
Summary of Contents
• • • • • • • • • • • • • • • • • • • •

List of Figures xix
Acknowledgments xxi

0 Introduction 1

1 Unix 12

2 Version Control 55

3 Basic Programming 81

4 Writing Good Code 120

5 Regular Expressions 165

6 Scientific Computing 185

7 Scientific Typesetting 220

8 Statistical Computing 249

9 Data Wrangling and Visualization 300

10 Relational Databases 337

11 Wrapping Up 366

Intermezzo Solutions 373
Bibliography 389
Indexes 393

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Contents
• • • • • • • •

List of Figures xix

Acknowledgments xxi

0 Introduction: Building a Computing Toolbox 1

0.1 The Philosophy 2
0.2 The Structure of the Book 4

0.2.1 How to Read the Book 6
0.2.2 Exercises and Further Reading 6

0.3 Use in the Classroom 8
0.4 Formatting of the Book 10
0.5 Setup 10

1 Unix 12

1.1 What Is Unix? 12
1.2 Why Use Unix and the Shell? 13
1.3 Getting Started with Unix 14

1.3.1 Installation 14
1.3.2 Directory Structure 15

1.4 Getting Started with the Shell 17
1.4.1 Invoking and Controlling Basic Unix Commands 18
1.4.2 How to Get Help in Unix 19
1.4.3 Navigating the Directory System 20

1.5 Basic Unix Commands 22
1.5.1 Handling Directories and Files 22
1.5.2 Viewing and Processing Text Files 24

1.6 Advanced Unix Commands 27
1.6.1 Redirection and Pipes 27
1.6.2 Selecting Columns Using cut 29
1.6.3 Substituting Characters Using tr 32

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



x ● Contents

1.6.4 Wildcards 35
1.6.5 Selecting Lines Using grep 36
1.6.6 Finding Files with find 39
1.6.7 Permissions 41

1.7 Basic Scripting 43
1.8 Simple for Loops 47
1.9 Tips, Tricks, and Going beyond the Basics 49

1.9.1 Setting a PATH in .bash_profile 49
1.9.2 Line Terminators 50
1.9.3 Miscellaneous Commands 50

1.10 Exercises 51
1.10.1 Next Generation Sequencing Data 51
1.10.2 Hormone Levels in Baboons 51
1.10.3 Plant–Pollinator Networks 52
1.10.4 Data Explorer 53

1.11 References and Reading 53

2 Version Control 55

2.1 What Is Version Control? 55
2.2 Why Use Version Control? 55
2.3 Getting Started with Git 56

2.3.1 Installing Git 57
2.3.2 Configuring Git after Installation 57
2.3.3 How to Get Help in Git 58

2.4 Everyday Git 58
2.4.1 Workflow 58
2.4.2 Showing Changes 64
2.4.3 Ignoring Files and Directories 65
2.4.4 Moving and Removing Files 66
2.4.5 Troubleshooting Git 66

2.5 Remote Repositories 68
2.6 Branching and Merging 70
2.7 Contributing to Public Repositories 78
2.8 References and Reading 79

3 Basic Programming 81

3.1 Why Programming? 81
3.2 Choosing a Programming Language 81
3.3 Getting Started with Python 83

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Contents ● xi

3.3.1 Installing Python and Jupyter 83
3.3.2 How to Get Help in Python 84
3.3.3 Simple Calculations with Basic Data Types 85
3.3.4 Variable Assignment 87
3.3.5 Built-In Functions 89
3.3.6 Strings 90

3.4 Data Structures 93
3.4.1 Lists 93
3.4.2 Dictionaries 96
3.4.3 Tuples 100
3.4.4 Sets 101

3.5 Common, General Functions 103
3.6 The Flow of a Program 105

3.6.1 Conditional Branching 105
3.6.2 Looping 107

3.7 Working with Files 112
3.7.1 Text Files 112
3.7.2 Character-Delimited Files 115

3.8 Exercises 117
3.8.1 Measles Time Series 117
3.8.2 Red Queen in Fruit Flies 118

3.9 References and Reading 118

4 Writing Good Code 120

4.1 Writing Code for Science 120
4.2 Modules and Program Structure 121

4.2.1 Writing Functions 121
4.2.2 Importing Packages and Modules 126
4.2.3 Program Structure 127

4.3 Writing Style 133
4.4 Python from the Command Line 135
4.5 Errors and Exceptions 137

4.5.1 Handling Exceptions 138
4.6 Debugging 139
4.7 Unit Testing 146

4.7.1 Writing the Tests 147
4.7.2 Executing the Tests 149
4.7.3 Handling More Complex Tests 150

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



xii ● Contents

4.8 Profiling 153
4.9 Beyond the Basics 155

4.9.1 Arithmetic of Data Structures 155
4.9.2 Mutable and Immutable Types 156
4.9.3 Copying Objects 158
4.9.4 Variable Scope 160

4.10 Exercises 161
4.10.1 Assortative Mating in Animals 161
4.10.2 Human Intestinal Ecosystems 162

4.11 References and Reading 163

5 Regular Expressions 165

5.1 What Are Regular Expressions? 165
5.2 Why Use Regular Expressions? 165
5.3 Regular Expressions in Python 166

5.3.1 The reModule in Python 166
5.4 Building Regular Expressions 167

5.4.1 Literal Characters 168
5.4.2 Metacharacters 168
5.4.3 Sets 169
5.4.4 Quantifiers 170
5.4.5 Anchors 171
5.4.6 Alternations 172
5.4.7 Raw String Notation and Escaping

Metacharacters 173
5.5 Functions of the reModule 175
5.6 Groups in Regular Expressions 179
5.7 Verbose Regular Expressions 181
5.8 The Quest for the Perfect Regular Expression 181
5.9 Exercises 182

5.9.1 Bee Checklist 182
5.9.2 A Map of Science 182

5.10 References and Reading 184

6 Scientific Computing 185

6.1 Programming for Science 185
6.1.1 Installing the Packages 185

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Contents ● xiii

6.2 Scientific Programming with NumPy and SciPy 185
6.2.1 NumPy Arrays 186
6.2.2 Random Numbers and Distributions 194
6.2.3 Linear Algebra 196
6.2.4 Integration and Differential Equations 197
6.2.5 Optimization 200

6.3 Working with pandas 202
6.4 Biopython 208

6.4.1 Retrieving Sequences from NCBI 208
6.4.2 Input and Output of Sequence Data

Using SeqIO 210
6.4.3 Programmatic BLAST Search 212
6.4.4 Querying PubMed for Scientific Literature

Information 214
6.5 Other Scientific Python Modules 216
6.6 Exercises 216

6.6.1 Lord of the Fruit Flies 216
6.6.2 Number of Reviewers and Rejection Rate 217
6.6.3 The Evolution of Cooperation 217

6.7 References and Reading 219

7 Scientific Typesetting 220

7.1 What Is LATEX? 220
7.2 Why Use LATEX? 220
7.3 Installing LATEX 223
7.4 The Structure of LATEX Documents 223

7.4.1 Document Classes 224
7.4.2 LATEX Packages 224
7.4.3 The Main Body 225
7.4.4 Document Sections 227

7.5 Typesetting Text with LATEX 228
7.5.1 Spaces, New Lines, and Special Characters 228
7.5.2 Commands and Environments 228
7.5.3 Typesetting Math 229
7.5.4 Comments 231
7.5.5 Justification and Alignment 232
7.5.6 Long Documents 232
7.5.7 Typesetting Tables 233
7.5.8 Typesetting Matrices 236

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



xiv ● Contents

7.5.9 Figures 237
7.5.10 Labels and Cross-References 240
7.5.11 Itemized and Numbered Lists 241
7.5.12 Font Styles 241
7.5.13 Bibliography 242

7.6 LATEX Packages for Biologists 244
7.6.1 Sequence Alignments with LATEX 245
7.6.2 Creating Chemical Structures with LATEX 246

7.7 Exercises 246
7.7.1 Typesetting Your Curriculum Vitae 246

7.8 References and Reading 247

8 Statistical Computing 249

8.1 Why Statistical Computing? 249
8.2 What Is R? 249
8.3 Installing R and RStudio 250
8.4 Why Use R and RStudio? 250
8.5 Finding Help 251
8.6 Getting Started with R 251
8.7 Assignment and Data Types 253
8.8 Data Structures 255

8.8.1 Vectors 255
8.8.2 Matrices 257
8.8.3 Lists 261
8.8.4 Strings 262
8.8.5 Data Frames 263

8.9 Reading and Writing Data 264
8.10 Statistical Computing Using Scripts 267

8.10.1 Why Write a Script? 267
8.10.2 Writing Good Code 267

8.11 The Flow of the Program 270
8.11.1 Branching 270
8.11.2 Loops 272

8.12 Functions 275
8.13 Importing Libraries 278
8.14 Random Numbers 279
8.15 Vectorize It! 280
8.16 Debugging 283
8.17 Interfacing with the Operating System 284

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Contents ● xv

8.18 Running R from the Command Line 285
8.19 Statistics in R 287
8.20 Basic Plotting 290

8.20.1 Scatter Plots 290
8.20.2 Histograms 291
8.20.3 Bar Plots 292
8.20.4 Box Plots 292
8.20.5 3D Plotting (in 2D) 293

8.21 Finding Packages for Biological Research 293
8.22 Documenting Code 294
8.23 Exercises 295

8.23.1 Self-Incompatibility in Plants 295
8.23.2 Body Mass of Mammals 296
8.23.3 Leaf Area Using Image Processing 296
8.23.4 Titles and Citations 297

8.24 References and Reading 297

9 Data Wrangling and Visualization 300

9.1 Efficient Data Analysis and Visualization 300
9.2 Welcome to the tidyverse 300

9.2.1 Reading Data 301
9.2.2 Tibbles 302

9.3 Selecting and Manipulating Data 304
9.3.1 Subsetting Data 305
9.3.2 Pipelines 307
9.3.3 Renaming Columns 308
9.3.4 Adding Variables 309

9.4 Counting and Computing Statistics 310
9.4.1 Summarize Data 310
9.4.2 Grouping Data 310

9.5 Data Wrangling 313
9.5.1 Gathering 313
9.5.2 Spreading 315
9.5.3 Joining Tibbles 316

9.6 Data Visualization 318
9.6.1 Philosophy of ggplot2 319
9.6.2 The Structure of a Plot 320
9.6.3 Plotting Frequency Distribution of One

Continuous Variable 321

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



xvi ● Contents

9.6.4 Box Plots and Violin Plots 322
9.6.5 Bar Plots 323
9.6.6 Scatter Plots 324
9.6.7 Plotting Experimental Errors 325
9.6.8 Scales 326
9.6.9 Faceting 328
9.6.10 Labels 329
9.6.11 Legends 330
9.6.12 Themes 331
9.6.13 Setting a Feature 332
9.6.14 Saving 332

9.7 Tips & Tricks 333
9.8 Exercises 335

9.8.1 Life History in Songbirds 335
9.8.2 Drosophilidae Wings 335
9.8.3 Extinction Risk Meta-Analysis 335

9.9 References and Reading 336

10 Relational Databases 337

10.1 What Is a Relational Database? 337
10.2 Why Use a Relational Database? 338
10.3 Structure of Relational Databases 340
10.4 Relational Database Management Systems 341

10.4.1 Installing SQLite 341
10.4.2 Running the SQLite RDBMS 341

10.5 Getting Started with SQLite 342
10.5.1 Comments 342
10.5.2 Data Types 342
10.5.3 Creating and Importing Tables 343
10.5.4 Basic Queries 344

10.6 Designing Databases 352
10.7 Working with Databases 355

10.7.1 Joining Tables 355
10.7.2 Views 358
10.7.3 Backing Up and Restoring a Database 359
10.7.4 Inserting, Updating, and Deleting Records 360
10.7.5 Exporting Tables and Views 361

10.8 Scripting 362
10.9 Graphical User Interfaces (GUIs) 362

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



Contents ● xvii

10.10 Accessing Databases Programmatically 362
10.10.1 In Python 363
10.10.2 In R 363

10.11 Exercises 364
10.11.1 Species Richness of Birds in Wetlands 364
10.11.2 Gut Microbiome of Termites 364

10.12 References and Reading 365

11 Wrapping Up 366

11.1 How to Be a More Efficient Computational Biologist 367
11.2 What Next? 368
11.3 Conclusion 371

Intermezzo Solutions 373
Bibliography 389
Indexes 393
Index of Symbols 393
Index of Unix Commands 395
Index of Git Commands 397
Index of Python Functions, Methods, Properties,
and Libraries 399

Index of LATEX Commands and Libraries 401
Index of R Functions and Libraries 403
Index of SQLite Commands 405
General Index 407

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



C H A P T E R 0
• • • • • • • • • • • • •

Introduction: Building a Computing Toolbox

Nomatter howmuch time you spend in the field or at the bench, most of your
research is done when sitting in front of a computer. Yet, the typical curricu-
lum of a biology PhD does not include much training on how to use these
machines. It is assumed that students will figure things out by themselves,
unless they join a laboratory devoted to computational biology—in which
case they will likely be trained by other members of the group in the labora-
tory’s (often idiosyncratic) selection of software tools. But for the vastmajority
of academic biologists, these skills are learned the hard way—through painful
trial and error, or during long sessions sitting with the one student in the
program who is “good with computers.”

This state of affairs is at odds with the enormous growth in the size and
complexity of data sets, as well as the level of sophistication of the statistical
and mathematical analysis that goes into a modern scientific publication in
biology. If, once upon a time, coming up with an original idea and collecting
great data meant having most of the project ready, today the data and ideas
are but the beginning of a long process, culminating in publication.

The goal of this book is to build a basic computational toolbox for biolo-
gists, useful both for those doing laboratory and field work, and for those with
a computational focus. We explore a variety of tools and show how they can
be integrated to construct complex pipelines for automating data collection,
storage, analysis, visualization, and the preparation of manuscripts ready for
submission.

These tools are quite disparate and can be thought of as LEGO® bricks,
that can be combined in new and creative ways. Once you have added a new
tool to your toolbox, the potential for new research is greatly expanded. Not
only will you be able to complete your tasks in amore organized, efficient, and
reproducible way, but you will attempt answering new questions that would
have been impossible to tackle otherwise.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



2 ● Chapter 0

0.1 The Philosophy

Fundamentally, this book is a manifesto for a certain approach to computing
in biology. Here are the main points we want to emphasize:

Automation

Doing science involves repeating the same tasks several times. For example,
you might need to repeat an analysis when new data are added, or if the same
analysis needs to be carried out on separate data sets, or again if the reviewers
ask you to change this or that part of the analysis to make sure that the results
are robust.

In all of these cases you would like to automate the processing of the data,
such that the data organization and analysis and the production of figures and
statistical results can be repeated without any effort. Throughout the book, we
keep automation at the center of our approach.

Reproducibility

Science should be reproducible, and much discussion and attention goes into
carefully documenting empirical experiments so that they can be repeated.
In theory, reproducing statistical analysis or simulations should be much eas-
ier, provided that the data and parameters are available. Yet, this is rarely
the case—especially when the processing of the data involves clicking one’s
way through a graphical interface without documenting all the steps. In
order to make it easy to reproduce your results, your computational work
should be

readable: Your analysis should be easy to read and understand. This involves writing
good code and documenting what you are doing. The best way to proceed is to
think of your favorite reader: yourself, six months from now. When you receive
feedback from the reviewers, and you have to modify the analysis, will you be able
to understand precisely what you did, how, and why? Note that there is no way to
email yourself in the past to ask for clarifications.

organized: Keeping the project tidy and well organized is a struggle, but you don’t
want to open your project directory only to find that there are 16 versions of the
same program, all with slight—and undocumented—variations!

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 3

self-contained: Ideally, you want all of your data, code, and results in the same place,
without dependencies on other files or code that are not in the same location.
In this way, it is easy to share your work with others, or to work on your projects
from different computers.

Openness

Science is a worldwide endeavor. If you use costly, proprietary software, the
chances are that researchers in less fortunate situations cannot reproduce your
results or use your methods to analyze their data. Throughout the book, we
focus on free software:1 not only is the software free in the sense that it costs
nothing, but free alsomeans that you have the freedom to run, copy, distribute,
study, change, and improve the software.

Simplicity

Try to keep your analysis as simple as possible. Sometimes, “readable” and
“clever” are at odds, meaning that a single line of code processing data in 14
different ways at oncemight be genius, but seldom is it going to be readable. In
such cases, we tend to side with readability and simplicity—even if this means
writing three additional lines of code. We also advocate the use of plain text
whenever possible, as text is portable to all computer architectures and will
be readable decades from now.

Correctness

Your analysis should be correct. This means that programming in science is
very different from programming in other areas. For example, bugs (errors
in the code) are something the software industry has learned to manage and
live with—if your application unexpectedly closes or if your word processor
sometimes goes awry, it is surely annoying, but unless you are selling pace-
makers this is not going to be a threat. In science, it is essential that your code
does solely what it is meant to do: otherwise your results might be unjustified.
This strong emphasis on correctness is peculiar to science, and therefore you

1. gnu.org/philosophy/free-sw.html.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://gnu.org/philosophy/free-sw.html


4 ● Chapter 0

will not find all of thematerial we present in a typical programming textbook.
We explore basic techniques meant to ensure that your code is correct and we
encourage you to rewrite the same analysis in (very) different programming
languages, forcing you to solve the problem in different ways; if all programs
yield exactly the same results, then they are probably correct.

Science as Software Development

There is a striking parallel between the process of developing software and
that of producing science. In fact, we believe that basic tools adopted by soft-
ware developers (such as version control) can naturally be adapted to the
world of research. We want to build software pipelines that turn ideas and
data into published work; the development of such a pipeline has important
milestones, which parallel those of software development: one can think of
a manuscript as a “beta version” of a paper, and even treat the comments of
the reviewers as bugs in the project which we need to fix before releasing our
product! The development of these pipelines is another central piece of our
approach.

0.2 The Structure of the Book

The book is composed of 10 semi-independent chapters:

Chapter 1: Unix
We introduce the Unix command line and show how it can be used to
automate repetitive tasks and “massage” your data prior to analysis.

Chapter 2: Version control
Version control is a way to keep your scientific projects tidily organized,
collaborate on science, and have the whole history of each project at your
fingertips. We introduce this topic using Git.

Chapter 3: Basic programming
We start programming, using Python as an example. We cover the basics:
from assignments and data structures to the reading and writing of files.

Chapter 4: Writing good code
When we write code for science, it has to be correct. We show how to
organize your code in an effective way, and introduce debugging, unit
testing, and profiling, again using Python.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 5

Chapter 5: Regular expressions
When working with text, we often need to find snippets of text matching a
certain “pattern.” Regular expressions allow you to describe to a computer
what you are looking for. We show how to use the Python module re to
extract information from text.

Chapter 6: Scientific computing
Modern programming languages offer specific libraries and packages for
performing statistics, simulations, and implementing mathematical models.
We briefly cover these tools using Python. In addition, we introduce
Biopython, which facilitates programming for molecular biology.

Chapter 7: Scientific typesetting
We introduce LATEX for scientific typesetting of manuscripts, theses, and
books.

Chapter 8: Statistical computing
We introduce the statistical software R, which is fully programmable and for
which thousands of packages written by scientists for scientists are available.

Chapter 9: Data wrangling and visualization
We introduce the tidyverse, a set of R packages that allow you to write
pipelines for the organization and analysis of large data sets. We also show
how to produce beautiful figures using ggplot2.

Chapter 10: Relational Databases
We present relational databases and sqlite3 for storing and working
efficiently with large amounts of data.

Clearly, there is no way to teach these computational tools in 10 brief
chapters. In fact, in your library you will find several thick books devoted to
each and every one of the tools we are going to explore. Similarly, becoming
a proficient programmer cannot be accomplished by reading a few pages, but
rather it requires hundreds of hours of practice. So why try to cover so much
material instead of concentrating on a few basic tools?

The idea is to provide a structured guide to help jump-start your learning
process for each of these tools. This means that we emphasize breadth over
depth (a very unusual thing to do in academia!) and that success strongly
depends on your willingness to practice by trying your hand at the exer-
cises and embedding these tools in your daily work. Our goal is to showcase
each tool by first explaining what the tool is and why you should mas-
ter it. This allows you to make an informed decision on whether to invest
your time in learning how to use it. We then guide you through some basic

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



6 ● Chapter 0

features and give you a step-by-step explanation of several simple examples.
Once you have worked through these examples, the learning curve will
appear less steep, allowing you to find your own path toward mastering the
material.

0.2.1 How to Read the Book

We have written the book such that it can be read in the traditional way: start
from the first page and work your way toward the end. However, we have
striven to provide a modular structure, so that you can decide to skip some
chapters, focus on only a few, or use the book as a quick reference.

In particular, the chapters on Unix (ch. 1), version control (ch. 2), LATEX
(ch. 7), and databases (ch. 10) can be read quite independently: you will
sometimes find references to other chapters, but in practice there are no
prerequisites. Also, you can decide to skip any of these chapters (though
we love each of these tools!) without affecting the reading of the rest of the
book.

We present programming in Python (chs. 3–6) and then again in R
(chs. 8–9). While we go into more detail when explaining basic concepts in
Python, you should be able to understand all of the Rmaterial without having
read any of the other chapters. Similarly, if you do not plan to use R, you can
skip these chapters without impacting the rest of the book.

0.2.2 Exercises and Further Reading

In each chapter, upon completion of the material you will be ready to start
working on the “Exercises” section. One of the main features of this book is
that exercises are based on real biological data taken from published papers.
As such, these are not silly little exercises, but rather examples of the chal-
lenges you will overcome when doing research. We have seen that some
students find this level of difficulty frustrating. It is entirely normal, however,
to have no idea how to solve a problem at first. Whenever you feel that frus-
tration is blocking your creativity and efficiency, take a short break. When
you return, try breaking the problem into smaller steps, or start from a blank
slate and attempt an entirely different approach. If you keep chipping away
at the exercise, then little by little you will make sense of what the problem
entails and—finally—you will find a way to crack it. Learning how to enjoy
problem solving and to take pride in a job well done are some of the main
characteristics of a good scientist.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 7

For example, we are fond of this quote from Andrew Wiles (who proved
the famous Fermat’s last theorem, which baffled mathematicians for cen-
turies): “You enter the first room of the mansion and it’s completely dark. You
stumble around bumping into the furniture but gradually you learn where
each piece of furniture is. Finally, after six months or so, you find the light
switch, you turn it on, and suddenly it’s all illuminated.”2 Hopefully, it will
take you less than six months to crack the exercises!

Note that there isn’t “a” way to solve a problem, but rather a multitude
of (roughly) equivalent ways to do so. Each and every approach is perfect,
provided that the results are correct and that the solution is found in a rea-
sonable amount of time. Thus, we encourage you to consult our solutions
to the exercises only once you have solved them: Did we come up with the
same idea? What are the advantages and disadvantages of these approaches?
Even if you did not solve the task entirely, you have likely learned a lot more
while trying, compared to reading through the solutions upon hitting the first
stumbling block. To provide a further stepping stone between having no idea
where to start and a complete solution, we provide a pseudocode solution
of each exercise online: the individual steps of the solution are described in
English, but no code is provided. This will give you an idea how to approach
the problem, but youwill need to come upwith the code. From there, it is only
a short way to tackling your very own research questions. You can find the
complete solutions and the pseudocode at computingskillsforbiologists.com/
exercises.

When solving the exercises, the internet is your friend. Finding help
online is by no means considered “cheating.” On the contrary, if you find
yourself exploring additional resources, you are doing exactly the right thing!
As with research, anything goes, as long as you can solve your problem (and
give credit where credit is due). Consulting the many comprehensive online
forums gives you a sense of how widespread these computational tools are.
Keep in mind that the people finding clever answers to your questions also
started from a blank slate at some point in their career. Moreover, seeing that
somebody else asked exactly your question should further convince you that
you are on the right track.

Last but not least, the “Reading” section of each chapter contains refer-
ences to books, tutorials, and online resources to further the knowledge of
the material. If the chapter is an appetizer, meant to whet your appetite for
knowledge, the actual meal is contained in the reading list. This book is a
road map that equips you with sufficient knowledge to choose the appropri-
ate tool for each task, and take the guesswork out of “Where should I start

2. computingskillsforbiologists.com/provingfermat.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://computingskillsforbiologists.com/{\penalty -\@M }exercises
http://computingskillsforbiologists.com/provingfermat


8 ● Chapter 0

my learning journey?” However, only by reading more on the topic and by
introducing these tools into your daily research work will you be able to truly
master these skills, and make the most of your computer.

We conclude with the sales pitch we use to present the class that inspired
this book. If you are a graduate student and you read the material, you
work your way through all the exercises, constantly striving to further your
knowledge of these topics by introducing them into your daily work, then you
will shave sixmonths off your PhD—and not any six months, but rather those
spent wrestling with the data, repeating tedious tasks, and trying to convince
the computer to be reasonable and spit out your thesis. All things considered,
this book aims to make you a happier, more productive, and more creative
scientist. Happy computing!

0.3 Use in the Classroom

We have been teaching the material covered in this book, in the graduate
class Introduction to Scientific Computing for Biologists, at the University of
Chicago since 2012. The enrollment has been about 30 students per year. We
found the material appropriate for junior graduate students as well as senior
undergraduates with some research experience.

The University of Chicago runs on a quarter system, allowing for 10 lec-
tures of three hours each. Typically, each chapter is covered by a single lecture,
with “Version Control” (ch. 2) and “Scientific Typesetting” (ch. 7) each tak-
ing about an hour and a half, and “Writing GoodCode” (ch. 4) and “Statistical
Computing” (ch. 8) taking more than one lecture each.

In all cases, we taught students who had computers available in class,
either by teaching in a computer lab, or by asking students to bring their per-
sonal laptops. Rather than using slides, the instructor lecturedwhile typing all
the code contained in the book during the class. This makes for a very inter-
active class, in which all students type all of the code too—making sure that
they understand what they are doing. Clearly, this also means that the pace
is slowed down every time a student has included a typo in their commands,
or cannot access their programs. To ease this problem, having teaching assis-
tants for the class helps immensely. Students can raise their hand, or stick
a red post-it on their computer to signal a problem. The teaching assistant
can immediately help the student and interrupt the class in case the prob-
lem is shared by multiple students—signaling the need for a more general
explanation.

To allow the class to run smoothly, each student should prepare their
computer in advance.We typically circulate each chapter a week in advance of
class, encouraging the students to (a) install the software needed for the class

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



Introduction: Building a Computing Toolbox ● 9

and (b) read the material beforehand. Teaching assistants also offer weekly
office hours to help with the installation of software, or to discuss thematerial
and the exercises in small groups.

The “intermezzos” that are interspersed in each chapter function very
well as small in-class exercises, allowing the students to solidify their knowl-
edge, as well as highlighting potential problems with their understanding of
the material.

We encourage the students to work in groups on the exercises at the end
of each chapter, and review the solutions at the beginning of the following
class. While this can cause some difficulties in grading, we believe that work-
ing in groups is essential to overcome the challenge of the exercises, making
the students more productive, and allowing less experienced students to learn
from their peers. Publishing a blog where each group posts their solutions
reinforces the esprit de corps, creating a healthy competition between the
groups, and further instilling in the students a sense of pride for a job well
done. We also encouraged students to constructively comment on the differ-
ent approaches of other groups and discuss the challenges they’ve faced while
solving the exercises.

Another characteristic of our class has been the emphasis on the practi-
cal value of the material. For example, we ask each student to produce a final
project in which they take a boring, time-consuming task in their laboratory
(e.g., analysis of batches of data produced by laboratorymachines, calibration
of methods, other repetitive computational tasks) and completely automate
it. The student then shows their work to their labmates and scientific advisor,
and writes a short description of the program, along with the documenta-
tion necessary to use it. The goal of the final project is simply to show the
student that mastering this material can save them a lot of time—even when
accounting for the strenuous process of writing their first programs.

Wehave also experimentedwith a “flipped classroom” setting, withmixed
results. In this case, the students read thematerial at their own pace, andwork
through all the small exercises contained in the chapter. The lecture is then
devoted to working on the exercises at the end of each chapter. The lecturer
guides the discussion on the strategies that can be employed to solve the prob-
lem, sketching pseudocode on the board, and eventually producing a fully
fledged code on the computer. We have observed that, while this approach is
very rewarding for students with some prior experience in programming, it
is much less engaging for novices, who feel lost and out of touch with the rest
of the class. Probably, this would work much better if the class size were small
(less than 10 students).

Finally, we have found that leading by example serves as powerfulmotiva-
tion to students. We have always shown that we use the tools covered here for
our own research. A well-placed anecdote on Git saving the day, or showing

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu



10 ● Chapter 0

how all the tables in a paperwere automatically generatedwith a few lines of R,
can go a longway toward convincing the students that their work studying the
material will pay off over a lifetime.

0.4 Formatting of the Book

You will find all commands and the names of packages typeset in a fixed-width
font. User-provided [INPUT] is capitalized and set between square brackets.
To execute the commands, you do not need to reproduce such formatting.
Within explanatory text, technical terms are presented in italics.

Throughout the book, we provide many code examples, enclosed in
gray boxes and typeset using fixed-width fonts. All code examples are also
provided on the companion website computingskillsforbiologists.com—but
we encourage you to type all the code in by yourself: while this might feel
slow and inefficient, the learning effect is stronger compared to simply copy-
ing and pasting, and only inspecting the result. Within the code examples,
language-specific commands are highlighted in bold.

Within the code boxes, we try to keep lines short. When we cannot avoid
a line that is longer than the width of the page we use the symbol� to indicate
that what follows should be typed in the same line as the rest.

0.5 Setup

Before you can start computing, you need to set up the environment, and
download the data and the code.

What You Need

A computer: All the software we present here is free and can be installed with a few
commands in Linux Ubuntu or Apple’s OS X; we strive to provide guidance for
Windows users. There are no specific hardware requirements. All the tools require
relatively little memory and space on your hard drive.

Software: Each chapter requires installing specific software. We have collected
detailed instructions guiding you through the installation of each tool at
computingskillsforbiologists.com/setup.

A text editor: While working through the chapters, youwill write a lot of code.Much
will be written in the integrated development environments (IDEs) Jupyter and
RStudio. Sometimes, however, you will need to write code in a text editor. We

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://computingskillsforbiologists.com
http://computingskillsforbiologists.com/setup


Introduction: Building a Computing Toolbox ● 11

encourage you to keep working with your favorite editor, if you already have one.
If not, please choose an editor that can support syntax highlighting for Python, R,
and LATEX. There are many options to choose from, depending on your architecture
and needs.3

Initial Setup

You can find instructions for the initial setup on our website at computing
skillsforbiologists.com/setup. We have bundled all the data, code, exercises,
and solutions in a single download. We strongly recommend that you save
this directory in your home directory (see section 1.3.2).

3. computingskillsforbiologists.com/texteditors.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries, contact webmaster@press.princeton.edu

http://computing{\penalty -\@M }skillsforbiologists.com/setup
http://computingskillsforbiologists.com/texteditors


General Index
• • • • • • • • • • • • •

Italic pages refer to figures and tables

absolute path, 21–22, 40
algorithms, 185, 195, 370
alternations, 172
amino acids, 90, 145–46, 245
Anaconda, 84, 176n1
anchors, 171–72
annealing, 370
application programming interface (API), 208–10
arrays: LaTeX and, 236–37; R and, 260–61;
scientific computing and, 186–97, 200–2

arguments: LaTeX and, 224; Python and, 90, 113,
121–24, 133–36, 140–41, 167, 379; R and, 253,
269, 275–77, 280, 282–83, 286–87, 297;
scientific computing and, 194, 204, 212; Unix
and, 18–23, 25, 36, 44–47, 51

assertions, 144–45
AttributeError, 92, 137
autocompletion, 21, 30, 90, 204n6
automation, 2; basic programming and, 81; coding
and, 135, 150, 366; data wrangling and, 300,
326; practical value of, 9, 368; scientific
computing and, 193, 208; scientific typesetting
and, 222–23, 234, 244–45; statistical computing
and, 250, 267, 285; systematic errors and, 368;
Unix and, 4, 13–14, 35, 43, 54; version control
and, 55

Axelrod, R., 218

backups, 55, 359–61, 367
bar plots, 292, 319, 323–25, 327–28
Bash, 13–21, 44–46, 49–53, 136n3
Basic Local Alignment Search Tool (BLAST), 174,
208, 212–13

bibliographies, 221–22, 226, 242–44, 247
BibTeX, 221–22, 242–44, 247
binary formats, 61, 65, 82, 113, 337, 343, 364
Biopython: handles and, 209–15; retrieving
National Center for Biotechnology Information
(NCBI) sequences and, 208–11; scientific
computing and, 5, 185, 208–16, 219

Bitbucket, 68, 78, 80, 370
Bolstad, G. H., 335
Booleans, 85, 88, 90, 193, 205, 343
box plots, 207, 292–93, 320, 322–27, 330, 386

branching: conditional, 105–7; merging and,
70–79; programming and, 105–7, 137; R and,
270–72; scientific typesetting and, 220;
statistical computing and, 270–72; Unix and, 16;
version control and, 55, 70–78

breakpoint, 139, 144
bugs: assertions and, 144–45; basic programming
and, 82–83; correctness and, 3–4; debugging
and, 4, 47, 67, 82–83, 120, 124, 127, 139–46,
181–82, 196, 283–84, 368; extemporaneous fixes
and, 367–68; regular expressions and, 181–82;
scientific computing and, 196; scientific
typesetting and, 222; statistical computing and,
283–84; Unix and, 47; version control and,
66–67; writing good code and, 120, 124, 127,
139–49, 159

built-in functions, 89–90, 92, 121, 249, 262, 275,
278, 281, 289

Buzzard, V., 22–23, 25, 39–40, 53

C, 82–83, 89, 105, 280, 369
C++, 82, 166
calculus, 197–99
Chacon, S., 79
chaining, 204
Chang, Geoffrey, 144
Chang, Winston, 326
character-delimited files, 115–17
chemical structures, 246
chunks, 294–95
CLI. See command-line interface (CLI)
client-server systems, 339, 341
clusters, 14, 323, 369
coding: assertions and, 144–45; automation and,
135, 150, 366; branching and, 105–7, 137; bugs
and, 4 (see also bugs); chunks and, 294–95;
comma-separated values (CSV) format and,
161; comments and, 4, 17, 44, 72, 74–76, 84,
117, 135, 148, 181, 231–32, 251, 267, 342;
copying objects and, 158–60; correctness and,
3–4, 155; data structures and, 128, 155–56, 158,
164; dictionaries and, 122–23, 129, 132, 137,
146, 151, 156–57, 159, 162; dividing task and,
367; doctest and, 147, 149–50, 152, 164;

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



408 ● General Index

coding (cont.)
documentation and, 152, 154n7, 163–64,
294–95; encoding and, 113, 121, 191, 202, 337,
343; errors and, 120, 137–39 (see also errors);
function scope and, 160–61; global scope and,
160–61; hacking and, 12, 368–69; hard coded
files and, 44; importing and, 126–28, 131, 134,
136, 140, 144, 147, 150; indentation and, 105;
Jupyter and, 131, 135, 139, 145, 147–48, 153–54,
163; keeping log and, 368; loops and, 155;
modules and, 120–34, 136, 140–41, 147, 150,
152, 159, 164; mutable/immutable types and,
100–1, 155–58; NumPy module and, 139–40,
143; optimization and, 120, 153; organization
and, 4, 120, 126–27, 133, 147; profiling and, 4,
82, 153–55; program structure and, 120–33;
pseudocode and, 7, 9, 17, 117, 367–68; Python
and, 4, 120–22, 126, 131–44, 147–60, 163–64;
readability and, 2, 82, 86, 124, 133, 145, 154,
368; regular expressions and, 166 (see also
regular expressions); repositories and, 154n7;
science and, 4, 120–21, 153; SciPy module and,
128–30, 134, 144–45, 151–55; scripts and,
267–69; sets and, 132, 151; sharing and, 299,
370; simulations and, 127–28, 131–32, 135–36,
147, 153, 155; source code and, 82, 225, 228,
230, 238, 298; strings and, 121, 123, 131,
135–37, 140, 144, 147–50, 156–58; syntax and,
137 (see also syntax); terminals and, 136, 149;
testing on paper and, 367; text editors and, 133,
135, 147, 154; tuples and, 128–29, 132, 156–57;
unit testing and, 120, 146–52, 164; Unix and,
136; variables and, 122–23, 127, 135, 137,
139–44, 151, 155–56, 158, 160–61, 278; writing
functions and, 121–26; writing style and,
133–35

command-line interface (CLI), 12–15, 250
comma-separated values (CSV) format: basic
programming and, 112, 115–18; coding and,
161; data wrangling and, 301–2, 305, 313–14,
318, 320, 331, 335; modules and, 115–17;
relational databases and, 338, 343–45, 361;
scientific computing and, 190, 202, 208, 217;
scientific typesetting and, 223, 235; SQLite and,
343–45, 361; statistical computing and, 264–65,
295, 297; Unix and, 25–41, 44–46, 53; version
control and, 61, 66

comments: coding and, 4, 17, 44, 72, 74–76, 84,
117, 135, 148, 181, 231–32, 251, 267, 342; LaTeX
and, 231–32; regular expressions and, 181;
relational databases and, 342; scientific
typesetting and, 231–32; statistical computing
and, 251, 267; Unix and, 17, 44; version control
and, 72, 74–76

commits: amending an incomplete, 66–68;
checking out old, 76–77; deleting changes and,
68; Git and, 55–79, 374; repositories and, 55, 59,

61–63, 66–72, 77; reverting to last, 68; staging
and, 61, 63, 67–69, 73–74, 77; version control
and, 55–79, 374; writing messages associated
with, 57

compilation, 220, 232
compilers, 82, 221, 226, 249
Comprehensive R Archive Network (CRAN), 279,
293–94, 298

Comprehensive TeX Archive Network, 246
computing toolbox: automation and, 2, 13–14,
222, 234, 244; correctness and, 3–4, 155;
documentation and, 2, 9, 83, 133, 146, 250, 267,
294–95; openness and, 3, 370; organization and,
1 (see also organization); pipes and, 1, 4–5, 366;
readability and, 3 (see also readability);
reproducibility and, 2, 13, 56, 80, 245; research
potential and, 1; simplicity and, 3, 82, 128

Comte, L., 355, 358, 363
concatenate, Python and, 88, 91–92, 155, 205; R
and, 255–256, 259, 271; Unix and, 25

confidence intervals (CI), 289, 325–26
coordinates, 100, 165, 183, 291, 319, 326, 353, 355
copying objects, 19, 22–23, 33, 43, 50, 158–60
correctness, 3–4, 155
CRAN. See Comprehensive R Archive Network
(CRAN)

cross-references, 221, 226, 240
CSV. See comma-separated values (CSV) format
Cumming, G., 325n5
cursors, 18, 84, 362–63

Dalziel, B., 41, 115–17, 374, 376
data dumps, 359–60
data frames: data wrangling and, 302, 312; Python
and, 202–6, 379; R and, 263–65, 280, 287,
295–97, 363; relational databases and,
342, 363

data sets: basic programming and, 83, 117;
complex, 1, 13, 185; computing toolbox and,
1–2; large, 1, 5, 13, 30, 30n7, 32, 66, 117, 185,
206–7, 249, 300, 337–39, 364; manipulation of,
300, 304–5, 309n2, 310, 314, 317, 323, 326;
relational databases and, 337–39, 364; scientific
computing and, 185, 202–3, 206–8; statistical
computing and, 249, 263, 267, 270, 272, 280;
Unix and, 13, 30n7, 32, 51; visualization and,
300, 304–5, 309n2, 310, 314, 317, 323, 326

data structures: arithmetic of, 155–56; arrays and,
260; coding and, 126–28, 131, 134, 136, 140,
144, 147, 150, 155–56, 158, 164; copying objects
and, 158–60; data wrangling and, 300–2;
dictionaries and, 83, 93, 96–104, 108–9, 116–18,
122–23, 129, 132, 137, 146, 151, 156–57, 159,
162, 176, 209, 214; keys and, 93, 96–105, 108–9,
116, 118, 123, 137, 151, 157, 176, 209, 242,
340–41, 353–56, 359; lists and, 93–96, 110;
matrices and, 52, 185–86, 196, 236–37, 257–61,

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



General Index ● 409

281; programming and, 4, 83, 88, 93–103; R
and, 255–64; relational databases and, 337;
scientific computing and, 185–86, 202, 209n7;
sets and, 101–2; statistical computing and,
255–64; tuples and, 93, 100–4, 108–10, 128–29,
132, 156–57, 198, 379; vectors and, 185–86,
195–96, 200, 253, 255–58, 261–62, 272–73,
276–83, 380–81

data types: Python and, 83, 85–89, 102, 117;
regular expressions and, 176; relational
databases and, 342–43, 345, 348; scientific
computing and, 186–88; SQLite and, 342–43;
statistical computing and, 251, 253–55,
262

data wrangling: automation and, 300, 326;
comma-separated values (CSV) format and,
301–2, 305, 313–14, 318, 320, 331, 335; data
frames and, 302, 312, 384; data structures and,
300–2; documentation and, 301, 317–18, 320,
331, 333, 336; efficient data analysis and, 300;
errors and, 304, 325–26; filters and, 305–6, 316,
333; gathering and, 313–15; grouped data and,
310–13, 333, 335, 352, 357; indexes and, 305;
inner join and, 316–18, 356–58, 385, 387;
libraries and, 301–2, 313, 320, 332; organization
and, 5, 300, 313–15; outer join and, 316–17,
356–57; packages and, 5, 300–4, 307–10, 313,
318, 320, 331, 336; pipes and, 5, 307–9, 333;
plotting and, 300, 318–26, 336; programming
and, 82; R and, 300–1, 304, 307–8, 318–19, 326,
336; readability and, 300–1, 304, 308; regression
analysis and, 265, 289–90, 319, 324, 335;
renaming columns and, 308–9; sandboxes and,
302, 332; science and, 318; scientific computing
and, 202; selecting data and, 304–10; sets and, 5,
300, 326; spreading and, 315–16; statistical
computing and, 249, 263, 267, 270, 272, 280,
287–88, 291, 297, 310–13; strings and, 301–2,
324; tables and, 301, 313, 315–17; text files and,
302; tibbles and, 301–11, 314–18, 326, 333–34;
tidyverse and, 5, 300–4, 308, 309n2, 313–18,
320, 336; tips/tricks for, 333–34; variables and,
304–10, 313–14, 319, 321–24, 327–29, 333;
visualization and, 1, 5, 300, 318–33, 383–87

debugging. See bugs
default value, 98, 124, 140, 277–78, 286
dictionaries: coding and, 122–23, 129, 132, 137,
146, 151, 156–57, 159, 162; data structures and,
83, 93, 96–104, 108–9, 116–18, 122–23, 129,
132, 137, 146, 151, 156–57, 159, 162, 176, 209,
214; keys and, 93, 96, 98–104, 108–9, 116, 118,
151, 157, 176, 209; Python and, 83, 93, 96, 132,
151, 209, 214; regular expressions and, 176;
scientific computing and, 209, 214

differential equations, 197–99
directory, 15–17, 20, 59
docstrings, 131, 135, 140, 147–50

documentation, 2; basic programming and, 83–84,
90, 119; code and, 294–95; data wrangling and,
301, 317–18, 320, 331, 333, 336; Python and,
119; R and, 294–95; regular expressions and,
183n2; relational databases and, 352; scientific
typesetting and, 239, 244–45; statistical
computing and, 250, 262, 267, 278, 287, 294–98;
Unix and, 50; version control and, 74, 78n5;
writing good code and, 133, 146, 152, 154n7,
163–64

dplyr, 301, 304, 307, 310, 312, 317–18, 350
Dropbox, 56, 341
dynamic typing, 89

encoding, 113, 121, 191, 202, 337, 343
Entrez Programming Utilities, 209–10, 214–15
errors: AttributeError, 92, 137; automation and,
368; bars and, 325–26, 386; basic programming
and, 88–89, 92–94, 100; bugs and, 3 (see also
bugs); data wrangling and, 304, 325–26;
exceptions and, 137–39; IndentationError, 137;
IndexError, 94, 137; IOError, 137; KeyError,
137; NameError, 137; plotting experimental,
325–26; Python and, 137–39; relational
databases and, 339, 352; scientific computing
and, 187, 196; statistical computing and, 267,
283, 290; syntax, 137, 352; TypeError, 88, 100,
137, 156, 187; Unix and, 19, 49; writing good
code and, 120, 137–45, 148, 153, 156

Excel, 202, 366
Extensible Markup Language (XML), 166, 208–9,
212–13, 222, 301

faceting, 319, 328–29
FASTA files, 51, 176, 210–11, 245, 273
Fauchald, P., 302, 305, 314, 320, 331, 384–85
Fermat’s last theorem, 7
filters: data wrangling and, 305–6, 316, 333;
scientific computing and, 205; SQLite and,
348–50, 352, 365; visualization and, 323–31

flipped classroom, 9
floats, 85, 88, 90, 97, 103, 157
folder. See directory
forks, 78–79
FORTRAN, 82, 89
Fox, C. W., 217
free software, 3, 56, 222, 249–50, 341
function scope, 160–61

Gächter, S., 207–8
game theory, 218
geometry, 319–23, 333
Gesquiere, L. R., 51
ggplot, 249, 320–32, 385–87
Git, 9; commits and, 55–79, 374; configuring, 57;
deleting changes and, 68; forks and, 78–79;
getting help in, 58; getting started with, 56–58;

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



410 ● General Index

Git (cont.)
ignoring files/directories and, 65–66; indexes
and, 61, 64, 66; installing, 57; moving/removing
files and, 66; pull request and, 79; repositories
and, 56–59, 61, 64–72, 77–78, 80; showing
changes and, 64–65; stashing and, 69–70;
troubleshooting, 66–68; unstaging files and, 67;
version control and, 4, 56–73, 77–80; workflow
and, 56, 58–64, 66, 69, 79

Git Bash 13–21, 50, 136n3
GitHub, 68–69, 78–80, 359, 368, 370
global scope, 160–61
GNU Scientific Library, 82
Goldberg, E. E., 295
grammar of graphics, 319–20
grants, 221, 246
graphical user interface (GUI), 13, 243, 362
graphicx, 237–39
greedy quantifiers, 171, 175
grouped data, 310–13, 333, 335, 350–52, 357
groups, 179–80, 350–52
guide, 330–31, 336

hacking, 12, 368–69
Hamilton, W. D., 218n20
handles, 112, 209–15
hard coded files, 44
heuristics, 370
histograms, 207, 291–93, 320–22, 327, 333, 387
history: R and, 251; relational databases and, 343;
scientific computing and, 214, 216, 218;
scientific typesetting and, 222; Unix and, 14, 18,
30, 50; version control and, 4, 55–56, 62–63,
66–68, 78

HTML files, 166, 220, 222, 294

IDE. See integrated development environment
(IDE)

immutable types, 100–1, 155–58
importing: coding and, 126–28; libraries and,
278–79; modules and, 115, 126–28, 131, 134,
136, 140, 147, 150; packages and, 115, 126–28,
131, 134, 136, 140, 147, 150, 202; tables and,
343–44

indentation, 105, 122, 133, 137, 181
IndexError, 94, 137
indexes: data wrangling and, 305; LaTeX and, 226;
Python and, 93–96, 100, 110, 137; R and, 255,
259, 261, 266; regular expressions and, 176;
relational databases and, 338–39, 353–54;
scientific computing and, 203–4; scientific
typesetting and, 226; Shannon’s diversity, 365;
statistical computing and, 255, 259, 261, 266;
version control and, 61, 64, 66

inner join, 316–18, 356–58, 385, 387
integrated development environment (IDE), 369;
Jupyter and, 10, 83–85, 105, 107, 117, 131, 135,

139, 145–48, 153–54, 163, 166, 176, 202, 207,
211, 221; RStudio and, 10, 250–54, 269–73, 279,
284–85, 293n10, 294, 301–2, 304, 308

integration, 197–99
interquartile range (IQR), 322
Introduction to Scientific Computing, 8
IOError, 137
ipdb, 142–43

Java, 82, 166, 369
Jiang, Y., 161
Jonker, L. B., 199
JSON files, 166
Jupyter: conditional branching and, 105; exporting
code and, 84, 131, 135; installing, 83–84;
integrated development environment (IDE)
and, 10, 83–85, 105, 107, 117, 131, 135, 139,
145–48, 153–54, 163, 166, 176, 202, 207, 211,
221; looping and, 107; programming and,
83–85, 105, 107, 117; regular expressions and,
166, 176; scientific computing and, 202, 207,
211; scientific typesetting and, 221; writing
good code and, 131, 135, 139, 145, 147–48,
153–54, 163

Kacsoh, B. Z., 191
Kendall’s correlation, 297, 318, 385
kernels, 12, 57, 107
KeyError, 137
keys: data structures and, 93, 96–105, 108–9, 116,
118, 123, 137, 151, 157, 176, 209, 242, 340–41,
353–56, 359; dictionaries and, 93, 96, 98–104,
108–9, 116, 118, 151, 157, 176, 209; foreign, 340,
341, 353–55, 359; primary, 340, 353–55

Kirsch, Daniel, 231n5
Knauff, M., 248
Knuth, Donald, 153, 222

labels, 379–82; data wrangling and, 2318, 324,
329–30; scientific computing and, 199–200,
203–5; scientific typesetting and, 240, 245;
statistical computing and, 261, 291–92

Lahti, L., 162
Lamport, Leslie, 222
LaTeX: alignment and, 232; arrays and, 236–37;
bibliographies and, 221–22, 226, 242–44, 247;
BibTeX and, 221–22, 242–44, 247; chemical
structures and, 246; commands and, 228–29;
comments and, 231–32; compilation and,
220–21, 226, 232; Comprehensive TeX Archive
Network and, 246; cross-references and, 240;
directory structure and, 16; document classes
and, 224; document structures and, 223–27;
environments and, 228–29; figures and, 237–39;
font size and, 224; indexes and, 226; installing,
223; justification and, 232; labels and, 240; lists
and, 240–41; long documents and, 232–33;

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



General Index ● 411

Markdown and, 220–21, 294; math and, 221,
229–31; matrices and, 236–37; new lines and,
228; packages and, 220, 222–25, 229, 234–35,
238, 244, 294; reasons for using, 220–23;
scientific typesetting and, 5–6, 220–48;
sequence alignments and, 245; space and, 228;
special characters and, 228; stability of, 222;
statistical computing and, 294; steep learning
curve of, 220–21, 223; syntax and, 11; tables
and, 233–36; templates and, 222, 224, 244,
246–47; typesetting text with, 228–44; version
control and, 61; Visual FAQ for, 247

legends, 200, 327, 330–31, 379
Letchford, A., 297
libraries, 82; data wrangling and, 301–2, 313, 320,
332; Python and, 363; R and, 278–79; relational
databases and, 5, 363; scientific computing and,
5, 185, 187, 191, 202, 207–8, 216, 219; statistical
computing and, 278–79

line terminators, 26, 43n11, 50
Linux, 10, 12, 14, 57
list comprehension, 110
lists: data structures and, 93–96, 110; itemized,
241; LaTeX and, 240–41; numbered, 241; R and,
261–62

literal characters, 168, 175
loops: coding and, 155; Jupyter and, 107;
modifying behavior of, 107–9; programming
and, 107–12, 114, 137, 376; Python and, 4, 109,
111, 137; R and, 272–74; regular expressions
and, 178; scientific computing and, 213, 216;
statistical computing and, 272–77, 280–81, 297;
Unix and, 47–49, 52n17

Malhotra, A., 245
mapping, 319, 321, 326–27, 332, 386
Markdown, 84, 220–21, 294–95, 319
markup languages, 84n2, 166, 208–9, 212–13, 220,
222, 223, 294

Martin, T. E., 335
match object, 167, 178
MATLAB, 82, 249, 298
Matplotlib, 183, 191, 199–200, 207, 216, 249, 379
matrices, 52, 185–86, 196, 236–37, 257–61,
281

maximum: data wrangling and, 311, 334; relational
databases and, 370; scientific computing and,
194, 209n9; writing good code and, 141

Maynard Smith, J., 217
mean: basic programming and, 118; data
wrangling and, 310–13, 325–26; R and, 256,
259, 269, 279, 281, 288–89, 291; scientific
computing and, 187, 192, 195, 206; writing
good code and, 141, 151–52, 161–62

median, 206, 256, 288, 290, 310, 322
merging, 70–79
metacharacters, 34, 168–74

metadata, 55, 162, 223, 367
metaheuristics, 370
Microsoft: Excel, 202, 366; Office, 341; Windows,
10, 13–15, 17, 21, 26, 43, 50, 136n3, 176n1, 222;
43; Word, 220, 248

Mikaelyan, A., 364–65
Miller, G., 144
minimum, 53, 141, 187, 311
modulo, 86, 252
mutable types, 100–1, 155–58

NameError, 137
namespace pollution, 127
National Center for Biotechnology Information
(NCBI), 172–73, 208–14

Nejasmic, J., 248
next generation sequencing (NGS) data, 51
nimble computer language, 280
nonprinting characters, 50
normalization, 313, 353
normalized difference vegetation index (NDVI),
305–10, 313, 317, 320–23, 334, 383

NumPy module: arrays and, 186–90; coding and,
139–40, 143; image processing with, 191–93;
random distributions and, 194–96;
randomization and, 194–96; scientific
computing and, 185–203, 216, 219, 377–78;
statistical computing and, 249; uniform
distribution and,
194–96

object oriented programming, 90
OpenBSD, 12
openness, 3
Open Science movement, 370–71
operators: data wrangling and, 308; LaTeX and,
230–31; Python and, 85–86, 94, 101, 134, 155; R
and, 252–53, 269; scientific computing and, 186,
205; Unix and, 33

optimization, 120, 153, 200–2, 280, 370
organization: automation and, 2; coding and, 4,
120, 126–27, 133, 147; data wrangling and, 5,
300, 313–15; efficiency and, 1; programming
and, 81, 93, 116; relational databases and, 337,
340, 352–54; reproducibility and, 2; scientific
computing and, 202, 217; scientific typesetting
and, 222, 242; statistical computing and, 255,
263, 267, 277; Unix and, 15; version control and,
4, 55–56

OS X, 10; regular expressions and, 176n1;
scientific typesetting and, 222; Unix and, 12–19,
43, 50n14

outer join, 316–17, 356–57

Pacifici, M., 30–32, 34–35, 39–40, 44–46, 373
pandas, 379; chaining and, 204; relational
databases and, 363; scientific computing and,

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



412 ● General Index

pandas (cont.)
185, 202–8, 216–17, 219; statistical computing
and, 249

parallel computing, 369
parallel tempering, 370
parsers, 168, 172, 209–14, 287n9
PDF files, 61, 84, 220, 222, 225–26, 231n5, 243,
294, 319

Perl, 82, 166
pickled objects, 132–33, 146
pipes, 81; alternations and, 172; computing
toolbox and, 1, 4–5, 366; data wrangling and, 5,
307–9, 333; Python and, 135; R and, 307–9, 333;
redirection and, 27–29; regular expressions and,
172; Unix and, 13, 27–35, 38–39, 43, 46

plotting: 3D, 293; bar, 292, 319, 323–28; box, 207,
292–93, 320, 322–27, 330, 386; confidence
intervals (CI) and, 289, 325–26; coordinates
and, 100, 165, 183, 291, 319, 326, 353, 355;
experimental errors and, 325–26; faceting and,
328–30; frequency distribution and, 321–22;
ggplot, 249, 320–32, 385–87; ggplot2, 5, 216,
290, 300–1, 318–24, 327–28, 330, 335–36;
histogram, 207, 291–93, 320–22, 327, 333, 387;
interquartile range (IQR) and, 322; legends and,
200, 327, 330–31, 379; Python and, 191, 216; R
and, 268, 290–93; saving and, 332–33; scales
and, 326–28; scatter, 183, 207, 291, 319, 324–26,
333, 385; setting a feature and, 332; standard
deviation and, 279, 312–13, 325–26; standard
error of the mean (SEM) and, 325; structure
and, 320–21; themes and, 331–32; violin,
320–23, 325n4; visualization and, 300, 318–26,
333

primers, 165, 179–80, 208
prisoner’s dilemma, 218
profiling, 4, 82, 153–55
programming: application programming interface
(API) and, 208–10; automation and, 81; basic, 4,
81–119; Booleans and, 85, 88, 90, 193, 205, 343;
branching and, 105–7, 137; bugs and, 82–83 (see
also bugs); choosing a language, 81–83;
comma-separated values (CSV) format and,
112, 115–18; common functions and, 103–5;
compilers and, 82, 221, 226, 249; data sets and,
83, 117 (see also data sets); data structures and,
4, 83, 88, 93–103; documentation and, 83–84,
90, 119; dynamic typing and, 89; errors and,
88–89, 92–94, 100 (see also errors); flow and,
105–12; hacking and, 12, 368–69; Jupyter and,
83–85, 105, 107, 117; loops and, 107–12, 114,
137; modules and, 88, 92, 100, 115–17;
organization and, 81, 93, 116; profiling and, 82;
Python and, 6, 82–93, 96, 100, 105–19; R and,
82; readability and, 2, 82, 86, 124, 133, 145, 154;
reasons for doing, 81; science and, 81–82, 185;
scripting and, 43–47, 362; simplicity and, 82,

128; simulations and, 82–83; source code and,
82, 225, 228, 230, 238, 298; strings and, 83, 85,
88–92, 94, 97, 101, 103–4, 108–10, 113; syntax
and, 83, 84n2 (see also syntax); terminals and,
84, 107; text editors and, 105; text files and,
112–15; time series and, 117–18; tuples and, 93,
100–4, 108–10; unit testing and, 82; working
with files and, 112–17

program structure, 120–33
pseudocode, 7, 9, 17, 117, 367–68
PubMed, 183, 214–17
pull request, 79
p-value, 161–62, 289–90, 297, 382
Python: Anaconda and, 84, 176n1; application
programming interface (API) and, 208–10;
arguments and, 90, 113, 121–24, 133–36,
140–41, 167, 379; assignment and, 83, 87–89,
100, 137, 158, 160n8; basic programming and,
82–93, 96, 100, 105, 107–15; Biopython and, 5,
185, 208–16, 219; built-in functions of, 89–90;
coding and, 4, 120, 122, 126, 131–44, 147–60,
163–64; command line and, 135–36; comments
and, 84, 117, 120, 135, 148, 181 concatenate
and, 88, 91–92, 155; copying objects and,
158–60; data frames and, 202–6, 379; data
structures and, 83, 93, 155–56, 164, 202, 208;
data types and, 83, 85–89, 102, 117; data
wrangling and, 384; dictionaries and, 83, 93, 96,
132, 151, 209, 214; directory structures and, 16,
21–22; docstrings and, 131, 135, 140, 147–50;
documentation and, 119; dynamic typing and,
89; errors and, 137–39; exceptions and, 137–39;
exponentiation and, 86; floats and, 85, 88, 90,
97, 103, 157; getting help in, 84–85; handles
and, 209–15; indentation and, 105; indexes and,
93–96, 100, 110; installing, 83–84; libraries and,
363; loops and, 4, 109, 111, 137; match object
and, 167, 178; methods and, 90, 112, 191, 211;
modules and, 5, 88, 92, 100, 115, 120, 126,
131–32, 134, 136, 141, 147, 150, 152, 164,
166–67, 176, 183n2, 185, 187, 212, 216, 369;
mutable/immutable types and, 155–58; object
oriented programming and, 90; operators and,
85–86, 94, 101, 134, 155; packages and, 84, 120,
126, 166, 185, 207, 216, 219, 249, 300, 341, 369;
pandas and, 185, 202–8, 216–17, 219, 249, 363,
379; performance and, 369; permissions and,
136n4; pickled objects and, 132–33, 146; pipes
and, 135; plotting and, 191, 216; practicing, 366;
profiling and, 4, 82, 153–55; programming and,
6, 83–93, 96, 100, 105–19; queries and, 89, 208,
362; regular expressions and, 5, 166–67, 173,
176n1, 177–78, 183–84; relational databases
and, 341, 362–65; scientific computing and, 5,
185, 187, 191, 193, 198, 202, 207–16, 219;
scientific typesetting and, 225n3; sets and, 83,
93, 132, 169–70, 185, 202, 207, 249, 300; simple

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



General Index ● 413

calculations in, 85–87; slicing and, 94, 100, 193,
211; SQLite and, 341, 362–63, 365; statistical
computing and, 249, 255, 262, 278, 299–300;
strings and, 83, 85, 88–92, 113, 131, 135, 137,
147, 149, 173; syntax and, 11, 49; variables
and, 82–83, 87–91, 96, 102, 135, 137, 144,
155–61, 249, 278; Windows and, 176n1; writing
good code and, 120–22, 126, 131–44, 147–60,
163

quantifiers, 170–72, 175
queries: Python and, 89, 208, 362; relational
databases and, 337, 342–52, 356, 358, 360–63;
scientific computing and, 183, 208–10, 213–16;
SQLite and, 5, 341–52, 355–65 (see also
Structured Query Language (SQL); statistical
computing and, 294

R, 10, 369; arguments and, 253, 269, 275–77, 280,
282–83, 286–87, 297; arrays and, 260–61;
assignment and, 251, 253–55, 269; basic
plotting and, 290–93; basic programming and,
82; branching and, 270–72; Chang and, 326;
chunks and, 294–95; command-line interface
of, 250, 285–87; Comprehensive R Archive
Network (CRAN) and, 279, 293–94, 298;
concatenate and, 255–256, 259, 271; data frames
and, 263–65, 280, 287, 295–97, 363; data
structures and, 255–64; data types and, 251,
253–55, 262; data wrangling and, 300–1, 304,
307–8, 318–19, 326, 336; debugging, 283–84;
documentation and, 294–95; finding help in,
251; flow of, 270–74; as free software, 250;
functions and, 275–78; getting started with,
251–53; importing libraries and, 278–79;
indexes and, 255, 259, 261, 266; installing, 250;
interfacing with operating system and, 284–85;
libraries and, 278–79; lists and, 261–62; logical
operators of, 251–53; loops and, 272–74;
Markdown and, 221, 294–95, 319; matrices and,
257–61; operators and, 252–53, 269;
performance and, 369; plotting and, 268,
290–93; reading data and, 264–66, 301–2;
reasons for using, 249–51; relational databases
and, 342, 345, 362–75; renaming columns and,
308–9; scientific computing and, 202, 207, 216;
scientific typesetting and, 221–23, 225n3, 234;
scripts and, 267–69; selecting data and, 304–10;
sequences and, 257, 273; simplicity and, 82;
SQLite and, 363–64; statistical computing and,
5–6, 249–99, 366; statistics in, 287–90; strings
and, 262; syntax and, 11; tidyverse and, 5,
300–4, 308, 309n2, 313, 318, 320, 336; variables
and, 249, 253–54, 257, 262–63, 270, 272–73,
277–78, 280, 284, 286–90, 309–10; vectors and,
253, 255–58, 261–62, 272–73, 276–83;
visualization and, 82; Wickham and, 300

random numbers, 128, 152, 194–96, 203, 277,
279–80

Rapoport, Anatol, 218n20
RDBMS. See relational database management
system (RDBMS)

readability: binary files and, 61; cleverness and, 3;
coding and, 2, 82, 86, 124, 133, 145, 154, 368;
data wrangling and, 300–1, 304, 308;
programming and, 2, 82, 86, 124, 133, 145, 154;
regular expressions and, 181; reproducibility
and, 2; scientific computing and, 208; simplicity
and, 3; statistical computing and, 267, 296; Unix
and, 21, 46; version control and, 61

recursive function, 22–24, 39, 42, 75, 126
redirection, 27–29, 33, 362
redundancy, 338, 341, 352–54
regression analysis, 265, 289–90, 319, 324, 335
regular expressions: alternations and, 172; anchors
and, 171–72; bugs and, 181–82; building,
167–75; comments and, 181; data types and,
176; dictionaries and, 176; documentation and,
183n2; greedy quantifiers and, 171, 175; groups
in, 179–80; Jupyter and, 166, 176; literal
characters and, 168, 175; loops and, 178; match
object and, 167, 178; metacharacters and, 34,
168–74; modules and, 166–67, 175–79, 183n2;
packages and, 166, 182; pipes and, 172; Python
and, 5, 166–67, 173, 176n1, 177–78, 183–84;
quantifiers and, 170–72, 175; queries and, 337,
342–52, 356, 358, 360–63; quest for perfect,
181–82; readability and, 181; reasons for using,
165–66; re module and, 175–79; science and,
182–83; sets and, 169–70; shells and, 166; to
shorten code, 166; sophisticated replace of, 166;
strings and, 165–75, 177, 179, 181; syntax and,
165–67; terminals and, 176n1; text editors and,
166–67; text files and, 165–66; Unix and, 165;
variables and, 179–80, 214; verbose, 181;
visualization and, 183

relational database management system
(RDBMS), 337, 341–43

relational databases: accessing, 362–63; backups
and, 359–61; client-server systems and, 339,
341; comma-separated values (CSV) format
and, 338, 343–45, 361; comments and, 342;
connecting to, 362–63; data frames and, 342,
363; data sets and, 337–39, 364; data structures
and, 337; data types and, 342–43, 345, 348;
designing, 352–55; disadvantages of, 340;
documentation and, 352; dumping data and,
359–60; errors and, 339, 352; grouped data and,
352, 357; graphical user interfaces (GUIs) and,
362; indexes and, 176, 338–39, 353–54; inner
join and, 316–18, 356–58, 385, 387; integrity
and, 339; libraries and, 5, 363; organization and,
337, 340, 352–54; outer join and, 316–17,
356–57; packages and, 341, 363, 365; pandas

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



414 ● General Index

relational databases (cont.)
and, 363; Python and, 341, 362–65; R and, 342,
345, 362–75; reasons for using, 338–40; record
handling and, 360–61; restoring, 359–60;
scripting and, 362; security and, 339; sets and,
337–39, 364; SQLite and, 5, 341–52, storage
and, 338; strings and, 343; structure of, 340–41;
syntax and, 348, 352, 356, 361; tables and,
337–38, 340–47, 352–61, 364–65; terminals
and, 341–44, 356, 359, 361–62; text editors and,
340; text files and, 337–40, 359, 362; Unix and,
345, 350; views and, 358–59, 361–62

relative path, 21–23, 40
re module, 5, 126, 166–67, 175–79
repositories: coding and, 154n7; commits and, 55,
59, 61–63, 66–72, 77; contributing to public,
78–79; forks and, 78–79; Git and, 56–59, 61,
64–72, 77–78, 80; local, 56, 58, 68–69, 78; pull
request and, 79; remote, 68–70; scientific
computing and, 208; stashing and, 69–70; time
stamps and, 370–71; version control and, 55–73,
77–80

reproducibility, 245; documentation and, 2,
294–95; organization and, 2; readability and, 2;
science and, 2; simulations and, 2; Unix and, 13;
version control and, 56, 80

RGB images, 191–92
root directory, 15, 16, 20, 59
Rstudio: as integrated development environment
(IDE), 251; reasons for using, 250–51; statistical
computing and, 10, 250–54, 269–73, 279,
284–85, 293n10, 294, 301–4, 308

RTF files, 222
Ruby, 82, 166
Ruggiero, Michael, 182

Saavedra, S., 29, 39–41, 52
sampling, 161, 313, 338, 353–54
sandboxes: basic programming and, 115; coding
and, 131, 135, 145, 147; data wrangling and,
302, 332; regular expressions and, 176;
relational databases and, 341, 343–44, 355;
scientific computing and, 191, 202; scientific
typesetting and, 225; statistical computing and,
265, 269–70, 297; Unix and, 16, 20, 22, 27–29,
34, 39–42, 51; version control and, 58,
70–71, 78

Sander, Liz, 370n3
scales, 208, 239–40, 312–13, 318–19, 326–29
scatter plots, 183, 207, 290–91, 319, 324–26, 333,
385

Schulz, J. F., 207–8
science: automation and, 2; basic programming
and, 81–82; coding and, 4; correctness and, 3;
data wrangling and, 318; map of, 182–83; Open,
3, 370–71; programming and, 185; regular
expressions and, 182–83; reproducibility and, 2;

scientific computing and, 185, 191, 219;
scientific typesetting and, 221–22, 242; as
software development, 4; statistical computing
and, 297; version control and, 4, 78–79; writing
good code and, 120–21, 153

scientific computing: application programming
interface (API) and, 208–10; arrays and, 186–97,
200–2; automation and, 193, 208; BLAST and,
208, 212–13; bugs and, 196; chaining and, 204;
comma-separated values (CSV) format and,
190, 202, 208, 217; data sets and, 185, 202–3,
206–8; data structures and, 185–86, 202, 209n7;
data types and, 186–88; data wrangling and,
202; dictionaries and, 209, 214; errors and, 187,
196; filters and, 205; handles and, 209–15;
indexes and, 203–4; Jupyter and, 202, 207, 211;
libraries and, 5, 185, 187, 191, 202, 207–8, 216,
219, 278–79; linear algebra and, 185, 196–97;
loops and, 213, 216; modules and, 185, 187,
209n7, 210–12, 216; NumPy module and,
185–203, 216, 219, 377–78; organization and,
202, 217; packages and, 5, 185–86, 196–97, 200,
202, 207, 209, 216, 219; pandas and, 185, 202–8,
216–17, 219; Python and, 5, 185, 187, 191, 193,
197–98, 202, 207–16, 219; queries and, 183,
208–10, 213–16; R and, 202, 207, 216, 249–99;
readability and, 208; repositories and, 208;
science and, 185, 191, 219; SciPy module and,
185, 196–202, 216, 219, 377–79; SeqIO module
and, 210–11; sets and, 185, 202, 206–7;
simulations and, 5, 185, 194–96; tuples and, 198;
vectors and, 185–86, 195–96, 200, 253, 255–58,
261–62, 272–73, 276–83, 380–81; visualization
and, 185, 191, 208; workflow and, 208

scientific typesetting, 5; arrays and, 236–37;
automation and, 222–23, 234, 244–45;
bibliographies and, 221–22, 226, 241–44, 247;
branching and, 220; bugs and, 222; commands
and, 228–29; comma-separated values (CSV)
format and, 223, 235; comments and, 231–32;
cross-references and, 221, 226, 240;
documentation and, 239, 244–45; environments
and, 228–29; figures and, 237–39; fonts and,
224, 241–42; indexes and, 226; Jupyter and, 221;
labels and, 240; LaTeX and, 220–48; lists and,
240; long documents and, 232–33; math and,
229–31; matrices and, 236–37; organization
and, 222, 242; OS X and, 222; packages and,
220–25, 229, 232–39, 244–46; Python and,
225n3; R and, 221–23, 225n3, 234; reasons for
using, 249; reproducibility and, 245; sandboxes
and, 225; science and, 221–22, 242; special
characters and, 50, 85, 105, 173, 228; syntax
and, 221–22; tables and, 233–36, 264–65, 288,
301, 313, 315–17, 337–38, 340–47, 352–61,
364–65; templates and, 222, 224, 244, 246–47;
terminals and, 226, 243; text editors and, 220,

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



General Index ● 415

222, 225, 228; text files and, 220–21, 245;
Ubuntu and, 222; Windows and, 222

SciPy module: bibliography and, 242–44; calculus
and, 197–99; coding and, 128–30, 134, 144–45,
151–55; font styles and, 241–42; linear algebra
and, 185, 196–97; optimization and, 200–2;
packages and, 244–46; scientific computing and,
185, 196–202, 216, 219, 377–79; statistical
computing and, 249

scope, 160–61, 278
scripts, 43–47, 267–69, 362
security, 41, 70n4, 339
sequence alignments, 213, 244–45
sets: automation and, 2; coding and, 132, 151;
complexity and, 1, 13, 185; data wrangling and,
5, 300, 326; initializing, 101–2; programming
and, 83, 93, 101–2, 104, 117; Python and, 83, 93,
132, 169–70, 185, 202, 207, 249, 300; regular
expressions and, 169–70; relational databases
and, 337–39, 364; scientific computing and, 185,
202, 206–7; statistical computing and, 249, 270,
272; Unix and, 13, 30n7, 32

Shannon’s index of diversity, 365
shells: command-line interface (CLI) and, 12–15,
250; getting started with, 17–22; ipdb, 142–43;
regular expressions and, 166; statistical
computing and, 285; Unix and, 12–22, 29,
43–44, 49, 54; version control and, 70n4, 71

simulations: annealing and, 370; coding and,
127–28, 131–32, 135–36, 147, 153, 155;
metaheuristics and, 370; programming and,
82–83; reproducibility and, 2; scientific
computing and, 5, 185, 194–96; statistical
computing and, 272, 279, 298; version control
and, 61

Smith, F. A., 296
smoothing, 319, 324, 333
source code, 82, 225, 228, 230, 238, 298
special characters, 50, 85, 105, 173, 228
spreading, 315–16
spreadsheets, 35, 115, 202, 263, 304, 337–38, 353,
366–67

SQL. See Structured Query Language (SQL)
SQLite: basic queries and, 344–52; comments and,
342–43; CSV mode and, 343–45, 361; data types
and, 342–43; dumping data and, 359–60; filters
and, 348–50, 352, 365; group operations and,
350–52; installation of, 341; Python and, 341,
362–63, 365; queries and, 5, 341–52, 355–65; R
and, 363–64; record handling and, 360–61;
regular expressions and, 349; relational
databases and, 5, 341–52, 355–65; running
RDBMS of, 341–42; subsetting data and,
345–48; tables and, 343–45, 356–62; views and,
358–59, 361

square root, 143, 188, 231, 252
staging, 61, 63, 67–69, 73–74, 77

standard deviation (SD), 279, 312–13, 325–26
standard error of the mean (SEM), 325
stashing, 69–70
statistical computing: automation and, 250, 267,
285; basic plotting and, 290–93; branching and,
270–72; bugs and, 283–84; chunks and, 294–95;
command-line interface (CLI) and, 250;
comma-separated values (CSV) format and,
264–65, 295, 297; comments and, 251, 267;
Comprehensive R Archive Network (CRAN)
and, 293–94; confidence intervals (CI) and, 289,
325–26; counting and, 310–13; data sets and,
249, 263, 267, 270, 272, 280, 287–88, 291, 297;
data structures and, 255–64; data types and,
251, 253–55, 262; data wrangling and, 310–13;
documentation and, 250, 262, 267, 278, 287,
294–98; errors and, 267, 283, 290; grouped data
and, 310–13; indexes and, 255, 259, 261, 266;
LaTeX and, 294; loops and, 272–74, 276–77,
280–81, 297; NumPy module and, 249;
organization and, 255, 263, 267, 277; packages
and, 5, 250, 269, 278–79, 287, 290, 293–94, 298;
pandas and, 249; Python and, 249, 255, 262,
278, 299–300; queries and, 294; R and, 5 (see
also R); readability and, 267, 296; science and,
297; SciPy module and, 249; scripts and,
267–69; sets and, 249, 270, 272; shells and, 285;
simulations and, 272, 279, 298; strings and,
254–55, 261–62, 265, 270, 278, 286; syntax and,
251, 295; tables and, 264–65, 288; terminals
and, 250, 294; text files and, 250, 264, 267; Unix
and, 285; vectors and, 253, 255–58, 261–62,
272–73, 276–83; workflow and, 285

Stouffer, D. B., 52
Straub, B., 79
strings, 377; coding and, 121, 123, 131, 135–37,
140, 144, 147–50, 156–58; data wrangling and,
301–2, 324; programming and, 83, 85, 88–92,
94, 97, 101, 103–4, 108–10, 113; Python and, 83,
85, 88–92, 113, 131, 135, 137, 147, 149, 173; R
and, 262; raw notation and, 173–75; regular
expressions and, 165–75, 177, 179, 181;
relational databases and, 343; retractions and,
144; statistical computing and, 254–55, 261–62,
265, 270, 278, 286; Unix and, 13, 15, 19, 27–28,
32, 38

Structured Query Language (SQL): directory
structure and, 16; indexing and, 338–39;
RDBMS and, 337, 341–43; redundancy and,
338, 341, 352–54; relational databases and, 5,
337, 341–52, 355–65; SQLite and, 5, 341–52,
355–65; syntax and, 348, 352, 356, 361;
wildcards and, 349–50

sum, 104, 187, 190, 193, 203, 229–31, 256, 259,
334, 336

syntax: Bash and, 49; basic programming and, 83,
84n2; editor choice and, 11; errors and, 137,

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



416 ● General Index

syntax (cont.)
352; LaTeX and, 11; Python and, 11, 49; R and,
11; regular expressions and, 165–67; relational
databases and, 348, 352, 356, 361; scientific
typesetting and, 221–22; statistical computing
and, 251, 295; Unix and, 49; writing good code
and, 137

tables: data wrangling and, 301, 313, 315–17;
exporting, 361–62; individual, 354; joining,
355–58; LaTeX and, 233–36; relational
databases and, 337–38, 340–47, 352–61,
364–65; sampling, 353; scientific typesetting
and, 233–36, 264–65, 288, 301, 313, 315–17,
337–38, 340–47, 352–61, 364–65; site, 353;
species, 354; SQLite and, 343–44; statistical
computing and, 264–65, 288

Taylor, P. D., 199
templates, 222, 224, 244, 246–47
terminals: basic programming and, 84, 107;
coding and, 136, 149; command-line interface
(CLI) and, 12–15, 250; regular expressions and,
176n1; relational databases and, 341–44, 356,
359, 361–62; scientific typesetting and, 226, 243;
statistical computing and, 250, 294; Unix and,
12–18, 43, 45n12, 49; version control and,
57–59, 62

text editors, 10–11; basic programming and, 105;
LaTeX and, 220, 222, 225, 228; line terminators
and, 26, 43n11, 50; mastering, 369; regular
expressions and, 166–67; relational databases
and, 340; scientific typesetting and, 220, 222,
225, 228; Unix and, 24, 32, 43, 50; version
control and, 57, 60–62, 65, 77; writing good
code and, 133, 135, 147, 154

text files: backups and, 367; basic programming
and, 112–15; data wrangling and, 302; indexing
and, 93, 100, 176, 204, 338–39; regular
expressions and, 165–66; relational databases
and, 337–40, 359, 362; scientific typesetting
and, 220–21, 245; statistical computing and,
250, 264, 267; Unix and, 13–14, 24–27, 30, 32,
36, 43, 50; version control and, 61

tibbles, 301–11, 314–18, 326, 333–34
tidyverse: data wrangling and, 5, 300–4, 308,
309n2, 313–18, 320, 336; pipelines and, 307–9,
333; selecting data and, 304–10; tibbles and,
301–11, 314–18, 326, 333–34

time series, 117–18
time stamps, 370–71
Torvalds, Linus, 12, 57
tuples: coding and, 128–29, 132, 156–57; data
structures and, 93, 100–4, 108–10, 128–29, 132,
156–57, 198, 379; immutable, 100–1, 157;
programming and, 93, 100–4, 108–10; scientific
computing and, 198

TypeError, 88, 100, 137, 156, 187

Ubuntu, 10; Linux and, 12; regular expressions
and, 176n1; scientific typesetting and, 222; Unix
and, 12–19, 43, 50

unit testing: coding and, 120, 146–52, 164; doctest
and, 147, 149–50, 152, 164; executing, 149–50;
handling complex, 150–52; programming and,
82; random value and, 151–52; unordered
object and, 151; writing the tests and, 147–49

Unix, 304, 366; absolute path and, 21–22, 40;
advanced commands and, 27–43; arguments
and, 18–23, 25, 36, 44–47, 51; autocompletion
and, 21, 30; automation and, 4, 13–14, 35, 43,
54; basic commands of, 18–19, 22–27;
branching and, 16; bugs and, 47; character
substitution and, 32–35; coding and, 136;
column selection and, 29–32; command-line
interface (CLI) and, 12–15; comma-separated
values (CSV) format and, 25–41, 44–46, 53;
comments and, 17, 44–47; computing toolbox
and, 4, 6; concatenating files and, 25; copying
and, 19, 22–23, 33, 43, 50 creating files and, 13,
22–23, 27–29, 33–36, 42–43, 46–51; data sets
and, 30n7, 32, 51; directory structure of, 15–17,
20–22; documentation and, 50; errors and, 19,
49; file system of, 12; finding files and, 39–41;
getting help in, 19–20; handling directories/files
and, 22–24; hard coded files and, 44; history
and, 14, 18, 30, 50; installation of, 14–15; line
selection and, 36–39; line terminators and, 26,
43n11, 50; Linux and, 10, 12, 14, 57; loops and,
47–49, 52n17; moving files and, 23; next
generation sequencing (NGS) data and, 51;
nonprinting characters and, 50; OpenBSD and,
12; operators and, 33; organization and, 15; OS
X and, 12–19, 43, 50n14; packages and, 50;
permissions and, 41–43, 45; pipes and, 13,
27–35, 38–39, 43, 46, 308; readability and, 21,
46; reasons for using, 13–14; recursive
commands and, 22–24, 39, 42; redirection and,
27–29, 33; regular expressions and, 165;
relational databases and, 345, 350; relative path
and, 21–23, 40; removing files or directories
and, 19, 23–24, 27, 29, 32, 44, 46; renaming files
or directories and, 23; reproducibility and, 13;
scripting and, 43–47; sets and, 13, 30n7, 32;
setting a path and, 49; shells and, 12–22, 29,
43–44, 49, 54; sorting and, 25–26, 31–35, 44–46;
statistical computing and, 285; steep learning
curve of, 13; strings and, 13, 15, 19, 27–28, 32,
38; Sun Solaris and, 12; syntax and, 49;
terminals and, 12–18, 43, 45n12, 49; text editors
and, 24, 32, 43, 50; text files and, 13–14, 24–27,
30, 32, 36, 43, 50; tips and tricks for, 49–51;
Ubuntu and, 12–19, 43, 50; variables and, 15, 44,
47–51; version control and, 60–61, 66; wildcards
and, 35–36, 39–40, 47; Windows and, 26, 43, 50

unpickled objects, 132–33

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.



General Index ● 417

Urban, M. C., 335–36
user-defined functions, 83, 121–22, 275, 281,
310

UTF-8, 113, 343
utilities, 17, 209, 214

variables, 370; adding, 309–10; coding and,
122–23, 127, 135, 137, 139–44, 151, 155–56,
158, 160–61; continuous, 321–24, 327, 385; data
wrangling and, 304–10, 313–14, 319, 321–24,
327–29, 333; discrete, 321, 323, 327; Python
and, 82–83, 87–91, 96, 102, 135, 137, 144,
155–60, 249, 278; R and, 249, 253–54, 257,
262–63, 270, 272–73, 277–78, 280, 284, 286–90;
regular expressions and, 179–80, 214; Unix and,
15, 44, 47–51

variable scope, 160–61, 278
vectors: data structures and, 185–86, 195–96, 200,
253, 255–58, 261–62, 272–73, 276–83, 380–81;
scientific computing and, 185–86, 195–96, 200,
253, 255–58, 261–62, 272–73, 276–83, 380–81;
statistical computing and, 253, 255–58, 261–62,
272–73, 276–83

verbose regular expression, 181
version control: automation and, 55; branching
and, 55, 70–78; bugs and, 66–67; centralized,
56–57; comma-separated values (CSV) format
and, 61, 66; comments and, 72, 74–76; commits
and, 55–79, 374; distributed, 57; documentation
and, 74, 78n5; forks and, 78–79; Git and, 4,
56–73, 77–80; indexes and, 61, 64, 66; LaTeX
and, 61; merging and, 70–79; modifications and,
56–57, 61, 63, 67, 75, 77–78; organization and,
4, 55–56; pull request and, 79; readability and,
61; reasons for using, 55–56; repositories and,
55–73, 77–80; reproducibility and, 56, 80;
science and, 4, 78–79; shells and, 70n4, 71;
simulations and, 61; staging and, 61, 63, 67–69,
73–74, 77; stashing and, 69–70; terminals and,
57–59, 62; text editors and, 57, 60–62, 65, 77;

text files and, 61; Unix and, 60–61, 66;
visualization and, 68

violin plots, 320–23, 325n4
visualization: clarity and, 318; coordinates and,
100, 165, 183, 291, 319, 326, 353, 355; data sets
and, 300, 304–5, 309n2, 310, 314, 317, 323, 326;
data wrangling and, 1, 5, 300, 318–33, 383–87;
efficient data analysis and, 300; faceting and,
319, 328–29; filters and, 323–31; geometry and,
319–23, 333; ggplot2 and, 318–24, 327–28, 330;
grammar of graphics and, 319–20; legends and,
330–31; mapping and, 319, 321, 326–27, 332,
386; plotting and, 300, 318–26, 333; R and, 82;
regular expressions and, 183; saving and,
332–33; scales and, 318–19, 326–29; scientific
computing and, 185, 191, 208; setting a feature
and, 332; smoothing and, 319, 324, 333; themes
and, 331–32; tidyverse and, 5, 300–4, 308,
309n2, 313, 318, 320, 336; version control and,
68; Wilkinson and, 319

Wickham, Hadley, 300
wildcards, 35–36, 39–40, 47, 349–50
Wiles, Andrew, 7
Wilkinson, Leland, 319
Windows, 10; Command Prompt and, 15; Git
Bash and, 13–15, 17, 21, 50, 136n3; line
terminators and, 26; MiKTeX and, 222;
Python and, 176n1; scientific typesetting and,
222; text editors and, 43; Unix and, 26,
43, 50

word processors, 3, 220–21, 223
workflow: Git and, 56, 58–64, 66, 69, 79; scientific
computing and, 208; statistical computing and,
285

XML. See Extensible Markup Language (XML)

.
Zmihorski, M., 364
z-score, 312–13

© Copyright Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 

For general queries contact webmaster@press.princeton.edu.




