© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents

Acknowledgments vii
Introduction 1
CHAPTER ONE
Mathematics as a Philosophical Challenge 4
CHAPTER TWO
Frege's Logicism 21
CHAPTER THREE
Formalism and Deductivism 38
CHAPTER FOUR
Hilbert's Program 56
CHAPTER FIVE
Intuitionism 73
CHAPTER SIX
Empiricism about Mathematics 88
CHAPTER SEVEN
Nominalism 101
CHAPTER EIGHT
Mathematical Intuition 116
CHAPTER NINE
Abstraction Reconsidered 126
CHAPTER TEN
The Iterative Conception of Sets 139
CHAPTER ELEVEN
Structuralism 154
CHAPTER TWELVE
The Quest for New Axioms 170
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents
Concluding Remarks 183
Bibliography 189
Index 199
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Introduction

MATHEMATICS RAISES A WEALTH of philosophical questions, which have occupied some of the greatest thinkers in history. So when writing this book, some hard choices had to be made.

Let me begin with the aim of the book. Its target audience are advanced undergraduates and graduate students in philosophy, but also mathematicians and others interested in the foundations of one of the most successful, but also most puzzling, human endeavors. For the most part, the book does not presuppose much mathematics. Knowledge of elementary logic, the number systems from the natural numbers up through the reals, and some basic ideas from the calculus will be plenty for all except two late chapters devoted to set theory. While some familiarity with the philosophical mode of thinking will be a clear advantage, I have attempted to explain all relevant philosophical concepts.

I make no attempt to hide my own views concerning what is important and what works. Accordingly, my discussion has some general themes that serve to distinguish it from other introductions to the subject. First, Frege figures prominently in the book, both through his own views and his criticism of other thinkers. While my views often differ from Frege's, I share his fundamental conviction that mathematics is an autonomous science. Like other sciences, mathematics uses a meaningful language to express truths, ever more of which are discovered. Yet mathematics differs profoundly from the paradigmatic empirical sciences concerning the nature of its subject matter and the methods it employs. Following Frege, I am critical of any kind of formalism or fictionalism that deprives mathematics of its status as a body of truths, and of any attempt to assimilate mathematics to the empirical sciences. Frege famously defended the objectivity of mathematics. Just as geographers discover continents and oceans, so mathematicians explore numbers and sets. The two
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Introduction

kinds of object are equally "real" and are described by equally objective truths.

A second theme of the book is how to understand the objects (such as numbers and sets) that mathematics explores. I pay more attention than is customary to the question of whether mathematical objects can be accepted without fully embracing a so-called platonistic conception of them. So I discuss some less demanding conceptions of mathematical objects. Might these objects be explicable in terms of a network of objective mathematical truths? Or might they be constructed by us? Or might they exist only potentially, not actually?

A final theme concerns mathematical knowledge. This knowledge must be explained in a way that links up with the subject matter of mathematics. It is not just an accident that our mathematical beliefs tend to be true. We would like to know why. What is it about our ways of forming mathematical beliefs which ensures that most of the beliefs correctly represent their subject matter? The answer must draw on an account of mathematical evidence. So what evidence do we have for our mathematical beliefs? A variety of answers have been proposed. Perhaps the evidence is logical or conceptual, or broadly perceptual in character, or of some indirect form that flows from mathematical principles' ability to explain and systematize knowledge already established. My approach to the question of mathematical evidence will be pluralist and gradualist. That is, one form of evidence need not exclude another. And evidence may come in degrees, such that the elementary parts of mathematics enjoy a higher degree of evidence than the more advanced parts, especially those of a highly set-theoretic character.

Space considerations have forced me to downplay some issues to make room for a proper discussion of the themes just described. There is no systematic discussion of the philosophy of mathematics before Frege's pioneering works of the 1880s and 1890s. I give only the briefest of introductions to Plato's and Kant's views on the subject. Traditional geometry receives little attention. Other important topics receive none. Examples include Wittgenstein on mathematics, explanation in mathematics, the philosophy of mathematical practice, the use of experimental
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Introduction
and other nontraditional methods in mathematics, and new developments such as homotopy type theory. ${ }^{1}$

The first seven chapters cover topics that tend to be included in any good course in the philosophy of mathematics. The last five chapters discuss more recent developments. These chapters are more specialized and somewhat more demanding, both mathematically and philosophically, but are largely independent of one another (except for Chapter 12, which depends on Chapter 10).

[^0]© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Index

abstraction, 125-30, 164, 183-84; dynamic, 136-38; Fregean, 95, 165, 183; neo-Fregean, 131-36; principles of, 30, 34-37, 135-36, 165
abstract objects, $9-12,38,47,76,94$, 97-98, 101-3, 105-6, 113, 121, $124-25,128,136,150,160,183$. See also mathematical objects
abstract structures, 49-56, 154-56, 158-59, 161, 164-66
analytic, 15-16, 18-19, 23, 25-26, 33, 92-93; Frege's definition of, 24-25, 92
ante rem structuralism. See structuralism: noneliminative
antirealism, 76-77, 81-82, 84-86; about set theory, 171
a posteriori, 15, 17-19, 25, 65, 92
a priori, 4, 6-7, 12, 15-19, 25, 76, 88-89, 134
arithmetic, 16, 21, 25-27, 33-37, 40-43, 45-47, 66, 70, 89-91, 156-57, 178; Frege, 132-133; Heyting, 84; primitive recursive, 65
axioms, 13, 19, 21-24, 34-39, 48, 52-55, 95-96, 171-75; Axiom of infinity, 131; Pairing axiom, 139-140; Powerset axiom, 146; of first-order Dedekind-Peano arithmetic, 157; of second-order Dedekind-Peano arithmetic, 33-34, 36, 41, 157; of ZFC, 141-143

Barrow, John, 155
Basic Law V, 36-37, 129, 132-133, 135-137

Benacerraf, Paul, 12n, 101-4
Berkeley, George, 63, 76
BHK-interpretation of intuitionistic logic, 79-80. See also logic: intuitionistic
Bolzano, Bernard, 22-23, 25, 118
Boolos, George, 140n, 145-48, 153
bridge principles, 42-43, 105, 111
Brouwer, L.E.J., 18-19, 68, 73-74, 76-81, 85-86, 116
Burgess, John, 112

Caesar problem, 36n15, 133
Cantor, Georg, 30n8, 58-62, 68, 75, 152n, 170, 185
calculus, 63-64, 66, 106
cardinal numbers, 30, 59-61, 125-26, 130, 134, 151, 170; large, 173, 175
cardinality, 26, 42, 90-91, 125
Cartesian product, 167-68
category theory, 167-169
Cauchy, Augustin-Louis, 23
Cauchy sequence, $85 n$. See also real analysis
causal theory of knowledge, 103-4
CH . See continuum hypothesis
choice sequence, 85-86
criteria of identity, 124-125, 133; for directions, 126; for numbers, 135
computation, 45-46, 184
confirmational holism, 92-93, 99, 103
conservativeness, 105-6, 110-12
consistency, 43-44, 48, 57, 69-72; relative, 71,177
constructions, 54-55, 74, 168; mental, 73, 76-78
context principle, 28-29
continuum hypothesis, $61,170-73$, 176-81
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Index
cumulative hierarchy, 139, 148, 150, 152, 154, 173, 177, 186. See also iterative conception of sets
Curry, Haskell, 71
Dedekind, Richard, 35, 62, 155-156, 158, 162, 164-65
deductivism, 39, 48, 51-57, 71
Descartes, René, 13, 106, 117
Diophantine equations, 175
Dummett, Michael, 27n, 81
empiricism, 88-89, 116, 185; holistic form of, 92-96, 99
epsilon-delta analysis, 22,63
equivalence relation, 125-126
Euclid, 21, 24, 59
evidence, 2, 116-17; intrinsic, 172-73; extrinsic, 173-76, 180-81; pluralism and gradualism about, 117, 187
extrapolation, 116, 175, 184-85
Feferman, Solomon, 53, 95, 171, 180-81
fictionalism, 1, 19, 69
Field, Hartry H., 102, 104-14
finitary mathematics, 56-57, 65 , 69-73, 120
formalism, 1, 19, 39, 71-72, 185; game, $40-44,48,53,57$; term, 44-48, 56, 64, 184
formal system, 24, 39-40, 48, 53, 55, 70-71, 185
Fraenkel, Abraham, 141-142
Frege, Gottlob, 1-2, 8, 10-11, 13, 16, 18-19, 21, 23-45, 47, 62, 77-79, 89-92, 94, 98, 116, 126-30, 132-33, 164-65, 185-86; his argument for the existence of abstract objects, 27, 101-2; his bootstrapping argument, 131, 137. See also abstraction: Fregean, arithmetic: Frege and theorems: Frege's theorem

Friedman, Michael, 96
Føllesdal, Dagfinn, 122-24
Galois, Évariste, 170
Gauss, Carl Friedrich, 4
geometry, 2, 6-7, 8n, 16, 23, 50-52, 74, 111, 176-78, 181, 184; coordinate-free (synthetic) vs. coordinate-based (analytic), 106; Euclidean, 50-51, 76, 107, 176-77; non-Euclidean, 50, 76, 155, 176-77; projective, 69; Riemannian, 96
Goldman, Alvin, 104
Gödel, Kurt, 70-71, 116-18, 120, 140, 143-45, 147, 149-51, 170-75, 177-80, 187
Gödel sentence, 111-12, 172-73
group theory, 49,52
Hale, Bob, 129, 132-35
Heine, H. E., 45
Heyting, Arend, 74, 78-79. See also arithmetic: Heyting
Hilbert, David, 50-52, 56-58, 62-74, $77,83,107,116,118,120,122-23$, 155, 160, 170, 184; his program, 44, 56-57, 71, 73
Hilbert space, 109, 115
Hilbert strokes, 56, 64-65, 68, 77, 118, 120, 184
(HP). See Hume's Principle
Hume, David, 30, 88
Hume's Principle, 30, 33-37, 125, 132-35, 137-38
Husserl, Edmund, 78, 121-122
ideal elements, 68-70
idealization, 184
if-then-ism. See deductivism
imaginary number $i, 45,69$
indispensability argument, 89, 97-99, 115
inference to the best explanation, 175 , 181
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Index

infinitary mathematics, 56-57, 68-69, 73,123 ,
infinity, 184-185; actual, 58, 61, 65, 75,85 ; Dedekind, $59 n$; potential, 58, 64-68, 75, 82-85, 151, 186
infinitesimals, 63
in re structuralism. See structuralism: eliminative
integration challenge, $12-15,28$, 102-4, 124, 186-87
intuition, 16-18, 21-23, 28, 65, 77, 88, $93,95,116-25,172-73,175,187$
intuitionism, 18, 73-87, 184
isomorphism, 49-50, 60, 107, 156, 158, 164-68, 176, 178-79, 181
iterative conception of sets, 139-54, $164,172-73,178-80,185$; modal explication of the, 151-53

Kant, Immanuel, 2, 15-19, 21, 24-26, $33,56,64-65,72,76-78,88-89$, 93, 95, 116, 118, 120, 122

Kolmogorov, A. N., 79
Kreisel, Georg, 32
law of excluded middle, 67-68, 75, 80
Leibniz's Law, 133, 163
Liouville, Joseph, 75
logic, 1, 18-19, 21, 24-25, 29, 31, $33-34,37,67-68,74,76,131$; first-order, $24,90,105,110,157$; intuitionistic, 79-82, 84-85; modal, $67 \mathrm{n}, 152-153$; plural, 89-90; second-order, $24,49,110$, 132, 160
logical truth, 16, 21, 131, 133-34
logicism, 19, 21-37

Maddy, Penelope, 9n5, 102, 119-120, 123, 181
Malament, David, 109, 114
mathematical objects, 2, 9-11, 21, 27-28, 31-32, 50, 67, 75-76, 78, 97-98, 101-2, 110, 123, 127, 151, 160-61, 164, 165n, 175, 186;
incompleteness claim about, 162-63; as representational aids, 112-113
Melia, Joseph, 112
metamathematics, $24,53,55-57,74$, 185
Mill, John Stuart, 18-19, 89-92, 94
model, 54, 178-179; of the constructible hierarchy, $L, 177$; problem of model existence, 54-57, 159-61
naturalism, 98, 109
necessity, 7-9, 67n, 160
neo-Fregeanism, 131-35
Newtonian theory of gravitation, 106-8, 175
nominalism, 98-101, 109, 112-114
nondistributive properties, 90
ontological dependence, 149
ordinal numbers, 59-60, 77, 139, 145, 147-48; finite von Neumann, 162
paradox, 58-62, 143-44, 150, 152; Galileo's, 58-60; Russell's, 36, 62, 129-31, 133, 137, 144
parallel postulate, 176-77
Parsons, Charles, 95, 117, 120-24, 148
patterns. See abstract stuctures
perception, $14-15,21,103,118$, 120-22, 124-25, 172, 174-75; quasi-, 120-22
Plato, 2, 6-7, 10-12, 17-19, 38, 88, 93, 102, 184
platonism, 2, 4-6, 7, 10-12, 21, 32, 38, 67-68, 70, 76, 97, 99, 104-6, 110-12, 127, 150, 156, 159, 161, 163, 186
platonistic conception of mathematics, See platonism
pluralist conception of mathematics, 87n13, 176-82
possible worlds, $8,68 \mathrm{n}, 153$
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Index
powerset, 61. See also axioms:
Powerset axiom
proof, 5, 15, 22-25, 38-39, 79-81,
185-86; nonconstructive
existence, $74-75$; by reductio ad
absurdum, 80; theory, 71, 110-12
psychologism, 77-78
Putnam, Hilary, 52, 54, 97, 105
quasi-concreteness, 47, 53, 56-57, 64-65, 120-21, 123
Quine, W. V., 12, 18-19, 89, 92-97, $99,116,124$; his attack on the analytic-synthetic distinction, 92-93

Ramsey, F. P., 130
real analysis, 85-87; rigorization of, 23, 118
realism, 31-32, 79, 171; object, 9-10, $11 \mathrm{n}, 27,31-32,67,101,104,161$, 186; truth-value, 31-32, 161; working, 68
realizability interpretation of intuitionistic logic, 84
reconceptualization, 128, 134-35
reflection principle, 147, 153
reification, 124
Resnik, Michael, 162
rewrite rules, 45-46
Russell, Bertrand, 36, 116, 119, 129-31, 141, 145, 163, 174-75. See also paradox: Russell's
schematic generalities, 66-67, 83
semantics, 27, 38, 79-81, 98, 101, 161; proof-conditional vs. truth-conditional, 80-81
set comprehension, 62, 141, 142
set theory, $1,55,58-63,75,95$, 111-12, 118-20, 131, 135, $139-45,148-50,154,159-60$, $167-68,170-72,180-81$; actualism and potentialism about, 150-153; monism and
pluralism about, 176-79; naive, 62, 141-53
simple theory of types, 130-31, 141, 145
simply infinite system, 41, 158-62, 165
Skolem, Thoralf, 65, 141-42
stage theory, 145-147. See also ZFC and iterative conception of sets
strict potentialism, 83-84. See also infinity: potential
structuralism, 154-56, 167-69, 184; eliminative, 156-61;
methodological form of, 154-55;
modal, 160-61; noneliminative, 156, 161-64, 169, 186; set-theoretic, 55, 159-60, 184
structural properties, 52, 158-59
STT. See simple theory of types
substantivalism, 108
successor function, 46, 67-68, 82 , 157
syntax, 38-39, 40, 44-46, 53, 56, 120, 184
synthetic, $15,19,25,88,92-93$; a priori, 16-19, 25, 88

Tait, William, 65
Tarski, Alfred, 107
theorems, 18-19, 22, 27, 51; Cantor's theorem, 61; Dedekind's categoricity theorem, 158, 165n; Euclid's theorem, 65-66; Frege's theorem, 33-36, 133; Gödel's First and Second Incompleteness, 70-73, 75, 111; of Heyting arithmetic, 84 ; intermediate value theorem, 22,118 ; Löwenheim-Skolem theorem, 179n; representation, 107-8, 114, 184; Zermelo's quasi-categoricity theorem, 179
Thomae, Carl Johannes, 38, 40-41
topology, 74, 123, 167
transcendental numbers, 75
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
type theory, 143-144. See also simple theory of types
type-token distinction, 39-40, 47, 118, 121-22, 165
universals, 119,156 ; structured, 166
use-mention distinction, 39-40
verificationist account of meaning, 92-93
von Neumann, John, 71

Weierstrass, Karl, 23, 63
Weyl, Hermann, 87
Whitehead, Alfred North, 129-31, 141
Wittgenstein, Ludwig, 2, 14, 82
Wright, Crispin, 37, 129, 132-35

Yablo, Stephen, 109, 112

Zermelo, Ernst, 141, 151-52, 174, 179
ZFC, 139-43, 145-46, 148, 170-73, 177. See also set theory

ZF2, 179-180

[^0]: ${ }^{1}$ Useful introductions to these topics can be found in Rodych (2011), Mancosu $(2015,2008)$, Baker (2015), and Awodey (2014), respectively.

