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CHAPTER ONE

Classical Accounts of Space and Time

The Birth of Physics

The intellectual tradition that produced modern theoretical phys-
ics begins in ancient Greece. Babylonian and Egyptian astrono-
mers compiled voluminous and accurate data about the visible 
positions of the sun and the planets and created mathematical 
models that could predict phenomena such as eclipses. But the 
Greek nature-philosophers introduced a novel strand of specula-
tive theorizing into this observational enterprise. Thales, Anax-
agoras, and Democritus, for example, each offered conjectures 
about the ultimate structure of matter: that material objects are 
all derived from water; are mixtures of earth, air, fire, and water; 
or are composed of an infinite variety of differently shaped atoms. 
The observable behavior of familiar objects was then explained 
in terms of this material constitution. According to Democri-
tus, sweet things are composed of smooth, rounded atoms; sour 
things are composed of angular atoms; and so on. The notion that 
the perceptible properties and behaviors of large objects should 
be accounted for by the structure and nature of their impercep-
tible parts underlies physics to this day.

Aristotle provided this speculative enterprise with its name. 
The term “physics” derives from the Aristotelian text Physike Ak-
roasis: Lectures on Nature. In Greek, physis refers to the nature of 
a thing, and Aristotle defined the nature of an object as an inter-
nal source of motion and rest that belongs to an object primarily 
and properly and nonaccidentally (Physics 192220–23). Thus, for 
Aristotle, the nature of an object is revealed by how the object 
moves, and stops moving, when left entirely to its own devices. 
Release a rock in midair, without pushing it in any direction, and 
(apparently) of its own accord it starts to move downward. A 
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bubble of air in a tank of water spontaneously rises. The rock and 
the air can be forced to do other things, but only under the con-
straint of an outside agent. Their inborn predilections to motion 
and rest are not attributable to outside agents and so must arise 
from the very nature of the thing itself.

Aristotle’s definition of the “nature” of an object does not readily 
connect physics with the project of explaining sweetness or sour-
ness. The emphasis instead is on change in general and on locomo-
tion in particular. Aristotle believed that different sorts of material 
have different natural motions, so to describe these natural motions, 
he needed a way to describe and categorize motion in general. He 
started with the most intuitive descriptions available. The element 
earth’s natural motion is to fall—that is, to move downward. Water 
also strives to move downward but with less initiative than earth: 
a stone will sink though water, demonstrating its overpowering 
natural tendency to descend. Fire naturally rises, as anyone who has 
watched a bonfire can attest, as does air, but with less vigor.

It is all well and good to say that a stone naturally falls, or moves 
downward, but what exactly does “downward” mean? It is here that 
Aristotle leaves common opinion and begins theoretical postula-
tion. To move downward, according to Aristotle, is to move toward 
a particular place. The natural motion of earth, on this view, is 
goal-directed: the stone wants to get someplace in particular, and 
its spontaneous motion always takes it closer to this ultimate ob-
jective. The special place that the stone strives to reach, according 
to Aristotle, is the center of the universe. Aristotle conceived of the 
whole material cosmos as forming a sphere, whose outer surface 
contains the fixed stars. The celestial sphere has a unique center. 
The “down” direction at any place in the universe is the direction 
toward that central point, and an unobstructed piece of earth will 
naturally move down in a straight line, toward the center, until it 
reaches that target. If it should manage to make it all the way to the 
center, the piece of earth will, of its own accord, stop moving.

Similarly, “up” is the direction in space that points directly 
away from the center. Fire and air naturally move upward in 
straight lines as far as they are able, with fire displacing air if 
they are in competition. According to Aristotle, if the sublunary 
sphere (the part of the universe below the orbit of the moon) were 
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left entirely unmolested, all of the earth, air, fire, and water would 
naturally segregate out into four concentric spheres: pure earth 
at the center, surrounded successively by concentric spherical 
shells of water, then air, then fire. This provides a very rough ap-
proximation to the world as Aristotle believed it to be: a spherical 
rocky earth covered largely with oceans, surrounded by air.

The moon and sun and planets do not fit into this scheme, so 
Aristotle invented a fifth sort of substance, a quintessence, called 
aether. Unlike earth, air, fire, and water, aether does not naturally 
engage in straight-line motion toward some goal: its natural mo-
tion is uniform circular motion around the center. This motion is 
most perfectly realized by the sphere of fixed stars, which spins 
(as far as Aristotle knew) with perfect regularity, making one 
complete rotation in about 23 hours and 56 minutes (a sidereal 
day). The rest of the superlunary objects—the moon, and sun, 
and planets—are not so regular: as they are carried about by the 
sphere of fixed stars, they also execute their own more compli-
cated periodic motions. Having identified uniform circular mo-
tion as the natural state for aether, Aristotle set a problem for 
astronomers of succeeding generations: account for the apparent 
motions of the sun, moon, and planets by some compound ef-
fect of different uniform circular motions. This basic constraint 
on astronomical theory remained in place until Kepler proposed 
his first two laws of planetary motion in 1609.

Unfortunately, even a comically inadequate sketch of the his-
tory of physics and astronomy is beyond our scope. But Aristo-
tle’s innovation, his focus on natural locomotion as the primary 
subject of physics, shapes the field to this day. Our first order of 
business is to understand what exactly “locomotion” is.

The term “locomotion” wears its meaning on its sleeve: it is not 
just any change but change of place (locus). And place, for Aristotle, 
is location in a spatial universe with a very special shape: a sphere. 
Because it is a sphere, Aristotle’s universe contains a geometrically 
privileged center, and Aristotle makes reference to that center in 
characterizing the natural motions of different sorts of matter. “Up-
ward,” “downward,” and “uniform circular motion” all are defined 
in terms of the center of the universe. If Aristotle’s universe did not 
have a spherical shape, his physics could not have been formulated.
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The importance of an account of space in the formulation of 
physics cannot be overstated. If physics is first and foremost about 
motion, and motion is change of place, then (it seems) there must 
be places that material objects can successively occupy. An object 
rests when it occupies the same place over time, like Aristotle’s 
stone at the center of the universe. It is tempting to say that with-
out some sort of space in which things move, physics cannot even 
get off the ground. Aristotle adopts the concept of space, and the 
correlative concept of motion, that we all intuitively employ. He 
realizes that his physics requires this space to have some particu-
lar structure—a target goal that falling objects are seeking—and 
postulates a physical geometry that provides this structure. The 
resulting finite spherical universe is foreign to us today but would 
have felt quite familiar to any ancient Greek.

In short, space is the arena of motion, and so an account of 
space will play a central role in any scientific theory of motion. 
Abandoning Aristotle’s spherical universe entails abandoning his 
basic physical principles and rethinking the form that the laws of 
physics can take. This task was undertaken by Isaac Newton.

Newton’s First Law and Absolute Space

If we were to axiomatize Aristotle’s physics, there would be dif-
ferent axioms for different sorts of matter: “Earth, if unimpeded, 
will move in a straight line toward the center of the universe” 
and “Aether, if unimpeded, will move in uniform circular motion 
about the center of the universe.” Newton did present his phys-
ics as a set of axioms, which he denominated Laws of Motion. A 
tremendous amount of theory is packed into these laws, and it is 
only a slight exaggeration to say that everything we need to know 
about Newtonian physics is implicit in his First Law of Motion:

Law I: � Every body perseveres in its state either of rest or of 
uniform motion in a straight line, except insofar as it 
is compelled to change its state by impressed forces.1

1 My translation. 
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This single law smashes the Aristotelian universe to smith- 
ereens.

First, Newton’s law governs every body: stones and planets 
alike. Newton obliterates the distinction between astronomy and 
terrestrial physics, postulating a single set of principles that ex-
plains the behavior of both. We have become so accustomed to 
thinking of physics as possessing this sort of universality that it 
takes an effort to appreciate how momentous this shift is. One 
of the crowning moments in the argumentative structure of the 
Principia occurs when Newton calculates that the force that 
maintains the moon in orbit about the earth is precisely the same 
force that causes an apple to fall from a tree. Newton postulates a 
commonality of physical structure where the tradition preceding 
him had seen fundamental diversity.

More importantly, Newton does not ascribe any particular nat-
ural motion to a body, as Aristotle did. Rather, the Law of Inertia 
attributes an innate tendency of every body to maintain its state of 
motion, whatever that might be. There is no place in the universe 
that any body is inherently “directed toward,” as a stone is directed 
toward the center of the universe in Aristotle’s account. Newton’s 
theory does not require that space have a special central point.

The arena of motion for Newton is rather an entity he calls 
absolute space. Motion, for Newton, is change of location in this 
space. The role of absolute space in Newton’s theory is so deep 
and pervasive that it seems impossible to make sense of anything 
he writes without accepting its existence. We will consider vari-
ous properties of absolute space, leaving the most controversial 
claims for last.

First, Newton assumes that absolute space possesses the geo-
metrical structure of three-dimensional Euclidean space. We will 
designate this structure E3. E3, unlike Aristotle’s physical universe, 
is infinite in all directions and so has no geometrical center. Fig-
ures in E3 obey the axioms of Euclidean geometry: for example, the 
sum of the interior angles of any triangle equals two right angles.

It will be useful in the following discussion to distinguish 
several different sorts of geometrical structure, which form a hi-
erarchy. Each level corresponds to one of the three instruments 
used in Euclidean geometry: the pencil, the straightedge, and the 
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compass. What sort of geometrical structure must a space have in 
order for each of these instruments to operate?

The most basic, fundamental level of geometrical structure in 
a space is called its topology. The topology of a space determines 
facts about continuity. For example, when we use a pencil in mak-
ing a Euclidean diagram, we are supposed to draw continuous 
lines in the space: if we were to occasionally lift the pencil and 
then drop it down again elsewhere while drawing what should be 
a single line, we will not get a single, connected, continuous line. 
But in order for there to be a distinction between a single line in 
a space and a pair of disconnected lines, the points in the space 
must have some geometrical organization. This level of organiza-
tion is the topology of the space.

Topology is sometimes called “rubber-sheet geometry,” and 
the name is properly evocative. Suppose some figures are drawn 
on a rubber sheet, and then the sheet is stretched without tearing 
or pasting. Many of the properties of the figures will be changed 
under such deformations: straight lines can be bent into curved 
lines; nearby points can be pulled apart so they are more distant; 
a triangle can be deformed smoothly into a circle; and so on. But 
some features of the figures will remain unchanged: if two lines 
intersect before the deformation, they intersect afterward; if one 
point is in the interior of a closed figure and another outside be-
fore the deformation, they will remain so after; and so on. The 
deformations are not allowed to “tear” or “paste” the space, and 
topology provides the level of geometrical structure that defines 
what counts as “tearing” and “pasting.” Tearing separates some 
continuous lines into discontinuous pieces, and pasting joins dis-
continuous lines into continuous wholes. If a space did not have 
a topology, then there could be no distinction between draw-
ing a single continuous curve and drawing several disconnected 
curves, so Euclidean constructions could not even start.2

2 In modern mathematics, the topology of a space is specified in terms of the 
open set structure of the space, and continuity is defined in terms of the open 
sets. I believe that this account of continuity and hence topology is not the most 
perspicuous way to describe the intrinsic geometrical structure of space-time, and 
have developed an alternative (see Maudlin [2010] for an overview). This is not 
the place to fight that battle.
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The second instrument of Euclidean geometry is the straight-
edge (N.B.: not the ruler; the straightedge has no marked scale). 
With a straightedge and a pencil, we can draw not just continu-
ous lines but straight lines. The first two postulates of Euclidean 
geometry concern the use of the straightedge and hence make 
implicit claims about the structure of straight lines in Euclidean 
space. In particular, the first two postulates state:

1. � It is possible to draw a straight line from any point to 
any point.

2. � It is possible to extend any finite straight line continu-
ously in a straight line.3

In order for these postulates to obtain, there must first of all be a 
distinction in the space between straight lines and other lines. This 
distinction, which is not determined by the topology, is provided 
by the affine structure of the space. In Euclidean space, the affine 
structure ensures that every pair of points are the endpoints of ex-
actly one straight line and every finite straight line can be continued 
indefinitely in either direction. We can describe spaces that do not 
have this sort of affine structure: a pair of points might determine 
no straight line, or more than one, or there might be a limit to how 
far a straight line can be produced. So Euclid’s first two postulates, 
which describe the uses to which a straightedge can be put, already 
restrict the affine structure of the space he is describing.

The affine structure of a space does not determine any facts 
about the lengths of lines or the distances between points. This 
requires yet another level of geometrical form, called the metrical 
structure of the space. The compass indicates metrical structure in 
a space: a circle is the locus of points all equidistant from a given 
center. Euclid’s third postulate asserts that a complete, continu-
ous, closed circle can be drawn with any given center and radius. 
Again, we could imagine spaces in which this does not hold.

The hierarchical form of these three levels of structure can be 
illustrated by three different sorts of transformation that can be 
carried out on figures in Euclidean space. A topological transfor-
mation carries continuous lines into continuous lines. An affine 

3 My translation. 
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transformation must further map straight lines onto straight lines. 
A “uniform stretching” of the space qualifies as an affine transfor-
mation even though it changes distances between points and de-
forms circles into ellipses. An isometry is a mapping from a space 
onto itself that preserves distances, so circles are carried into cir-
cles.4 Figure 1 illustrates the three sorts of mapping.

Every isometry is an affine transformation and every affine 
transformation is a topological transformation, but not conversely.

Modern geometry introduces another level of structure, situ-
ated between the topology and the affine structure. This is the 
differentiable structure, which distinguishes smooth continuous 
curves from curves with corners or sharp bends. A mapping that 
preserves the differentiable structure is called a diffeomorphism 
and maps smooth curves into smooth curves. While a topological 
transformation can map a triangle onto a circle, a diffeomorphism 
cannot, since a circle is smooth and a triangle has corners. The to-
pological transformation depicted in figure 1 is a diffeomorphism: 
notice that the three corners of the triangle are still identifiable.

In most discussions of Euclidean geometry, the lion’s share of 
attention goes to the Fifth Postulate. This postulate concerns the 
existence and properties of parallel lines. The original discovery of 
non-Euclidean geometries arose from attempts to prove the Fifth 
Postulate from the other four. Eventually, it was shown that both 
the Fifth Postulate and its denial are consistent with the rest of 
Euclid’s Postulates, so there can be spaces in which straightedges 
and compasses behave as Euclid requires, but in which geometric 
figures do not have the properties that Euclid demonstrates. For 
example, in some non-Euclidean spaces the interior angles of a 
triangle sum to more than two right angles, and in others they 
sum to less. The Fifth Postulate plays no essential role in the for-
mulation of Newton’s physics: Newtonian mechanics could ob-
tain in a space that contains no parallel lines at all. The existence 
of an affine structure and a metrical structure, on the other hand, 

4 While an affine transformation merely must map straight lines to straight 
lines, an isometry must do more than map circles to circles: the size of the circles 
must also be unchanged. A scale transformation, which uniformly shrinks or ex-
pands all figures, is not an isometry even though it takes circles to circles.
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is absolutely essential to make sense of Newton’s Laws. But before 
we can make contact with those laws, we need to bring time into 
the picture.

Absolute Time and the Persistence of Absolute Space

Newton believed in the existence of a spatial arena with the 
geometrical structure of E3. He believed that this infinite 

Affine
Transformation

Topological
Transformation

Isometry

Fig. 1 
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three-dimensional space exists at every moment of time. And 
he also believed something much more subtle and controver-
sial, namely, that identically the same points of space persist 
through time.

We are trying to understand what must be postulated if the 
First Law is to make sense, and the First Law asserts that a body 
with no forces applied to it remains at rest if it is at rest, and con-
tinues moving uniformly in a straight line if it is moving. But what 
is it for a body to be resting or to remain at rest? If the individual 
points of space persist through time, then we have a precise ac-
count: a body is at absolute rest when it occupies the same points 
of absolute space over a period of time. The account of absolute 
uniform motion in a straight line is similar but more complicated. 
First: if the points of absolute space persist through time, then any 
moving body has a trajectory in absolute space, namely the set of 
points in absolute space that it occupies over a given period. And 
if absolute space has an affine structure, then such a spatial trajec-
tory either forms a straight line in space or it does not. Thus, to 
make sense of “uniform motion in a straight line,” the points of 
space not only must persist through time and have a topology (so 
it makes sense to characterize a trajectory of a body as a continu-
ous line), but they also must have an affine structure so the spatial 
trajectory can be characterized as straight or curved.

But these conditions alone do not define “uniform motion in 
a straight line,” since “uniform” has not been explained. A drag 
racer, unlike an Indy racer, runs on a straight track, so its motion 
is “in a straight line.” Still, the motion is not uniform: the drag 
racer accelerates, constantly moving faster and faster. This sort 
of motion is called linear acceleration. (The Stanford Linear Ac-
celerator Center has a straight tube about two miles long down 
which particles are accelerated, unlike the Large Hadron Collider, 
which accelerates particles around a closed loop.) In order for the 
motion to be uniform, it must cover the same distance in the same 
time. So Newton’s First Law presupposes that there is a fact about 
how far a body moves and a fact about how much time it takes for 
it to complete the motion. The first fact requires a metric on the 
space, so that the spatial trajectory of a body can be ascribed a 
length. And the second fact requires something altogether new: a 
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metrical structure on time. Newton’s First Law of Motion presup-
poses not only absolute space but also absolute time.

The geometrical structure of time, according to Newton (and 
to common sense), is simpler than that of space. Newtonian time 
is one-dimensional: there is a single, ordered sequence of instants 
that forms the totality of history. That collection of instants has a 
topology, which is determined by their time order. It makes no 
clear sense to ask whether this “time line” is straight or curved, so 
the notion of an affine structure does not arise. But there is a tem-
poral metric: between any two instants a certain quantity of abso-
lute time passes, and these quantities can be compared with each 
other in terms of size. If a certain amount of time passes between 
instant 1 and instant 2, and a certain amount of time passes be-
tween instant 2 and instant 3, there is a fact about whether these 
intervals are the same size or different, and a fact about what the 
exact ratio between the intervals is.

With all of this structure in place, we can define “uniform mo-
tion”: a uniform motion is a motion that covers the same amount 
of space in the same time. A uniform motion need not be straight: 
uniform circular motion, for example, can keep a constant speed 
even as it continuously changes direction. So Newton needed all 
of these characteristics in order for the First Law to make a pre-
cise statement: when no force is put on an object, if it is at abso-
lute rest it will remain at absolute rest, and if it is moving it will 
continue moving in a straight spatial trajectory, covering equal 
distances in equal times.

There is one last feature that Newton ascribes to absolute time: 
it, unlike space, has a direction. Newton does not make any ex-
plicit remarks about this, and it is not immediately relevant to 
understanding his laws of motion. But it is a perfectly natural 
thing to say that time passes from the past to the future, and it is 
worthwhile remarking here because we will return later to ques-
tions that surround the direction of time.

Indeed, Newton does not explicitly discuss the geometrical 
structure of space or time at all. He always uses E3 as his account 
of space, and he always presumes in his proofs that there is a defi-
nite metric for the passage of time. It would not have occurred to 
him that there could be any alternative. What we have seen in the 
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foregoing analysis is which features of his account are required 
in order to state the First Law: space must have a topology, an af-
fine structure, and a metric; time must be one-dimensional with 
a topology and a metric; and, most importantly, the individual 
parts of space must persist through time. Given all this, there is 
a fact about whether a body remains in the same region of space 
through time, a fact about the spatial trajectory of a moving ob-
ject, and a fact about how quickly a moving body covers different 
parts of that trajectory. Without this much structure, it is unclear 
how to make any sense of Newton’s First Law. But if we were to 
deny that space is E3, ascribing it instead some other affine struc-
ture and metric, the law would still make perfect sense.

The Metaphysics of Absolute Space and Time

While Newton does not make explicit note of the geometrical 
structure he ascribes to absolute space and time, he does provide 
a very clear discussion both of their metaphysical status and of 
the reasons he thinks we must accept their existence. The basic 
issue is obvious. Take, for example, an object at absolute rest at 
some time that is not subject to any external forces. According 
to the First Law, the object will remain at absolute rest—that is, it 
will remain located at the same place in absolute space. But New-
ton is perfectly aware that these persisting parts of absolute space 
cannot be perceived by the senses. No observation can reveal 
whether a body remains in the same region of absolute space or 
constantly moves from one part to another. It would seem, then, 
that even if Newton’s First Law is true, and even if we could ascer-
tain that there are no forces on an object, no observation could 
verify the law. And, more seriously, if we cannot perceive abso-
lute space and a fortiori cannot perceive absolute motion, it is not 
obvious how a theory that treats of such absolute motion could 
make any predictions about observable fact at all.

What we can observe, Newton asserts, are the relative posi-
tions of bodies with respect to each other. Similarly, we cannot 
directly observe the passage of absolute time, but we can observe 
changes in the relative positions of bodies. In the Scholium that 
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follows his definitions of novel terms, Newton carefully distin-
guishes observable quantities from the absolute entities that he 
postulates:

Hitherto I have laid down the definitions of such words as 
are less known, and explained the sense in which I would 
have them to be understood in the following discourse. I 
do not define time, space, place, and motion, as being well 
known to all. Only I must observe, that the common people 
conceive those quantities under no other notions but from 
the relation they bear to sensible objects. And thence arise 
certain prejudices, for the removing of which it will be con-
venient to distinguish them into absolute and relative, true 
and apparent, mathematical and common.

   I. � Absolute, true, and mathematical time, of itself, and 
from its own nature, flows equably without relation to 
anything external, and by another name is called du-
ration: relative, apparent, and common time, is some 
sensible and external (whether accurate or unequable) 
measure of duration by the means of motion, which is 
commonly used instead of true time; such as an hour, a 
day, a month, a year.

II. � Absolute space, in its own nature, without relation to 
anything external, remains always similar and immov-
able. Relative space is some movable dimension or mea-
sure of the absolute spaces; which our senses determine 
by its position to bodies; and which is commonly taken 
for immovable space; such is the dimension of a sub-
terraneous, an aerial, or celestial space, determined by 
its position in respect of the earth. Absolute and rela-
tive spaces are the same in figure and magnitude; but 
they do not remain always numerically the same. For if 
the earth, for instance, moves, a space of our air, which 
relatively and in respect of the earth, remains always the 
same, will at one time be one part of the absolute space 
into which the air passes; at another time it will be an-
other part of the same, and so, absolutely understood, it 
will be continually changed.



Chapter One

14

III. � Place is the part of space which a body takes up, and 
is according to the space either absolute or relative. . . .

IV. � Absolute motion is the translation of a body from one 
absolute place into another; and relative motion the 
translation from one relative place into another. Thus 
in a ship under sail, the relative place of a body is that 
part of the ship which the body possesses; or that part 
of the cavity which the body fills, and which therefore 
moves together with the ship: and relative rest is the 
continuance of the body in the same part of the ship, or 
of its cavity. But real, absolute rest is the continuance of 
the body in the same part of that immovable space, in 
which the ship itself, its cavity, and all that it contains, 
is moved. Wherefore, if the earth is really at rest, the 
body, which relatively rests in the ship, will really and 
absolutely move with the same velocity that the ship has 
on the earth. But if the earth also moves, the true and 
absolute motion of the body will arise, partly from the 
true motion of the earth, in immovable space, partly 
from the relative motion of the ship on the earth. . . .5

Newton distinguishes the “absolute, true, and mathematical” no-
tions of space, time, place, and motion from their “relative, ap-
parent, and common” counterparts. The crux of the problem is 
that while Newton’s Laws of Motion are framed in terms of the 
absolute notions, these do not fall under our immediate obser-
vation. When we try to observe the motion of an object, all we 
can directly see is its relative motion: the change in its position 
with respect to other visible objects, with the rate of change being 
measured by the visible motion of clocks or other instruments for 
telling time. But if the absolute motion of an object is impercep-
tible because absolute space and time are imperceptible, how can 
the postulation of such entities have any relevance to empirical 
science?

Newton devotes the rest of the Scholium to answering this 
question:

5 Newton (1934), vol. 1, pp. 6–7.
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But because the parts of space cannot be seen, or distin-
guished from one another by our senses, therefore in their 
stead we use sensible measures of them. For from the posi-
tions and distances of things from any body considered as 
immovable, we define all places; and then with respect to 
such places, we estimate all motions, considering bodies as 
transferred from some of those places into others. And so, 
instead of absolute places and motions, we use relative ones; 
and that without any inconvenience in common affairs; but 
in philosophical disquisitions, we ought to abstract from 
our senses, and consider things themselves, distinct from 
what are only sensible measures of them. For it may be that 
there is no body really at rest, to which the places and mo-
tions of others may be referred.

But we may distinguish rest and motion, absolute and 
relative, one from the other, by their properties, causes, and 
effects. . . .6

Newton produces powerful empirical evidence for the existence 
of absolute motion (and hence absolute space and time) using 
considerations of the causes of motion. For this argument, we will 
need to consider his Second Law.

But before turning to the Second Law, we should pause to 
reflect how deeply intuitive Newton’s account of absolute space 
and time is, even though absolute space and time are not directly 
observable. It sounds as if Newton is postulating some weird, 
ghostly, unfamiliar entities, but most people conceive of the 
physical world in terms of absolute space and time. For example, 
craftsmen and scientists continually try to improve the design of 
timepieces, to produce clocks that are ever more accurate and 
precise. But what is it for a clock to be “accurate”? What we want 
is for the successive ticks of the clock to occur at equal intervals 
of time, or for the second hand of a watch to sweep out its circle 
at a constant rate. But “equal” or “constant” with respect to what? 
With respect to the passage of time itself, that is, with respect to 
absolute time. Our natural, intuitive view is that a certain amount 

6 Ibid., p. 8.
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of absolute time elapses between the successive ticks of a clock, 
and the better and more accurate the clock is, the more similar 
these intervals are to one another. Swiss watchmakers, and de-
signers of atomic clocks, are trying to get their devices to accu-
rately measure something, and that something is not any sort of 
relative, observable time. Physics treats every observable physi-
cal motion—the rotation of the earth, the motion of the earth 
around the sun, and so on—as subject to disturbances and hence 
not automatically uniform. But the nonuniformity is not defined 
with respect to any observable motion. Clock design reflects this 
commitment: disturbing factors are eliminated or compensated 
for. This practice implicitly assumes some measure of time itself 
that provides the standard of uniformity.

Similarly, our everyday understanding of the world conceives 
of it in terms of absolute space. No one is puzzled upon hearing, 
for example, that the orbit of the earth is an ellipse with the sun at 
one focus. Any picture of the solar system in a science book will 
draw the orbits of the planets. But what, exactly, is this supposed 
to be a picture of? At any given moment, the earth is in some one 
place. The “orbit” is somehow a collection of all the places the 
earth occupies over the course of a year. But that implies that the 
places the earth occupies at different times are all parts of one 
common, three-dimensional space: absolute space. We can, with 
effort and careful thought, come to comprehend how the world 
could exist without any absolute space or absolute motion. But 
when we do so we not only reject Newton’s theory, we reject com-
mon sense as well.

Newton did not appeal to common sense to justify his belief 
in absolute space and time: he appealed to experiment. Newton 
tried to prove the existence of absolute motion in the laboratory 
rather than by conceptual analysis. This is our next topic.
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