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Introduction

MATHEMATICS RAISES A WEALTH of philosophical questions,
which have occupied some of the greatest thinkers in his-
tory. So when writing this book, some hard choices had to be
made.

Let me begin with the aim of the book. Its target audience are
advanced undergraduates and graduate students in philosophy,
but also mathematicians and others interested in the foundations
of one of the most successful, but also most puzzling, human
endeavors. For the most part, the book does not presuppose
much mathematics. Knowledge of elementary logic, the number
systems from the natural numbers up through the reals, and
some basic ideas from the calculus will be plenty for all except
two late chapters devoted to set theory. While some familiarity
with the philosophical mode of thinking will be a clear ad-
vantage, I have attempted to explain all relevant philosophical
concepts.

I make no attempt to hide my own views concerning what
is important and what works. Accordingly, my discussion has
some general themes that serve to distinguish it from other
introductions to the subject. First, Frege figures prominently
in the book, both through his own views and his criticism of
other thinkers. While my views often differ from Frege’s, I share
his fundamental conviction that mathematics is an autonomous
science. Like other sciences, mathematics uses a meaningful lan-
guage to express truths, ever more of which are discovered. Yet
mathematics differs profoundly from the paradigmatic empirical
sciences concerning the nature of its subject matter and the
methods it employs. Following Frege, I am critical of any kind of
formalism or fictionalism that deprives mathematics of its status
as a body of truths, and of any attempt to assimilate mathematics
to the empirical sciences. Frege famously defended the objectivity
of mathematics. Just as geographers discover continents and
oceans, so mathematicians explore numbers and sets. The two
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kinds of object are equally “real” and are described by equally
objective truths.

A second theme of the book is how to understand the objects
(such as numbers and sets) that mathematics explores. I pay
more attention than is customary to the question of whether
mathematical objects can be accepted without fully embracing a
so-called platonistic conception of them. So I discuss some less
demanding conceptions of mathematical objects. Might these
objects be explicable in terms of a network of objective mathe-
matical truths? Or might they be constructed by us? Or might
they exist only potentially, not actually?

A final theme concerns mathematical knowledge. This knowl-
edge must be explained in a way that links up with the subject
matter of mathematics. It is not just an accident that our math-
ematical beliefs tend to be true. We would like to know why.
What is it about our ways of forming mathematical beliefs which
ensures that most of the beliefs correctly represent their subject
matter? The answer must draw on an account of mathematical
evidence. So what evidence do we have for our mathematical
beliefs? A variety of answers have been proposed. Perhaps
the evidence is logical or conceptual, or broadly perceptual in
character, or of some indirect form that flows frommathematical
principles’ ability to explain and systematize knowledge already
established. My approach to the question of mathematical ev-
idence will be pluralist and gradualist. That is, one form of
evidence need not exclude another. And evidence may come in
degrees, such that the elementary parts of mathematics enjoy
a higher degree of evidence than the more advanced parts,
especially those of a highly set-theoretic character.

Space considerations have forced me to downplay some
issues to make room for a proper discussion of the themes just
described. There is no systematic discussion of the philosophy of
mathematics before Frege’s pioneering works of the 1880s and
1890s. I give only the briefest of introductions to Plato’s and
Kant’s views on the subject. Traditional geometry receives little
attention. Other important topics receive none. Examples in-
cludeWittgenstein onmathematics, explanation inmathematics,
the philosophy of mathematical practice, the use of experimental2
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and other nontraditional methods in mathematics, and new
developments such as homotopy type theory.1

The first seven chapters cover topics that tend to be included
in any good course in the philosophy of mathematics. The last
five chapters discuss more recent developments. These
chapters are more specialized and somewhat more demanding,
both mathematically and philosophically, but are largely
independent of one another (except for Chapter 12, which
depends on Chapter 10).

1 Useful introductions to these topics can be found in Rodych (2011),
Mancosu (2015, 2008), Baker (2015), and Awodey (2014), respectively. 3
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