Contents

Figures xiii
Tables xv
Preface xvii

Part I Static Portfolio Choice and Asset Pricing

1 Choice under Uncertainty 3
 1.1 Expected Utility .. 3
 1.1.1 Sketch of von Neumann-Morgenstern Theory 4
 1.2 Risk Aversion .. 5
 1.2.1 Jensen’s Inequality and Risk Aversion 5
 1.2.2 Comparing Risk Aversion 7
 1.2.3 The Arrow-Pratt Approximation 9
 1.3 Tractable Utility Functions 10
 1.4 Critiques of Expected Utility Theory 12
 1.4.1 Allais Paradox .. 12
 1.4.2 Rabin Critique ... 13
 1.4.3 First-Order Risk Aversion and Prospect Theory 14
 1.5 Comparing Risks ... 15
 1.5.1 Comparing Risks with the Same Mean 16
 1.5.2 Comparing Risks with Different Means 18
 1.5.3 The Principle of Diversification 19
 1.6 Solution and Further Problems 20

2 Static Portfolio Choice 23
 2.1 Choosing Risk Exposure 23
 2.1.1 The Principle of Participation 23
 2.1.2 A Small Reward for Risk 24
 2.1.3 The CARA-Normal Case 25
 2.1.4 The CRRRA-Lognormal Case 27
 2.1.5 The Growth-Optimal Portfolio 30
 2.2 Combining Risky Assets 30
 2.2.1 Two Risky Assets 31
Contents

2.2.2 One Risky and One Safe Asset 33
2.2.3 N Risky Assets ... 34
2.2.4 The Global Minimum-Variance Portfolio 35
2.2.5 The Mutual Fund Theorem 39
2.2.6 One Riskless Asset and N Risky Assets 39
2.2.7 Practical Difficulties 42
2.3 Solutions and Further Problems 43

3 Static Equilibrium Asset Pricing 47
 3.1 The Capital Asset Pricing Model (CAPM) 47
 3.1.1 Asset Pricing Implications of the Sharpe-Lintner CAPM 48
 3.1.2 The Black CAPM .. 50
 3.1.3 Beta Pricing and Portfolio Choice 51
 3.1.4 The Black-Litterman Model 54
 3.2 Arbitrage Pricing and Multifactor Models 55
 3.2.1 Arbitrage Pricing in a Single-Factor Model 55
 3.2.2 Multifactor Models 59
 3.2.3 The Conditional CAPM as a Multifactor Model 60
 3.3 Empirical Evidence .. 61
 3.3.1 Test Methodology 61
 3.3.2 The CAPM and the Cross-Section of Stock Returns 66
 3.3.3 Alternative Responses to the Evidence 72
 3.4 Solution and Further Problems 77

4 The Stochastic Discount Factor 83
 4.1 Complete Markets ... 83
 4.1.1 The SDF in a Complete Market 83
 4.1.2 The Riskless Asset and Risk-Neutral Probabilities 84
 4.1.3 Utility Maximization and the SDF 85
 4.1.4 The Growth-Optimal Portfolio and the SDF 85
 4.1.5 Solving Portfolio Choice Problems 86
 4.1.6 Perfect Risksharing 87
 4.1.7 Existence of a Representative Agent 88
 4.1.8 Heterogeneous Beliefs 89
 4.2 Incomplete Markets .. 90
 4.2.1 Constructing an SDF in the Payoff Space 90
 4.2.2 Existence of a Positive SDF 92
 4.3 Properties of the SDF 93
 4.3.1 Risk Premia and the SDF 93
 4.3.2 Volatility Bounds 95
 4.3.3 Entropy Bound ... 100
 4.3.4 Factor Structure .. 102
 4.3.5 Time-Series Properties 102
 4.4 Generalized Method of Moments 103
 4.4.1 Asymptotic Theory 104
 4.4.2 Important GMM Estimators 105
 4.4.3 Traditional Tests in the GMM Framework 107
 4.4.4 GMM in Practice .. 109
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Limits of Arbitrage</td>
<td>112</td>
</tr>
<tr>
<td>4.6</td>
<td>Solutions and Further Problems</td>
<td>114</td>
</tr>
</tbody>
</table>

Part II Intertemporal Portfolio Choice and Asset Pricing

<table>
<thead>
<tr>
<th>5</th>
<th>Present Value Relations</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Market Efficiency</td>
<td>121</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Tests of Autocorrelation in Stock Returns</td>
<td>124</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Empirical Evidence on Autocorrelation in Stock Returns</td>
<td>125</td>
</tr>
<tr>
<td>5.2</td>
<td>Present Value Models with Constant Discount Rates</td>
<td>127</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Dividend-Based Models</td>
<td>127</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Earnings-Based Models</td>
<td>131</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Rational Bubbles</td>
<td>132</td>
</tr>
<tr>
<td>5.3</td>
<td>Present Value Models with Time-Varying Discount Rates</td>
<td>134</td>
</tr>
<tr>
<td>5.3.1</td>
<td>The Campbell-Shiller Approximation</td>
<td>134</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Short- and Long-Term Return Predictability</td>
<td>137</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Interpreting US Stock Market History</td>
<td>140</td>
</tr>
<tr>
<td>5.3.4</td>
<td>VAR Analysis of Returns</td>
<td>143</td>
</tr>
<tr>
<td>5.4</td>
<td>Predictive Return Regressions</td>
<td>144</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Stambaugh Bias</td>
<td>145</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Recent Responses Using Financial Theory</td>
<td>146</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Other Predictors</td>
<td>148</td>
</tr>
<tr>
<td>5.5</td>
<td>Drifting Steady-State Models</td>
<td>150</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Volatility and Valuation</td>
<td>150</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Drifting Steady-State Valuation Model</td>
<td>151</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Inflation and the Fed Model</td>
<td>153</td>
</tr>
<tr>
<td>5.6</td>
<td>Present Value Logic and the Cross-Section of Stock Returns</td>
<td>153</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Quality as a Risk Factor</td>
<td>154</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Cross-Sectional Measures of the Equity Premium</td>
<td>154</td>
</tr>
<tr>
<td>5.7</td>
<td>Solution and Further Problems</td>
<td>156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Consumption-Based Asset Pricing</th>
<th>161</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Lognormal Consumption with Power Utility</td>
<td>162</td>
</tr>
<tr>
<td>6.2</td>
<td>Three Puzzles</td>
<td>163</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Responses to the Puzzles</td>
<td>166</td>
</tr>
<tr>
<td>6.3</td>
<td>Beyond Lognormality</td>
<td>168</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Time-Varying Disaster Risk</td>
<td>173</td>
</tr>
<tr>
<td>6.4</td>
<td>Epstein-Zin Preferences</td>
<td>176</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Deriving the SDF for Epstein-Zin Preferences</td>
<td>178</td>
</tr>
<tr>
<td>6.5</td>
<td>Long-Run Risk Models</td>
<td>182</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Predictable Consumption Growth</td>
<td>182</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Heteroskedastic Consumption</td>
<td>184</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Empirical Specification</td>
<td>186</td>
</tr>
<tr>
<td>6.6</td>
<td>Ambiguity Aversion</td>
<td>187</td>
</tr>
<tr>
<td>6.7</td>
<td>Habit Formation</td>
<td>191</td>
</tr>
<tr>
<td>6.7.1</td>
<td>A Ratio Model of Habit</td>
<td>192</td>
</tr>
<tr>
<td>6.7.2</td>
<td>The Campbell-Cochrane Model</td>
<td>193</td>
</tr>
<tr>
<td>6.7.3</td>
<td>Alternative Models of Time-Varying Risk Aversion</td>
<td>198</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>Durable Goods</td>
<td>199</td>
</tr>
<tr>
<td>6.9</td>
<td>Solutions and Further Problems</td>
<td>201</td>
</tr>
<tr>
<td>7</td>
<td>Production-Based Asset Pricing</td>
<td>207</td>
</tr>
<tr>
<td>7.1</td>
<td>Physical Investment with Adjustment Costs</td>
<td>207</td>
</tr>
<tr>
<td>7.1.1</td>
<td>A (q)-Theory Model of Investment</td>
<td>208</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Investment Returns</td>
<td>212</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Explaining Firms’ Betas</td>
<td>214</td>
</tr>
<tr>
<td>7.2</td>
<td>General Equilibrium with Production</td>
<td>215</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Long-Run Consumption Risk in General Equilibrium</td>
<td>215</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Variable Labor Supply</td>
<td>220</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Habit Formation in General Equilibrium</td>
<td>222</td>
</tr>
<tr>
<td>7.3</td>
<td>Marginal Rate of Transformation and the SDF</td>
<td>222</td>
</tr>
<tr>
<td>7.4</td>
<td>Solution and Further Problem</td>
<td>226</td>
</tr>
<tr>
<td>8</td>
<td>Fixed-Income Securities</td>
<td>229</td>
</tr>
<tr>
<td>8.1</td>
<td>Basic Concepts</td>
<td>230</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Yields and Holding-Period Returns</td>
<td>230</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Forward Rates</td>
<td>234</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Coupon Bonds</td>
<td>236</td>
</tr>
<tr>
<td>8.2</td>
<td>The Expectations Hypothesis of the Term Structure</td>
<td>237</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Restrictions on Interest Rate Dynamics</td>
<td>238</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Empirical Evidence</td>
<td>239</td>
</tr>
<tr>
<td>8.3</td>
<td>Affine Term Structure Models</td>
<td>241</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Completely Affine Homoskedastic Single-Factor Model</td>
<td>242</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Completely Affine Heteroskedastic Single-Factor Model</td>
<td>245</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Essentially Affine Models</td>
<td>246</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Strong Restrictions and Hidden Factors</td>
<td>249</td>
</tr>
<tr>
<td>8.4</td>
<td>Bond Pricing and the Dynamics of Consumption Growth and Inflation</td>
<td>250</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Real Bonds and Consumption Dynamics</td>
<td>250</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Permanent and Transitory Shocks to Marginal Utility</td>
<td>252</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Real Bonds, Nominal Bonds, and Inflation</td>
<td>254</td>
</tr>
<tr>
<td>8.5</td>
<td>Interest Rates and Exchange Rates</td>
<td>257</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Interest Parity and the Carry Trade</td>
<td>258</td>
</tr>
<tr>
<td>8.5.2</td>
<td>The Domestic and Foreign SDF</td>
<td>260</td>
</tr>
<tr>
<td>8.6</td>
<td>Solution and Further Problem</td>
<td>264</td>
</tr>
<tr>
<td>9</td>
<td>Intertemporal Risk</td>
<td>269</td>
</tr>
<tr>
<td>9.1</td>
<td>Myopic Portfolio Choice</td>
<td>270</td>
</tr>
<tr>
<td>9.2</td>
<td>Intertemporal Hedging</td>
<td>272</td>
</tr>
<tr>
<td>9.2.1</td>
<td>A Simple Example</td>
<td>272</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Hedging Interest Rates</td>
<td>273</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Hedging Risk Premia</td>
<td>277</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Alternative Approaches</td>
<td>283</td>
</tr>
<tr>
<td>9.3</td>
<td>The Intertemporal CAPM</td>
<td>283</td>
</tr>
<tr>
<td>9.3.1</td>
<td>A Two-Beta Model</td>
<td>283</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Hedging Volatility: A Three-Beta Model</td>
<td>287</td>
</tr>
<tr>
<td>9.4</td>
<td>The Term Structure of Risky Assets</td>
<td>290</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Stylized Facts</td>
<td>290</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Asset Pricing Theory and the Risky Term Structure</td>
<td>291</td>
</tr>
</tbody>
</table>
Contents

9.5 Learning ... 295
9.6 Solutions and Further Problems 299

Part III Heterogeneous Investors

10 Household Finance .. 307
 10.1 Labor Income and Portfolio Choice 308
 10.1.1 Static Portfolio Choice Models 308
 10.1.2 Multiperiod Portfolio Choice Models 312
 10.1.3 Labor Income and Asset Pricing 316
 10.2 Limited Participation ... 318
 10.2.1 Wealth, Participation, and Risktaking 318
 10.2.2 Asset Pricing Implications of Limited Participation 322
 10.3 Underdiversification .. 323
 10.3.1 Empirical Evidence .. 324
 10.3.2 Effects on the Wealth Distribution 327
 10.3.3 Asset Pricing Implications of Underdiversification 329
 10.4 Responses to Changing Market Conditions 331
 10.5 Policy Responses .. 334
 10.6 Solutions and Further Problems 335

11 Risksharing and Speculation 341
 11.1 Incomplete Markets ... 342
 11.1.1 Asset Pricing with Uninsurable Income Risk 342
 11.1.2 Market Design with Incomplete Markets 345
 11.1.3 General Equilibrium with Imperfect Risksharing 346
 11.2 Private Information ... 347
 11.3 Default .. 349
 11.3.1 Punishment by Exclusion 349
 11.3.2 Punishment by Seizure of Collateral 353
 11.4 Heterogeneous Beliefs .. 354
 11.4.1 Noise Traders .. 354
 11.4.2 The Harrison-Kreps Model 356
 11.4.3 Endogenous Margin Requirements 359
 11.5 Solution and Further Problems 363

12 Asymmetric Information and Liquidity 371
 12.1 Rational Expectations Equilibrium 372
 12.1.1 Fully Revealing Equilibrium 372
 12.1.2 Partially Revealing Equilibrium 375
 12.1.3 News, Trading Volume, and Returns 378
 12.1.4 Equilibrium with Costly Information 380
 12.1.5 Higher-Order Expectations 383
 12.2 Market Microstructure .. 384
 12.2.1 Information and the Bid-Ask Spread 385
 12.2.2 Information and Market Impact 389
 12.2.3 Diminishing Returns in Active Asset Management 392
 12.3 Liquidity and Asset Pricing 392
 12.3.1 Constant Trading Costs and Asset Prices 393
 12.3.2 Random Trading Costs and Asset Prices................. 395

For general queries contact webmaster@press.princeton.edu.
Contents

12.3.3 Margins and Asset Prices .. 396
12.3.4 Margins and Trading Costs 397
12.4 Solution and Further Problems 400

References ... 405

Index ... 435
ASSET PRICING THEORY aims to describe the equilibrium in financial markets, where economic agents interact to trade claims to uncertain future payoffs. Both adjectives, “uncertain” and “future,” are important—as suggested by the title of Christian Gollier’s book *The Economics of Risk and Time* (2001)—but in this chapter we review the basic theory of choice under uncertainty, ignoring time by assuming that all uncertainty is resolved at a single future date. The chapter draws on both Gollier (2001) and Ingersoll (1987).

Section 1.1 begins by briefly reviewing the axiomatic foundations of expected utility theory. Section 1.2 applies expected utility theory to the measurement of risk aversion and the comparison of risk aversion across agents. Section 1.3 discusses the hyperbolic absolute risk averse (HARA) class of utility functions, which are widely used because they are so tractable in applications. Section 1.4 discusses critiques of expected utility theory, including the Allais (1953) paradox and the Rabin (2000) critique. Section 1.5 shows how to compare the riskiness of different distributions.

1.1 Expected Utility

Standard microeconomics represents preferences using ordinal utility functions. An ordinal utility function $\Upsilon(.)$ tells you that an agent is indifferent between x and y if $\Upsilon(x) = \Upsilon(y)$ and prefers x to y if $\Upsilon(x) > \Upsilon(y)$. Any strictly increasing function of $\Upsilon(.)$ will have the same properties, so the preferences expressed by $\Upsilon(.)$ are the same as those expressed by $\Theta(\Upsilon(.))$ for any strictly increasing Θ. In other words, ordinal utility is invariant to monotonically increasing transformations. It defines indifference curves, but there is no way to label the curves so that they have meaningful values.

A cardinal utility function $\Psi(.)$ is invariant to positive affine (increasing linear) transformations but not to nonlinear transformations. The preferences expressed by $\Psi(.)$ are the same as those expressed by $a + b\Psi(.)$ for any $b > 0$. In other words, cardinal utility has no natural units, but given a choice of units, the rate at which cardinal utility increases is meaningful.

Asset pricing theory relies heavily on von Neumann-Morgenstern utility theory, which says that choice over lotteries, satisfying certain axioms, implies maximization of the expectation of a cardinal utility function, defined over outcomes.
1. Choice under Uncertainty

1.1.1 Sketch of von Neumann-Morgenstern Theory

The content of von Neumann-Morgenstern utility theory is easiest to understand in a discrete-state example. Define states $s = 1 \ldots S$, each of which is associated with an outcome x_s in a set X. Probabilities p_s of the different outcomes then define lotteries. When $S = 3$, we can draw probabilities in two dimensions (since $p_3 = 1 - p_1 - p_2$). We get the so-called Machina triangle (Machina 1982), illustrated in Figure 1.1.

We define a compound lottery as one that determines which primitive lottery we are given. For example, a compound lottery L might give us lottery L^a with probability α and lottery L^b with probability $(1 - \alpha)$. Then L has the same probabilities over the outcomes as $\alpha L^a + (1 - \alpha) L^b$.

We define a preference ordering \succeq over lotteries. A person is indifferent between lotteries L^a and L^b, $L^a \sim L^b$, if and only if $L^a \succeq L^b$ and $L^b \succeq L^a$.

Next we apply two axioms of choice over lotteries.

Continuity axiom: For all L^a, L^b, L^c s.t. $L^a \succeq L^b \succeq L^c$, there exists a scalar $\alpha \in [0, 1]$ s.t.

$$L^b \sim \alpha L^a + (1 - \alpha) L^c.$$ \hspace{1cm} (1.1)

This axiom says that if three lotteries are (weakly) ranked in order of preference, it is always possible to find a compound lottery that mixes the highest-ranked and lowest-ranked lotteries in such a way that the economic agent is indifferent between this compound lottery and the middle-ranked lottery. The axiom implies the existence of a preference functional defined over lotteries, that is, an ordinal utility function for lotteries that enables us to draw indifference curves on the Machina triangle.

Independence axiom:

$$L^a \succeq L^b \Rightarrow \alpha L^a + (1 - \alpha) L^c \succeq \alpha L^b + (1 - \alpha) L^c$$ \hspace{1cm} (1.2)

for all possible lotteries L^c.

!Machina Triangle

Figure 1.1. Machina Triangle

For general queries, contact webmaster@press.princeton.edu
1.2. Risk Aversion

This axiom says that if two lotteries are ranked in order of preference, then the same rank order applies to two compound lotteries, each of which combines one of the original two lotteries with an arbitrary third lottery, using the same mixing weights in each case.

The independence axiom implies that the preference functional is linear in probabilities. In the Machina triangle, the indifference curves are straight lines, as illustrated in Figure 1.1. This means that a given increase in one probability, say \(p_1 \), requires the same change in another probability, say \(p_3 \), to leave the agent indifferent regardless of the initial levels of \(p_1 \) and \(p_3 \).

Then we can define a scalar \(u_s \) for each outcome \(x_s \) s.t.

\[
L^a \Succ L^b \Rightarrow \sum_{s=1}^{S} p^a_s u_s \geq \sum_{s=1}^{S} p^b_s u_s. \tag{1.3}
\]

The scalars \(u_s \) define the slopes of the linear indifference curves in the Machina triangle. Since probabilities sum to one and a constant can be added to all \(u_s \) without changing preferences, two scalars can be normalized (say the lowest to zero and the highest to one).

Equation (1.3) shows that a lottery is valued by the probability-weighted average of the scalars \(u_s \) associated with each outcome \(x_s \). Call these scalars “utilities.” A probability-weighted average of utilities \(u_s \) in each state \(s \) is the mathematical expectation of the random variable “utility” that takes the value \(u_s \) in state \(s \). Hence, we have implicitly defined a cardinal utility function \(u(x_s) \), defined over outcomes, such that the agent prefers the lottery that delivers a higher expectation of this function. The free normalization of lowest and highest utility corresponds to the two arbitrary parameters \(a \) and \(b \) that define the units in which cardinal utility is measured.

This construction can be generalized to handle continuous states. Strictly speaking, the resulting utility function must be bounded above and below, but this requirement is routinely ignored in modern applications of utility theory.

1.2 Risk Aversion

We now assume the existence of a cardinal utility function and ask what it means to say that the agent whose preferences are represented by that utility function is risk averse. We also discuss the quantitative measurement of risk aversion.

To bring out the main ideas as simply as possible, we assume that the argument of the utility function is wealth. This is equivalent to working with a single consumption good in a static two-period model where all wealth is liquidated and consumed in the second period, after uncertainty is resolved. Later in the book we discuss richer models in which consumption takes place in many periods, and also some models with multiple consumption goods.

For simplicity we also work with weak inequalities and weak preference orderings throughout. The extension to strict inequalities and strong preference orderings is straightforward.

1.2.1 Jensen’s Inequality and Risk Aversion

An important mathematical result, Jensen’s Inequality, can be used to link the concept of risk aversion to the concavity of the utility function. We start by defining concavity for a function \(f \).
1. Choice under Uncertainty

Definition. \(f \) is concave if and only if, for all \(\lambda \in [0, 1] \) and values \(a, b \),

\[
\lambda f(a) + (1-\lambda)f(b) \leq f(\lambda a + (1-\lambda) b).
\]

(1.4)

If \(f \) is twice differentiable, then concavity implies that \(f'' \leq 0 \). Figure 1.2 illustrates a concave function.

Note that because the inequality is weak in the above definition, a linear function is concave. Strict concavity uses a strong inequality and excludes linear functions, but we proceed with the weak concept of concavity.

Now consider a random variable \(\tilde{z} \). **Jensen's Inequality** states that

\[
E f(\tilde{z}) \leq f(E\tilde{z})
\]

for all possible \(\tilde{z} \) if and only if \(f \) is concave.

This result, due to the Danish mathematician and telephone engineer Johan Jensen, is so useful in finance that the field might almost be caricatured as “the economics of Jensen’s Inequality.” As a first application, we can use it to establish the equivalence of risk aversion and concavity of the utility function.

Definition. An agent is risk **averse** if she (weakly) dislikes all zero-mean risk at all levels of wealth. That is, for all initial wealth levels \(W_0 \) and risk \(\tilde{x} \) with \(E\tilde{x} = 0 \),

\[
E u(W_0 + \tilde{x}) \leq u(W_0).
\]

(1.6)

To show that risk aversion is equivalent to concavity of the utility function, we simply rewrite the definition of risk aversion as

\[
E u(\tilde{z}) \leq u(E\tilde{z}),
\]

(1.7)

where \(\tilde{z} = W_0 + \tilde{x} \), and apply Jensen’s Inequality.
1.2. Risk Aversion

Since risk aversion is concavity, and concavity restricts the sign of the second derivative of the utility function (assuming that derivative exists), it is natural to construct a quantitative measure of risk aversion using the second derivative u'', scaled to avoid dependence on the units of measurement for utility. The coefficient of absolute risk aversion $A(W_0)$ is defined by

$$A(W_0) = -\frac{u''(W_0)}{u'(W_0)}.$$ \hspace{1cm} (1.8)

As the notation makes clear, in general this is a function of the initial level of wealth.

1.2.2 Comparing Risk Aversion

Let two agents with utility functions u_1 and u_2 have the same initial wealth. An agent rejects a lottery if taking it lowers expected utility, that is, if the expected utility of initial wealth plus the lottery payout is lower than the utility of initial wealth. Continuing with our use of weak inequalities, we will also say that the agent rejects the lottery if it gives her the same expected utility as the utility of initial wealth.

Definition. u_1 is more risk-averse than u_2 if u_1 rejects all lotteries that u_2 rejects, regardless of the common initial wealth level.

Many utility functions cannot be ranked in this way. It is quite possible for agents to disagree about lotteries at a given initial wealth level (with the first agent accepting some that the second agent rejects and vice versa). It is also quite possible for the initial wealth level to matter, so that the first agent rejects all lotteries that the second agent rejects at a low level of initial wealth, but the second agent rejects all lotteries that the first agent rejects at a higher level of initial wealth.

What else is true if u_1 is more risk-averse than u_2? To answer this question, we first define a function

$$\phi(x) = u_1(u_2^{-1}(x)).$$ \hspace{1cm} (1.9)

This function has three important properties:

(a) $u_1(z) = \phi(u_2(z))$, so $\phi(.)$ turns u_2 into u_1.
(b) $u_1'(z) = \phi'(u_2(z)) u_2'(z)$, so $\phi' = u_1'/u_2' > 0$.
(c) $u_1''(z) = \phi'(u_2(z)) u_2''(z) + \phi''(u_2(z)) u_2'(z)^2$, so

$$\phi'' = \frac{u_1'' - \phi' u_2''}{u_2'^2} = \frac{u_1''}{u_2'^2} (A_2 - A_1).$$ \hspace{1cm} (1.10)

The second of these properties is obtained by differentiating the first, and the third by differentiating the second. This trick (repeated differentiation to obtain restrictions on derivatives) often comes in handy in this field.

The third property is important because it shows that concavity of the function $\phi(x)$, $\phi'' \leq 0$, is equivalent to higher absolute risk aversion for agent 1, $A_1 \geq A_2$.

Now consider a risk \tilde{x} that is rejected by u_2, that is, a risk s.t. $E_{u_2}(W_0 + \tilde{x}) \leq u_2(W_0)$. If u_1 is more risk-averse than u_2, we must also have $E_{u_1}(W_0 + \tilde{x}) \leq u_1(W_0)$. Using the function $\phi(.)$,

$$E_{u_1}(W_0 + \tilde{x}) = E\phi(u_2(W_0 + \tilde{x})), \hspace{1cm} (1.11)$$
while

$$u_1(W_0) = \phi(u_2(W_0)) \geq \phi(Eu_2(W_0 + \tilde{x})) \quad (1.12)$$

since $\phi' > 0$. So for u_1 to be more risk-averse than u_2, we need

$$E\phi(u_2(W_0 + \tilde{x})) \leq \phi(Eu_2(W_0 + \tilde{x})) \quad (1.13)$$

for all \tilde{x}. By Jensen’s Inequality, this is equivalent to the concavity of the function $\phi(x)$,

$$\phi'' \leq 0.$$

Putting these results together, we have shown that if one agent is more risk-averse than another, then the more risk-averse utility function is a concave transformation of the less risk-averse utility function and has a higher coefficient of absolute risk aversion at all levels of initial wealth. We have also shown the converse of these statements.

These concepts can be related to the amounts of wealth that agents are prepared to pay to avoid a zero-mean risk.

Definition. The *risk premium* $\pi(W_0, u, \tilde{x})$ is the greatest amount an agent with initial wealth W_0 and utility function u is willing to pay to avoid a risk \tilde{x}, assumed to have zero mean. Suppressing the arguments for notational simplicity, π is found by solving

$$E_u(W_0 + \tilde{x}) = u(W_0 - \pi). \quad (1.14)$$

Defining $z = W_0 - \pi$ and $\tilde{y} = \pi + \tilde{x}$, this can be rewritten as

$$E_u(z + \tilde{y}) = u(z). \quad (1.15)$$

Now define π_2 as the risk premium for agent 2, and define z_2 and \tilde{y}_2 accordingly. We have

$$E_{u_2}(z_2 + \tilde{y}_2) = u_2(z_2). \quad (1.16)$$

If u_1 is more risk-averse than u_2, then

$$E_{u_1}(z_2 + \tilde{y}_2) \leq u_1(z_2), \quad (1.17)$$

which implies $\pi_1 \geq \pi_2$. The same argument applies in reverse, so $\pi_1 \geq \pi_2$ implies that u_1 is more risk-averse than u_2.

We can extend the above analysis to consider a risk that may have a nonzero mean μ. It pays $\mu + \tilde{x}$ where \tilde{x} has zero mean.

Definition. The *certainty equivalent* C_e satisfies

$$E_u(W_0 + \mu + \tilde{x}) = u(W_0 + C_e). \quad (1.18)$$

This implies that

$$C'_e(W_0, u, \mu + \tilde{x}) = \mu - \pi(W_0 + \mu, u, \tilde{x}). \quad (1.19)$$

Thus if u_1 is more risk-averse than u_2, then $C'_1 \leq C'_2$. Again, the reverse implication also holds.
1.2. Risk Aversion

In summary, the following statements are equivalent:

- u_1 is more risk-averse than u_2.
- u_1 is a concave transformation of u_2 at all initial wealth levels.
- $A_1 \geq A_2$ at all initial wealth levels.
- $\pi_1 \geq \pi_2$ at all initial wealth levels.
- $C_1^\pi \leq C_2^\pi$ at all initial wealth levels.

It is also possible to use the above ideas to ask how risk aversion for a single agent changes with the agent’s level of wealth. It is natural to think that a richer person will care less about a given absolute risk than a poorer person, and will pay less to avoid it; in other words, that the risk premium for any risk should decline with initial wealth W_0.

One can show that the following conditions are equivalent:

- π is decreasing in W_0.
- $A(W_0)$ is decreasing in W_0.
- $-u''$ is a concave transformation of u, so $-u''/u'' \geq -u''/u'$ everywhere. The ratio $-u''/u'' = P$ has been called absolute prudence by Kimball (1990), who relates it to the theory of precautionary saving.

Decreasing absolute risk aversion (DARA) is intuitively appealing. Certainly we should be uncomfortable with increasing absolute risk aversion.

1.2.3 The Arrow-Pratt Approximation

In the previous section, we defined the risk premium and certainty equivalent implicitly, as the solutions to equations (1.14) and (1.18). A famous analysis due to Arrow (1971) and Pratt (1964) shows that when risk is small, it is possible to derive approximate closed-form solutions to these equations.

Consider a zero-mean risk $\tilde{y} = k\tilde{x}$, where k is a scale factor. Write the risk premium as a function of k, $g(k) = \pi(W_0, u, k\tilde{x})$. From the definition of the risk premium, we have

$$E[u(W_0 + k\tilde{x})] = u(W_0 - g(k)). \quad (1.20)$$

Note that $g(0) = 0$, because you would pay nothing to avoid a risk with zero variability.

We now use the trick of repeated differentiation, in this case with respect to k, that was introduced in the previous subsection. Differentiating (1.20), we have

$$E[\tilde{x} u'(W_0 + k\tilde{x})] = -g'(k) u'(W_0 - g(k)). \quad (1.21)$$

At $k = 0$, the left-hand side of (1.21) becomes $E[\tilde{x} u'(W_0)] = E[\tilde{x}] u'(W_0)$, where we can bring $u'(W_0)$ outside the expectations operator because it is deterministic. Since $E[\tilde{x}] = 0$, the left-hand side of (1.21) is zero when $k = 0$, so the right-hand side must also be zero, which implies that $g'(0) = 0$.

We now differentiate with respect to k a second time to get

$$E[\tilde{x}^2 u''(W_0 + k\tilde{x})] = g'(k)^2 u''(W_0 - g(k)) - g''(k) u'(W_0 - g(k)), \quad (1.22)$$

which implies that

$$g''(0) = -u''(W_0) \frac{-E[\tilde{x}^2]}{u'(W_0)} = A(W_0) E[\tilde{x}^2]. \quad (1.23)$$
1. Choice under Uncertainty

Now take a Taylor approximation of \(g(k) \) around the point of zero variability, \(k = 0 \):

\[
g(k) \approx g(0) + kg'(0) + \frac{1}{2} k^2 g''(0). \quad (1.24)
\]

Substituting in the previously obtained values for the derivatives, we get

\[
\pi \approx \frac{1}{2} A(W_0) k^2 \mathbb{E}[\tilde{x}^2] = \frac{1}{2} A(W_0) \mathbb{E}[\tilde{y}^2]. \quad (1.25)
\]

The risk premium is proportional to the square of the risk. This property of differentiable utility is known as second-order risk aversion. It implies that people are approximately risk-neutral with respect to a single small risk (and more generally to small risks that are independent of other risks they face). The coefficient of proportionality is one-half the coefficient of absolute risk aversion, so we have a quantitative prediction linking the risk premium to the scale of risk and the level of risk aversion. This result is the basis for much modern quantitative research.

A similar analysis can be performed for the certainty equivalent. The result is that

\[
C^* \approx k\mu - \frac{1}{2} A(W_0) k^2 \mathbb{E}[\tilde{x}^2]. \quad (1.26)
\]

This shows that the mean has a dominant effect on the certainty equivalent for small risks.

In finance, risks are often multiplicative rather than additive. That is, as the level of wealth invested increases, the absolute scale of the risk increases in proportion. The above theory can easily be modified to handle this case. Define a multiplicative risk by \(\tilde{W} = W_0 (1 + k\tilde{x}) = W_0 (1 + \tilde{y}) \). Define \(\hat{\pi} \) as the share of one’s wealth one would pay to avoid this risk:

\[
\hat{\pi} = \frac{\pi(W_0, u, W_0 k\tilde{x})}{W_0}. \quad (1.27)
\]

Then

\[
\hat{\pi} \approx \frac{1}{2} W_0 A(W_0) k^2 \mathbb{E}[\tilde{x}^2] = \frac{1}{2} R(W_0) \mathbb{E}[\tilde{y}^2], \quad (1.28)
\]

where \(R(W_0) = W_0 A(W_0) \) is the coefficient of relative risk aversion.

1.3 Tractable Utility Functions

Almost all applied theory and empirical work in finance uses some member of the class of utility functions known as linear risk tolerance (LRT) or hyperbolic absolute risk aversion (HARA). Continuing to use wealth as the argument of the utility function, the HARA class of utility functions can be written as

\[
u(W) = a + b \left(\eta + \frac{W}{\gamma} \right)^{1-\gamma}, \quad (1.29)
\]

defined for levels of wealth \(W \) such that \(\eta + W/\gamma > 0 \). The parameter \(a \) and the magnitude of the parameter \(b \) do not affect choices but can be set freely to deliver convenient representations of utility in special cases.
1.3. Tractable Utility Functions

For these utility functions, risk tolerance—the reciprocal of absolute risk aversion—is given by

\[T(W) = \frac{1}{A(W)} = \eta + \frac{W}{\gamma}, \]

(1.30)

which is linear in \(W \). Absolute risk aversion itself is then hyperbolic in \(W \):

\[A(W) = \left(\frac{\eta + W}{\gamma} \right)^{-1}. \]

(1.31)

Relative risk aversion is, of course,

\[R(W) = W \left(\frac{\eta + W}{\gamma} \right)^{-1}. \]

(1.32)

There are several important special cases of HARA utility.

Quadratic utility has \(\gamma = -1 \). This implies that risk tolerance declines in wealth from (1.30), and absolute risk aversion increases in wealth from (1.31). In addition, the quadratic utility function has a "bliss point" at which \(u' = 0 \). These are important disadvantages, although quadratic utility is tractable in models with additive risk and has even been used in macroeconomic models with growth, where trending preference parameters are used to keep the bliss point well above levels of wealth or consumption observed in the data.

Exponential or constant absolute risk averse (CARA) utility is the limit as \(\gamma \to -\infty \). To obtain constant absolute risk aversion \(A \), we need

\[-u''(W) = Au'(W) \]

(1.33)

for all \(W > 0 \). Solving this differential equation, we get

\[u(W) = -\exp(-AW) \]

(1.34)

where \(A = 1/\eta \). This utility function does not have a bliss point, but it is bounded above; utility approaches zero as wealth increases. Exponential utility is tractable with normally distributed risks because then utility is lognormally distributed. In addition, as we will see in the next chapter, it implies that wealth has no effect on the demand for risky assets, which makes it relatively easy to calculate an equilibrium because one does not have to keep track of the wealth distribution.

Power or constant relative risk averse (CRRA) utility has \(\eta = 0 \) and \(\gamma > 0 \). Absolute risk aversion is declining in wealth — a desirable property — while relative risk aversion \(R(W) = \gamma \), a constant. For \(\gamma \neq 1 \), \(a \) and \(b \) in equation (1.29) can be chosen to write utility as

\[u(W) = \frac{W^{1-\gamma} - 1}{1 - \gamma}. \]

(1.35)

For \(\gamma = 1 \), we use L’Hôpital’s rule to take the limit of equation (1.35) as \(\gamma \) approaches one. The result is

\[u(W) = \log(W). \]

(1.36)
1. Choice under Uncertainty

Power utility is appealing because it implies stationary risk premia and interest rates even in the presence of long-run economic growth. Also it is tractable in the presence of multiplicative lognormally distributed risks. For these reasons it is a workhorse model in the asset pricing and macroeconomics literatures and will be used intensively in this book. The special case of log utility has even more convenient properties, but relative risk aversion as low as one is hard to reconcile with the substantial risk premia observed in financial markets as we discuss in Chapter 6.

Subsistence level. A negative η represents a subsistence level, a minimum level of consumption that is required for utility to be defined. Litzenberger and Rubinstein (1976) argued for a model with log utility of wealth above the subsistence level, which they called the Generalized Log Utility Model. The proposal did not gain traction, perhaps in part because economic growth renders any fixed subsistence level irrelevant in the long run.\(^1\) Models of habit formation, discussed in Chapter 6, have time-varying subsistence levels that can grow with the economy.

1.4 Critiques of Expected Utility Theory

1.4.1 Allais Paradox

This famous paradox, due to Allais (1953), challenges the von Neumann-Morgenstern framework. Consider a set of lotteries, each of which involves drawing one ball from an urn containing 100 balls, labeled 0–99. Table 1.1 shows the monetary prizes that will be awarded for drawing each ball, in four different lotteries L^a, L^b, M^a, and M^b.

Lottery L^a offers $50 with certainty, while lottery L^b offers an 89% chance of $50, a 10% chance of $250, and a 1% chance of receiving nothing. Many people, confronted with this choice, prefer L^a to L^b even though the expected winnings are higher for lottery L^b. Lottery M^a offers an 11% chance of winning $50 and an 89% chance of receiving nothing, while lottery M^b offers a 10% chance of winning $250 and a 90% chance of receiving nothing. Many people, confronted with this choice, prefer M^b to M^a.

The challenge to utility theory is that choosing L^a over L^b, while also choosing M^b over M^a, violates the independence axiom. As the structure of the table makes clear, the only difference between L^a and L^b is in the balls labeled 0–10; the balls labeled 11–99 are identical in these two lotteries. This is also true for the pair M^a and M^b. According to the independence axiom, the rewards for drawing balls 11–99 should then be irrelevant.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1–10</th>
<th>11–99</th>
</tr>
</thead>
<tbody>
<tr>
<td>L^a</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>L^b</td>
<td>0</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td>M^a</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>M^b</td>
<td>0</td>
<td>250</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^1\)The model’s gloomy acronym may also have hurt its prospects. Possibly only Deaton and Muellbauer (1980) were less fortunate in this respect.
1.4. Critiques of Expected Utility Theory

to the choices between \(L^a \) and \(L^b \), and \(M^b \) and \(M^a \). But if this is the case, then the two choices are the same because if one considers only balls 0–10, \(L^a \) has the same rewards as \(M^a \), and \(L^b \) has the same rewards as \(M^b \).

There is a longstanding debate over the significance of this paradox. Either people are easily misled (but can be educated) or the independence axiom needs to be abandoned. Relaxing this axiom must be done carefully to avoid creating further paradoxes (Chew 1983, Dekel 1986, Gul 1991). Recent models of dynamic decision making, notably the Epstein and Zin (1989, 1991) preferences discussed in section 6.4, also relax the independence axiom in an intertemporal context, taking care to do so in a way that preserves time consistent decision making.

1.4.2 Rabin Critique

Matthew Rabin (2000) has criticized utility theory on the ground that it cannot explain observed aversion to small gambles without implying ridiculous aversion to large gambles. This follows from the fact that differentiable utility has second-order risk aversion.

To understand Rabin’s critique, consider a gamble that wins $11 with probability 1/2 and loses $10 with probability 1/2. With diminishing marginal utility, the utility of the win is at least \(u'(W_0 + 11) \). The utility cost of the loss is at most \(10u'(W_0 – 10) \). Thus if a person turns down this gamble, we must have \(10u'(W_0 – 10) > 11u'(W_0 + 11) \), which implies

\[
\frac{u'(W_0 + 11)}{u'(W_0 – 10)} < \frac{10}{11}.
\]

Now suppose the person turns down the same gamble at an initial wealth level of \(W_0 + 21 \). Then

\[
\frac{u'(W_0 + 21 + 11)}{u'(W_0 + 21 – 10)} = \frac{u'(W_0 + 32)}{u'(W_0 + 11)} < \frac{10}{11}.
\]

Combining these two inequalities,

\[
\frac{u'(W_0 + 32)}{u'(W_0 – 10)} < \left(\frac{10}{11}\right)^2 = \frac{100}{121}.
\]

If this iteration can be repeated, it implies extremely small marginal utility at high wealth levels, which would induce people to turn down apparently extremely attractive gambles.

Table 1.2 is an extract from Rabin (2000), Table I. The original caption reads “If averse to 50-50 lose $100/gain \(g \) bets for all wealth levels, will turn down 50-50 lose \(L \)/gain \(G \) bets; \(G \)’s entered in table.” Values \(g \) are entered in the column headings, and values \(L \) are entered in the row labels, while the cells of the table report \(G \). In other words, as one moves to the right, each column corresponds to an agent who is turning down more and

\[\text{For example, suppose that } L^a > L^b \text{ and } L^a > L^c \text{ but contrary to the independence axiom } L^d = 0.5L^b + 0.5L^c \text{, then you would pay to switch from } L^c \text{ to } L^d, \text{ but once the uncertainty in the compound lottery } L^d \text{ is resolved, you would pay again to switch back to } L^c. \text{ This is sometimes called the “Dutch book” problem. It can be avoided by imposing Chew’s (1983) property of “betweenness,” that a convex combination of two lotteries (L}^b \text{ and } L}^c \text{ in the example above) cannot be preferred to the more preferred of the two, and the less preferred of the two cannot be preferred to the convex combination.} \]
1. Choice under Uncertainty

Table 1.2. Extract from Rabin (2000), Table I

<table>
<thead>
<tr>
<th>L/g</th>
<th>$101</th>
<th>$105</th>
<th>$110</th>
<th>$125</th>
</tr>
</thead>
<tbody>
<tr>
<td>$400</td>
<td>400</td>
<td>420</td>
<td>550</td>
<td>1,250</td>
</tr>
<tr>
<td>$1,000</td>
<td>1,010</td>
<td>1,570</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$4,000</td>
<td>5,750</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>$10,000</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
</tbody>
</table>

Table 1.3. Extract from Rabin (2000), Table II

<table>
<thead>
<tr>
<th>L/g</th>
<th>$101</th>
<th>$105</th>
<th>$110</th>
<th>$125</th>
</tr>
</thead>
<tbody>
<tr>
<td>$400</td>
<td>400</td>
<td>420</td>
<td>550</td>
<td>1,250</td>
</tr>
<tr>
<td>$1,000</td>
<td>1,010</td>
<td>1,570</td>
<td>718,190</td>
<td>160 billion</td>
</tr>
<tr>
<td>$4,000</td>
<td>5,750</td>
<td>635,670</td>
<td>9.4 trillion</td>
<td></td>
</tr>
<tr>
<td>$10,000</td>
<td>27,780</td>
<td>5.5 million</td>
<td>160 billion</td>
<td></td>
</tr>
</tbody>
</table>

more favorable small gambles. As one moves down the table, each row corresponds to a larger possible loss, and the table entries show the winnings that are required to induce the agent to take the bet. An entry of ∞ implies that the agent will turn down the bet for any finite upside, no matter how large.

A first obvious question is how is it possible for an agent to be unresponsive to arbitrarily large winnings, refusing to risk a finite loss. To promote careful thought, this question is posed as an informal problem and is answered at the end of the chapter. As a clue, Table 1.3 is an extract from Rabin (2000), Table II. The only difference between this and the previous table is that the numbers here are conditional on a specific initial wealth level ($290,000), and the aversion to 50-50 lose $100/gain g bets is known to hold only for wealth levels up to $300,000.

1.4.3 First-Order Risk Aversion and Prospect Theory

Rabin’s critique shows that the standard theory of expected utility cannot explain risk aversion with respect to small gambles over a significant range of wealth levels. At any one level of wealth, one can increase aversion to small gambles within the standard theory by relaxing the assumption that utility is twice differentiable, allowing a kink in the utility function that invalidates the standard formula for the risk premium given in (1.25). Such a kink makes risk aversion locally infinite and implies that the risk premium for a small gamble is proportional to its standard deviation rather than its variance; this is called “first-order” risk aversion by contrast with the “second-order” risk aversion implied by twice differentiable utility (Segal and Spivak 1990). However, this approach only increases aversion to small gambles at a single point, and Rabin’s argument (which does not assume twice differentiability of the utility function) still applies if an agent is averse to small gambles over a range of wealth levels.

In response to this, economists and psychologists have explored models with reference points, in which utility results from gains or losses relative to a reference point that
1.5 Comparing Risks

is often set equal to current wealth. This has the effect of moving the kink in the utility function so that it is always relevant and induces first-order risk aversion at arbitrary levels of initial wealth.

The most famous example is Kahneman and Tversky’s (1979) prospect theory, which has not only a kink at the reference point but also two other features designed to fit experimental evidence on risk attitudes: a preference function that is concave in the domain of gains and convex (risk-seeking) in the domain of losses, and subjective probabilities that are larger than objective probabilities when those probabilities are small. A standard parameterization of the prospect-theory preference function is

\[u(x) = x^\beta \text{ for } x \geq 0, \]
\[u(x) = -\lambda |x|^{\beta} \text{ for } x \leq 0, \]

(1.37)

where \(x = W - W_{REF} \), the difference between wealth and the reference level of wealth. We assume \(0 < \beta < 1 \) to get concavity for gains and convexity for losses, and \(\lambda > 1 \) to deliver a kink at the reference point. Gul’s (1991) disappointment averse preferences also have a kink at a reference point set equal to the endogenous certainty equivalent of a gamble (Backus, Routledge, and Zin 2004).

Barberis, Huang, and Thaler (2006) point out that even these preferences cannot generate substantial aversion to small delayed gambles. During the time between the decision to take a gamble and the resolution of uncertainty, the agent will be exposed to other risks and will merge these with the gamble under consideration. If the gamble is uncorrelated with the other risks, it is diversifying. In effect the agent will have second-order risk aversion with respect to delayed gambles. To deal with this problem, Barberis et al. argue that people treat gambles in isolation, that is, they use “narrow framing.”

In this book, we will continue to work primarily with standard utility functions despite their inability to explain aversion to small risks. This reflects my belief that the theory is useful for asset pricing problems, consistent with Rabin’s acknowledgement that it “may well be a useful model of the taste for very-large-scale insurance” (Rabin 2000). One might make an analogy with physics, where the force of gravity is dominant at cosmological scales even though it becomes negligible at subatomic scales where other forces are far more important.

Finally, it is worth noting that expected utility theory can be enriched to generate differences in aversion to medium-scale and large-scale risks. Notably, Chetty and Szeidl (2007) show that “consumption commitments” (fixed costs to adjust a portion of consumption) raise risk aversion over medium-sized gambles, relative to risk aversion over large gambles where extreme outcomes would justify paying the cost to adjust all consumption.

1.5 Comparing Risks

Earlier in this chapter we discussed the comparison of utility functions, concentrating on cases where two utility functions can be ranked in their risk aversion, with one turning down all lotteries that the other one turns down, regardless of the distribution of the risks. Now we perform a symmetric analysis, comparing the riskiness of two different distributions without making any assumptions on utility functions other than concavity.
1.5.1 Comparing Risks with the Same Mean

In this subsection we consider two distributions that have the same mean. Informally, there are three natural ways to define the notion that one of these distributions is riskier than the other:

1. All increasing and concave utility functions dislike the riskier distribution relative to the safer distribution.
2. The riskier distribution has more weight in the tails than the safer distribution.
3. The riskier distribution can be obtained from the safer distribution by adding noise to it.

The classic analysis of Rothschild and Stiglitz (1970) shows that these are all equivalent. Consider random variables \(\tilde{X} \) and \(\tilde{Y} \), which have the same expectation.

1. \(\tilde{X} \) is weakly less risky than \(\tilde{Y} \) if no individual with an increasing concave utility function prefers \(\tilde{Y} \) to \(\tilde{X} \):

\[
E[u(\tilde{X})] \geq E[u(\tilde{Y})]
\]

for all increasing concave \(u(.) \). \(\tilde{X} \) is less risky than \(\tilde{Y} \) (without qualification) if it is weakly less risky than \(\tilde{Y} \) and there is some increasing concave \(u(.) \) which strictly prefers \(\tilde{X} \) to \(\tilde{Y} \).

Note that this is a partial ordering. It is not the case that for any \(\tilde{X} \) and \(\tilde{Y} \), either \(\tilde{X} \) is weakly less risky than \(\tilde{Y} \) or \(\tilde{Y} \) is weakly less risky than \(\tilde{X} \). We can get a complete ordering if we restrict attention to a smaller class of utility functions than the concave, such as the quadratic.

2. \(\tilde{X} \) is less risky than \(\tilde{Y} \) if the density function of \(\tilde{Y} \) can be obtained from that of \(\tilde{X} \) by applying a mean-preserving spread (MPS). An MPS \(s(x) \) is defined by

\[
s(x) = \begin{cases}
\alpha & \text{for } c < x < c + t \\
-\alpha & \text{for } c' < x < c' + t \\
-\beta & \text{for } d < x < d + t \\
\beta & \text{for } d' < x < d' + t \\
0 & \text{elsewhere}
\end{cases}
\]

where \(\alpha, \beta, t > 0 \); \(c + t < c' < c' + t < d < d + t < d' \); and \(\alpha(c' - c) = \beta(d' - d) \); that is, “the more mass you move, the less far you can move it.” This is illustrated in Figure 1.3.

An MPS is something you add to a density function \(f(x) \). If \(g(x) = f(x) + s(x) \), then (i) \(g(x) \) is also a density function, and (ii) it has the same mean as \(f(x) \).

(i) is obvious because \(\int s(x) \, dx = \text{area under } s(x) = 0 \).

(ii) follows from the fact that the “mean” of \(s(x) \), \(\int xs(x) \, dx = 0 \), which follows from \(\alpha(c' - c) = \beta(d' - d) \). The algebra is

\[
\int xs(x) \, dx = \int_c^{c+t} xa \, dx + \int_{c'}^{c'+t} x(-\alpha) \, dx + \int_d^{d+t} x(-\beta) \, dx + \int_{d'}^{d'+t} x\beta \, dx \\
= \alpha \left[\frac{x^2}{2} \right]_c^{c+t} - \alpha \left[\frac{x^2}{2} \right]_{c'}^{c'+t} - \beta \left[\frac{x^2}{2} \right]_d^{d+t} + \beta \left[\frac{x^2}{2} \right]_{d'}^{d'+t} \\
= \beta(d' - d) - \alpha(c' - c) = 0.
\]
1.5. Comparing Risks

In what sense is an MPS a spread? It is obvious that if the mean of \(f(x) \) is between \(c' + t \) and \(d \), then \(g(x) \) has more weight in the tails. This is not so obvious when the mean of \(f(x) \) is far to the left or the right in Figure 1.3. Nevertheless, we can show that \(\tilde{Y} \) with density \(g \) is riskier than \(\tilde{X} \) with density \(f \) in the sense of (1) above. In this sense the term “spread” is appropriate.

We calculate the expected utility difference between \(\tilde{X} \) and \(\tilde{Y} \) as

\[
E[u(\tilde{X})] - E[u(\tilde{Y})] = \int u(z) [f(z) - g(z)] \, dz = -\int u(z) s(z) \, dz
\]

(1.41)

The definition of an MPS implies that \(\beta/\alpha = (c' - c)/(d' - d) \). In addition, \(u(z + h) - u(z) = u'(z^*) h \) for some \(z^* \) between \(z \) and \(z + h \).

Thus

\[
u(z) - u(z + c' - c) = -(c' - c) u'(z^*_1) \]

(1.42)

for some \(z^*_1 \) between \(z \) and \(z + c' - c \), and

\[
u(z + d - c) - u(z + d' - c) = -(d' - d) u'(z^*_2) \]

(1.43)

for some \(z^*_2 \) between \(z + d - c \) and \(z + d' - c \). Substituting into (1.41), we get

\[
E[u(\tilde{X})] - E[u(\tilde{Y})] = \alpha (c' - c) \int_c^{c' + t} [u'(z^*_1) - u'(z^*_2)] \, dz > 0,
\]

(1.44)

where the inequality follows because \(z^*_1 < z^*_2 \) so \(u'(z^*_1) > u'(z^*_2) \).
The fair game condition is stronger than zero covariance, \(\text{Cov}(\varepsilon, \tilde{X}) = 0 \). It is weaker than independence, \(\text{Cov}(f(\varepsilon), g(\tilde{X})) = 0 \) for all functions \(f \) and \(g \). It is equivalent to \(\text{Cov}(\varepsilon, g(\tilde{X})) = 0 \) for all functions \(g \). To develop your understanding of this point, Problem 1.1 at the end of this chapter asks you to construct examples of random variables \(\tilde{X} \) and \(\varepsilon \) that have zero covariance but do not satisfy the fair game condition, or that satisfy the fair game condition but are not independent.

It is straightforward to show that added noise is sufficient for a concave utility function to dislike the resulting distribution, that is, (3) implies (1):

\[
E[U(\tilde{X} + \varepsilon)] \leq U(E[\tilde{X} + \varepsilon]) = U(\tilde{X})
\]

\[
\Rightarrow E[U(\tilde{X} + \varepsilon)] \leq E[U(\tilde{X})]
\]

\[
\Rightarrow E[U(\tilde{Y})] \leq E[U(\tilde{X})],
\]

(1.45)

because \(\tilde{Y} \) and \(\tilde{X} + \varepsilon \) have the same distribution.

More generally, Rothschild and Stiglitz show that conditions (1), (2), and (3) are all equivalent. This is a powerful result because one or the other condition may be most useful in a particular application.

None of these conditions are equivalent to \(\tilde{Y} \) having greater variance than \(\tilde{X} \). It is obvious from (3) that if \(\tilde{Y} \) is riskier than \(\tilde{X} \) then \(\tilde{Y} \) has greater variance than \(\tilde{X} \). The problem is that the reverse is not true in general. Greater variance is necessary but not sufficient for increased risk. \(\tilde{Y} \) could have greater variance than \(\tilde{X} \) but still be preferred by some concave utility functions if it has more desirable higher-moment properties. This possibility can only be eliminated if we confine attention to a limited class of distributions such as the normal distribution.

1.5.2 Comparing Risks with Different Means

The Rothschild-Stiglitz conditions apply only to distributions that have the same mean. However, they extend straightforwardly to the case where a riskier distribution, in the Rothschild-Stiglitz sense, is shifted downward and therefore has a lower mean. Some brief definitions illustrate this point.

Definition. \(\tilde{X} \) (first-order) dominates \(\tilde{Y} \) if \(\tilde{Y} = \tilde{X} + \tilde{\zeta} \), where \(\tilde{\zeta} \leq 0 \). In this case every outcome for \(\tilde{X} \) is at least as great as the corresponding outcome for \(\tilde{Y} \).

Definition. \(\tilde{X} \) first-order stochastically dominates \(\tilde{Y} \) if \(\tilde{Y} \) has the distribution of \(\tilde{X} + \tilde{\zeta} \), where \(\tilde{\zeta} \leq 0 \). Equivalently, if \(F(\cdot) \) is the cdf of \(\tilde{X} \) and \(G(\cdot) \) is the cdf of \(\tilde{Y} \), then \(\tilde{X} \) first-order stochastically dominates \(\tilde{Y} \) if \(F(z) \leq G(z) \) for every \(z \). In this case every quantile of the \(\tilde{X} \) distribution is at least as great as the corresponding quantile of the \(\tilde{Y} \) distribution, but a particular outcome for \(\tilde{Y} \) may exceed the corresponding outcome for \(\tilde{X} \). First-order stochastic dominance implies that every increasing utility function will prefer the distribution \(\tilde{X} \).

Definition. \(\tilde{X} \) second-order stochastically dominates \(\tilde{Y} \) if \(\tilde{Y} \) has the distribution of \(\tilde{X} + \tilde{\zeta} + \tilde{\epsilon} \), where \(\tilde{\zeta} \leq 0 \) and \(E[\tilde{\epsilon}|X+\tilde{\zeta}]=0 \). Second-order stochastic dominance (SOSD) implies that
1.5. **Comparing Risks**

Every increasing, concave utility function will prefer the distribution \tilde{X}. Increased risk is the special case of SOSD where $\tilde{\xi} = 0$.

SOSD, based on the consistent preference of all risk-averse decision makers for one gamble over another, offers an uncontroversial comparison of risks. Unfortunately this also limits its applicability: SOSD is only a partial order of gambles; that is, many pairs of gambles cannot be ranked using SOSD. Specifically, when a riskier distribution, in the Rothschild-Stiglitz sense, is shifted upward—implying that it has a higher mean—then one cannot assert that any concave utility function will prefer the safer alternative. The choice will depend on the scale of the risk and the form of the utility function. This tradeoff is the subject of portfolio choice theory, which we explore in the next chapter.

It is possible to create a complete order, delivering a ranking of any two gambles, if one confines attention to a more specific set of decision makers (defined by their utility functions and wealth levels). A complete order can be used to create a riskiness index, that is, a summary statistic mapping a gamble to a real number that depends only on the attributes of the gamble itself. For example, Aumann and Serrano (2008) propose a riskiness index based on the preferences of agents with CARA utility, for whom wealth does not affect their attitudes toward gambles. The Aumann-Serrano index is the risk tolerance (the reciprocal of risk aversion) that makes a CARA agent indifferent to a gamble. Problem 1.2 invites you to explore this and another riskiness index proposed by Foster and Hart (2009). While riskiness indices lack the generality of SOSD and depend on the preferences considered, they can nonetheless be useful for descriptive and regulatory purposes.

1.5.3 The Principle of Diversification

We conclude this chapter by showing how the Rothschild-Stiglitz analysis can be used to prove the optimality of perfect diversification in a simple portfolio choice problem with identical risky assets.

Consider n lotteries with payoffs $\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_n$ that are independent and identically distributed (iid). You are asked to choose weights $\alpha_1, \alpha_2, \ldots, \alpha_n$ subject to the constraint that $\sum \alpha_i = 1$. It seems obvious that the best choice is a fully diversified, equally weighted portfolio with weights $\alpha_i = 1/n$ for all i. The payoff is then

$$\tilde{z} = \frac{1}{n} \sum_{i=1}^{n} \tilde{x}_i. \quad (1.46)$$

The Rothschild-Stiglitz analysis makes it very easy to prove that this is optimal. Just note that the payoff on any other strategy is

$$\sum_i \alpha_i \tilde{x}_i = \tilde{z} + \sum_i \left(\alpha_i - \frac{1}{n} \right) \tilde{x}_i = \tilde{z} + \tilde{\varepsilon}, \quad (1.47)$$

and

$$E[\tilde{z}|z] = \sum_i \left(\alpha_i - \frac{1}{n} \right) E[\tilde{x}_i|z] = k \sum_i \left(\alpha_i - \frac{1}{n} \right) = 0. \quad (1.48)$$

Thus, any other strategy has the payoff of the equally weighted portfolio, plus added noise (Rothschild-Stiglitz condition (3)). It follows that any concave utility function will prefer the equally weighted portfolio (Rothschild-Stiglitz condition (1)).
1.6 Solution and Further Problems

An informal problem posed in this chapter was how it is possible for an agent to turn down a 50-50 gamble with a fixed loss, regardless of the size of the potential winnings, as claimed in Rabin (2000), Table I. The answer is that if utility is bounded above, then the utility gain from a win converges to a finite limit even as the size of the win becomes arbitrarily large. Rabin’s assumption in Table I—that an agent with expected utility turns down a given small gamble at all initial wealth levels—requires that absolute risk aversion is non-decreasing (because with decreasing absolute risk aversion, at some high enough level of wealth the agent will accept the small gamble). But the utility function with constant absolute risk aversion, the exponential utility function, is bounded above, and the same is true of all utility functions with increasing absolute risk aversion such as the quadratic utility function. This discussion suggests that Table II may be a more relevant critique of expected utility than Table I. Table II makes a weaker assumption about the range of wealth over which an agent turns down a given small gamble and is thus consistent with decreasing absolute risk aversion.

Problem 1.1 Fair Games

State whether each of the following statements is true or false. Provide a proof if the statement is true or a counterexample if the statement is false.

(a) If \(\tilde{X} \) is a fair game with respect to \(\tilde{Y} \), and \(\tilde{Y} \) is a fair game with respect to \(\tilde{X} \), then \(\tilde{X} \) and \(\tilde{Y} \) are independent.

(b) If \(\tilde{X} \) and \(\tilde{Y} \) have zero means and zero covariance, then \(\tilde{X} \) is a fair game with respect to \(\tilde{Y} \) and \(\tilde{Y} \) is a fair game with respect to \(\tilde{X} \).

(c) For jointly normally distributed random variables, zero covariance implies independence.

Problem 1.2 Riskiness Indices

This exercise explores the properties of two recently proposed riskiness indices: the Aumann and Serrano (AS 2008) index and the Foster and Hart (FH 2009) index.

A decision maker is characterized by an initial wealth level \(W_0 \) and von Neumann-Morgenstern utility function \(u \) over wealth with \(u' > 0 \) and \(u'' < 0 \). A gamble is represented by a real-valued random variable \(g \) representing the possible changes in wealth if the gamble is accepted by the decision maker. An investor \((W_0, u)\) rejects a gamble \(g \) if \(E[u(W_0 + g)] \leq u(W_0) \) and accepts \(g \) if \(E[u(W_0 + g)] > u(W_0) \). We only consider gambles with \(E[g] > 0 \) and \(\Pr(g < 0) > 0 \). For simplicity, we assume that gambles take finitely many values. Let \(L_g \equiv \max(-g) \) and \(M_g \equiv \max g \) denote the maximal loss and maximal gain of \(g \), respectively.

For any gamble \(g \), the AS riskiness index \(R_{AS}(g) \) is given by the unique positive solution to the equation

\[
E\left[\exp\left(-\frac{1}{R_{AS}(g)} g\right)\right] = 1. \tag{1.49}
\]
Problems

For any gamble \(g \), the FH riskiness \(R^{FH}(g) \) index is given by the unique positive solution to the equation

\[
E \left[\log \left(1 + \frac{1}{R^{FH}(g) g} \right) \right] = 0. \tag{1.50}
\]

(a) Show that the AS riskiness index equals the level of risk tolerance that makes a CARA investor indifferent between accepting and rejecting the gamble. That is, an investor with CARA utility \(u(w) = -\exp(-Aw) \) will accept (reject) \(g \) if \(A < 1/R^{AS}(g) \) (if \(A \geq 1/R^{AS}(g) \)).

(b) Show that the FH riskiness index equals the level of wealth that would make a log utility investor indifferent between accepting and rejecting the gamble. That is, a log investor with wealth \(W_0 > R^{FH}(g) \) \((W_0 \leq R^{FH}(g)) \) will accept (reject) \(g \).

(c) Consider binary gambles with a loss of \(L_g \) with probability \(p_L \) and a gain \(M_g \) with probability \(1 - p_L \). Calculate the values of the two indices for the binary gamble with \(L_g = $100, M_g = $105, \) and \(p_L = 1/2 \) (Rabin 2000). Repeat for the binary gamble with \(L_g = $100, M_g = $10,100, \) and \(p_L = 1/2 \). (The calculation is analytical for FH but numerical for AS.)

(d) Consider binary gambles with infinite gain, that is, \(M_g \) arbitrarily large. Derive explicit formulas for the two indices as a function of \(L_g \) and \(p_L \) at the limit \(M_g \to +\infty \). Explain the intuition behind these formulas. Why do the indices assign nonzero riskiness to gambles with infinite expectation? What happens as \(p_L \to 0 \)?

(e) The Sharpe ratio, defined as the ratio of the mean of a gamble to its standard deviation, \(SR(g) \equiv E[g]/\sqrt{\text{Var}(g)}, \) is a widely used measure of risk-adjusted portfolio returns. We can interpret its reciprocal as a riskiness index.

(i) Show by example that the (inverse) Sharpe ratio violates first-order stochastic dominance (and hence second-order stochastic dominance). That is, if gamble \(h \) first-order stochastically dominates gamble \(g \), then it is not always true that \(SR(h) \geq SR(g) \).

(ii) AS (2008) propose a generalized version of the Sharpe ratio \(GSR(g) \equiv E[g]/R^{AS}(g) \), a measure of “riskiness-adjusted” expected returns. Argue that GSR respects second-order stochastic dominance (and hence first-order stochastic dominance).

(iii) Show that \(GSR(g) \) is ordinally equivalent to \(SR(g) \) when \(g \) is a normally distributed gamble.

\textit{Hint:} use the probability density function of the normal distribution to show that \(R^{AS}(g) = \text{Var}(g)/(2E[g]) \).

3The definition of the Sharpe ratio in terms of asset returns is given in equation (2.37) of the next chapter.
Abel, Andrew B., 133, 191–92
Acharya, Viral V., 393, 395
active investing, 60, 79, 382, 392
Admati, Anat R., 400
Adrian, Tobias, 295, 399–400
affine term structure models, 241–42; completely affine heteroskedastic single-factor model, 245–46; completely affine homoskedastic single-factor model, 242–45; essentially affine models, 246–49; strong restrictions and hidden factors, 249–50
aggregator function, 176
agree to disagree, 354, 375
Aït-Sahalia, Yacine, 283
Allais, Maurice, 3, 12
Allais paradox, 12–13
Allen, Franklin, 329, 383–84
alpha. See Jensen’s alpha
Alvarez, Fernando: entropy bounds on the SDF, 100–102; permanent and transitory shocks to the stochastic discount factor, 230, 252–54, 267; punishment of default by exclusion model, 349–53, 367
ambiguity aversion, 187–91
Ameriks, John, 314, 322
Amihud, Yakov, 393–95
Anagol, Santosh, 332
Andersen, Steffen, 332
Ang, Andrew, 289n, 330
Angeletos, George-Marios, 314
anomaly elimination, 73–74
appraiser ratio, 78–79
arbitrage: limits of, 112–14; opportunity, 43, 56–57, 60, 85–84, 112–14; portfolio, 57; pricing in a multi-factor model, 59–60; pricing in a single-factor model, 55–59; pricing theory, 56, 60, 79
Arrow, Kenneth J., 9
Arrow-Debreu security, 83, 92
Arrow-Pratt approximation/methodology/solution, 9–10, 24, 29
Asness, Clifford S., 153–54
asset allocation puzzle, 41–42, 276–77
asset management, 300, 392
asymmetric information and liquidity, 371–72; liquidity and asset pricing (see liquidity and asset pricing); market microstructure (see market microstructure); practice problems, 400–403; rational expectations equilibrium (see rational expectations equilibrium); solution to exercise, 400
Athanasoulis, Stefano G., 345–46, 364
Aumann, Robert J., 19–21, 375
autarky, 349–53, 367
autocorrelations: consumption growth, 163, 198, 222; Kendall bias, 145; returns, 68–69, 81, 124–27, 140, 156, 163, 198, 278, 298, 378; SDF, 254
autocovariances, 111, 138–39, 386–87
Avdis, Efstathiou, 148
average cost curve, 235
Bach, Laurent, 329
background risk, 26, 168, 308, 321
Backus, David K., 100
bad beta. See cash-flow beta
Balasubramaniam, Vimal, 332
bankruptcy, 29, 350, 354
Banz, Rolf, 66
Barber, Brad M., 333

For general queries contact webmaster@press.princeton.edu.
Barberis, Nicholas, 15, 199, 272, 298, 332, 334
Barro, Robert, 168, 171, 175
Bauer, Michael D., 250
Bayesian, 55, 188; learning, 295–99
Bazdresch, Santiago, 214–15, 219
Beaudry, Paul, 219
Beeler, Jason, 183, 187
behavioral finance, 77, 191, 199, 307, 332
Bekaert, Geert, 199
Belo, Frederico, 207, 214, 219, 222–25, 293n9
Benartzi, Shlomo, 316
Bernstein, Peter, 39n
Bertaut, Carol, 321
beta, 49; CAPM (see Capital Asset Pricing Model [CAPM]); cash-flow (see cash-flow beta); discount-rate (see discount-rate beta); multifactor (see multifactor model); portfolio choice and, 51–53; single-factor (see single-factor model); zero-beta portfolio (see zero-beta portfolio)
Betermier, Sebastien, 317
bid-ask bounce, 386–87
bid-ask spread, 385–89
Bidder, Rhys, 191
Binsbergen, Jules van, 290
Black, Fischer, 50, 53–55, 58
Black CAPM, 50–51, 58, 63n3, 66
Black-Litterman model, 54–55
Blanchard, Olivier, 132
Bliss, Robert R., 240
bliss point, 11
Blume, Marshall E., 286n, 324, 387
Bodie, Zvi, 313
Boguth, Oliver, 61
Boldrin, Michele, 222
bond pricing and the dynamics of consumption growth and inflation: permanent and transitory shocks to marginal utility, 252–54; real bonds, nominal bonds, and inflation, 254–57; real bonds and consumption dynamics, 250–52
book-market ratio, 68–70, 72, 76, 132, 136–37, 148–51, 156, 201, 210, 225–26
Borovička, Jaroslav, 175, 203
Box, G., 124
Box-Pierce Q statistic, 124
Brandt, Michael W., 263, 283, 290
Brav, Alon, 345
Breeden, Douglas T., 167, 202n
Brennan, Michael J., 292
Brunnermeier, Markus K., 392–93, 397–99, 403
bubbles, rational, 132–34
buffer stock, 315–14
Buffett, Warren, 358–59

Cagetti, Marco, 188
Calvet, Laurent E., 317, 324–27, 329, 331
Campbell-Cochrane model of habit formation, 166, 193–99, 252, 262, 292–93, 311, 323
Campbell-Shiller approximation, 134–37, 140–41, 150, 160, 185, 216, 273
Caner, Niko, 41–42, 44, 276
CAPE ratio. See cyclically adjusted price-earnings (CAPE) ratio
capital allocation line (CAL), 33, 40, 48
Capital Asset Pricing Model (CAPM), 47–48; beta pricing and portfolio choice, 51–53; Black, 50–51, 58, 63n3, 66; conditional, 60–61, 75–76; empirical testing of (see empirical testing of CAPM); Epstein-Zin preferences and, 179–82; human capital, modification to include, 317–18; international, 325–27; intertemporal (see intertemporal CAPM); liquidity-adjusted, 395; Sharpe-Lintner, 48–50, 58
capital market line (CML), 48
capital share, 208, 213, 227
capital stock, 148, 208–11, 219, 222–24, 226–27
CAPM. See Capital Asset Pricing Model
CARA. See constant absolute risk averse (CARA) utility
cardinal utility, 3
Carhart, Mark M., 69
Carroll, Christopher D., 313, 320–21
carry trade. See foreign exchange carry trade
cash-flow: beta, 284–90; news, 137–39, 144, 284–90
catching up with the Joneses, 191
cay return predictor, 148–49
Cederburg, Scott, 75
certainty equivalent, 8–10, 15;
certainty-equivalent function, 176
CES. See constant elasticity of substitution (CES)
Chacko, George C., 283, 391
Chan, Yeung Lewis, 199, 279, 281, 362
Chen, Long, 249
Cheng, Peng, 76
Chernov, Mikhail, 100
Chetty, Raj, 15

For general queries contact webmaster@press.princeton.edu.
Index

Chew, Soo Hong, 13n
Chien, YiLi, 353–54
Choi, James J., 332
choice under uncertainty. See expected utility theory
cholesterol, 284n
Christensen, Jens H. E., 265
Christiano, Lawrence J., 220, 222
CIR process. See square-root (CIR) process
clean-surplus accounting, 131
Cobb-Douglas: production, 208, 215; utility, 200, 364
Cocco, João F., 314–15
Cochrane, John H.: absence of arbitrage, definition of, 92n; bond returns, predicting, 240–41, 249; Campbell-Cochrane model of habit formation, 166, 193–99, 252, 262, 292–93, 311, 323; Cochrane-Piazzesi return predictor, 240–41; Generalized Method of Moments, 103; habit formation modeling issues, 191; incomplete markets, SDF pricing of financial assets in, 90; intertemporal portfolio choice, an alternative approach to, 283, 299–300; Lettau and Ludvigson return predictor, interpretation of, 149; perfect risksharing, tests of, 88; problem based on, 116; producers’ decisions and the marginal rate of transformation across states, 222–23; q theory, test of, 212; real exchange rates, log SDFs and, 263; returns on physical investments should equal returns on claims, 207; Stambaugh, response to, 146–47; variance ratio statistic, introduction of, 124
Cohen, Randolph B., 144, 155
Cohn, Richard A., 153, 155
cohort effects, 315, 331–32
cointegration, 129, 135, 148, 186, 198
Colacito, Riccardo, 263
Collin-Dufresne, Pierre, 269, 293n9, 298–99
common knowledge, 375
complete markets, the SDF and: existence of a representative agent, 88–89; the growth-optimal portfolio and the SDF, 85–86; heterogeneous beliefs, 89–90; perfect risksharing, 87–88; the riskless asset and risk-neutral probabilities, 84–85; the SDF in, 83–84; solving portfolio choice problems, 86–87; utility maximization and the SDF, 85 concave function, 6
constant absolute risk averse (CARA) utility, 11; Aumann-Serrano index and, 19, 21; the CARA-normal framework, 25–27; in financial markets with asymmetric information, 372–73; labor income and, 308
constant elasticity of substitution (CES), 176, 199
Constantinides, George M.: asset pricing with uninsurable income risk, 168, 341, 343–45; habit formation, models of, 191, 198–99; models where human wealth is a large fraction of total wealth, 323; overlapping generations model, 316; scarcity of collateral, risksharing implications of, 353
constant relative risk averse (CRRA) utility, 11–12; the CRRA-lognormal case, 27–30; labor income and, 309–11
constant returns to scale, 208, 210
consumer financial regulation, 334, 338–39
collection-based asset pricing, 85, 161; ambiguity aversion, 187–91; disaster models, 168–75; durable goods, 199–201; Epstein-Zin preferences (see Epstein-Zin preferences); equity premium puzzle, 164–65; equity volatility puzzle, 166; habit formation (see habit formation); lognormal consumption with power utility, 162–63; long-run risk models (see long-run risk models); practice problems, 202–6; responses to the puzzles, 166–68; riskfree rate puzzle, 165–66; solutions to exercises, 201–2; three puzzles, 163–66
consumption commitments, 15
consumption-wealth ratio, 166, 170, 172, 177, 183, 193, 273, 279, 322, 368
contingent claim, see Arrow-Debreu security
continuity axiom, 4
convexity: adjustment costs, 207–10; bonds, 237, 244–45, 250; cumulant-generating function, 171–72; prospect theory, 15
Cottle, Sidney, 67
coupon bonds, 236–37
covered interest parity, 258
Cox, John C., 87, 245–47
-crashes, 379
Croce, Mariano M., 263
CRA. See constant relative risk averse (CRRA) utility
Crump, Richard K., 295
cumulant-generating function, 100, 169–72
cursedness, 379
cyclically adjusted price-earnings (CAPE) ratio, 142
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dai, Qiang</td>
<td>249</td>
</tr>
<tr>
<td>Dang, Tri Vi</td>
<td>388</td>
</tr>
<tr>
<td>Daniel, Kent D.</td>
<td>76, 378</td>
</tr>
<tr>
<td>dark matter</td>
<td>173n</td>
</tr>
<tr>
<td>data mining</td>
<td>72–73</td>
</tr>
<tr>
<td>data snooping</td>
<td>73</td>
</tr>
<tr>
<td>Dávila, Eduardo</td>
<td>347</td>
</tr>
<tr>
<td>Deaton, Angus</td>
<td>313</td>
</tr>
<tr>
<td>DeBondt, Werner</td>
<td>68</td>
</tr>
<tr>
<td>decreasing absolute risk aversion (DARA)</td>
<td>9</td>
</tr>
<tr>
<td>default: corporate</td>
<td>112–13</td>
</tr>
<tr>
<td>risk-sharing and</td>
<td>342, 347, 349–54</td>
</tr>
<tr>
<td>retirement asset allocation</td>
<td>331; spread</td>
</tr>
<tr>
<td>defined-benefit pension</td>
<td>309n</td>
</tr>
<tr>
<td>Del Guercio, Diane</td>
<td>392</td>
</tr>
<tr>
<td>De Long, J. Bradford</td>
<td>342, 354–55</td>
</tr>
<tr>
<td>demand aggregation</td>
<td>89</td>
</tr>
<tr>
<td>DeMiguel, Victor</td>
<td>43</td>
</tr>
<tr>
<td>depth</td>
<td>391</td>
</tr>
<tr>
<td>Dew-Becker, Ian</td>
<td>191, 199, 222</td>
</tr>
<tr>
<td>Dhume, Deepa</td>
<td>199, 201</td>
</tr>
<tr>
<td>Diamond, Douglas W.</td>
<td>375–78</td>
</tr>
<tr>
<td>Diebold, Francis X.</td>
<td>264n12, 265</td>
</tr>
<tr>
<td>Diether, Karl B.</td>
<td>71</td>
</tr>
<tr>
<td>diffusion</td>
<td>171, 190–91, 342–44; jump-diffusion, 171</td>
</tr>
<tr>
<td>Dimson, Elroy</td>
<td>167</td>
</tr>
<tr>
<td>disaster models: rare disasters</td>
<td>168–73; time-varying disaster risk, 173–75</td>
</tr>
<tr>
<td>discount-rate: beta</td>
<td>284–90</td>
</tr>
<tr>
<td>news, 137–39, 144, 181, 284–90</td>
<td></td>
</tr>
<tr>
<td>displacement risk</td>
<td>318</td>
</tr>
<tr>
<td>disposition effect</td>
<td>123, 303, 334, 337</td>
</tr>
<tr>
<td>Dittmar, Robert</td>
<td>186n</td>
</tr>
<tr>
<td>diversification: portfolio risk and</td>
<td>32; principle of, 19; under diversification (see under diversification)</td>
</tr>
<tr>
<td>dividend-based models</td>
<td>127</td>
</tr>
<tr>
<td>dividend discount model</td>
<td>128</td>
</tr>
<tr>
<td>Gordon growth model</td>
<td>130–31</td>
</tr>
<tr>
<td>156, 140–41, 150–54, 170, 174, 291, 298</td>
<td></td>
</tr>
<tr>
<td>linearity-generating processes</td>
<td>129–50; variance bounds tests, 128–29</td>
</tr>
<tr>
<td>dividend futures</td>
<td>290</td>
</tr>
<tr>
<td>dividend-price ratio</td>
<td>68, 121, 130, 134–41, 144, 146–55, 170, 183, 225, 291, 294</td>
</tr>
<tr>
<td>displacement risk</td>
<td>318</td>
</tr>
<tr>
<td>Dodd, David Le Fevre</td>
<td>67, 142</td>
</tr>
<tr>
<td>Donaldson, John B.</td>
<td>316, 323, 345</td>
</tr>
<tr>
<td>Døskeland, Trond M.</td>
<td>317</td>
</tr>
<tr>
<td>drifting steady-state models: inflation and the Fed model, 153; valuation model, 151–53; volatility and valuation, 150–51</td>
<td></td>
</tr>
<tr>
<td>DSGE model. See dynamic stochastic general equilibrium (DSGE) model</td>
<td></td>
</tr>
<tr>
<td>Dubey, Pradeep</td>
<td>354</td>
</tr>
<tr>
<td>Duffee, Gregory R.</td>
<td>230, 246, 249</td>
</tr>
<tr>
<td>Duffie, Darrell</td>
<td>112–13; asset pricing with uninsurable income risk, 168, 341, 343–45; expanding the state vector to incorporate nonlinearities within affine models, 249; incomplete markets, SDF pricing of financial assets in, 90; the private information Pareto optimal SDF, 349; scarcity of collateral, risk-sharing implications of, 353; search costs and monopoly power, 388; slow moving capital, dynamic model of, 331; undiversified investing, implications for asset pricing of, 329</td>
</tr>
<tr>
<td>Dunn, Kenneth B.</td>
<td>199</td>
</tr>
<tr>
<td>durable goods</td>
<td>161, 168, 199–201, 225–26, 264, 318</td>
</tr>
<tr>
<td>duration: Macaulay’s</td>
<td>236–37; modified, 237; mortgages, 315; stocks, 290–94</td>
</tr>
<tr>
<td>Dutch book problem</td>
<td>13n</td>
</tr>
<tr>
<td>Dybvig, Philip H.</td>
<td>244</td>
</tr>
<tr>
<td>dynamic efficiency</td>
<td>133</td>
</tr>
<tr>
<td>dynamic stochastic general equilibrium (DSGE) model, 207, 215–22</td>
<td></td>
</tr>
<tr>
<td>earnings quality</td>
<td>71–72, 154</td>
</tr>
<tr>
<td>earnings-price ratio.</td>
<td>price-earnings ratio</td>
</tr>
<tr>
<td>Easley, David</td>
<td>388</td>
</tr>
<tr>
<td>efficient market hypothesis</td>
<td>122–24; joint hypothesis problem, 122; semi-strong form, 122, 139; strong form, 122, 375; weak form, 122, 124, 139</td>
</tr>
<tr>
<td>Eichenbaum, Martin</td>
<td>199</td>
</tr>
<tr>
<td>EIS. See elasticity of intertemporal substitution (EIS)</td>
<td></td>
</tr>
<tr>
<td>Eisfeldt, Andrea L.</td>
<td>72n11</td>
</tr>
<tr>
<td>Eleswarapu, Venkat R.</td>
<td>149, 285</td>
</tr>
<tr>
<td>Ellsberg, Daniel</td>
<td>187</td>
</tr>
<tr>
<td>elasticity of intertemporal substitution (EIS)</td>
<td></td>
</tr>
<tr>
<td>emperor’s new clothes</td>
<td>379n</td>
</tr>
<tr>
<td>empirical testing of CAPM: alternative responses to the evidence, 72–77; anomaly elimination, 73–74; atheoretical multifactor risk model, 75–76; behavioral finance, 77; the CAPM and the cross-section of stock returns, 66–72; choosing test assets, 66; conditional</td>
<td></td>
</tr>
</tbody>
</table>

For general queries contact webmaster@press.princeton.edu.
Index

CAPM, 75; cross-sectional approach, 63–64; data mining, 72–73; equilibrium multifactor risk model, 76–77; Fama-MacBeth approach, 64–65; illiquidity, 75; returns and characteristics, 64–66; Roll critique, 74–75; test methodology, 61–66; time-series approach, 62–63

Engel, Charles, 260
Engle, Robert F., 129
Engsted, Tom, 144
Engstrom, Eric, 199

entropy, 100, 189, 201, 261, 267; bound on the SDF, 100–102, 254; conditional, 100; penalty, 188–89, 191; relative, 188; risk-neutral, 159

Epstein, Larry G.: ambiguity aversion, contribution to, 187, 189n, 321; Epstein-Zin preferences, 13, 176–79 (see also Epstein-Zin preferences); timing premia in the long-run risk model problem, 204

expectations hypothesis of the term structure, 237–41, 244, 259, 266; pure, 237

expected utility theory; axiomatic foundations of, 3–5; comparing risks and (see risks, comparing); critiques of, 12–15; practice problems, 20–21; risk aversion and (see risk aversion); solution for exercise, 20; tractable utility functions, 10–12; exponential utility, 11; expropriation, 175; externality, 347, 364–67; extrapolative expectations, 219, 317, 332–33, 356; Eyster, Erik, 379

Fagereng, Andreas, 314, 322; fair game, 18, 20, 122; Fama, Eugene F.: bond return predictability and cyclical predictability of other assets, 241; book-market ratio as measure of value, 68; consumption-based asset pricing puzzles, response to, 167; countercyclical risk premia, evidence for, 198; efficient market, definition of, 121; expectations hypothesis, findings from test of, 240; Fama-French and Fama-French-Garhart models, 76, 211; Fama-MacBeth method, 64–65; forms of the efficient market hypothesis, 122; inclusion of value and profitability in a multifactor model, 226; inflation and stock returns, negative correlation of, 257n; long-horizon return regressions used by, 140; methodology of, 154; Nobel Prize award work, 137; portfolios introduced to the literature by, 69; regressing the K-period return on the lagged K-period return, approach for, 125; stock returns, approaches to pricing, 75–77; unconditional mean stock return, estimate of, 147; uncovered interest parity, regression results regarding, 259, 262–63; weak-form market efficiency, test of, 124

Farhi, Emmanuel: endogenous labor supply model, 313; equilibrium exchange rate model, 262; investors’ high willingness to pay for early resolution of uncertainty, 178, 203–4; nontradable goods production model, 264n11; OLG models, 133; pecuniary and aggregate demand externalities, 347; Fed model, 153; Feller condition, 287n; Fisher, Jonas D. M., 222; fixed-income securities, 229–30; affine term structure models (see affine term structure models); bond pricing and the dynamics of consumption growth and inflation (see bond pricing and the dynamics of consumption growth and inflation); coupon bonds, 236–37; expectations hypotheses, 237–41; forward rates, 234–35; interest rates and exchange rates (see interest rates and exchange rates); practice problems, 264–68; solution to exercise, 264; yields and holding-period returns, 230–34; foreign exchange carry trade, 260; foreign exchange rate, 258; forward exchange rate, 258; forward rate, 234–35, 241; affine term structure models, 244–45; expectations hypothesis, 239; Foster, Dean P., 19–21; Frazzini, Andrea, 71, 154, 334; freeholds, 133, 291

For general queries contact webmaster@press.princeton.edu.
French, Kenneth R.: bond return predictability and cyclical predictability of other assets, 241; book-market ratio as measure of value, 68; consumption-based asset pricing puzzles, response to, 167; countercyclical risk premia, evidence for, 198; Fama-French and Fama-French-Carhart models, 76, 211; inclusion of value and profitability in a multifactor model, 226; long-horizon return regressions used by, 140; methodology of, 154; portfolios introduced to the literature by, 69; regressing the K-period return on the lagged K-period return, approach for, 125; stock returns, approaches to pricing, 75–76; unconditional mean stock return, estimate of, 147; website of, information available on, 67n7, 69n, 73

Friend, Irwin, 286n, 324

Froot, Kenneth A., 125

fundamental equation of asset pricing, 84, 90–93, 96, 162, 212, 260–61

Gabaix, Xavier: equilibrium bond pricing model, 240; equilibrium exchange rate model, 262; linearity-generating process problem based on, 157; nontradable goods production model, 264n11; price impact, functional form of, 391; linearity-generating processes, 129–30; rare disasters model, 256; risky term structure and the rare disasters model, 292; shrouded equilibrium model, 335; socially valuable financial innovation blocked by cross-subsidization, 332–33; time-varying disaster risk, framework for analyzing, 173–75

Gale, Douglas, 329

Garcia, Rene, 176n

Garlappi, Lorenzo, 43

Gärleanu, Nicolae, 113, 317–18, 388, 393, 396–97

Geanakoplos, John, 342, 346, 354, 359, 361–62

Gecey, Christopher C., 345

Geevarghese, Fransois, 133

general equilibrium with production, 215; habit formation in general equilibrium, 222; long-run consumption risk in general equilibrium, 215–20; variable labor supply, 220–22

Generalized Log Utility Model, 12

Generalized Method of Moments (GMM), 83, 103–4; asymptotic theory, 104–5; important estimators, 105–7; in practice, 109–11; time-series regressions and, problem based on, 117–18; traditional tests in, 107–9

generalized average, 130, 132, 150, 152, 185, 368, 387

Geske, Robert, 257n

Ghosh, Anisha, 345

Gibbons, Michael, 62–63

Gibbons-Ross-Shanken (GRS) statistic, 62–63, 81, 108

Giglio, Stefano, 133, 287–88, 289n, 290–91

Gilboa, Itzhak, 288, 189n, 921

glass: half-empty, 124; half-full, 124

global minimum-variance (GMV) portfolio, 32–33, 35–39

Glosten, Lawrence, 387

Glosten-Milgrom model, 387–89

Goetzmann, William N., 327

Goldstein, Robert S., 293n9

Gollier, Christian, 3

Golosov, Mikhail, 341, 348

Gomes, Francisco J., 314, 321, 323

Gomes, Joao F., 226

good beta. See discount-rate beta

Gorton, Gary, 388

Gottlieb, Charles, 314, 322

Gourinchas, Pierre-Olivier, 314

Gourio, Francois, 175

Goyal, Amit, 147, 153, 157–58

Graham, Benjamin, 67, 142

Granger, Clive W. J., 129

Green, Jerry, 89

Green, Richard, 392

Greenspan, Alan, 142n

Greenwald, Bruce C., 346

Greenwood, Robin, 391

Grenadier, Steven R., 199

Grinblatt, Mark, 321, 327, 333–34, 338

Grossman, Sanford J.: model with supply shocks and public signals about fundamentals, 378; prices as conveying information to investors, 372; rational expectations equilibrium, 374, 377; rational expectations equilibrium with costly information, 380–82, 390; uninsurable income risk and risk premia, 341–42, 344

Grossman-Stiglitz paradox, 382

growth of the firm, 71–72

growth-optimal portfolio, 30, 85–86, 93, 101

GRS statistic. See Gibbons-Ross-Shanken statistic

Guiso, Luigi, 314, 316, 322

Gul, Faruk, 15
Index

Gürkaynak, Refet S., 230
Guvenen, Fatih, 199, 323

habit formation, 191; alternative models of
time-varying risk aversion, 198–99; the
Campbell-Cochrane model, 166, 193–98,
252, 262, 292–93, 311, 323; a ratio model of
habit, 192–95
Haliassos, Michael, 321
Hall, Alastair R., 103
Hall, Robert E., 184
Hamilton, James D., 250
Han, Bing, 334, 338
Hansen, Lars Peter: ambiguity aversion,
187–91; cointegration, emphasis on,
186n; conditioning information, importance
of, 102; consumption covariance, treatment
of, 163; contingent claims prices, recovering
processes and parameters from, 175; decom-
position of the pricing kernel into shocks
as research interest of, 254; durable goods,
necessity of measuring, 199; Generalized
Method of Moments, 103, 106–7; Hansen-
Jagannathan frontier, 97–99; instrumental
variables regression approach, 184; interpret-
ation of the Epstein-Zin parameter, limitation
of, 167; inverse of the second moment matrix
of returns, 110; long-run consumption
covariances, 187; long-run risk models,
182; problems based on, 116, 300; recovery
theorem problem, 203; “risk-sensitive
recession” of the Epstein-Zin objective
function, 177; stochastic discount factor, 83,
95–96
Hansen-Jagannathan volatility bounds on the
SDF, 91, 96–99
Hansen-Richard decomposition, 97, 116–17
Hansen-Sargent framework, 188–91
Harris, Milton, 357, 378n6
Harrison, J. Michael, 83, 330, 342, 354, 356–59,
363
Harrison-Kreps model, 356–59
Hart, Oliver D., 346
Hart, Sergiu, 19–21
Harvard Management Company (HMC), 51–53
Harvard University, 312, 335
Harvey, Campbell R., 109n8, 289n
Hasbrouck, Joel, 391
Hassan, Tarek A., 260
Hayashi, Fumio, 208
Heaton, John C., 107, 192, 182, 186n, 187, 254,
319, 345
hedging, 26, 58; income, 311, 316–18; interest
rates, 273–77; intertemporal, 181–82, 274,
279–84, 287, 295, 297, 300; risk premia,
277–82; volatility, 282–83
Hellwig, Martin F., 375
Heston, Steven L., 287
heterogeneous beliefs, 89–90, 114, 307, 342,
354; endogenous margin requirements,
359–63; the Harrison-Kreps model, 356–59;
noise traders, 354–56
heteroskedasticity, 65, 182, 184, 186–87, 193,
248–49, 269
heteroskedasticity- and autocorrelation-
consistent (HAC) covariance matrix
estimator, 111; Newey-West estimator, 111,
140, 301
hidden factors, 249–50
higher-order expectations, 383–84
Hilscher, Jens, 75n, 154
Hirshleifer, David, 72, 148n8, 219, 323, 334, 378
holding-period return, 229, 232–34, 281;
coupon bonds, 237
Holmström, Bengt, 388, 392
Hong, Harrison, 321n, 379
Hou, Kewei, 148n8, 211
house money, 199
household finance, 307; asset pricing impli-
ations of limited participation, 322–23;
intensive trading and the disposition effect,
333–34; labor income and portfolio choice
(see labor income and portfolio choice);
mortgage refinancing inertia, 332–33;
policy responses, 334; portfolio inertia
and return extrapolation, 331–32; practice
problems, 335–39; responses to changing
market conditions, 331–34; solutions to
exercises, 335; underdiversification (see
underdiversification); wealth, participation,
and risktaking, 318–22
Huang, Chi-fu, 87
Huang, Ming, 15, 199
Hvíđe, Hans K., 317
hyperbolic absolute risk aversion (HARA)
utility, 10–12
ICAPM. See intertemporal CAPM
idiosyncratic risk, 38, 45, 55, 57, 66, 114,
151, 307, 323–24, 328–29, 389; uninsurable
income, 168, 342–45
idiosyncratic volatility, 71, 220, 330
illiquidity, 75
incomplete markets, the SDF and, 90; constructing an SDF in the payoff space, 90–91; existence of a positive SDF, 92–93
independence axiom, 4–5, 12–13
index inclusion effect, 330
index-linked gilts, 255
inertia: mortgage refinancing, 332; portfolio rebalancing, 331–33
inflation-indexed bonds, 139, 205, 230, 254–57, 275, 277, 295; Treasury inflation-protected securities (TIPS), 230, 255, 277, 295
Ingersoll, Jonathan E., Jr., 3, 59n, 244–47
insider trading, 71
instrumental variables (IV) regression, 184, 187
interest rates and exchange rates, 257–58; the domestic and foreign SDF, 260–64; interest parity and the carry trade, 258–60
interior decorator fallacy, 39n
international CAPM, 325–27
intertemporal budget constraint, 148, 179–80
intertemporal CAPM (ICAPM), 181–82, 269; hedging volatility: a three-beta model, 287–90; a two-beta model, 283–86
intertemporal hedging: alternative approaches, 283; hedging interest rates, 273–77; hedging risk premia, 277–83; a simple example, 272–73
intertemporal risk, 269; the intertemporal CAPM (see intertemporal CAPM); intertemporal hedging (see intertemporal hedging); learning effects, 295–99; myopic portfolio choice, 270–72; practice problems, 299–303; solutions to exercises, 299; the term structure of risky assets (see term structure of risky assets)
inverse Euler equation, 348
investment-capital ratio, 207, 213
investment returns, 207, 212–13
investment-specific technology shocks, 215
iterated expectations, law of, 253n, 383
Itô’s Lemma, 29
IV regression. See instrumental variables (IV) regression
Jansson, Michael, 147
Jappelli, Tullio, 316
Jegadeesh, Narasimhan, 69
Jensen, Johan, 6
Jensen, Michael, 123
Jensen’s alpha, 50
Jensen’s Inequality, 6; bond pricing and, 233–37, 242, 244–45; entropy is always nonnegative, implication that, 100; Gordon growth model and, 150; log portfolio/log asset returns and, 29; log risk premium adjusted for, 50n4, 94; precautionary savings and, 312n; the pure expectations hypothesis and, 242; in a ratio model of habit, 192; risk aversion and, 5–8, 25; uncovered interest parity and, 259
Jermann, Urban J.: entropy bounds on the SDF, 100–102; habit formation and production, 215, 222; permanent and transitory shocks to the stochastic discount factor, 230, 252–54, 267; punishment of default by exclusion model, 349–53, 367
Johannes, Michael, 269, 298–99
Johnson, Eric J., 199, 332
joint hypothesis problem, 122
Jorion, Philippe, 43n
Joslin, Scott, 249
Julliard, Christian, 187
jump-diffusion. See diffusion
junk, 154
Jureck, Jakub W., 391
Justiniano, Alejandro, 219
Kahneman, Daniel, 15, 199, 334
Kaltenbrunner, Daniel, 215–19, 222
Kan, Rui, 249
Kandel, Eugene, 357, 378n6
Kandel, Shmuel, 75, 181–82
Kang, Johnny, 67n8, 74
Kaplan, Greg, 314
Kehoe, Timothy J., 347, 349
Keim, Donald B., 67, 73
Kelly, Bryan T., 149, 155–56
Kelly Rule, 44
Kehoe, Matthew, 312, 327, 334
Kendall, Maurice G., 145
Keynes, John Maynard, 383–84
Keys, Benjamin C., 332
Kiku, Dana, 182, 184, 186–87, 288–89
Kim, Tong Suk, 277, 279n3
Kimball, Miles, 313
King, Robert G., 216
Kirby, Chris, 43n
Kleidon, Allan W., 128
Klibanoff, Peter, 188
Knight, Frank H., 187
Kocherlakota, Narayana, 341, 348–49
Kogan, Leonid: displacement risk and human capital, 317–18; investment-specific technology shocks, 214–15, 219; differences in risk aversion, 199, 362; investors with irrational beliefs, relevance of, 355; \(q \)-theoretic model of investment, 208; stocks of durable goods producers, risk and returns of, 226
Koijen, Ralph S., 290, 295, 317
Korinek, Anton, 347
Koudijs, Peter, 391, 402
Kraus, Alan, 31n
Kreps, David M.: Epstein-Zin preferences built on the work of, 176; short-sales restrictions, heterogeneous beliefs and, 330, 342, 354, 356–59, 363; the stochastic discount factor, 83
Kritzman, Mark, 43n, 271
Kroencke, Tim A., 167
Kronecker product, 117
Krusell, Per, 345
Kubik, Jeffrey D., 321n
Kumar, Alok, 327
Kurtosis, 100, 169, 171, 266
Labor income and portfolio choice, 308; labor income and asset pricing, 316–18; multiperiod portfolio choice models, 312–16; static portfolio choice models, 308–12
Labor supply, 207–10, 220–22, 313
Laibson, David, 332–33, 335
Lamont, Owen A., 71, 112
Law of iterated expectations, 104, 253n, 383
Law of one price, 84, 91–92
Learning. See Bayesian learning
Lefebvre, Olivier, 43n
Lehmann, Bruce N., 100–101
LeRoy, Stephen F., 128
Letttau, Martin: carry return predictor, 148–49; conditional asset pricing model, 75; DSGE model with habit formation, 220; idiosyncratic income risk, 345; risky term structure models, 292–95, 302–3; shocks to factor shares, 175
Leverage, 29, 43, 58, 110, 114, 165, 168–70, 185, 205–6, 295n, 309, 314, 316, 322, 344, 359–62, 399–400; constraints, 283, 299, 342
Levine, David K., 347, 349
Lewellen, Jonathan, 61, 66, 76, 146
Li, Canlin, 264n12
Li, Jun, 219
Li, Nan, 182, 186n, 187, 254
Liew, Jimmy, 317
Life-cycle models, 314–15
Limit orders, 385–86
Limits of arbitrage. See Arbitrage
Lin, Xiaoji, 214, 219
Linear risk tolerance (LRT). See hyperbolic absolute risk aversion (HARA) utility
Linnainmaa, Juhan, 321, 327, 333
Lintner, John, 47, 141
Liquidity, 371, 384, 392
Liquidity and asset pricing, 392–93; constant trading costs, 393–95; margins and asset prices, 396–97; margins and trading costs, 397–400; time-varying trading costs, 395–96
Liquidity spirals, 397–99
Litnerman, Robert, 54–55
Litzenberger, Robert H., 12, 31n
Liu, Laura Xiaolei, 212–13
Ljungqvist, Lars, 197
Lo, Andrew W., 73, 124, 137, 230, 363
Lochstoer, Lars A., 215–19, 222, 269, 298–99
Lognormal distribution, 25, 27, 31, 100
Long, John B., Jr., 93n
Long-horizon regressions. See predictive regressions
Long-run risk models, 168, 182; empirical specification, 186–87; heteroskedastic consumption, 184–85; predictable consumption growth, 182–84
Lorenzoni, Guido, 347, 367
Lotteries, 3–5, 7, 12, 13n, 15, 19
Lucas, Deborah, 319, 345
Lucas, Robert E., Jr., 208
Ludvigson, Sydney C., 75, 148–49, 175
Lustig, Hanno: carry-trade strategies with long-maturity bonds, 260, 267; Cochrane-Piazzesi combination of forward rates, predictions from, 317; comovement of bonds and stocks, 295; interest-rate-sorted currency portfolios priced by durable goods model, 199, 201, 264; punishment of default by seizure of collateral, 353–54
Macaulay’s duration, 236–37
MacBeth, James D., 64
Mace, Barbara J., 88
Machina triangle, 4–5
MacKinlay, A. Craig, 73, 124, 137, 230, 363
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maenhout, Pascal J.</td>
<td>167, 190, 314</td>
</tr>
<tr>
<td>Maggiori, Matteo</td>
<td>133, 290–91</td>
</tr>
<tr>
<td>maker-taker fees</td>
<td>385</td>
</tr>
<tr>
<td>Malkiel, Burton</td>
<td>122</td>
</tr>
<tr>
<td>Malloy, Christopher J.</td>
<td>71</td>
</tr>
<tr>
<td>Malmendier, Ulrike</td>
<td>315n5</td>
</tr>
<tr>
<td>Mankiw, N. Gregory</td>
<td>41–42, 44, 184, 276, 344, 363</td>
</tr>
<tr>
<td>Mano, Rui C.</td>
<td>260</td>
</tr>
<tr>
<td>marginal: cost curve</td>
<td>235</td>
</tr>
<tr>
<td>maker-taker fees</td>
<td>385</td>
</tr>
<tr>
<td>Malkiel, Burton</td>
<td>122</td>
</tr>
<tr>
<td>Malloy, Christopher J.</td>
<td>71</td>
</tr>
<tr>
<td>Malmendier, Ulrike</td>
<td>315n5</td>
</tr>
<tr>
<td>Mankiw, N. Gregory</td>
<td>41–42, 44, 184, 276, 344, 363</td>
</tr>
<tr>
<td>Mano, Rui C.</td>
<td>260</td>
</tr>
<tr>
<td>marginal: cost curve</td>
<td>235</td>
</tr>
<tr>
<td>product of capital</td>
<td>210, 217, 226</td>
</tr>
<tr>
<td>product of labor</td>
<td>208</td>
</tr>
<tr>
<td>rate of transformation</td>
<td>207, 222–23</td>
</tr>
<tr>
<td>revenue</td>
<td>210n</td>
</tr>
<tr>
<td>margin-based asset pricing</td>
<td>393, 396–97</td>
</tr>
<tr>
<td>margin call</td>
<td>112</td>
</tr>
<tr>
<td>margin requirement</td>
<td>359, 361, 398–99</td>
</tr>
<tr>
<td>Marinacci, Massimo</td>
<td>188</td>
</tr>
<tr>
<td>market-book ratio</td>
<td>See book-market ratio</td>
</tr>
<tr>
<td>market design</td>
<td>345–46, 364</td>
</tr>
<tr>
<td>market efficiency: definition of</td>
<td>121–22</td>
</tr>
<tr>
<td>efficient market hypothesis</td>
<td>123–24</td>
</tr>
<tr>
<td>empirical evidence on autocorrelation in stock returns</td>
<td>125–27</td>
</tr>
<tr>
<td>literature on</td>
<td>122</td>
</tr>
<tr>
<td>tests of autocorrelation in stock returns</td>
<td>124–25</td>
</tr>
<tr>
<td>market impact</td>
<td>385, 389–92, 401–2</td>
</tr>
<tr>
<td>market microstructure</td>
<td>384–85</td>
</tr>
<tr>
<td>diminishing returns in active asset management</td>
<td>392</td>
</tr>
<tr>
<td>information and market impact</td>
<td>389–91</td>
</tr>
<tr>
<td>information and the bid-ask spread</td>
<td>385–89</td>
</tr>
<tr>
<td>market selection hypothesis</td>
<td>355–56, 368–69</td>
</tr>
<tr>
<td>market timing</td>
<td>286</td>
</tr>
<tr>
<td>Markowitz, Harry M.</td>
<td>23, 30</td>
</tr>
<tr>
<td>Mars, 263n</td>
<td></td>
</tr>
<tr>
<td>Marsh, Paul</td>
<td>167</td>
</tr>
<tr>
<td>Marsh, Terry A.</td>
<td>128</td>
</tr>
<tr>
<td>Martin, Ian W. R.</td>
<td>alternative option-based return predictor</td>
</tr>
<tr>
<td>disasters and the equity premium</td>
<td>168–69</td>
</tr>
<tr>
<td>entropy bounds</td>
<td>100</td>
</tr>
<tr>
<td>valuation of long-term risky assets</td>
<td>291, 302</td>
</tr>
<tr>
<td>martingale method</td>
<td>87, 114–16</td>
</tr>
<tr>
<td>Mas-Colell, Andreu</td>
<td>89</td>
</tr>
<tr>
<td>Massa, Massimo</td>
<td>317</td>
</tr>
<tr>
<td>Mayers, David</td>
<td>317</td>
</tr>
<tr>
<td>McGrattan, Ellen R.</td>
<td>167</td>
</tr>
<tr>
<td>McLean, R. David</td>
<td>73–74</td>
</tr>
<tr>
<td>McQuade, Timothy</td>
<td>215</td>
</tr>
<tr>
<td>mean-preserving spread (MPS)</td>
<td>16–17</td>
</tr>
<tr>
<td>mean reversion</td>
<td>126–27, 152, 254, 278–81, 286, 298–99</td>
</tr>
<tr>
<td>mean-variance analysis</td>
<td>30–43</td>
</tr>
<tr>
<td>mean-variance efficient set</td>
<td>36</td>
</tr>
<tr>
<td>Mehra, Rajnish</td>
<td>95, 163, 165, 316, 323, 345</td>
</tr>
<tr>
<td>Meier, Stephan</td>
<td>332</td>
</tr>
<tr>
<td>Melino, Angelo</td>
<td>222</td>
</tr>
<tr>
<td>Mendelson, Haim</td>
<td>393–95</td>
</tr>
<tr>
<td>Menzly, Lior</td>
<td>293</td>
</tr>
<tr>
<td>Merton, Robert C.</td>
<td>equity premium is proportional to variance hypothesis</td>
</tr>
<tr>
<td>endogenous labor supply and risktaking</td>
<td>313</td>
</tr>
<tr>
<td>intertemporal CAPM</td>
<td>181–82, 269</td>
</tr>
<tr>
<td>Shiller’s critique, response to</td>
<td>128</td>
</tr>
<tr>
<td>undiversified investing, implications for asset pricing of</td>
<td>329–30</td>
</tr>
<tr>
<td>Merz, Monika</td>
<td>210</td>
</tr>
<tr>
<td>method of undetermined coefficients</td>
<td>217</td>
</tr>
<tr>
<td>Michaelides, Alexander</td>
<td>321, 323</td>
</tr>
<tr>
<td>Milgrom, Paul</td>
<td>375, 387</td>
</tr>
<tr>
<td>Miller, Edward M.</td>
<td>356, 360</td>
</tr>
<tr>
<td>minimum-variance frontier</td>
<td>34, 39, 45–46</td>
</tr>
<tr>
<td>Mitchell, Mark</td>
<td>112</td>
</tr>
<tr>
<td>Modigliani, Franco</td>
<td>153, 155</td>
</tr>
<tr>
<td>Moench, Emanuel</td>
<td>295</td>
</tr>
<tr>
<td>momentum</td>
<td>68–72, 77, 81, 126, 211, 333–34, 337–38, 356</td>
</tr>
<tr>
<td>Moreira, Marcelo J.</td>
<td>147, 289n</td>
</tr>
<tr>
<td>Morris, Stephen</td>
<td>383–84</td>
</tr>
<tr>
<td>mortgage-backed securities</td>
<td>330, 396</td>
</tr>
<tr>
<td>mortgages</td>
<td>315–16, 335–37</td>
</tr>
<tr>
<td>Motto, Roberto</td>
<td>220</td>
</tr>
<tr>
<td>Mr. Market</td>
<td>358–59</td>
</tr>
<tr>
<td>Muir, Tyler</td>
<td>289n, 399–400</td>
</tr>
<tr>
<td>Mukerji, Sujoy</td>
<td>188</td>
</tr>
<tr>
<td>multifactor model: arbitration pricing in</td>
<td>55, 59–61</td>
</tr>
<tr>
<td>atheoreical, 75–76, conditional CAPM as, 60–61, equilibrium, 76</td>
<td></td>
</tr>
<tr>
<td>Fama-French and Fama-French-Carhart, 76, 211, multivariate affine, 247–49</td>
<td></td>
</tr>
<tr>
<td>production-based, 211, 226, SDF and, 102 multiperiod risk ratio</td>
<td>278–79, 298</td>
</tr>
<tr>
<td>Mussa, Michael</td>
<td>264</td>
</tr>
<tr>
<td>mutual fund theorem</td>
<td>23, 39–41, 50, 276</td>
</tr>
<tr>
<td>myopic portfolio choice</td>
<td>33, 177, 270–72</td>
</tr>
<tr>
<td>Nagel, Stefan</td>
<td>61, 76, 125, 315n5, 386</td>
</tr>
<tr>
<td>Nakamura, Emei</td>
<td>175</td>
</tr>
<tr>
<td>Nelson, Charles R.</td>
<td>241, 264–65</td>
</tr>
<tr>
<td>Newey, Whitney K.</td>
<td>111</td>
</tr>
<tr>
<td>Newey-West estimator</td>
<td>See heteroskedasticity- and autocorrelation-consistent (HAC) covariance matrix estimator</td>
</tr>
<tr>
<td>noise trader risk</td>
<td>113</td>
</tr>
</tbody>
</table>

© Copyright Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.
Index

noise traders, 354–56, 375, 389–91; risk, 113, 355
nonparticipation. See participation
nonseparable utility: durable goods, 161, 168, 199–200; time-nonseparable, 178, 193
no-trade theorem, 375
Novy-Marx, Robert, 72
numeraire portfolio, 93n

Odean, Terrance, 334
O’Doherty, Michael S., 75
Ogaki, Masao, 88
O’Hara, Maureen, 382, 401

OLG model. See overlapping generations (OLG) model
Olberg, Edward, 277, 279n3
one-syllable words, 30n5
options, 149, 159, 175, 202n, 215, 229, 290, 332
ordinal utility, 3
Ostdiek, Barbara, 43n
out-of-sample performance, 43, 147, 153, 156–59
overconfidence, 333, 359, 378–79, 382
overlapping generations (OLG) model, 133, 316–17, 345, 355, 384, 393

Page, Sebastien, 43n
Panageas, Stavros, 313, 317–18
Papanikolaou, Dimitris, 72n11, 208, 215, 219
Pareto: improvement, 133, 351; optimality, 87, 341, 346–52, 366–67;
Pareto-Edgeworth complements, 200; weights, 87
Parker, Jonathan, 187, 314
participation: constraints, 168, 349–52; costs, 321–22; diversification and, 327; limited, 114, 175, 315, 318–25, 345; nonparticipation, 24, 188, 307, 319–23, 327, 334; principle of, 23–24
passive investing, 79, 392
Pástor, Luboš: learning effects on portfolio choice, 269; negative daily autocovariances of individual stock returns, use of, 386; predictive system, 140, 298; randomly time-varying trading cost model of, 393, 395–96; risk and the investment horizon, 278–79; uncertainty about growth rates increases firm value, 150–51
Pearson, Karl, 103
Pearson, Neil D., 357, 378n6
pecuniary externalities, 347, 364–67
Pedersen, Lasse Heje: funding liquidity problem based on, 403; margin-based asset pricing model, 113, 393, 396–97; market liquidity and funding liquidity, interaction between, 392–93, 397–99; monopoly power of marketmakers over investors, 388; quality as a risk factor, 154; randomly time-varying trading costs, 393, 395
Pedersen, Thomas Q., 144
pent-up information, 379–80 perfect risksharing, 87–88
Perold, André F., 125
Pfeiderer, Paul, 400
Pflueger, Carolin E., 255
physical investment with adjustment costs, 207; explaining firms’ betas, 214–15; investment returns, 212–13; a q-theory model of investment, 207–11
Piazzesi, Monika, 230, 240–41, 249, 256–57
Pierce, D., 124
Piketty, Thomas, 327–28
PIPO. See private-information Pareto optimum (PIPO)
Pistaferri, Luigi, 341, 348–49
Plosser, Charles L., 216
plowback ratio. See retention ratio
Poisson process, 171
Polemarchakis, Heraklis M., 346
Polk, Christopher, 144, 147, 149, 154–55, 286–88, 289n
Pontiff, Jeffrey, 73–74
Pope, Devin G., 332
Pope, Jared C., 332
Porter, Richard D., 128
Porteus, Evan L., 176
portfolio choice: intertemporal (see intertemporal hedging); labor income (see labor income and portfolio choice); myopic (see myopic portfolio choice); static (see static portfolio choice)
portfolio rebalancing, 271–72, 328, 331
portfolio return: log, 28–29; simple, 28; two risky assets, 31
Portier, Franck, 219
posterior distribution, 295–98
post-event drift, 71, 77
Poterba, James M., 124, 126–27
Powers, Thomas Y., 264n11
power utility, 11–12
Pratt, John W., 9

For general queries contact webmaster@press.princeton.edu.
precision, 296–99, 359, 373–83
predictive return regressions, 139–40, 144;
other predictors, 148–50; responses to
Stambaugh using financial theory, 146–48;
short and long horizons, 139–40; Stambaugh
bias, 145–46
predictive system, 140
Prescott, Edward C., 95, 163, 165, 167
present value models, 121; the cross-section of
stock returns, present value logic and, 153–
56; drifting steady-state models (see drifting
steady-state models); market efficiency and
(see market efficiency); practice problems,
156–60; predictive return regressions (see
predictive return regressions); solution to an
exercise, 156
present value models with constant discount
rates, 127; dividend-based (see dividend-based
models); earnings-based, 131–32; rational
bubbles, 132–34
present value models with time-varying discount
rates: the Campbell-Shiller approximation,
134–37; interpreting U.S. stock market
history, 140–43; short- and long-term return
predictability, 137–40; VAR analysis of
returns, 143–44
price of risk, 59, 79, 94, 102, 199, 214, 249,
292–95, 303
price-earnings ratio, 68, 132, 137; cyclically
adjusted (see cyclically adjusted price-
earnings [CAPE] ratio); smoothed earnings,
142–44, 148, 155, 157
pricing kernel, 252–54, 267
Priebsch, Marcel, 249
prior distribution, 295–96, 400
Primiceri, Giorgio E., 219
private business, 318–21, 358
private-information Pareto optimum (PIPO),
348–49
production-based asset pricing, 207; general
equilibrium with production (see general
equilibrium with production); marginal rate
of transformation and the SDF, 222–26;
physical investment with adjustment costs
(see physical investment with adjustment
costs); practice problem, 226–28; solution to
exercise, 226
profitability: 131–32, 136, 151, 154–55, 211,
226, 260, 267; gross, 72, 154, 211
prospect theory, 15, 199, 334
Pruitt, Seth, 149, 155–56
pseudo-probabilities. See risk-neutral
probabilities
Pulvino, Todd, 112
q theory, 148, 207–12, 226
Q statistic. See Box-Pierce Q statistic
quadratic utility, 11, 31, 114–16
quality. See earnings quality
quotes, 385–87
Rabin, Matthew, 3, 13–15, 20, 379
Rabin critique, 13–14, 20
Ramadorai, Tarun, 332
Rampini, Adriano A., 353
Ranish, Benjamin, 316
rational expectations equilibrium, 372; equilib-
rium with costly information, 380–82; fully
revealing equilibrium, 372–75; higher-order
expectations, 383–84; news, trading volume,
and returns, 378–80; partially revealing
equilibrium, 375–77
Raviv, Artur, 357, 378n6
Ready, Robert C., 264n11
rebalancing. See portfolio rebalancing
Rebelo, Sergio T., 216
recovery rate, 171, 174–75
regime switching, 265
Reinganum, Marc R., 67, 73, 149, 285
Renault, Eric, 176n
rent-price ratio, 291
representative agent: ambiguity aversion, 189;
DSGE model, 215–20, 226–27; existence,
88–89; habit formation, 192–93, 199;
tertemporal budget constraint, 179;
tertemporal hedging, 273, 286; labor
income, 308; levered equity, 204–5; limited
participation, 322; long-run risk model, 182,
185, 203; multicountry endowment model,
262; portfolio inertia, 331; power utility, 94,
99, 161–62, 168; private information, 349;
rational bubbles and, 133; recovery theorem,
202; uninsurable income risk, 344
repurchases. See share repurchases
resilience, 174–75
Restoy, Fernando, 181
retention ratio, 131–32
return on equity (ROE), 131–32, 136, 150,
153–54, 211, 226
Reuter, Jonathan, 392
reversal, 68–69, 81, 123, 125, 156, 356, 395
reward-risk ratio. See Sharpe ratio
Richard, Scott F., 83, 97, 102, 116
Index 447

Richardson, Matthew, 125
riding the yield curve, 233
Rietz, Thomas, 168
risk aversion, 5; absolute, 7, 20, 26; the Arrow-Pratt approximation, 9–10, 24; comparing, 7–9; first-order, 14–15; Jensen’s Inequality and, 5–7; relative, 10–12; second-order, 10, 14; to small risks, 13–15, 24–25
risk exposure, choosing: the CARA-normal case, 25–27; the CRRA-lognormal case, 27–30; the growth-optimal portfolio, 30; participation, principle of, 23–24; small reward for risk, 24–25
riskfree rate puzzle, 165–66, 344
risk-neutral probabilities, 84–85
risk premium, 8, 10
risks, comparing: with different means, 18–19; riskiness indices, 20–21; with the same mean, 16–18
risksharing and speculation, 341–42; default, 349; default: punishment by exclusion, 349–53; default: punishment by seizure of collateral, 353–54; heterogeneous beliefs (see heterogeneous beliefs); incomplete markets: asset pricing with uninsurable risk, 342–45; incomplete markets: general equilibrium with imperfect risksharing, 346–47; incomplete markets, market design with, 345–46; perfect, 87–88; practice problems, 363–69; private information, 347–49; solution to exercise, 363
risk tolerance, 11
risky assets, combining: the global minimum-variance portfolio, 35–38; mean-variance analysis, 30–31; the mutual fund theorem, 39–41; N risky assets, 34–35; one riskless asset and N risky assets, 39–42; one risky and one safe asset, 33; practical difficulties, 42–43; two risky assets, 31–33
Robertson, Donald, 141n
robust optimal control, 167
ROE. See return on equity (ROE)
Rogerson, William P., 341, 348
Roll, Richard, 74, 76, 257n, 385–86
Roll critique, 74–75
Romer, David, 379
Ross, Stephen A.: arbitrage pricing theory, 56–60; GRS statistic, 62–63; limiting forward rate, property of, 244; recovery theorem, problem based on, 175, 202–3; square-root (CIR) model, 245–47, 249; stochastic discount factor built on the work of, 83; stock prices, important common influences on, 76
Rostagno, Massimo, 220
Rothschild, Michael, 16, 18–19
Roussanov, Nikolai L., 264n11
Rubinstein, Mark, 12, 382
Rudebusch, Glenn D., 220, 265
sales-capital ratio, 207, 213
Samuelson, Paul A., 30, 89, 123, 269
Samuelson, William F., 313
Santa-Clara, Pedro, 263
Santos, Tano, 199, 293
Sapienza, Paola, 321n
Sargent, Thomas J., 167, 177, 187–91
Savov, Alexi, 167
Scaillet, Olivier, 249
Scheinkman, José A., 175, 203, 254, 342, 359, 363
Scherbina, Anna, 71
Schneidler, David, 187, 189n, 321
Schmidt, Lawrence, 345
Schneider, Martin, 188, 256–57
Schwert, G. William, 257n
SDF. See stochastic discount factor
second-order risk aversion, 10
second-order stochastic discount factor (SODS), 18–19
security market line (SML), 50
Semenov, A., 176n
Seppi, Duane J., 391
Serfaty-de Medeiros, Karine, 264
Serrano, Roberto, 19–21
Sera, Amit, 333
Shaliastovich, Ivan, 288–89
Shanken, Jay, 62–63, 75–76, 116
share repurchases, 71, 141–42
Sharpe, William F., 47
Sharpe-Lintner CAPM, 48–50, 58
Shefrin, Hersh, 334
Shiller, Robert J.: Campbell-Shiller approximation, 134–37, 140–41, 150, 160, 185, 216, 273; data from website of, 140–41; expectations hypothesis, tests of, 239–40; financial theory as improvement on running regressions, 146; intrinsic value and the real price of stocks, commentary on claim regarding, 123, 138; Irrational Exuberance, publication
Shiller, Robert J. (continued)
of, 142n; market design and risksharing
problem based on, 364; Nobel Prize award
work, 137; noise traders, models of, 354–55;
price-smoothed earnings ratio, 142; rational
investors and noise traders, models of trading
between, 342; social welfare maximization
with a limited number of financial assets,
345–46; stocks and TIPS, 295; uninsurable
income risk and risk premia, 341–42, 344;
variance bounds tests, 128–29; volatility
bound on the SDF, 95
Shin, Hyun Song, 383–84
shipping costs, 263
Shleifer, Andrei, 113, 397, 399
short-sales constraints, 31, 110, 276, 356–59,
363, 379–80
shrouded equilibrium, 335
Shubik, Martin, 354
Shumway, Tyler, 333
Siamese twins, 113
Siegel, Andrew F., 241, 264–65
Siegel, Jeremy J., 130, 132, 152, 280–81
Siegel’s paradox, 259n
Simonov, Andrei, 317
Simsek, Alp, 342, 346, 354, 362–63
single-factor model: affine, 242–47; arbitrage
pricing in, 55–60
Singleton, Kenneth J., 106, 163, 184, 199, 249
size effect, 66–67, 70, 73–74, 212
skewness, 31n, 100, 169, 171, 318
slow-moving capital, 331
Smith, Anthony A., 345
social planner, 87, 133, 197, 345–51, 366n
social welfare, 338–39, 345–46
Sodini, Paolo, 314, 317, 324–27, 329, 331
solvency constraints, 350–53, 367
speculation. See risksharing and speculation
square-root (CIR) process, 245–46, 249, 256,
287n
Stafford, Erik, 112, 391
Staiger, Douglas, 184
Stambaugh, Robert F.: active asset manage-
ment, 392; bid-ask bounce effect on average
return, 387; illiquidity and autocovariances,
386; learning and portfolio choice, 269,
298; long-run risk model, 181–82; predictive
system, 140, 298; randomly time-varying
trading cost model, 393, 395–96; risk and the
investment horizon, 278–79; Roll critique,
response to, 75; Stambaugh bias, 145–47
Statman, Meir, 334
Staunton, Mike, 167
Stein, Jeremy C., 321n, 379
Stein’s Lemma, 160
Steinsson, Jón, 175
Stiglitz, Joseph E., 16, 18–19, 346, 380–82, 390
stochastic discount factor (SDF), 83; bond
pricing models and, 241–43, 250, 252–56;
in the Campbell-Cochrane model, 194–95;
complete markets (see complete markets, the
SDF and); entropy bounds and, 100–102;
Epstein-Zin preferences, deriving for, 178–80;
factor structure and, 102; foreign exchange
carry trade and, 260–64; Generalized Method
of Moments and (see Generalized Method
of Moments); incomplete markets (see incomplete markets, the SDF and); limits of
arbitrage, 112–14; lognormal consumption
with power utility and, 162; marginal rate
of transformation and, 222–26; practice
problems, 114–18; private information
Pareto optimum (PIPO), 348–49; risk premia
and, 93–94; solutions for exercises, 114;
time-series properties of, 102–3; volatility
bounds and, 95–99
stochastic dominance: first-order, 18;
second-order, 18
Stock, James H., 125, 184
stock returns: beta and, 66–67; CAPM-implied
expected excess return, 67–68; cross-section
of, the CAPM and, 66–72; earnings quality
and, 71–72; efficient markets, factors
effecting, 123; empirical evidence on auto-
correlation in, 125–27; Fama-French-Carhart
log cumulative normalized factor returns,
69–70; five-year moving average excess
returns to micro-cap stocks, January vs.
other months, 74; five-year moving average
excess returns to small-cap stocks, January
For general queries contact webmaster@press.princeton.edu.
vs. other months, 73; growth of the firm and, 71; insider trading, 71; international stock and bill returns and consumption growth, 163; interpreting U.S. stock market history, 140–43; momentum and, 68–71; over time, average correlations of individual, 37; post-event drift, 71; predictive return regressions (see predictive return regressions); present value logic and the cross-section of, 153–56; profitability and, 72; random walk or martingale model of, 128; the S&P 500 dividend-price ratio, 1871–2013, 141; the S&P 500 log price-smoothed earnings ratio and the 10-year future real return, 1881–2013, 143; the S&P 500 price-smoothed earnings ratio, 1881–2013, 142; tests of autocorrelation, 124–25; turnover and volatility, 71; value and, 67–68

Stoffer, Noah, 333
Stokey, Nancy, 375
Storesletten, Kjetil, 313, 315
Strobel, Johannes, 133, 290–91
Strzalecki, Tomasz, 177, 204
stub value, 112
Stutzer, Michael, 100
Subrahmanyam, Avanidhar, 378
subsistence level, 12
Summers, Lawrence H., 124, 126–27
Sunderam, Adi, 294
surplus consumption, 193–97, 201, 262–63, 312
Swanson, Eric T., 207, 220–21, 313
swaps, 346
SVIX volatility index, 159–60
Szeidl, Adam, 15
Szilagyi, Jan, 75n, 154
Tallarini, Thomas, 217n
Tambalotti, Andrea, 219
tangency portfolio, 40–41, 46–47, 50–51, 63, 80, 97
Tanggaard, Carsten, 144
tax arbitrage, 112
Taylor approximation, 10, 28, 134, 336
Telmer, Christopher I., 313, 315
Teoh, Siew Hong, 148n
Terlizzese, Daniele, 316
term spread. See yield spread
term structure of interest rates. See fixed-income securities
term structure of risky assets: asset pricing theory and the risky term structure, 291–95; stylized facts, 290–91

Thaler, Richard H., 15, 68, 112, 199
Thompson, Samuel B., 147, 149, 153–55, 158
Timmermann, Allan, 289n
TIPS. See Treasury inflation-protected securities (TIPS)
Tiroli, Jean, 133, 392
Titman, Sheridan, 88
tractable utility functions, 10–12
trading costs, 83
transactions costs, 384–85. See also market microstructure
transversality conditions, 133, 350–52
Treasury inflation-protected securities (TIPS), 230, 255, 277, 295
Treynor, Jack L., 55
Tsai, Jerry, 176
Tsyvinski, Aleh, 341, 348
Turkington, David, 43n
Turley, Robert, 287–88, 289n
turnover, 71, 394
Tversky, Amos, 15, 199, 334
Uhlig, Harald, 197, 220
uncovered interest parity, 258–60
underdiversification, 323; asset pricing implications, 329–31; effects on the wealth distribution, 327–29; empirical evidence, 324–27
uninsurable income risk. See idiosyncratic risk
unit root, 128–29, 135, 147
Uppal, Raman, 43
Ursúa, José, 176
util-prob, 89

value effect, 67–68, 75, 77, 285
Van Nieuwerburgh, Stijn, 295, 317, 353, 382
VAR. See vector autoregression (VAR)
variance beta, 288–90
variance bounds tests, 128
variance ratio statistic, 124–26, 138
VARMA. See vector autoregressive moving average (VARMA) model
Vasichek, Oldrich, 242
Vassalou, Maria, 317
Vayanos, Dimitri, 331, 379, 392
vector autoregression (VAR), 143–44, 281, 285–88
vector autoregressive moving average (VARMA) model, 111

Veldkamp, Laura, 382

Venti, Steven F., 327

Verdelhan, Adrien, 195n, 199, 201, 252, 260, 262, 263n10, 264, 267

Veronesi, Pietro, 150–51, 293

Verrecchia, Robert E., 375–78

Viceira, Luis M.: currencies with high average interest rates have high betas, 264; hedging interest rates, 269, 273, 274n, 276–77; hedging risk premia, 277, 279–81; hedging volatility, 283; inflation-indexed bond yields, 255; risky labor income and portfolio choice, 310, 311n, 313; stocks and bonds, historical correlations between U.S., 294–95; two-factor affine term structure model, 256, 276–77

Violante, Giovanni L., 314

Vishny, Robert, 113, 397, 399

Viswanathan, S., 353

VIX volatility index, 159–60

volatility bounds: Hansen-Jagannathan, 91, 96–99; logarithmic with a risky and riskless asset, 95; simple with a risky and riskless asset, 95; simple without a riskless asset, 96

volatility timing effect, 61

Vollcker, Paul, 277

von Neumann-Morgenstern utility function/theory, 3–4; Allais paradox as challenge to, 12–13; Epstein-Zin preferences and, 177; riskiness indices and, 20

Vuolteenaho, Tuomo: cross-sectional predictor of the equity premium, 149–50, 154–55; dynamic version of the profitability-based formula for the book-market ratio, 136; intertemporal capital asset pricing model, 269, 284–87, 301; noise reduction and stock return predictability, 147; variance decomposition for individual stock returns, 144

Wachter, Jessica A.: Campbell-Cochrane model generalized with a variable interest rate, 195n, 252; maximum likelihood estimation of the unconditional equity premium, 148; risky term structure models, 292–95, 302–3; slope of the term structure of risky yields, 269; variation of disaster probability over time, 175

Wang, Ashley W., 292

Wang, Jiang, 378, 392

Wang, Tan, 189n, 321

Wang, Yong, 167

Ward, Colin, 264n11

Watson, Mark, 132

wealth distribution, 11, 26, 318–19, 327–29, 362, 372

wealth inequality, 328–29

wealthy hand-to-mouth consumers, 314

Weil, David N., 41–42, 44, 276

Weil, Philippe, 165, 176, 181

Welch, Ivo, 147, 153, 157–58

welfare theorems, 351–52

well diversified portfolio, 56

Werding, Iván, 347

West, Kenneth D., 11, 137

Whinston, Michael, 89

Whited, Toni M., 212–13

Williams, Noah, 188

Wise, David A., 327

Wolf, Michael, 43n

Wright, Jonathan H., 230

Wright, Stephen, 141n

Xia, Yihong, 292

Xiong, Wei, 334, 342, 359, 363

Xue, Chen, 211

Yan, Hongjun, 356

Yang, Alan X., 222

Yashiv, Eran, 210

Yogo, Motohiro, 147, 199–201, 225–26, 264

Yu, Jianfeng, 219

Yue, Vivian Z., 264n12

For general queries contact webmaster@press.princeton.edu.
Index

Zame, William R., 354
zebra, 400
Zeldes, Stephen P., 313, 314, 322
zero-beta: portfolio, 45, 51, 59–60; rate, 45, 50, 58–59, 117
zero-coupon: bonds, 229–37, 239, 241, 265;
dividend claims, 290, 302–3
zero lower bound, 256
Zhang, Lu, 211–14
Zhang, Qiang, 88
Zhao, Xinlei, 144, 285
Zin, Stanley E., 13, 176, 178–79. See also
 Epstein-Zin preferences
Zingales, Luigi, 321n