

)∪ (S2−P ). Note that S′ is also a

Murasugi sum of the surfaces (Si−P )∪S2−P , which are isotopic to Si.
Gabai showed that if each Si is minimal genus, then so is S; similarly if each Si

is a fiber, then so is S [Gab1]. We generalize these results to:

Lemma 6.6. If S1 and S2 are libroid surfaces, and S is obtained from S1 and S2

by Murasugi sum, then S is also a libroid surface.

Proof. The Seifert surfaces S and S′ for L can be disjointly embedded as sketched
in Figure 6.7. In detail, take a regular neighborhood N(L), and form the exterior
E(L)=S3−N(L). We’ll use the notation above for Murasugi sum. Then S2 ∩E(L)
is a 2k-punctured sphere, dividing E(L) into tangle complements Ti=E(L)∩Bi.
Take a regular neighborhood R3−i of Si−P ∩Ti inside Ti; then the relative bound-
ary of R3−i in Ti is two parallel copies of Si−P . The union with S2− (R1 ∪R2)
gives our two disjointly embedded Seifert surfaces S ∪S′.

The complements S3−Si, S3−S, and S3−S′ naturally admit sutured manifold
structures as described in Section 4 of [Sak]. Moreover, the two complementary
regions S3− (S ∪S′) may be identified with (S3−Si)∪Ri, where Ri is the product
sutured manifold described above, and Ri is attached to S3−Si along k product
disks in the sutures corresponding to Ri ∩S2 (recall k is defined by S1 ∩S2 =P is



CERTIFYING THE THURSTON NORM 17

S
S

R2

R1

Figure 6.7: The surfaces S and S′ made disjoint.

a 2k-gon). But S3−Si is a library sutured manifold, which may be extended as
products into Ri to obtain a library decomposition of S3− (S ∪S′). Thus S and S′

are libroid Seifert surfaces for L.

Remark 6.8. The sutured manifold decomposition in the above proof is the same as
that in [Sak, Condition 4.2]; while we first decompose along S ∪S′ and then along
the 2k product disks and remove the product sutured manifolds Ri, Sakuma first
decomposes along S and then along the disk S2−P , resulting in the union of the
sutured manifolds S3−Si.

The class of arborescent links are those obtained by plumbing together twisted
bands in a tree-like pattern (see, e.g., [Gab2, BS] for a definition). It is important to
note that the bands are allowed to have an odd number of twists. With a few known
exceptions, these links are hyperbolic (see [BS] or [FG, Theorem 1.5]). The subclass
of special arborescent links studied by Sakuma [Sak] are those obtained by plum-
bing bands with even numbers of twists, and hence the plumbed surface is a Seifert
surface for the link. Inductively applying Lemma 6.6 shows that all special arbores-
cent knots are libroid. A famous family of non-special arborescent knots are the
Kinoshita-Terasaka knots; to complete the proof of Theorem 6.1, it suffices to show:

Theorem 6.10. The Kinoshita-Terasaka knots KT 2,n shown in Figure 6.9(a) are
libroid hyperbolic knots with trivial ordinary Alexander polynomial.

Proof. These knots are hyperbolic since they are arborescent and not one of the
exceptional cases, and their Alexander polynomials were calculated in [KT]. Mini-
mal genus Seifert surfaces were found by Gabai [Gab2, §5]; we review his construc-
tion to verify that these knots are libroid.

Let L be the (3,−2, 2,−3)–pretzel link shown in Figure 6.9(b); a Seifert surface S
for one orientation of L is shown in Figure 6.9(c). The surface S is a twice-punctured
torus, and hence taut since S3 \L is hyperbolic. The KT 2,n knot can be obtained
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(a) The knotKT 2,n . (b) The pretzel linkL.

2n

(c) The surfaceS.

(d)M viewed from inside. (e)T viewed from inside.

plumb here

Figure 6.9: Kinoshita-Terasaka knots and the proof of Theorem 6.10.

by plumbing a band with 2n-twists onto S in the location shown, so by Lemma 6.6
it suffices to prove that the complement of S is a book of I-bundles.

Thickening S to a handlebody, we get the picture in Figure 6.9(d); the outside
of this handlebody is the sutured manifold M we seek to understand. Each short
red curve meets the long blue oriented sutures in two points and bounds an obvious
disk in M . These are product discs in the sense of [Gab2], so we decompose along
them to get the sutured manifold T which is the exterior of the solid torus shown
in Figure 6.9(e). Note that T is a solid torus with four sutures that each wind once
around in the core direction. In particular T is taut and hence so is M ; moreover,
thinking backwards to buildM from T by reattaching the product discs shows that
M is a book of I-bundles with a single binding which is basically T .
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