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Introduction

Many budding ecologists have their imaginations captured by a seemingly sim-
ple question: why do we find different types and numbers of species in differ-
ent places? The question is the same whether the setting is birds in the forest, 
plants along a mountainside, fish in lakes, invertebrates on a rocky shore, or 
microbes in the human body. Some parts of the answer to this question are glar-
ingly obvious just from a short walk more or less anywhere on earth. Strolling 
through any city or town in eastern North America, we can see that the plant 
species growing in sidewalk cracks and dry roadsides are different from those 
growing in wet ditches, which are different still from those growing in wooded 
parks. Some birds reach very high abundance in dense urban areas, while oth-
ers are found exclusively in wetlands or forests. So, we can observe everyday 
evidence that environmental variation selects for different species in different 
places (Fig. 1.1).

As we begin to look more closely, however, the story is not so simple. Some 
places that seem to present near-identical environmental conditions are none-
theless home to very different sets of species. Some pairs of species seem to 
live in very similar types of environments but almost never in the same phys-
ical place. Two places experiencing a very similar disturbance event (e.g., a 
drought or fire) subsequently follow very different successional trajectories. 
A hectare of one type of forest might contain 100-fold more species than a 
hectare of another type of forest. A major scientific challenge is thus to devise 
theories that can explain and predict such phenomena. Over the past 150 years 
ecologists have risen to this challenge, devising hundreds of conceptual or the-
oretical models that do just this. However, because almost every such model 



2	 Chapter 1 

is relevant to at least one type of community somewhere on earth, the list of 
explanations for community patterns gets only ever longer, never shorter.

We are thus faced with a serious pedagogical challenge: how to conceptually 
organize theoretical ideas in community ecology as simply as possible to fa-
cilitate ecological understanding. We have for a long time organized ecological 
knowledge (in textbooks or other synthetic treatments) according to subareas 
into which researchers have self-organized rather than fundamental ecological 
processes that cut across these subareas. For example, a treatment of plant com-
munity ecology might have sections on herbivory, competition, disturbance, 
stress tolerance, dispersal, life-history tradeoffs, and so on (Crawley 1997, 
Gurevitch et al. 2006). Similarly, a conceptual treatment of community ecology 
might present many competing theories: island biogeography, priority effects, 
colonization-competition models, local resource–competition theory, neutral 
theory, metacommunity theory, and so on (Holyoak et al. 2005, Verhoef and 
Morin 2010, Morin 2011, Scheiner and Willig 2011, Mittelbach 2012). As a 
result, if each student in an undergraduate or graduate class is asked to write 
down a list of processes that can influence community composition and diver-
sity (I have done this several times), the result will be a long list from each 
student, and collectively no fewer than 20–30 items.

The central argument to be developed in this book is as follows. Underlying 
all models of community dynamics are just four fundamental, or “high-level,” 
processes: selection (among individuals of different species), ecological drift, 
dispersal, and speciation (Vellend 2010). These processes parallel the “big 
four” in evolutionary biology—selection, drift, migration, and mutation—and 
they allow us to organize knowledge in community ecology in a simpler way 
than by using the conventional approach. What seems like a jumble of inde-
pendent theoretical perspectives can be understood as different mixtures of a 

Figure 1.1. The east-facing slope of Mont Saint-Joseph in Parc national du Mont Mé-
gantic, Québec, illustrating spatial relationships between environmental conditions and 
community composition. The cold, upper part of the slope (~850–1100 m above sea 
level) is boreal forest (dark coloration) dominated by balsam fir (Abies balsamea). The 
lower slope is deciduous forest (light coloration) dominated by sugar maple (Acer sac-
charum). The photo was taken in springtime (8 May 2013), prior to the flushing of de-
ciduous leaves. The foreground is relatively flat terrain (~400 m a.s.l.) composed mostly 
of a patchwork of young forest stands on private land, with a variety of different tree 
species. From left to right, the image spans roughly 4 km.
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few basic ingredients. By articulating a series of hypotheses and predictions 
based on the action of these four processes, we can thus build a general theory 
of ecological communities. As explained further in Chapter 2, the theory does 
not apply equally to all topics under the broad umbrella of community ecol-
ogy. For example, models of species on the same trophic level interacting via 
competition and/or facilitation (sometimes called “horizontal” communities) 
fall cleanly within the theory, whereas models involving trophic interactions fit 
within the theory largely to the extent that they make predictions concerning 
properties of horizontal components of the larger food web (which they often 
do). Nonetheless, following the tradition set by MacArthur and Wilson (1967, 
The Theory of Island Biogeography) and Hubbell (2001, The Unified Neutral 
Theory of Biodiversity and Biogeography), I call my theory and therefore my 
book The Theory of Ecological Communities.

1.1. What This Book Is

My overarching objective in this book is to present a synthetic perspective on 
community ecology that can help researchers and students better understand 
the linkages among the many theoretical ideas in the field. The initial sketch of 
these ideas was presented in Vellend (2010), and this book is a fully fleshed-out 
version of the theory, reiterating the key points of the earlier paper but going 
well beyond it in many ways:

•  First, I more thoroughly place the theory of ecological communities in 
historical context (Chap. 3), and I present a novel perspective (gleaned 
from philosopher Elliott Sober) on why high-level processes (in this case 
selection, drift, dispersal, and speciation) represent an especially appropri-
ate place to seek generality in community ecology (Chap. 4).

•  I describe in detail how a vast number of different hypotheses and models in 
community ecology fit as constituents of the more general theory (Chap. 5).

•  I provide simple computer code in the R language that (i) generates predic-
tions for empirical testing, (ii) illustrates how changing a few basic “rules” 
of community dynamics reproduces a wide range of well-known models, 
and (iii) allows readers to explore such dynamics on their own (Chap. 6).

•  After outlining some key motivations and challenges involved in empirical 
studies in ecology (Chap. 7), I then put the theory of ecological communi-
ties to work by systematically articulating hypotheses and predictions based 
on the action of selection (Chap. 8), drift and dispersal (Chap. 9), and speci-
ation (Chap. 10), in each case evaluating empirical evidence supporting (or 
not) the predictions. In essence, Chapters 8–10 serve to reframe the corpus 
of empirical studies in community ecology according to a general theory 
that is considerably simpler than typically found in a textbook treatment 
of the discipline.
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•  Chapters 11 and 12 present some overarching conclusions and a look to 
the future.

1.1.1. Reading This Book as a Beginner, an Expert, or Something in Between

This book is aimed at senior undergraduate students, graduate students, and 
established researchers in ecology and evolutionary biology. It is the book I 
would have liked to read during grad school. I believe it presents the core con-
ceptual material of community ecology in a new and unique way that makes it 
easier to grasp the nature of the key processes underlying community dynam-
ics and how different approaches fit together. This has been my experience in 
using it as a teaching tool. I also hope to stimulate established researchers to 
think about what they do from a different perspective, and perhaps to influence 
how they teach community ecology themselves. Thus, I approached the writing 
of the book with the dual goals of pedagogy (beginning-student audience) and 
advancing a new way of thinking about theory in community ecology (expert au-
dience). I suspect that readers who are somewhere on the pathway from beginner 
to expert—that is, grad students—have the most to gain from reading this book.

A pervasive challenge in scientific communication (including teaching) is to 
keep the most knowledgeable members of an audience engaged without “los-
ing” those with the least preexisting knowledge of the topic. Readers can get 
the most out of this book if they are already somewhat familiar with the kinds 
of community-level patterns of species diversity and composition that ecolo-
gists aim to explain, as well as some of the factors commonly invoked to ex-
plain such patterns—environmental conditions, competition, disturbance, and 
so on. I begin explanations at a fairly basic level and provide what I consider 
the essential background (Chaps. 2–3), but even so, a full understanding of 
various historical advances in ecology (Chap. 3) and some of the more sophis-
ticated empirical studies (Chaps. 8–11) requires delving into the primary liter-
ature. At the other end of the spectrum, expert readers will no doubt encounter 
sections they can skim, but I hope that all chapters of the book contain enough 
novel perspectives, approaches, or modes of traversing well-trodden ground to 
engage even the most expert reader. If you are an expert and pressed for time, 
you may choose to skip to the end of Chapter 3 (Sec. 3.4), where I begin the 
transition from background material to the details of my own distinct perspec-
tive and theory. Feedback on earlier versions of the book suggested that experts 
will find the most “new stuff” in the latter part of the book (Chaps. 8–12).

1.1.2. Unavoidable Trade-Offs

This book covers a very broad range of topics (models, questions, methods, 
etc.), which necessarily involves a trade-off with detail in several respects. 
First, the depth to which I explore each individual topic is limited. So, while 
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readers will learn, for example, about the strengths and weaknesses of differ-
ent approaches to testing for signatures of ecological drift or spatially variable 
selection, they will not learn all the detailed ins and outs of how to implement 
particular empirical methods. I am not myself an expert on all such details, and 
even for topics I do know quite well, I have deliberately limited the detail so as 
not to distract from the big-picture conceptual issues on which I want to focus. 
Plenty of references are provided for readers interested in digging deeper. Sec-
ond, I present very few formal statistics, despite their ubiquity in ecological 
publications. I report a great many empirical results from the literature, but 
almost entirely in graphical form, allowing readers to see for themselves the 
patterns in the data. Interested readers can consult the original publications for 
p-values, slopes, r2, AIC, and the like. Finally, I cannot claim to have cited the 
original paper(s) on all topics. My emphasis has been on communicating the 
ideas rather than tracing each of their histories to the origin, although I do ded-
icate a whole chapter to the history of ideas, and I hope I have managed to give 
credit to most of those papers considered “classics” by community ecologists.

1.1.3. Sources of Inspiration

By way of ensuring that I have appropriately credited the ideas that form the 
basic premise of this book, I end this introductory chapter by acknowledging 
those publications that inspired me by calling attention to the striking con-
ceptual parallels between population genetics and community ecology (An-
tonovics 1976, Amarasekare 2000, Antonovics 2003, Holt 2005, Hu et al. 
2006, Roughgarden 2009). Many additional researchers have taken notice of 
these parallels, especially following the importation into ecology of neutral 
theory from population genetics (Hubbell 2001). That said, I can say from ex-
perience that most community ecologists have not thought of things in this 
way, and there has been no systematic effort to find out whether it’s possible to 
reframe the bewildering number of theories, models, and ideas in community 
ecology as constituents of a more general theory involving only four high-level 
processes. This book is my attempt to do so.
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