Contents

Preface

Constants and Units

1 Introduction
1.1 Observational Techniques
Problems

2 Stars: Basic Observations
2.1 Review of Blackbody Radiation
2.2 Measurement of Stellar Parameters
2.3 The Hertzsprung–Russell Diagram
Problems

3 Stellar Physics
3.1 Hydrostatic Equilibrium and the Virial Theorem
3.2 Mass Continuity
3.3 Radiative Energy Transport
3.4 Energy Conservation
3.5 The Equations of Stellar Structure
3.6 The Equation of State
3.7 Opacity
3.8 Scaling Relations on the Main Sequence
3.9 Nuclear Energy Production
3.10 Nuclear Reaction Rates
3.11 Solution of the Equations of Stellar Structure
3.12 Convection
Problems

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
9.5 Dark Energy and the Accelerating Universe 242
Problems 245

10 Tests and Probes of Big Bang Cosmology 247
10.1 Cosmological Redshift and Hubble’s Law 247
10.2 The Cosmic Microwave Background 251
10.3 Anisotropy of the Microwave Background 255
10.4 Baryon Acoustic Oscillations 261
10.5 Nucleosynthesis of the Light Elements 263
10.6 Quasars and Other Distant Sources as Cosmological Probes 266
Problems 269

Appendix 275
Index 279
Astrophysics is the branch of physics that studies, loosely speaking, phenomena on large scales—the Sun, the planets, stars, galaxies, and the Universe as a whole. But this definition is clearly incomplete; much of astronomy also deals, e.g., with phenomena at the atomic and nuclear levels. We could attempt to define astrophysics as the physics of distant objects and phenomena, but astrophysics also includes the formation of the Earth, and the effects of astronomical events on the emergence and evolution of life on Earth. This semantic difficulty perhaps simply reflects the huge variety of physical phenomena encompassed by astrophysics. Indeed, as we will see, practically all the subjects encountered in a standard undergraduate physical science curriculum—classical mechanics, electromagnetism, thermodynamics, quantum mechanics, statistical mechanics, relativity, and chemistry, to name just some—play a prominent role in astronomical phenomena. Seeing all of them in action is one of the exciting aspects of studying astrophysics.

Like other branches of physics, astronomy involves an interplay between experiment and theory. Theoretical astrophysics is carried out with the same tools and approaches used by other theoretical branches of physics. Experimental astrophysics, however, is somewhat different from other experimental disciplines, in the sense that astronomers cannot carry out controlled experiments, but can only perform observations of the various phenomena provided by nature. With this in mind, there is little difference, in practice, between the design and the execution of an experiment in some field of physics, on the one hand, and the design and the execution of an astronomical observation, on the other. There is certainly no particular distinction between the methods of data analysis in either case. Since everything we discuss in this book will ultimately be based on observations, let us begin with a brief overview of how observations are used to make astrophysical measurements.

1 We will use the words “astrophysics” and “astronomy” interchangeably, as they mean the same thing nowadays. For example, the four leading journals in which astrophysics research is published are named the Astrophysical Journal, the Astronomical Journal, Astronomy and Astrophysics, and Monthly Notices of the Royal Astronomical Society, but their subject content is the same.

2 An exception is the field of laboratory astrophysics, in which some particular properties of astronomical conditions are simulated in the lab.
1.1 Observational Techniques

With several exceptions, astronomical phenomena are almost always observed by detecting and measuring electromagnetic (EM) radiation from distant sources. (The exceptions are in the fields of cosmic-ray astronomy, neutrino astronomy, and gravitational wave astronomy.) Figure 1.1 shows the various, roughly defined, regions of the EM spectrum. To record and characterize EM radiation, one needs, at least, a camera that will focus the approximately plane EM waves arriving from a distant source and a detector at the focal plane of the camera, which will record the signal. A “telescope” is just another name for a camera that is specialized for viewing distant objects. The most basic such camera–detector combination is the human eye, which consists (among other things) of a lens (the camera) that focuses images on the retina (the detector). Light-sensitive cells on the retina then translate the light intensity of the images into nerve signals that are transmitted to the brain. Figure 1.2 sketches the optical principles of the eye and of two telescope configurations.

Until the introduction of telescope use to astronomy by Galileo in 1609, observational astronomy was carried out solely using human eyes. However, the eye as an astronomical tool has several disadvantages. The aperture of a dark-adapted pupil is <1 cm in diameter, providing limited light-gathering area and limited angular resolution. The light-gathering capability of a camera is set by the area of its aperture (e.g., of the objective lens, or of the primary mirror in a reflecting telescope). The larger the aperture, the more photons, per unit time, can be detected, and hence fainter sources of light can be observed. For example, the largest visible-light telescopes in operation today have 10-meter primary mirrors, i.e., more than a million times the light gathering area of a human eye.
The angular resolution of a camera or a telescope is the smallest angle on the sky between two sources of light that can be discerned as separate sources with that camera. From wave optics, a plane wave of wavelength λ passing through a circular aperture of diameter D, when focused onto a detector, will produce a diffraction pattern of concentric rings, centered on the position expected from geometrical optics, with a central spot having an angular radius (in radians) of

$$\theta = 1.22 \frac{\lambda}{D}. \quad (1.1)$$

Consider, for example, the image of a field of stars obtained through some camera, and having also a bandpass filter that lets through light within only a narrow range of wavelengths. The image will consist of a set of such diffraction patterns, one at the position of each star (see Fig. 1.3). Actually seeing these diffraction patterns requires that blurring of the image not be introduced, either by imperfectly built optics or by other elements, e.g., Earth’s atmosphere. The central spots from the diffraction patterns of two adjacent sources on the sky will overlap, and will therefore be hard to distinguish from each other, when their angular separation is less than about λ/D. Similarly, a source of light with an intrinsic angular size smaller than this diffraction limit will produce an image that is unresolved, i.e., indistinguishable from the image produced by a point source of zero angular extent. Thus, in principle, a 10-meter telescope working at the same visual wavelengths as the eye can have an angular resolution that is 1000 times better than that of the eye.
Simulated diffraction-limited image of a field of stars, with the characteristic diffraction pattern due to the telescope’s finite circular aperture at the position of every star. Pairs of stars separated on the sky by an angle \(\theta < \lambda / D \) (e.g., on the right-hand side of the image) are hard to distinguish from single stars. Real conditions are always worse than the diffraction limit, due to, e.g., imperfect optics and atmospheric blurring.

In practice, it is difficult to achieve diffraction-limited performance with ground-based optical telescopes, due to the constantly changing, blurring effect of the atmosphere. (The optical wavelength range of EM radiation is roughly defined as 0.32–1 \(\mu \)m.) However, observations with angular resolutions at the diffraction limit are routine in radio and infrared astronomy, and much progress in this field has been achieved recently in the optical range as well. Angular resolution is important not only for discerning the fine details of astronomical sources (e.g., seeing the moons and surface features of Jupiter, the constituents of a star-forming region, or subtle details in a galaxy), but also for detecting faint unresolved sources against the background of emission from the Earth’s atmosphere, i.e., the “sky.” The night sky shines due to scattered light from the stars, from the Moon, if it is up, and from artificial light sources, but also due to fluorescence of atoms and molecules in the atmosphere. The better the angular resolution of a telescope, the smaller the solid angle over which the light from, say, a star, will be spread out, and hence the higher the contrast of that star’s image over the statistical fluctuations of the sky background

1 In the technique of adaptive optics that is used in the near-infrared, the light from the region being observed is reflected off a deformable mirror in the light path to the detector. Some of the light from the field of view, which needs to include a bright source, e.g., a star, is diverted to a wavefront sensor. Based on the distorted image of the bright source in a brief exposure, the wavefront sensor determines the shape of the deformable mirror that is required to correct the atmospheric distortion and convert the distorted wavefront back to a plane-wave shape. Once the mirror is properly deformed, a new image of the bright source is obtained and analyzed, and so on. This loop repeats at a rate of about 1 kHz, thus keeping up with the variations in wavefront distortions due to cells of air of different densities (and hence refraction indices) that drift across the telescope aperture. The bright source can be a bright star that happens to lie in the field of view being studied, or it can be an artificial laser guide star, produced by sending in reverse through the telescope optics a high-powered laser that scatters on, or excites, atoms high in the atmosphere, producing a small bright spot in the sky.
Figure 1.4 Cuts through the positions of a star in two different astronomical images, illustrating the effect of angular resolution on the detectability of faint sources on a high background. The vertical axis shows the counts registered in every pixel along the cut, as a result of the light intensity falling on that pixel. On the left, the narrow profile of the stellar image stands out clearly above the Poisson fluctuations in the sky background, the mean level of which is indicated by the dashed line. On the right, the counts from the same star are spread out in a profile that is twice as wide, and hence the contrast above the background noise is lower.

Fig. 1.4). A high sky background combined with limited angular resolution is among the reasons why it is difficult to see stars during daytime.

A third limitation of the human eye is its fixed integration time, of about 1/30 second. In astronomical observations, faint signals can be collected on a detector during arbitrarily long exposures (sometimes accumulating to months), permitting the detection of extremely faint sources. Another shortcoming of the human eye is that it is sensitive only to a narrow visual range of wavelengths of EM radiation (about 0.4–0.7 μm, i.e., within the optical range defined above), while astronomical information exists in all regions of the EM spectrum, from radio, through infrared, optical, ultraviolet, X-ray, and gamma-ray bands. Finally, a detector other than the eye allows keeping an objective record of the observation, which can then be examined, analyzed, and disseminated among other researchers. Astronomical data are almost always saved in some digital format, in which they are most readily later processed using computers. All telescopes used nowadays for professional astronomy are equipped with detectors that record the data (whether an image of a section of sky, or otherwise—see below). The popular perception of astronomers peering through the eyepieces of large telescopes is an anachronism.

The type of detector that is used in optical, near-ultraviolet, and X-ray astronomy is usually a charge-coupled device (CCD), the same type of detector that is found in many commercially available digital cameras. A CCD is a slab of silicon that is divided into
Chapter 1

Figure 1.5 Schematic view (highly simplified) of a CCD detector. On the left, a photon is absorbed by the silicon in a particular pixel, releasing an electron, which is stored in the pixel until the CCD is read out. On the right are shown other photoelectrons that were previously liberated and stored in several pixels on which, e.g., the image of a star has been focused. At the end of the exposure, the accumulated charge is transferred horizontally from pixel to pixel by manipulating the voltages applied to the pixels, until it is read out on the right-hand side (arrows) and amplified.

numerous pixels by a combination of insulating buffers that are etched into the slab and the application of selected voltage differences along its area. Photons reaching the CCD liberate photoelectrons via the photoelectric effect. The photoelectrons accumulated in every pixel during an exposure period are then read out and amplified, and the measurement of the resulting current is proportional to the number of photons that reached the pixel. This allows forming a digital image of the region of the sky that was observed (see Fig. 1.5).

So far, we have discussed astronomical observations only in terms of producing an image of a section of sky by focusing it onto a detector. This technique is called imaging. However, an assortment of other measurements can be made. Every one of the parameters that characterize an EM wave can carry useful astronomical information. Different techniques have been designed to measure each of these parameters. To see how, consider a plane-parallel, monochromatic (i.e., having a single frequency), EM wave, with electric field vector described by

\[E = \hat{e} E(t) \cos (2\pi \nu t - \mathbf{k} \cdot \mathbf{r} + \phi). \]

The unit vector \(\hat{e} \) gives the direction of polarization of the electric field, \(E(t) \) is the field’s time-dependent (apart from the sinusoidal variation) amplitude, \(\nu \) is the frequency, and \(\mathbf{k} \) is the wave vector, having the direction of the wave propagation, and magnitude \(|\mathbf{k}| = 2\pi / \lambda\). The wavelength \(\lambda \) and the frequency \(\nu \) are related by the speed of light, \(c \), through \(\nu = c / \lambda \). The phase constant of the wave is \(\phi \).

Imaging involves determining the direction, on the sky, to a source of plane-parallel waves, and therefore implies a measurement of the direction of \(\mathbf{k} \). From an image, one can also measure the strength of the signal produced by a source (e.g., in a photon-counting device such as a CCD, by counting the total number of photons collected from the source over an integration time). As discussed in more detail in chapter 2, the photon flux is related to the intensity, which is the time-averaged electric-field amplitude squared, \(\langle E^2(t) \rangle \).
Introduction

Figure 1.6 Schematic example of a spectrograph. Light from a distant point source converges at the Cassegrain focus of the telescope at the left. The beam is then allowed to diverge again and reaches a collimator lens sharing the same focus as the telescope, so that a parallel beam of light emerges. The beam is then transmitted through a dispersive element, e.g., a transmission grating, which deflects light of different wavelengths by different angles, in proportion to the wavelength. The paths of rays for two particular wavelengths, λ_1 and λ_2, are shown. A camera lens refocuses the light onto a detector at the camera’s focal plane. The light from the source, rather than being imaged into a point, has been spread into a spectrum (gray vertical strip).

Measuring the photon flux from a source is called photometry. In time-resolved photometry, one can perform repeated photometric measurements as a function of time, and thus measure the long-term time dependence of $\langle E^2 \rangle$.

The wavelength of the light, λ (or equivalently, the frequency, ν), can be determined in several ways. A bandpass filter before the detector (or in the “receiver” in radio astronomy) will allow only EM radiation in a particular range of wavelengths to reach the detector, while blocking all others. Alternatively, the light can be reflected off, or transmitted through, a dispersing element, such as a prism or a diffraction grating, before reaching the detector. Light of different wavelengths will be deflected by different angles from the original beam, and hence will land on the detector at different positions. A single source of light will thus be spread into a spectrum, with the signal at each position along the spectrum proportional to the intensity at a different wavelength. This technique is called spectroscopy, and an example of a telescope–spectrograph combination is illustrated in Fig. 1.6.

The phase constant ϕ of the light wave arriving at the detector can reveal information on the precise direction to the source and on effects, such as scattering, that the wave underwent during its path from the source to the detector. The phase can be measured by combining the EM waves received from the same source by several different telescopes and forming an interference pattern. This is called interferometry. In interferometry, the baseline distance B between the two most widely spaced telescopes replaces the aperture in determining the angular resolution, λ / B. In radio astronomy, the signals from radio telescopes spread over the globe, and even in space, are often combined, providing baselines of order 10^7 km, and very high angular resolutions.
Finally, the amount of polarization (unpolarized, i.e., having random polarization direction, or polarized by a fraction between 0 and 100%), its type (linear, circular), and the orientation on the sky of the polarization vector \(\hat{e} \) can be determined. For example, in optical astronomy this can be achieved by placing polarizing filters in the light beam, allowing only a particular polarization component to reach the detector. Measurement of the polarization properties of a source is called polarimetry.

Ideally, one would like always to be able to characterize all of the parameters of the EM waves from a source, but this is rarely feasible in practice. Nevertheless, it is often possible to measure several characteristics simultaneously, and these techniques are then referred to by the appropriate names, e.g., spectro-photo-polarimetry, in which both the intensity and the polarization of light from a source are measured as a function of wavelength.

In the coming chapters, we study some of the main topics with which astrophysics deals, generally progressing from the near to the far. Most of the volume of this book is dedicated to the theoretical understanding of astronomical phenomena. However, it is important to remember that the discovery and quantification of those phenomena are the products of observations, using the techniques that we have just briefly reviewed.

Problems

1. a. Calculate the best angular resolution that can, in principle, be achieved with the human eye. Assume a pupil diameter of 0.5 cm and the wavelength of green light, \(\sim 0.5 \mu m \). Express your answer in arcminutes, where an arcminute is 1/60 of a degree. (In practice, the human eye does not achieve diffraction-limited performance, because of imperfections in the eye’s optics and the coarse sampling of the retina by the light-sensitive rod and cone cells that line it.)

b. What is the angular resolution, in arcseconds (1/3600 of a degree), of the Hubble Space Telescope (with an aperture diameter of 2.4 m) at a wavelength of 0.5 \(\mu m \)?

c. What is the angular resolution, expressed as a fraction of an arcsecond, of the Very Long Baseline Interferometer (VLBI)? VLBI is an network of radio telescopes (waves- \(\sim 1–100 \) cm), spread over the globe, that combine their signals to form one large interferometer.

d. From the table of Constants and Units, find the distances and physical sizes of the Sun, Jupiter, and a Sun-like star 10 light years away. Calculate their angular sizes, and compare to the angular resolutions you found above.

2. A CCD detector at the focal plane of a 1-m-diameter telescope records the image of a certain star. Due to the blurring effect of the atmosphere (this is called “seeing” by astronomers) the light from the star is spread over a circular area of radius \(R \) pixels. The total number of photoelectrons over this area, accumulated during the exposure, and due to the light of the star, is \(N_{\text{star}} \). Light from the sky produces \(n_{\text{sky}} \) photoelectrons per pixel in the same exposure.
a. Calculate the signal-to-noise ratio (S/N) of the photometric measurement of the star, i.e., the ratio of the counts from the star to the uncertainty in this measurement. Assume Poisson statistics, i.e., that the “noise” is the square root of the total counts, from all sources.

b. The same star is observed with the same exposure time, but with a 10-m-diameter telescope. This larger telescope naturally has a larger light gathering area, but also is at a site with a more stable atmosphere, and therefore has 3 times better “seeing” (i.e., the light from the stars is spread over an area of radius $R/3$). Find the S/N in this case.

c. Assuming that the star and the sky are not variable (i.e., photons arrive from them at a constant rate), find the functional dependence of S/N on exposure time, t, in two limiting cases: the counts from the star are much greater than the counts from the sky in the “seeing disk” (this is called the “source-limited” case); and vice versa (called the “background-limited” case).

Answer: $S/N \propto t^{1/2}$ in both cases.

d. Based on the results of (c), by what factor does the exposure time with the 1-m telescope need to be increased to reach the S/N obtained with the 10-m telescope, for each of the two limiting cases?

Answer: By a factor 100 in the first case, and 1000 in the second case.
Index

21 cm
 “hyperfine” emission line, 134
galactic rotation curves, 193

absorption
 bound–bound, 45
 bound–free, 45
 free–free, 45

absorption lines
 galaxy rotation curves, 193
 in quasar spectra, 266
 in stellar spectra, 17, 19, 20, 22

abundances
 cosmic, 264
 in ionized gas, 132, 195, 267
 in molecular gas, 134
 in stars, 41, 43, 52, 121, 191

accelerating Universe, 242–246, 250, 260
accretion disk
 luminosity, temperature, 103, 104
 radiative efficiency, 103
 temperature profile, 102

accretion-powered phenomena, 99–114, 203–208
acoustic oscillations, cosmic microwave background
anisotropies, 257
active galactic nuclei (AGN), 203–208, 266–269
adaptive optics, 4, 162
adiabatic approximation, 58, 119, 257
affine connections, 231
age of Universe, 224, 239, 260
 from cosmic clocks, 225–226
albedo, 160, 162, 174, 181
alcohol (methanol, ethanol, in ISM), 135

Algod-type, accreting binary, 101
ammonia, 134
Andromeda galaxy (M31), 201, 208
angular resolution, 2
angular-diameter distance, 259, 270, 271
anisotropy, of cosmic microwave background, 255
antipode, 230
aperture, of telescope, 2
asteroids, 179
asymptotic giant branch, 67
atmosphere, transmission windows, 19

background, cosmic microwave, see cosmic microwave background, 261
Balmer series, 19, 127, 133, 193, 249
baryon acoustic oscillations, 261
baryon density
 mean in Universe, 254, 266
 nucleosynthesis dependence on, 264
beryllium, cosmic abundance, 264
Big Bang
 tests, 247–273
 theory, 246
Big Crunch, 237
Big Bang theory, 228
binary systems
 Algol-type, 101
 astrometric, 22
 cataclysmic variables, 101
 luminosity, temperature, 104
 novae, 104
 variability, 104
binary systems (continued)
contact, 101
detached, 101
eclipsing, 22
 as distance indicators, 217
 mass measurement, 25
interacting, 100–109
evolution, 107–109
 mass and angular momentum transfer, 109
novae, 101
semi-detached, 101
spectroscopic, 22
 mass measurement, 24
type-Ia supernovae, 105
visual, 22
 mass measurement, 24
X-ray binaries, 101, 105
biomarkers, 181
BL-Lacertae objects, 207
black hole(s), 96–114
 accretion efficiency of, 103
 appearance of star collapsing to, 98
 as dark matter candidates, 195
 evaporation, 99
 event horizon, 98
 gravitational redshift, 97, 272
 gravitational time dilation, 97
 in accreting binaries, 101–106
 in water-maser galaxy NGC 4258, 219
 information cannot emerge from, 98
 last stable orbit around, 103
 massive, in galactic centers, 191, 203, 266
 stellar-mass candidates, 99
black-widow pulsars, 107
blackbody
 peak of, 14
 radiation, 10–44
Rayleigh–Jeans approx., 14
 spectrum of cosmic microwave background, 252
Stefan–Boltzmann law, 12
Wien tail, 14, 20, 29, 124, 126
Boltzmann factor, 128, 131
 bound–bound absorption, 45
 bound–free absorption, 45
Brackett series, 19
bremsstrahlung
 absorption, 45
 emission
 as coolant in H II regions, 128, 131
 in galaxy clusters, 211, 223
 from supernova remnants, 145
thermal, 195, 210
brightness temperature, 253
brown dwarfs, 21, 80, 157
 as dark matter candidates, 195
bulge, galactic, 190
 microlensing toward, 170, 213
carbon
 burning in massive stars, 55, 82
 CNO cycle, 56
 cooling of H II regions via “metal” lines, 128
 monoxide, 134
 shell in pre-supernova star, 82
 white-dwarf composition, 73
cataclysmic variables, 101
 luminosity, temperature, 104
 novae, 104
 variability, 104
CCD (charge-coupled device), 5
Cepheids, 217
Cerenkov radiation, 62, 87, 146
Chandrasekhar mass, 76, 105
charge-coupled device (CCD), 5
chlorophyll, 181
circularization, in close binaries, 100
closed Universe, 237
closure density, see critical density, 236
clusters, of galaxies, 208–211
 as natural telescopes, 269
 collision timescale, 209
 crossing timescale, 208
 distances to, Sunyaev–Zeldovich effect, 221
 intracluster medium, 210
 lensing mass, 210
 virial mass, 209
CMB, see cosmic microwave background, 253
CNO cycle, 56
CO (carbon monoxide), 134
galactic rotation curves, 193
goaling expansion of Universe, 237
cold dark matter, 196
cold-neutral medium, 133
collision timescale
 between galaxies, 201
 between stars, in a galaxy, 189
 in galaxy clusters, 209
collisional excitation/deexcitation, 128
collisionless shocks, 139
color
 meaning of, 16
temperature, 16
cornets, 179, 184
cosmological constant, 237
common-envelope contact binaries, 101
comoving coordinates, 230
Compton
 y parameter, 222
 scattering, 221, 227
conduction, thermal, in white dwarfs, 77
contact discontinuity, 142
convection, 57–63
 condition for, 59
 equation of energy transport by, 59
cooling
 age, white dwarfs, 81
 function, 129
 in H II regions, 126, 128
 of atomic H I gas, 134
 of molecular gas, 134
 synchrotron, 153
coordinate speed of light, in Schwarzschild metric, 98
Copernican principle, 228
core accretion model, 178
core collapse
 of massive stars, 84
 supernova, see supernovae,
 core-collapse, 86
coronagraph, 162
coronal gas, 133
correlation function, two-point, 262
cosmic microwave background, 238, 251–261
 acoustic peaks, 257
 baryon density from, 266
 dipole, 255
 isotropy, 226, 255
 Olbers paradox solution, 253
 photon number density of, 253
 Planck spectrum of, 252
 Sunyaev–Zeldovich effect, 222, 227
 temperature, 253
 temperature anisotropy, 255
cosmic rays, 2, 136–153, 193, 203
cosmological
 constant, 242–246, 250, 260
 principle, 228, 255
 redshift, 247–251
 time dilation, 251
cosmology
 basic observations, 215–226
 tests, 247–273
 theory, 228–246
Coulomb repulsion
 between nuclei in Sun, 49
Crab
 nebula, 89
 pulsar rotational energy source, 92
 total luminosity, 91
pulsar, 89
 age, 94
 magnetic field, 93
 period, period derivative, 91
critical density
 for closure of Universe, 236
 for collisional deexcitation, 130
cross section
 absorption or scattering, 36
 collisional excitation, 128
 hydrogen photoionization, 124
 inverse \(\beta \) process, 264
 Lyman photon absorption, 126
 microlensing, 197
 nuclear reaction, 52
 of star, Olbers paradox, 216
 recombination, 122
 stellar collision, 190, 202
 Thomson, 36
crossing timescale
 in galaxy clusters, 209
 in star clusters, 121
curvature of space, 230, 236
 from CMB acoustic peaks, 258
Dark Ages, 261
dark energy, 242–246, 250, 260
dark matter
 alternatives, 199
 density fluctuations, 255, 261
 fraction of cosmic mass density, 266
 in galaxies, 193–196
 in galaxy clusters, 211
 nature of, 194, 269
 de Broglie wavelength, 70
degenerate electron gas, 70–74
equation of state
 nonrelativistic, 73
 ultrarelativistic, 75
phase-space distribution, 72
density waves, as explanation of spiral arms, 190
deuterium
 abundance
 in Ly\(\alpha \) clouds, 267
 mean cosmic, 264
 burning in protostars, brown dwarfs, 157
 in stellar nuclear reactions, 48, 55
 primordial, 157
diffraction limit, 3, 162
diffusive shock acceleration, 148
dinosaurs, extinction of, 184
disks
 accretion, 99–114
 galactic, 187
 protoplanetary, 178
dissociation, of molecular gas by a shock, 140
dissociation, of molecular hydrogen in collapsing cloud, 119
distance
 angular diameter, 259
 Cepheids, 217
 extragalactic, 216–223
distance (continued)
ladder, 216–223
luminosity, 250, 271
main-sequence fitting, 217
parallax, 14
proper, 230, 259
proper motion, 259, 271
Doppler shift
compared to cosmological redshift, 248
dipole of cosmic microwave background, 255
galactic rotation curves, 193
galaxy velocities, 223
in spectroscopic binaries, 22, 158
line broadening in quasar spectra, 204, 249
of stars around Galactic center, 186
dredge-up, 67
dust
and gas disk of the Galaxy, 190
as dark matter candidate, 195
component of ISM, 135
extinction by, 190
in cometary tails, 179
protoplanetary disks, 163, 178
dwarf planets, 179
eclipsing binaries, 22
as distance indicators, 217
Eddington luminosity, 107
in quasars, 203
Einstein
angle, 165
coefficient for spontaneous radiative emission, 130
equations of general relativity, 96, 231
radius, 165
ing, 165
tensor, 96, 231, 232
electron gas, degenerate, 70–74
electron scattering
cross section, 36
in Eddington luminosity, 106
in stars, 37, 44, 46, 56
in Universe, before recombination, 252
element abundances
cosmic, 264
in ionized gas, 332, 195, 267
in molecular gas, 135
in stars, 41, 43, 52, 121, 191
elliptical galaxies, 200
emission lines
21 cm, 134
in H II regions, 126
[O III] λ4363 singlet, 132
[O III] λλ4959, 5007 doublet, 131
energy
conservation equation, in stars, 40
production rate, in stars, 47–57
energy–momentum tensor, 96, 232
equation of state
cosmological, 233, 243, 246, 255
in stars, 42–44
of degenerate electron gas, 70–74
of degenerate nonrelativistic gas, 73
of degenerate ultrarelativistic gas, 75
of nuclear matter, 85
equations of stellar structure, 30, 63
solution of, 57
ethanol, 135
event horizon
in exponentially expanding Universe, 244, 245
of black hole, 98, 103
evolution
of interacting binaries, 107–109
of quasars, 208, 266
of Universe, 234–240
exclusion principle, Pauli’s, 71
exoplanets, see planets, 157–184
extinction, by dust, 135
if dark matter is dust, 195
in galactic disk, 190
extinction, of species, 184
extragalactic distances, 216–223
extragalactic distances, 216–223
extragalactic distances, 216–223
extrasolar planets, see planets, 157–184
eye
angular resolution, 8
as camera, 2
wavelength sensitivity of, 5
Faber–Jackson relation, 220
“failed” stars (brown dwarfs), 80
Fermi
energy, 72, 109
mechanism for cosmic-ray acceleration, 148
momentum, 72, 109
Fermi–Dirac distribution, 71
fine-structure constant, 31, 156
gravitational analog of, 77
free–free
absorption, 45
emission
as coolant in H II regions, 128, 131
free-fall timescale
in massive star core collapse, 84
of molecular cloud, 119
of Sun, 31
Friedmann equations, 231–246
Friedmann–Lemaître–Robertson–Walker metric, 228–231
“frozen stars” vs. black holes, 98
Fundamental Plane, of elliptical galaxies, 220

Gaia mission, 15, 217
Galactic center
 extinction to, 190
 massive black hole in, 191
Galactic corona, 133
galaxies, 185–203
 clusters of, 208–211
 crossing timescale, 208
 distances to, 221
 intracluster medium, 210
 lensing mass, 210
 virial mass, 209
collision timescales, 201
 in galaxy clusters, 209
elliptical, 200
 fraction in clusters, 208
 Fundamental Plane, 220
groups, 208–211
irregular, 201
Large Magellanic Cloud
 distance via SN1987A light echo, 218
 microlensing experiments, 196–199
SN1987A in, 87
luminosity function, 201
M31, 201, 208
M33, 208
Milky Way, 185–203
NGC 4258, 218
spiral, 185
structure, 185
 bulge, 190
 cosmic rays, 193
dark halo, 196
darkhalo, 193
disk, 187
Galactic center, 191
gas and star halo, 190
spheroid, 190
types, 200
gamma rays
 bursts, 88, 100, 148, 226
 from Galactic center, 191
 from quasars and AGN, 203
 in nuclear reactions in massive stars, 66, 82
 in nuclear reactions in Sun, 48–55
opacity of atmosphere, 19
spectra of novae, 105
Gamow
general relativity, Einstein equations, 96, 231
geodesic, null, 98, 245, 247, 259
globular clusters, 121, 190
 as cosmic clocks, 226
 as distance indicators, 220
gravitational
 analog of fine-structure constant, 77
 extrasolar planet detection, 171
 focusing, 189, 201, 213
 instability, 261, 262
 lensing, 164–170, 196–199
 experiments toward LMC, 196–199
 galaxy cluster masses, 210
 magnification, 168, 170, 171, 269
 microlensing, 166
 natural telescopes, 269
 of quasars by galaxies, 214, 267
 of stars by the Sun, 165
 surveys, 214
 radiation, 2, 111
 redshift, near black hole, 97
 time dilation, near black hole, 97
 waves, 2, 111
gravity, surface, 80
greenhouse effect, 181
H2O
 masers, 135
distance to NGC 4258, 219
habitable zone, 180
halo
gas and star, in galaxies, 190
Hawking radiation, 99
heating rate, in H II region, 126
Heisenberg’s uncertainty principle, 70
helium
 absorption lines in stellar spectra, 19
 abundance in stars, 41–43
 cosmic abundance, 264
 formation in Big Bang, 264
 photodisintegration in pre-supernova star, 84
 production in Sun, 48, 56, 64, 65
 shell in pre-supernova star, 82
stellar abundance, 17
 triple-alpha burning, 66
white-dwarf composition, 73
Hertzsprung–Russell diagram, 26–28
 main-sequence stars, 27, 45, 47, 64
main-sequence turnoff, 66, 191, 226
red-giant stars, 27
 white-dwarf stars, 27
H I
 21 cm emission, 134
galactic rotation curves, 193
H II regions, 122–132
homogeneity, of Universe, 228
horizon
 event, 98, 244
 particle, 216, 243, 245
 problem, of cosmic microwave background, 255
 size, of Universe, at recombination, 255
horizontal branch, 67
hot ionized medium, 133
hot Jupiters, 160
Hubble
 law, 223, 231, 247–251
 parameter, \(H_0\), 223, 225, 227, 236, 240, 243
time, 224, 240
hydrogen
 21 cm, 134
 galactic rotation curves, 193
 absorption lines in stellar spectra, 19
 abundance in stars, 17, 42
 as dark matter candidate, 194
 atomic, 21 cm emission, 134
 Balmer series, 19, 127, 133, 193, 249
 galactic rotation curves, 193
 redshifted quasar emission lines, 249
 Brackett series, 19
burning
 in novae, 105
 in stars, 48, 55, 56, 64, 65
energy levels, 17
H II regions, 122–132
ionization energy, 18
Lyman series, 19
Lyman-\(\alpha\) forest, 267
molecular
 clouds, 115
 inefficiency as radiator, 134
 nuclear ignition temperature, 79
 Paschen series, 19
 Pfund series, 19
recombination cooling, 127
shell burning, in red giants, 67
shell in pre-supernova star, 82
hydrostatic equilibrium
 in stars, 31, 32
hydroxyl, 134
hypersphere, 229, 230
ice radius, of planetary systems, 179
imaging, 6
inflation
 prediction of CMB acoustic peaks, 257, 261
 solution of horizon problem, 255
infrared emission
 extinction by dust of, 135
 from dust, if dark matter, 195
 from Galactic center, 191
 from interstellar dust, 136
 from K and M stars, 20
 from molecules, 134
 from quasar host galaxies, 208
 from quasars, 203
mean stellar photon density, 254
transparency of atmosphere, 19
initial mass function, stellar, Salpeter, 120
initial–final mass relation, for white dwarfs, 81
insolation temperature, 159, 174
interacting binaries, 100–109
evolution, 107–109
mass and angular momentum transfer, 109
interferometry, 7, 8, 22, 191
intergalactic medium, 261, 266, 267
interstellar medium, 115–136
intracluster medium, 128, 210
Sunyaev–Zeldovich effect, 222
inverse Compton scattering, 221, 227
ionization front, 124, 155
ionized fraction, inside H II region, 125
iron
 -group elements, 82
 abundance in halo stars, 191
 abundance in ISM and Sun, 154
 catastrophe, in massive stars, 83
 cooling of H II regions via “metal” lines, 128
 core of pre-supernova star, 82
irradiation temperature, 160
irregular galaxies, 201
ISM, see interstellar medium
isotopes, radioactive, as cosmic clocks, 225
isotropy
 of cosmic microwave background, 255
 of Universe, 226, 228
Jeans
 density, 116
 mass, 116
 radius, 116
jets
 from quasars and AGN, 203
Kamiokande, 110
Kelvin–Helmholtz timescale, 47
Kepler’s law, 24, 108
Kerr metric, 103
Kramers opacity law, 45
Kuiper Belt objects, 179
laboratory astrophysics, 1
Lagrange point, first, 101
Lambertian reflection, 1
Large Magellanic Cloud
 distance
 via Cepheids, 217
 via SN1987A light echo, 218
microlensing experiments, 196–199
SN1987A in, 87
large-scale structure, 211
Larmor
 frequency, 148
 radius, 148, 156
laser guide star, 4
last-scattering surface, cosmic microwave background, 252
lensing, gravitational
 see gravitational lensing, 196, 164–199
lensing, gravitational
 see gravitational lensing, 170
lifetime–mass relation, for stars, 65
light curve, 25, 162, 173, 206, 218
 supernova, 111
light gathering area, 2
lithium, cosmic abundance, 264
Local Group (of galaxies), 208
distances, 217
local thermodynamic equilibrium, 126
luminosity
 bolometric, 21
class, of stars, 28
distance, 271
function, of galaxies, 201
function, of white dwarfs, 109
luminosity distance, 250
Lyman series, 19
 emission and absorption in H II regions, 126
 population of hyperfine-split ground level, 134
Lyman-α forest, 267
M31 (Andromeda galaxy), 201, 208
Mach number, 141
MACHOs (massive compact halo objects), 196–199
magnetic dipole radiation, from pulsars, 93
magnification, by gravitational lensing, 168, 170, 171, 269
main sequence, see Hertzsprung–Russell diagram, 27
main-sequence fitting, 217
masers, 135
distance to NGC 4258, 219
mass
 continuity, equation of, 35
massive stars
 nuclear reactions, 82
 scaling relations, 46
matter-dominated era, 234, 235
Maxwell–Boltzmann distribution
 and equation of state, 73
 of hot gas, 195
 of nuclei in Sun, 49
 of particles in H II regions, 126
 of relative velocities, 53
 vs. quantum distributions, 70
mean free path
 between stellar collisions, 189
 for photons before recombination epoch, 251
 of neutrinos in collapsing star, 84
 of photons in H II regions, 126
 of photons in Sun, 36–40
Olbers paradox, 216
mean-motion resonance, 175
mergers, of galaxies, 203
“metals”
 in stars, 41, 191
 problems with dust as dark matter, 195
 as thermostats in H II regions, 131
 cooling of H II regions by, 128
 in Lyν clouds, 267
metric, 96
Friedmann–Lemaître–Robertson–Walker, 228–231
Kerr, 103
Minkowski, 96
Schwarzschild, 97
microlensing, 166
 experiments toward LMC, 196–199
 extrasolar planet detection, 171
 toward bulge, 170, 213
microwave
 cosmic background radiation, see cosmic microwave background, 251–261
 transparency of atmosphere, 19
migration, of planets, 160, 180
Milky Way, 185–203
millisecond pulsars, 107, 113
Minkowski metric, 96
molecular clouds, 115–120
 as candidates for dark matter, 194
 collapse of, 119
 free-fall timescale, 119
 main coolants of, 134
 stability of, 118
moment of inertia, of neutron star, 92
MoND (Modified Newtonian Dynamics), 199
Moon, cratering record, 184
neon, production in massive stars, 66, 82
neutrino(s)
- as dark matter candidates, 196
- astronomy, 2
- cosmic background, 239, 264, 272
- detector, 62
- flavor oscillations, 56
- flux from Sun, 56
- from core-collapse supernovae, 87
- from Supernova 1987A, 87
neutron
- dark matter, 196
- freezeout, 264
- lifetime, 264
neutron stars, 82–88
- accreting, 105
- accretion efficiency of, 103
- as dark matter candidates, 195
- binary, 154
- birth kicks, 154
- cooling time, 95
- density, 85
- formation, 84
- identification with pulsars, 91
- in accreting binaries, 95, 101
- mass–radius relation, 85
- maximum mass of, 85
- moment of inertia, 92
- observed mass, 86
- old, 95
- planets, 175
- pulsars, 89–95
- black-widow, 107
- millisecond, 107, 113
- radius, 85
- rotation, 92
Newtonian
- derivation of black hole horizon, 96
- derivation of Friedmann equations, 240–242
- Dynamics, Modified (MoND), 199
NH3 (ammonia), 134
nitrogen
- CNO cycle, 56
- cooling of H II regions via “metal” lines, 128
- novae, 101, 104
- nuclear reactions
 - in massive stars, 82
 - in stars, 47–57
 - cross section, 52
 - rates, 52
- nucleosynthesis, of light elements, 263–273
- null geodesic, 98, 245, 247, 259
- oceans, cometary source of, 180, 184
- OH (hydroxyl), 134
- masers, 135
- [O III]λ 4363 singlet, 132
- [O III]λ 4959, 5007 doublet, 131
- Olbers paradox, 215–216
- cosmic microwave background, 253
- Oort Cloud, 179
- opacity, 36
 - in stars, 44–46, 55, 120
 - of Universe before recombination, 251
- open clusters, 121
- open Universe, 237
- optical light, definition, 4
- Orion nebula, 131
oxygen
- 4363 Å emission line, use as thermometer in H II regions, 132
- 4959, 5007 Å doublet, 131
- burning in massive stars, 82
- CNO cycle, 56
- cooling of H II regions via “metal” lines, 128
- molecular, biomarker, 181
- production in massive stars, 66
- white-dwarf composition, 73
p-p chain, in Sun, 48
parallax, 14, 80, 217
parsec, definition, 15
particle horizon, 216, 243, 245
Paschen series, 19
Pauli’s exclusion principle, 71
Pfund series, 19
phase-space distribution
 - for degenerate electron gas, 72
photodissociation
 - of molecular hydrogen, 133
photoelectrons
 - in CCD detector, 6
photoionization
 - as opacity source in stars, 45
 - in H II regions, 122
 - of SN1987A ring, 218
photometry, 7
 - background-limited, 9
 - source-limited, 9
photosphere
 - absorption lines, 17
 - definition, 16
Planck spectrum, 10
 - of cosmic microwave background, 252
planetary nebulae, 68, 78, 132
 - as distance indicators, 220
planetesimals, 163, 179

For general queries, contact webmaster@press.princeton.edu
Index | 287

planets, 157–184
chemical differentiation, 180
core accretion model, 178
direct imaging, 162
Doppler method, 158
dwarf, 179
electrostatic forces in, 183
formation, 178
gravitational microlensing method, 171
hot Jupiters, 160
migration, 160, 180
occultation, 173
orbital eccentricity, 158
planetesimals, 179
protoplanetary disk, 178
protoplanets, 179
radial-velocity method, 158
reflection and re-radiation, 173
rogue, free-floating, 157, 172
timing detection method, 175
transit-time variations, 175
transits, 160
transmission spectroscopy, 172
plasma frequency, 139, 155
Pluto, 179
polarimetry, 8
population inversion, 135
power density, of stellar nuclear reactions, 53
power spectrum, of CMB anisotropies, 257–261
pressure
adiabatic compression, 241
conditions for convection, 57
dark energy equation of state, 243
equation of state, 41–44
hydrostatic equilibrium in stars, 31
in energy–momentum tensor, 96, 232
in Friedmann equations, 233
in matter dominated era, 234
in radiation-dominated era, 234
magnetic and turbulent, in molecular clouds, 118
mean, inside star, 34
of degenerate electron gas, 70–74
of degenerate neutron gas, 84
of degenerate ultra relativistic gas, 75
of ideal gas, 72
of pre-recombination baryon–photon fluid, 256
radiation, 43, 47, 60, 65, 104, 114, 261
stellar scaling relations, 46
white-dwarf scaling relations, 74
pressure broadening, 80
proper distance, 230
proper motion, 16, 69, 80
proper time, 97
proper-motion distance, 259
proton decay, 87
proton-to-electron mass ratio, 37, 70, 152
protoplanetary disks, 117, 157, 178
protoplanets, 179
protostar, 157
pulsar wind nebula, 89
pulsars, 89–95
binary, 154
birth kicks, 154
black-widow, 107
emission mechanism, 93
identification with neutron stars, 91
magnetic field, 93
millisecond, 107, 113, 175
planets, 175
rotation, 92
rotational energy as source of Crab luminosity, 92
pulsations, stellar
as non-option for explaining pulsars, 91
Cepheids, 217
QSOs, see quasars, 208
quantum
forbidden transitions, 131
matter density, 69
structure of hydrogen atom, 17
tunneling, in nuclear reactions, 50
quasars, 203–208, 266–269
absorption lines, 266
accretion rate, 207
cosmologically redshifted spectra, 249
evolution, 208, 266
host galaxies, 208, 266
radio-loud, (quiet), 207
temperature of accretion disk, 207
radiation pressure, 43, 47, 60, 65, 104, 114, 261
radiation–matter domination transition, 237
radiation-dominated era, 234, 235
radiative phase, of blast-wave evolution, 144
radiative transfer (transport), 35–40
radio emission
21 cm, 134
from Galactic center, 191
from molecules, 134
from pulsars, 89
from quasars and AGN, 203, 208
transparency of atmosphere, 19
radio galaxies, 207
radio-loud, (quiet) quasars, 207
radioactive isotopes, as cosmic clocks, 225
radiogenic heating, 180
ram pressure, 139
random walk, 37, 110, 127

For general queries, contact webmaster@press.princeton.edu
Rankine–Hugionot jump conditions, 140
Rayleigh–Jeans approximation, 14
planet re-radiation detection, 174
side of cosmic microwave background, 253
Sunyaev–Zeldovich effect, 222
recombination
 case B, 123
 coefficient, 122
 cooling via, 127
 era, 252
 in H II regions, 122
 rate, 122
red clump giants, 67
red giants, 65
 on H-R diagram, 27
reddenng, by interstellar dust, 136
redshift
 cosmological, 247–251
 gravitational, near black hole, 97
refractory materials, 179
reionization, of Universe, 261, 270
reverse shock, 142
Ricci scalar, 232
tensor, 232
Riemann tensor, 232
Roche lobes, 101
rotation curves, galactic, 193
Sagittarius A*, 191
Saha equation, 263
Salpeter initial mass function, 121
Schechter luminosity function, 201
Schrödinger equation, 50
Schwarzschild metric, 97, 103, 164
radius, 96–98, 102, 164, 272
Sedov–Taylor phase, of blast-wave evolution, 143
seeing, 8
selection effects, 176
Seyfert galaxies, 207
sheets (of galaxies), 211
shocks, 137–153
 breakout, 145
 forward, 142
 reverse, 142
signal-to-noise ratio, 9
silicon
 burning in massive stars, 82
 cooling of H II regions via “metal” lines, 128
 in CCD detector, 5
singularity, at t = 0 in Big Bang, 236
Sirius-B, 69
sky
 as a source of noise, 4
 why dark, Olbers paradox, 215
snow line, of planetary systems, 172, 179
snowplow phase, of blast-wave evolution, 144
sound speed, 137, 141
sound-crossing horizon scale, 257, 262
spectroscopy, 7
specular reflection, 174
spheroid, galactic, 190
spiral arms, in galactic disk, 190
density waves, 190
galaxies, 185, 200
Stark effect, 80
stars
 absorption lines, 19, 20
 binary systems, 22
 boundary conditions, 41
 clusters of, 121
 convection in, 57–63
 early type, 27
 element abundances, 41, 191
 energy source of, 47–57
 equation of state, 42–44
 equations of structure, 30–63
 energy conservation, 40
 hydrostatic equilibrium, 31, 32
 mass continuity, 35
 radiative energy transport, 35–40
 solution of, 57
 evolution, 64–68
 formation, 115–121
 initial mass function, 120
 late type, 27
 lifetime–mass relation, 65
 luminosity class, 28
 main sequence, 27
 mass measurement, 22
 minimum mass for nuclear ignition, 80
 nuclear reactions, 47–57
 in massive stars, 82
 rates, 52
 opacity in, 44–45
 photosphere, 20
 power density from nuclear reactions, 53
 pressure mean, 34
pulsations
 Cepheids, 217
 non-option for explaining pulsars, 91
 radius, 21, 45–47
 red giants, 65
 on H-R diagram, 27
 rotation speed, maximum, 92
Index | 289

scaling relations, 45–47
spectral types, 19
supergiants, 28
temperature, 20
mean, 35
virial theorem, 33, 34
white dwarfs, 68–81
on H-R diagram, 27
winds, 67, 135, 136, 146, 178, 180, 191, 195
Stefan–Boltzmann law, 12
stimulated emission, masers, 135
Strömgren sphere, radius, 122, 124, 126, 133, 154
sulfur
cooling of H II regions via “metal” lines, 128
Sun
free-fall time, 31
Kelvin–Helmholtz timescale, 47
neutrino flux from, 56
properties, 30
spectral type, 21
Sunyaev–Zeldovich effect, distances to galaxy clusters, 221, 227
super star clusters, 121
superclusters (of galaxies), 211
supergiants, 28
SuperKamiokande, 62
Supernova 1054, Crab nebula, 89, 95
Supernova 1987A
light echo, distance to LMC, 218
neutrinos from, 87
supernovae
core-collapse, 82–88
binding energy, 87
compared to type-la, 105
energies, 86
luminosity, 87
neutrinos from, 87
cosmic-ray acceleration, 193
dust production, 135
energy of ejecta, 87
light curve, 111
metal enrichment by, 191, 195, 225
remnants, 137–156
Crab nebula, 89
in Galactic center, 191
rise time, 111
type 1a, 88, 101, 105, 111
as distance indicator, 221
Hubble diagram of, 250, 260
supersonic flows, 137
surface brightness
fluctuations, as distance indicators, 220
redshift dependence of, 271
surface gravity, 80
surface of last scattering, cosmic microwave background, 252
synchronization, in close binaries, 100
synchrotron
cooling time, 153
frequency, 151
from Crab nebula, 91
from quasar jets, 203
in X-ray binaries, 106
maximum energy from shock-accelerated particles, 156
T-Tauri stars, 180
teachesopes, 2
temperature
accretion disk, 102
anisotropy, CMB, 255
brightness, 253
CMB, 252
color, 16
effective, 21, 47
insolation, 159, 174
irradiation, 160
mean, inside star, 35
of gas in H II region, 123
of Universe, 251
photospheric, 16
thermal
conduction, in white dwarfs, 77
radiation, 10
thermal pulses, 67
thermostat action
of metal lines in H II regions, 131
of nuclear reactions in stars, 55, 88
Thomson scattering
cross section, 36, 222, 227
in Eddington luminosity, 106
in stars, 44
in Universe, before recombination, 251
mean free path in H II regions, 126
tidal
disruption, of stars near black hole, 112, 203
forces
between colliding galaxies, 203
by Moon and Sun on Earth, 100, 112
locking, in binaries, 100, 174
time dilation
cosmological, 251
gravitational, near black hole, 97
timescale
collision
in galaxy, 189
in galaxy clusters, 209

For general queries, contact webmaster@press.princeton.edu
timescale (continued)
crossing
 in galaxy clusters, 209
 in star clusters, 121
free-fall, of Sun, 31
 Kelvin–Helmholtz, of Sun, 47
triple-alpha reaction, 66
Tully–Fisher relation, 219, 227
tunneling, quantum, in nuclear reactions, 50
turnoff
 main sequence, 66, 81, 191, 226
two-photon decay, 128
two-point correlation function, 262

ultraviolet emission
 extinction by dust of, 136
 extreme, from old neutron stars, 95
 from cataclysmic variable accretion disks, 104
 from O and B stars, 20
 from quasars, 208
 H₂ absorption and scattering, 194
 in H ii regions, 122
 in planetary nebulae, 68
 ionizing SN1987A ring, 218
 opacity of atmosphere, 19
uncertainty principle, Heisenberg’s, 70
uranium, isotope ratios as cosmic clocks, 225

vacuum energy, 242–246
Virgo cluster (of galaxies), 208
 distances, 217
virial theorem, 33, 34, 46, 47, 55, 60, 61, 76, 77, 102, 110, 119, 120, 210
viscosity, in accretion disks, 102
Vogt–Russell conjecture, 42
voids, of galaxies, 211
volatiles, 179

warm ionized medium, 133
warm-neutral medium, 133
water
 comets, 179
 in planet atmospheres, 173
 liquid, in habitable zone, 180
 snow line, 179

water masers, 135
distance to NGC 4258, 219
wavefront sensor, 4
white dwarfs, 68–81
 ablated by black-widow pulsars, 107
 accreting
 luminosity, temperature, 104
 novae, 104
 type-Ia supernovae, 105
 variability, 104
 as dark matter candidates, 195
 Chandrasekhar mass, 76, 105
cooling
 as cosmic clock, 226
time, 79
initial–final mass relation, 81
low-mass bound due to age of Universe, 77
mass radius relation, 74
mass–temperature relation, 78
mergers, 111
on H–R diagram, 27
 radius, 74
temperature, 78
thermal conduction, 77
Wien law, 13, 16, 31
tail, of blackbody, 14, 20, 29, 124, 126
tail, Sunyaev–Zeldovich effect, 222
WIMP’s (weakly interacting massive particles), 196
X-ray binaries, 95, 101, 105
X-rays
 bremsstrahlung
 from galaxy clusters, 210, 223
 if dark matter were ionized gas, 195
 from Crab pulsar, 91
 from Galactic center, 191
 from old neutron stars, 95
 from quasars and AGN, 203
 from supernova remnants, 137, 145, 153
 from young white dwarfs, 78
 opacity of atmosphere, 19
 synchrotron emission
 in X-ray binaries, 106
young stellar objects, 180