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1
Choice under Uncertainty

ASSET PRICING THEORY aims to describe the equilibrium in financial markets, where
economic agents interact to trade claims to uncertain future payoffs. Both adjectives,
“uncertain” and “future,” are important—as suggested by the title of Christian Gollier’s
book The Economics of Risk and Time (2001)—but in this chapter we review the basic
theory of choice under uncertainty, ignoring time by assuming that all uncertainty
is resolved at a single future date. The chapter draws on both Gollier (2001) and
Ingersoll (1987).

Section 1.1 begins by briefly reviewing the axiomatic foundations of expected utility
theory. Section 1.2 applies expected utility theory to the measurement of risk aversion
and the comparison of risk aversion across agents. Section 1.3 discusses the hyperbolic
absolute risk averse (HARA) class of utility functions, which are widely used because they
are so tractable in applications. Section 1.4 discusses critiques of expected utility theory,
including the Allais (1953) paradox and the Rabin (2000) critique. Section 1.5 shows how
to compare the riskiness of different distributions.

1.1 Expected Utility

Standard microeconomics represents preferences using ordinal utility functions. An
ordinal utility function ϒ(.) tells you that an agent is indifferent between x and y if
ϒ(x) = ϒ(y) and prefers x to y if ϒ(x) > ϒ(y). Any strictly increasing function of ϒ(.)
will have the same properties, so the preferences expressed by ϒ(.) are the same as those
expressed by�(ϒ(.)) for any strictly increasing�. In other words, ordinal utility is invari-
ant to monotonically increasing transformations. It defines indifference curves, but there
is no way to label the curves so that they have meaningful values.

A cardinal utility function�(.) is invariant to positive affine (increasing linear) trans-
formations but not to nonlinear transformations. The preferences expressed by �(.) are
the same as those expressed by a + b�(.) for any b > 0. In other words, cardinal utility has
no natural units, but given a choice of units, the rate at which cardinal utility increases is
meaningful.

Asset pricing theory relies heavily on von Neumann-Morgenstern utility theory, which
says that choice over lotteries, satisfying certain axioms, implies maximization of the
expectation of a cardinal utility function, defined over outcomes.

3
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1.1.1 Sketch of von Neumann-Morgenstern Theory

The content of von Neumann-Morgenstern utility theory is easiest to understand in a
discrete-state example. Define states s = 1 . . . S, each of which is associated with an out-
come xs in a set X . Probabilities ps of the different outcomes then define lotteries. When
S = 3, we can draw probabilities in two dimensions (since p3 = 1 – p1 – p2). We get the
so-called Machina triangle (Machina 1982), illustrated in Figure 1.1.

We define a compound lottery as one that determines which primitive lottery we are
given. For example, a compound lottery L might give us lottery La with probability α and
lottery Lb with probability (1 – α). Then L has the same probabilities over the outcomes
as αLa + (1 – α)Lb.

We define a preference ordering � over lotteries. A person is indifferent between
lotteries La and Lb , La ∼ Lb, if and only if La � Lb and Lb � La .

Next we apply two axioms of choice over lotteries.
Continuity axiom: For all La , Lb, Lc s.t. La � Lb � Lc , there exists a scalar α ∈ [0, 1] s.t.

Lb ∼ αLa + (1 – α)Lc . (1.1)

This axiom says that if three lotteries are (weakly) ranked in order of preference,
it is always possible to find a compound lottery that mixes the highest-ranked and
lowest-ranked lotteries in such a way that the economic agent is indifferent between
this compound lottery and the middle-ranked lottery. The axiom implies the existence
of a preference functional defined over lotteries, that is, an ordinal utility function for
lotteries that enables us to draw indifference curves on the Machina triangle.

Independence axiom:

La � Lb ⇒ αLa + (1 – α)Lc � αLb + (1 – α)Lc (1.2)

for all possible lotteries Lc .

1

1

p2

p1

Linear indifference curves

Machina triangle

Figure 1.1. Machina Triangle
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1.2. Risk Aversion 5

This axiom says that if two lotteries are ranked in order of preference, then the same
rank order applies to two compound lotteries, each of which combines one of the original
two lotteries with an arbitrary third lottery, using the same mixing weights in each case.

The independence axiom implies that the preference functional is linear in prob-
abilities. In the Machina triangle, the indifference curves are straight lines, as illustrated
in Figure 1.1. This means that a given increase in one probability, say p1, requires the
same change in another probability, say p3, to leave the agent indifferent regardless of
the initial levels of p1 and p3.

Then we can define a scalar us for each outcome xs s.t.

La � Lb ⇒
S∑
s=1

pas us ≥
S∑
s=1

pbs us . (1.3)

The scalars us define the slopes of the linear indifference curves in the Machina triangle.
Since probabilities sum to one and a constant can be added to all us without changing
preferences, two scalars can be normalized (say the lowest to zero and the highest to one).

Equation (1.3) shows that a lottery is valued by the probability-weighted average of
the scalars us associated with each outcome xs . Call these scalars “utilities.” A probability-
weighted average of utilities us in each state s is the mathematical expectation of the
random variable “utility” that takes the value us in state s. Hence, we have implicitly
defined a cardinal utility function u(xs), defined over outcomes, such that the agent
prefers the lottery that delivers a higher expectation of this function. The free normal-
ization of lowest and highest utility corresponds to the two arbitrary parameters a and b
that define the units in which cardinal utility is measured.

This construction can be generalized to handle continuous states. Strictly speaking,
the resulting utility function must be bounded above and below, but this requirement is
routinely ignored in modern applications of utility theory.

1.2 Risk Aversion

We now assume the existence of a cardinal utility function and ask what it means to say
that the agent whose preferences are represented by that utility function is risk averse.
We also discuss the quantitative measurement of risk aversion.

To bring out the main ideas as simply as possible, we assume that the argument of
the utility function is wealth. This is equivalent to working with a single consumption
good in a static two-period model where all wealth is liquidated and consumed in the
second period, after uncertainty is resolved. Later in the book we discuss richer models
in which consumption takes place in many periods, and also some models with multiple
consumption goods.

For simplicity we also work with weak inequalities and weak preference orderings
throughout. The extension to strict inequalities and strong preference orderings is
straightforward.

1.2.1 Jensen’s Inequality and Risk Aversion

An important mathematical result, Jensen’s Inequality, can be used to link the concept of
risk aversion to the concavity of the utility function. We start by defining concavity for a
function f .
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f (a)

a b

f (b)

f (a)+(1–  )f (b)
f (  a+(1–  )b)λ λ

λ λ

  a + (1–  )bλ λ

Figure 1.2. Concave Function

Definition. f is concave if and only if, for all λ ∈ [0, 1] and values a, b,

λf (a) + (1 – λ)f (b) ≤ f (λa + (1 – λ)b). (1.4)

If f is twice differentiable, then concavity implies that f ′′ ≤ 0. Figure 1.2 illustrates a
concave function.

Note that because the inequality is weak in the above definition, a linear function is
concave. Strict concavity uses a strong inequality and excludes linear functions, but we
proceed with the weak concept of concavity.

Now consider a random variable z̃. Jensen’s Inequality states that

Ef (̃z) ≤ f (Ẽz) (1.5)

for all possible z̃ if and only if f is concave.
This result, due to the Danish mathematician and telephone engineer Johan Jensen,

is so useful in finance that the field might almost be caricatured as “the economics of
Jensen’s Inequality.” As a first application, we can use it to establish the equivalence of
risk aversion and concavity of the utility function.

Definition. An agent is risk averse if she (weakly) dislikes all zero-mean risk at all levels of
wealth. That is, for all initial wealth levels W0 and risk x̃ with Ẽx = 0,

Eu(W0 + x̃) ≤ u(W0). (1.6)

To show that risk aversion is equivalent to concavity of the utility function, we simply
rewrite the definition of risk aversion as

Eu(̃z) ≤ u(Ẽz), (1.7)

where z̃ = W0 + x̃, and apply Jensen’s Inequality.
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1.2. Risk Aversion 7

Since risk aversion is concavity, and concavity restricts the sign of the second deriv-
ative of the utility function (assuming that derivative exists), it is natural to construct
a quantitative measure of risk aversion using the second derivative u′′, scaled to avoid
dependence on the units of measurement for utility. The coefficient of absolute risk aversion
A(W0) is defined by

A(W0) =
–u′′(W0)
u′(W0)

. (1.8)

As the notation makes clear, in general this is a function of the initial level of wealth.

1.2.2 Comparing Risk Aversion

Let two agents with utility functions u1 and u2 have the same initial wealth. An agent
rejects a lottery if taking it lowers expected utility, that is, if the expected utility of initial
wealth plus the lottery payout is lower than the utility of initial wealth. Continuing with
our use of weak inequalities, we will also say that the agent rejects the lottery if it gives her
the same expected utility as the utility of initial wealth.

Definition. u1 is more risk-averse than u2 if u1 rejects all lotteries that u2 rejects, regardless
of the common initial wealth level.

Many utility functions cannot be ranked in this way. It is quite possible for agents to
disagree about lotteries at a given initial wealth level (with the first agent accepting some
that the second agent rejects and vice versa). It is also quite possible for the initial wealth
level to matter, so that the first agent rejects all lotteries that the second agent rejects at
a low level of initial wealth, but the second agent rejects all lotteries that the first agent
rejects at a higher level of initial wealth.

What else is true if u1 is more risk-averse than u2? To answer this question, we first
define a function

φ(x) = u1(u–12 (x)). (1.9)

This function has three important properties:

(a) u1(z) = φ(u2(z)), so φ(.) turns u2 into u1.
(b) u′

1(z) = φ
′(u2(z))u′

2(z), so φ′ = u′
1/u

′
2 > 0.

(c) u′′
1(z) = φ

′(u2(z))u′′
2(z) + φ

′′(u2(z))u′
2(z)

2, so

φ′′ =
u′′
1 – φ

′u′′
2

u′
2
2

=
u′
1

u′
2
2
(A2 – A1). (1.10)

The second of these properties is obtained by differentiating the first, and the third
by differentiating the second. This trick (repeated differentiation to obtain restrictions
on derivatives) often comes in handy in this field.

The third property is important because it shows that concavity of the function φ(x),
φ′′ ≤ 0, is equivalent to higher absolute risk aversion for agent 1, A1 ≥ A2.

Now consider a risk x̃ that is rejected by u2, that is, a risk s.t. Eu2(W0 + x̃) ≤ u2(W0).
If u1 is more risk-averse than u2, we must also have Eu1(W0 + x̃) ≤ u1(W0). Using the
function φ(.),

Eu1(W0 + x̃) = Eφ(u2(W0 + x̃)), (1.11)
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while

u1(W0) = φ(u2(W0)) ≥ φ(Eu2(W0 + x̃)) (1.12)

since φ′ > 0. So for u1 to be more risk-averse than u2, we need

Eφ(u2(W0 + x̃)) ≤ φ(Eu2(W0 + x̃)) (1.13)

for all x̃. By Jensen’s Inequality, this is equivalent to the concavity of the function φ(x),
φ′′ ≤ 0.

Putting these results together, we have shown that if one agent is more risk-averse
than another, then the more risk-averse utility function is a concave transformation of
the less risk-averse utility function and has a higher coefficient of absolute risk aversion
at all levels of initial wealth. We have also shown the converse of these statements.

These concepts can be related to the amounts of wealth that agents are prepared to
pay to avoid a zero-mean risk.

Definition. The risk premium π(W0,u, x̃) is the greatest amount an agent with initial wealth
W0 and utility function u is willing to pay to avoid a risk x̃, assumed to have zero mean.
Suppressing the arguments for notational simplicity, π is found by solving

Eu(W0 + x̃) = u(W0 – π). (1.14)

Defining z = W0 – π and ỹ = π + x̃, this can be rewritten as

Eu(z + ỹ) = u(z). (1.15)

Now define π2 as the risk premium for agent 2, and define z2 and ỹ2 accordingly.
We have

Eu2(z2 + ỹ2) = u2(z2). (1.16)

If u1 is more risk-averse than u2, then

Eu1(z2 + ỹ2) ≤ u1(z2), (1.17)

which implies π1 ≥ π2. The same argument applies in reverse, so π1 ≥ π2 implies that u1
is more risk-averse than u2.

We can extend the above analysis to consider a risk that may have a nonzero mean μ.
It pays μ + x̃ where x̃ has zero mean.

Definition. The certainty equivalent Ce satisfies

Eu(W0 + μ + x̃) = u(W0 + Ce). (1.18)

This implies that

Ce(W0,u,μ + x̃) = μ – π(W0 + μ,u, x̃). (1.19)

Thus if u1 is more risk-averse than u2, then Ce1 ≤ Ce2. Again, the reverse implication also
holds.
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1.2. Risk Aversion 9

In summary, the following statements are equivalent:

• u1 is more risk-averse than u2.
• u1 is a concave transformation of u2 at all initial wealth levels.
• A1 ≥ A2 at all initial wealth levels.
• π1 ≥ π2 at all initial wealth levels.
• Ce1 ≤ Ce2 at all initial wealth levels.

It is also possible to use the above ideas to ask how risk aversion for a single agent
changes with the agent’s level of wealth. It is natural to think that a richer person will care
less about a given absolute risk than a poorer person, and will pay less to avoid it; in other
words, that the risk premium for any risk should decline with initial wealth W0. One can
show that the following conditions are equivalent:

• π is decreasing in W0.
• A(W0) is decreasing in W0.
• –u′ is a concave transformation of u, so –u′′′/u′′ ≥ –u′′/u′ everywhere. The ratio

–u′′′/u′′ = P has been called absolute prudence by Kimball (1990), who relates it to the
theory of precautionary saving.

Decreasing absolute risk aversion (DARA) is intuitively appealing. Certainly we
should be uncomfortable with increasing absolute risk aversion.

1.2.3 The Arrow-Pratt Approximation

In the previous section, we defined the risk premium and certainty equivalent implicitly,
as the solutions to equations (1.14) and (1.18). A famous analysis due to Arrow (1971)
and Pratt (1964) shows that when risk is small, it is possible to derive approximate closed-
form solutions to these equations.

Consider a zero-mean risk ỹ = k̃x, where k is a scale factor. Write the risk premium as
a function of k, g(k) = π(W0,u, k̃x). From the definition of the risk premium, we have

Eu(W0 + k̃x) = u(W0 – g(k)). (1.20)

Note that g(0) = 0, because you would pay nothing to avoid a risk with zero variability.
We now use the trick of repeated differentiation, in this case with respect to k, that

was introduced in the previous subsection. Differentiating (1.20), we have

E[̃xu′(W0 + k̃x)] = –g ′(k)u′(W0 – g(k)). (1.21)

At k = 0, the left-hand side of (1.21) becomes E[̃xu′(W0)] = E[̃x]u′(W0), where we can
bring u′(W0) outside the expectations operator because it is deterministic. Since E[̃x] = 0,
the left-hand side of (1.21) is zero when k = 0, so the right-hand side must also be zero,
which implies that g ′(0) = 0.

We now differentiate with respect to k a second time to get

Ẽx2u′′(wo + k̃x) = g ′(k)2u′′(W0 – g(k)) – g ′′(k)u′(W0 – g(k)), (1.22)

which implies that

g ′′(0) =
–u′′(W0)
u′(W0)

Ẽx2 = A(W0)Ẽx2. (1.23)
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10 1. Choice under Uncertainty

Now take a Taylor approximation of g(k) around the point of zero variability, k = 0:

g(k) ≈ g(0) + kg ′(0) +
1
2
k2g ′′(0). (1.24)

Substituting in the previously obtained values for the derivatives, we get

π ≈ 1
2
A(W0)k2E

[̃
x2
]
=
1
2
A(W0)E

[̃
y2
]
. (1.25)

The risk premium is proportional to the square of the risk. This property of differentiable
utility is known as second-order risk aversion. It implies that people are approximately risk-
neutral with respect to a single small risk (and more generally to small risks that are
independent of other risks they face). The coefficient of proportionality is one-half the
coefficient of absolute risk aversion, so we have a quantitative prediction linking the risk
premium to the scale of risk and the level of risk aversion. This result is the basis for much
modern quantitative research.

A similar analysis can be performed for the certainty equivalent. The result is that

Ce ≈ kμ –
1
2
A(W0)k2E

[̃
x2
]
. (1.26)

This shows that the mean has a dominant effect on the certainty equivalent for small risks.
In finance, risks are often multiplicative rather than additive. That is, as the level

of wealth invested increases, the absolute scale of the risk increases in proportion. The
above theory can easily be modified to handle this case. Define a multiplicative risk by
W̃ = W0(1 + k̃x) = W0(1 + ỹ). Define π̂ as the share of one’s wealth one would pay to avoid
this risk:

π̂ =
π(W0,u,W0k̃x)

W0
. (1.27)

Then

π̂ ≈ 1
2
W0A(W0)k2Ẽx2 =

1
2
R(W0)Ẽy2, (1.28)

where R(W0) = W0A(W0) is the coefficient of relative risk aversion.

1.3 Tractable Utility Functions

Almost all applied theory and empirical work in finance uses some member of the class of
utility functions known as linear risk tolerance (LRT) or hyperbolic absolute risk aversion
(HARA). Continuing to use wealth as the argument of the utility function, the HARA class
of utility functions can be written as

u(W ) = a + b
(
η +

W
γ

)1–γ

, (1.29)

defined for levels of wealth W such that η + W /γ > 0. The parameter a and the mag-
nitude of the parameter b do not affect choices but can be set freely to deliver convenient
representations of utility in special cases.
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For these utility functions, risk tolerance—the reciprocal of absolute risk aversion—is
given by

T(W ) =
1

A(W )
= η +

W
γ
, (1.30)

which is linear in W . Absolute risk aversion itself is then hyperbolic in W :

A(W ) =
(
η +

W
γ

)–1

. (1.31)

Relative risk aversion is, of course,

R(W ) = W
(
η +

W
γ

)–1

. (1.32)

There are several important special cases of HARA utility.
Quadratic utility has γ = –1. This implies that risk tolerance declines in wealth from

(1.30), and absolute risk aversion increases in wealth from (1.31). In addition, the quad-
ratic utility function has a “bliss point” at which u′ = 0. These are important disadvantages,
although quadratic utility is tractable in models with additive risk and has even been used
in macroeconomic models with growth, where trending preference parameters are used
to keep the bliss point well above levels of wealth or consumption observed in the data.

Exponential or constant absolute risk averse (CARA) utility is the limit as γ → –∞.
To obtain constant absolute risk aversion A, we need

–u′′(W ) = Au′(W ) (1.33)

for all W > 0. Solving this differential equation, we get

u(W ) =
– exp(–AW )

A
, (1.34)

where A = 1/η. This utility function does not have a bliss point, but it is bounded above;
utility approaches zero as wealth increases. Exponential utility is tractable with normally
distributed risks because then utility is lognormally distributed. In addition, as we will see
in the next chapter, it implies that wealth has no effect on the demand for risky assets,
which makes it relatively easy to calculate an equilibrium because one does not have to
keep track of the wealth distribution.

Power or constant relative risk averse (CRRA) utility has η = 0 and γ > 0. Absolute
risk aversion is declining in wealth — a desirable property — while relative risk aversion
R(W ) = γ , a constant. For γ �= 1, a and b in equation (1.29) can be chosen to write
utility as

u(W ) =
W 1–γ – 1
1 – γ

. (1.35)

For γ = 1, we use L’Hôpital’s rule to take the limit of equation (1.35) as γ approaches
one. The result is

u(W ) = log(W ). (1.36)
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Power utility is appealing because it implies stationary risk premia and interest rates
even in the presence of long-run economic growth. Also it is tractable in the presence
of multiplicative lognormally distributed risks. For these reasons it is a workhorse model
in the asset pricing and macroeconomics literatures and will be used intensively in this
book. The special case of log utility has even more convenient properties, but relative risk
aversion as low as one is hard to reconcile with the substantial risk premia observed in
financial markets as we discuss in Chapter 6.

Subsistence level. A negative η represents a subsistence level, a minimum level of con-
sumption that is required for utility to be defined. Litzenberger and Rubinstein (1976)
argued for a model with log utility of wealth above the subsistence level, which they called
the Generalized Log Utility Model. The proposal did not gain traction, perhaps in part
because economic growth renders any fixed subsistence level irrelevant in the long run.1

Models of habit formation, discussed in Chapter 6, have time-varying subsistence levels
that can grow with the economy.

1.4 Critiques of Expected Utility Theory

1.4.1 Allais Paradox

This famous paradox, due to Allais (1953), challenges the von Neumann-Morgenstern
framework. Consider a set of lotteries, each of which involves drawing one ball from an
urn containing 100 balls, labeled 0–99. Table 1.1 shows the monetary prizes that will be
awarded for drawing each ball, in four different lotteries La , Lb,Ma , andMb .

Lottery La offers $50 with certainty, while lottery Lb offers an 89% chance of $50, a
10% chance of $250, and a 1% chance of receiving nothing. Many people, confronted
with this choice, prefer La to Lb even though the expected winnings are higher for lottery
Lb. Lottery Ma offers an 11% chance of winning $50 and an 89% chance of receiving
nothing, while lottery Mb offers a 10% chance of winning $250 and a 90% chance of
receiving nothing. Many people, confronted with this choice, preferMb toMa .

The challenge to utility theory is that choosing La over Lb, while also choosing Mb

over Ma , violates the independence axiom. As the structure of the table makes clear, the
only difference between La and Lb is in the balls labeled 0–10; the balls labeled 11–99
are identical in these two lotteries. This is also true for the pairMa andMb . According to
the independence axiom, the rewards for drawing balls 11–99 should then be irrelevant

Table 1.1. Allais Paradox

0 1–10 11–99

La 50 50 50
Lb 0 250 50
Ma 50 50 0
Mb 0 250 0

1The model’s gloomy acronym may also have hurt its prospects. Possibly only Deaton and Muellbauer
(1980) were less fortunate in this respect.
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1.4. Critiques of Expected Utility Theory 13

to the choices between La and Lb, and Mb and Ma . But if this is the case, then the two
choices are the same because if one considers only balls 0–10, La has the same rewards as
Ma , and Lb has the same rewards asMb.

There is a longstanding debate over the significance of this paradox. Either people
are easily misled (but can be educated) or the independence axiom needs to be aban-
doned. Relaxing this axiom must be done carefully to avoid creating further paradoxes
(Chew 1983, Dekel 1986, Gul 1991).2 Recent models of dynamic decision making, not-
ably the Epstein and Zin (1989, 1991) preferences discussed in section 6.4, also relax
the independence axiom in an intertemporal context, taking care to do so in a way that
preserves time consistent decision making.

1.4.2 Rabin Critique

Matthew Rabin (2000) has criticized utility theory on the ground that it cannot explain
observed aversion to small gambles without implying ridiculous aversion to large gambles.
This follows from the fact that differentiable utility has second-order risk aversion.

To understand Rabin’s critique, consider a gamble that wins $11 with probability 1/2
and loses $10 with probability 1/2. With diminishing marginal utility, the utility of the
win is at least 11u′(W0 + 11). The utility cost of the loss is at most 10u′(W0 – 10). Thus if
a person turns down this gamble, we must have 10u′(W0 – 10) > 11u′(W0 + 11), which
implies

u′(W0 + 11)
u′(W0 – 10)

<
10
11

.

Now suppose the person turns down the same gamble at an initial wealth level of
W0 + 21. Then

u′(W0 + 21 + 11)
u′(W0 + 21 – 10)

=
u′(W0 + 32)
u′(W0 + 11)

<
10
11

.

Combining these two inequalities,

u′(W0 + 32)
u′(W0 – 10)

<

(
10
11

)2

=
100
121

.

If this iteration can be repeated, it implies extremely small marginal utility at high wealth
levels, which would induce people to turn down apparently extremely attractive gambles.

Table 1.2 is an extract from Rabin (2000), Table I. The original caption reads “If
averse to 50-50 lose $100/gain g bets for all wealth levels, will turn down 50-50 lose L/gain
G bets; G’s entered in table.” Values g are entered in the column headings, and values L
are entered in the row labels, while the cells of the table report G . In other words, as one
moves to the right, each column corresponds to an agent who is turning down more and

2For example, suppose that La 
 Lb and La 
 Lc but contrary to the independence axiom Ld = 0.5Lb +
0.5Lc 
 La . Then you would pay to switch from La to Ld , but once the uncertainty in the compound lottery Ld

is resolved, you would pay again to switch back to La . This is sometimes called the “Dutch book” problem. It can
be avoided by imposing Chew’s (1983) property of “betweenness,” that a convex combination of two lotteries
(Lb and Lc in the example above) cannot be preferred to the more preferred of the two, and the less preferred
of the two cannot be preferred to the convex combination.
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Table 1.2. Extract from Rabin (2000), Table I

L/g $101 $105 $110 $125

$400 400 420 550 1,250
$1,000 1,010 1,570 ∞ ∞
$4,000 5,750 ∞ ∞ ∞
$10,000 ∞ ∞ ∞ ∞

Table 1.3. Extract from Rabin (2000), Table II

L/g $101 $105 $110 $125

$400 400 420 550 1,250
$1,000 1,010 1,570 718,190 160 billion
$4,000 5,750 635,670 60.5 million 9.4 trillion
$10,000 27,780 5.5 million 160 billion 5.4 sextillion

more favorable small gambles. As one moves down the table, each row corresponds to a
larger possible loss, and the table entries show the winnings that are required to induce
the agent to take the bet. An entry of ∞ implies that the agent will turn down the bet for
any finite upside, no matter how large.

A first obvious question is how is it possible for an agent to be unresponsive to
arbitrarily large winnings, refusing to risk a finite loss. To promote careful thought, this
question is posed as an informal problem and is answered at the end of the chapter. As
a clue, Table 1.3 is an extract from Rabin (2000), Table II. The only difference between
this and the previous table is that the numbers here are conditional on a specific initial
wealth level ($290,000), and the aversion to 50-50 lose $100/gain g bets is known to hold
only for wealth levels up to $300,000.

1.4.3 First-Order Risk Aversion and Prospect Theory

Rabin’s critique shows that the standard theory of expected utility cannot explain risk
aversion with respect to small gambles over a significant range of wealth levels. At any one
level of wealth, one can increase aversion to small gambles within the standard theory by
relaxing the assumption that utility is twice differentiable, allowing a kink in the utility
function that invalidates the standard formula for the risk premium given in (1.25). Such
a kink makes risk aversion locally infinite and implies that the risk premium for a small
gamble is proportional to its standard deviation rather than its variance; this is called
“first-order” risk aversion by contrast with the “second-order” risk aversion implied by
twice differentiable utility (Segal and Spivak 1990). However, this approach only increases
aversion to small gambles at a single point, and Rabin’s argument (which does not assume
twice differentiability of the utility function) still applies if an agent is averse to small
gambles over a range of wealth levels.

In response to this, economists and psychologists have explored models with refer-
ence points, in which utility results from gains or losses relative to a reference point that
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is often set equal to current wealth. This has the effect of moving the kink in the utility
function so that it is always relevant and induces first-order risk aversion at arbitrary levels
of initial wealth.

The most famous example is Kahneman and Tversky’s (1979) prospect theory, which
has not only a kink at the reference point but also two other features designed to fit exper-
imental evidence on risk attitudes: a preference function that is concave in the domain
of gains and convex (risk-seeking) in the domain of losses, and subjective probabilities
that are larger than objective probabilities when those probabilities are small. A standard
parameterization of the prospect-theory preference function is

u(x) = xβ for x ≥ 0,

u(x) = –λ|x|β for x ≤ 0, (1.37)

where x = W –WREF , the difference between wealth and the reference level of wealth. We
assume 0 < β < 1 to get concavity for gains and convexity for losses, and λ > 1 to deliver
a kink at the reference point. Gul’s (1991) disappointment averse preferences also have
a kink at a reference point set equal to the endogenous certainty equivalent of a gamble
(Backus, Routledge, and Zin 2004).

Barberis, Huang, and Thaler (2006) point out that even these preferences cannot
generate substantial aversion to small delayed gambles. During the time between the
decision to take a gamble and the resolution of uncertainty, the agent will be exposed to
other risks and will merge these with the gamble under consideration. If the gamble is
uncorrelated with the other risks, it is diversifying. In effect the agent will have second-
order risk aversion with respect to delayed gambles. To deal with this problem, Barberis
et al. argue that people treat gambles in isolation, that is, they use “narrow framing.”

In this book, we will continue to work primarily with standard utility functions despite
their inability to explain aversion to small risks. This reflects my belief that the theory is
useful for asset pricing problems, consistent with Rabin’s acknowledgement that it “may
well be a useful model of the taste for very-large-scale insurance” (Rabin 2000). One
might make an analogy with physics, where the force of gravity is dominant at cosmolo-
gical scales even though it becomes negligible at subatomic scales where other forces are
far more important.

Finally, it is worth noting that expected utility theory can be enriched to gener-
ate differences in aversion to medium-scale and large-scale risks. Notably, Chetty and
Szeidl (2007) show that “consumption commitments” (fixed costs to adjust a portion of
consumption) raise risk aversion over medium-sized gambles, relative to risk aversion
over large gambles where extreme outcomes would justify paying the cost to adjust all
consumption.

1.5 Comparing Risks

Earlier in this chapter we discussed the comparison of utility functions, concentrat-
ing on cases where two utility functions can be ranked in their risk aversion, with one
turning down all lotteries that the other one turns down, regardless of the distribu-
tion of the risks. Now we perform a symmetric analysis, comparing the riskiness of two
different distributions without making any assumptions on utility functions other than
concavity.
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1.5.1 Comparing Risks with the Same Mean

In this subsection we consider two distributions that have the same mean. Informally,
there are three natural ways to define the notion that one of these distributions is riskier
than the other:

(1) All increasing and concave utility functions dislike the riskier distribution relative
to the safer distribution.

(2) The riskier distribution has more weight in the tails than the safer distribution.
(3) The riskier distribution can be obtained from the safer distribution by adding noise

to it.

The classic analysis of Rothschild and Stiglitz (1970) shows that these are all equivalent.
Consider random variables X̃ and Ỹ , which have the same expectation.

(1) X̃ is weakly less risky than Ỹ if no individual with an increasing concave utility
function prefers Ỹ to X̃ :

E[u(X̃ )] ≥ E[u(Ỹ )] (1.38)

for all increasing concave u (.). X̃ is less risky than Ỹ (without qualification) if it
is weakly less risky than Ỹ and there is some increasing concave u(.) which strictly
prefers X̃ to Ỹ .

Note that this is a partial ordering. It is not the case that for any X̃ and Ỹ ,
either X̃ is weakly less risky than Ỹ or Ỹ is weakly less risky than X̃ . We can get a
complete ordering if we restrict attention to a smaller class of utility functions than
the concave, such as the quadratic.

(2) X̃ is less risky than Ỹ if the density function of Ỹ can be obtained from that of X̃ by
applying a mean-preserving spread (MPS). An MPS s(x) is defined by

s(x) =

⎛⎜⎜⎜⎜⎝
α for c < x < c + t
–α for c ′ < x < c ′ + t
–β for d < x < d + t
β for d ′ < x < d ′ + t

0 elsewhere

⎞⎟⎟⎟⎟⎠, (1.39)

where α,β, t > 0; c + t < c ′ < c ′ + t < d < d + t < d ′; and α(c ′ – c) = β(d ′ – d);
that is, “the more mass you move, the less far you can move it.” This is illustrated in
Figure 1.3.

An MPS is something you add to a density function f (x). If g(x) = f (x) + s(x),
then (i) g(x) is also a density function, and (ii) it has the same mean as f (x).
(i) is obvious because

∫
s(x)dx = area under s(x) = 0.

(ii) follows from the fact that the “mean” of s(x),
∫
xs(x)dx = 0, which follows from

α(c ′ – c) = β(d ′ – d). The algebra is∫
xs(x)dx =

∫ c+t

c
xαdx +

∫ c′+t

c′
x(–α)dx +

∫ d+t

d
x(–β)dx +

∫ d′+t

d′
xβdx

= α
[
x2

2

]c+t
c

– α
[
x2

2

]c′+t
c′

– β
[
x2

2

]d+t
d

+ β
[
x2

2

]d′+t

d′

= t
[
β(d ′ – d) – α(c ′ – c)

]
= 0. (1.40)
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Figure 1.3. Mean-Preserving Spread

In what sense is an MPS a spread? It is obvious that if the mean of f (x) is
between c ′ + t and d, then g(x) has more weight in the tails. This is not so
obvious when the mean of f (x) is far to the left or the right in Figure 1.3.
Nevertheless, we can show that Ỹ with density g is riskier than X̃ with density
f in the sense of (1) above. In this sense the term “spread” is appropriate.

We calculate the expected utility difference between X̃ and Ỹ as

E[u(X̃ )] – E[u(Ỹ )]

=
∫
u(z)[f (z) – g(z)]dz = –

∫
u(z)s(z)dz (1.41)

= –α
∫ c+t

c
u(z)dz + α

∫ c′+t

c′
u(z)dz + β

∫ d+t

d
u(z)dz – β

∫ d′+t

d′
u(z)dz

= –α
∫ c+t

c

[
u(z) – u(z + c ′ – c) –

β

α
{u(z + d – c) – u(z + d ′ – c)}

]
dz.

The definition of an MPS implies that β/α = (c ′ – c)/(d ′ – d). In addition,
u(z + h) – u(z) = u′(z∗)h for some z∗ between z and z + h.

Thus

u(z) – u(z + c ′ – c) = –(c ′ – c)u′(z∗1) (1.42)

for some z∗1 between z and z + c
′ – c, and

u(z + d – c) – u(z + d ′ – c) = –(d ′ – d)u′(z∗2) (1.43)

for some z∗2 between z + d – c and z + d ′ – c. Substituting into (1.41), we get

E[u(X̃ )] – E[u(Ỹ )] = α(c ′ – c)
∫ c+t

c

[
u′(z∗1) – u

′(z∗2)
]
dz > 0, (1.44)

where the inequality follows because z∗1 < z∗2 so u′(z∗1) > u′(z∗2).
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18 1. Choice under Uncertainty

(3) A formal definition of “added noise” is that X̃ is less risky than Ỹ if Ỹ has the same
distribution as X̃ + ε̃, where E [̃ε|X ] = 0 for all values of X . We say that ε̃ is a “fair
game” with respect to X .

The fair game condition is stronger than zero covariance, Cov(̃ε, X̃ ) = 0. It is weaker
than independence, Cov(f (̃ε) , g(X̃ )) = 0 for all functions f and g . It is equivalent
to Cov(̃ε, g(X̃ )) = 0 for all functions g . To develop your understanding of this point,
Problem 1.1 at the end of this chapter asks you to construct examples of random vari-
ables X̃ and ε̃ that have zero covariance but do not satisfy the fair game condition, or that
satisfy the fair game condition but are not independent.

It is straightforward to show that added noise is sufficient for a concave utility
function to dislike the resulting distribution, that is, (3) implies (1):

E[U (X̃ + ε̃)|X ] ≤ U (E[X̃ + ε̃|X ]) = U (X )

⇒ E[U (X̃ + ε̃)] ≤ E[U (X̃ )]

⇒ E[U (Ỹ )] ≤ E[U (X̃ )], (1.45)

because Ỹ and X̃ + ε̃ have the same distribution.
More generally, Rothschild and Stiglitz show that conditions (1), (2), and (3) are all

equivalent. This is a powerful result because one or the other condition may be most
useful in a particular application.

None of these conditions are equivalent to Ỹ having greater variance than X̃ . It is
obvious from (3) that if Ỹ is riskier than X̃ then Ỹ has greater variance than X̃ . The
problem is that the reverse is not true in general. Greater variance is necessary but not
sufficient for increased risk. Ỹ could have greater variance than X̃ but still be preferred
by some concave utility functions if it has more desirable higher-moment properties. This
possibility can only be eliminated if we confine attention to a limited class of distributions
such as the normal distribution.

1.5.2 Comparing Risks with Different Means

The Rothschild-Stiglitz conditions apply only to distributions that have the same mean.
However, they extend straightforwardly to the case where a riskier distribution, in the
Rothschild-Stiglitz sense, is shifted downward and therefore has a lower mean. Some brief
definitions illustrate this point.

Definition. X̃ (first-order) dominates Ỹ if Ỹ = X̃ + ξ̃ , where ξ̃ ≤ 0. In this case every outcome
for X̃ is at least as great as the corresponding outcome for Ỹ .

Definition. X̃ first-order stochastically dominates Ỹ if Ỹ has the distribution of X̃ + ξ̃ , where
ξ̃ ≤ 0. Equivalently, if F (.) is the cdf of X̃ and G(.) is the cdf of Ỹ , then X̃ first-order
stochastically dominates Ỹ if F (z) ≤ G(z) for every z. In this case every quantile of the
X̃ distribution is at least as great as the corresponding quantile of the Ỹ distribution,
but a particular outcome for Ỹ may exceed the corresponding outcome for X̃ . First-
order stochastic dominance implies that every increasing utility function will prefer the
distribution X̃ .

Definition. X̃ second-order stochastically dominates Ỹ if Ỹ has the distribution of X̃ + ξ̃ + ε̃,
where ξ̃ ≤ 0 and E[̃ε|X + ξ] = 0. Second-order stochastic dominance (SOSD) implies that
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every increasing, concave utility function will prefer the distribution X̃ . Increased risk is
the special case of SOSD where ξ̃ = 0.

SOSD, based on the consistent preference of all risk-averse decision makers for one
gamble over another, offers an uncontroversial comparison of risks. Unfortunately this
also limits its applicability: SOSD is only a partial order of gambles; that is, many pairs
of gambles cannot be ranked using SOSD. Specifically, when a riskier distribution, in the
Rothschild-Stiglitz sense, is shifted upward—implying that it has a higher mean—then
one cannot assert that any concave utility function will prefer the safer alternative. The
choice will depend on the scale of the risk and the form of the utility function. This
tradeoff is the subject of portfolio choice theory, which we explore in the next chapter.

It is possible to create a complete order, delivering a ranking of any two gambles, if
one confines attention to a more specific set of decision makers (defined by their utility
functions and wealth levels). A complete order can be used to create a riskiness index,
that is, a summary statistic mapping a gamble to a real number that depends only on
the attributes of the gamble itself. For example, Aumann and Serrano (2008) propose a
riskiness index based on the preferences of agents with CARA utility, for whom wealth
does not affect their attitudes toward gambles. The Aumann-Serrano index is the risk tol-
erance (the reciprocal of risk aversion) that makes a CARA agent indifferent to a gamble.
Problem 1.2 invites you to explore this and another riskiness index proposed by Foster
and Hart (2009). While riskiness indices lack the generality of SOSD and depend on the
preferences considered, they can nonetheless be useful for descriptive and regulatory
purposes.

1.5.3 The Principle of Diversification

We conclude this chapter by showing how the Rothschild-Stiglitz analysis can be used to
prove the optimality of perfect diversification in a simple portfolio choice problem with
identical risky assets.

Consider n lotteries with payoffs x̃1, x̃2, . . . , x̃n that are independent and identically
distributed (iid). You are asked to choose weights α1, α2, . . . ,αn subject to the constraint
that

∑
i αi = 1. It seems obvious that the best choice is a fully diversified, equally weighted

portfolio with weights αi = 1/n for all i. The payoff is then

z̃ =
1
n

n∑
i=1

x̃i . (1.46)

The Rothschild-Stiglitz analysis makes it very easy to prove that this is optimal. Just
note that the payoff on any other strategy is∑

i

αi x̃i = z̃ +
∑
i

(
αi –

1
n

)
x̃i = z̃ + ε̃, (1.47)

and

E[̃ε|z] =
∑
i

(
αi –

1
n

)
E[̃xi |z] = k

∑
i

(
αi –

1
n

)
= 0. (1.48)

Thus, any other strategy has the payoff of the equally weighted portfolio, plus added noise
(Rothschild-Stiglitz condition (3)). It follows that any concave utility function will prefer
the equally weighted portfolio (Rothschild-Stiglitz condition (1)).
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1.6 Solution and Further Problems

An informal problem posed in this chapter was how it is possible for an agent to turn
down a 50-50 gamble with a fixed loss, regardless of the size of the potential winnings, as
claimed in Rabin (2000), Table I. The answer is that if utility is bounded above, then the
utility gain from a win converges to a finite limit even as the size of the win becomes arbit-
rarily large. Rabin’s assumption in Table I—that an agent with expected utility turns down
a given small gamble at all initial wealth levels—requires that absolute risk aversion is non-
decreasing (because with decreasing absolute risk aversion, at some high enough level of
wealth the agent will accept the small gamble). But the utility function with constant
absolute risk aversion, the exponential utility function, is bounded above, and the same
is true of all utility functions with increasing absolute risk aversion such as the quadratic
utility function. This discussion suggests that Table II may be a more relevant critique
of expected utility than Table I. Table II makes a weaker assumption about the range of
wealth over which an agent turns down a given small gamble and is thus consistent with
decreasing absolute risk aversion.

Problem 1.1 Fair Games

State whether each of the following statements is true or false. Provide a proof if the
statement is true or a counterexample if the statement is false.

(a) If X̃ is a fair game with respect to Ỹ , and Ỹ is a fair game with respect to X̃ , then X̃
and Ỹ are independent.

(b) If X̃ and Ỹ have zero means and zero covariance, then X̃ is a fair game with respect
to Ỹ and Ỹ is a fair game with respect to X̃ .

(c) For jointly normally distributed random variables, zero covariance implies inde-
pendence.

Problem 1.2 Riskiness Indices

This exercise explores the properties of two recently proposed riskiness indices: the
Aumann and Serrano (AS 2008) index and the Foster and Hart (FH 2009) index.

A decision maker is characterized by an initial wealth level W0 and von Neumann-
Morgenstern utility function u over wealth with u′ > 0 and u′′ < 0. A gamble is repres-
ented by a real-valued random variable g representing the possible changes in wealth if
the gamble is accepted by the decision maker. An investor (W0,u) rejects a gamble g if
E[u(W0 + g)] ≤ u(W0) and accepts g if E[u(W0 + g)] > u(W0). We only consider gambles
with E[g] > 0 and Pr(g < 0) > 0. For simplicity, we assume that gambles take finitely
many values. Let Lg ≡ max(–g) and Mg ≡ max g denote the maximal loss and maximal
gain of g , respectively.

For any gamble g , the AS riskiness index RAS(g) is given by the unique positive
solution to the equation

E
[
exp

(
–

1
RAS(g)

g
)]

= 1. (1.49)
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For any gamble g , the FH riskiness RFH (g) index is given by the unique positive solution
to the equation

E
[
log

(
1 +

1
RFH (g)

g
)]

= 0. (1.50)

(a) Show that the AS riskiness index equals the level of risk tolerance that makes a
CARA investor indifferent between accepting and rejecting the gamble. That is, an
investor with CARA utility u(w) = – exp(–Aw) will accept (reject) g if A < 1/RAS(g)
(if A ≥ 1/RAS(g)).

(b) Show that the FH riskiness index equals the level of wealth that would make a log
utility investor indifferent between accepting and rejecting the gamble. That is, a
log investor with wealth W0 > RFH (g) (W0 ≤ RFH (g)) will accept (reject) g .

(c) Consider binary gambles with a loss of Lg with probability pL and a gain Mg with
probability 1 – pL. Calculate the values of the two indices for the binary gamble with
Lg = $100, Mg = $105, and pL = 1/2 (Rabin 2000). Repeat for the binary gamble
with Lg = $100, Mg = $10, 100, and pL = 1/2. (The calculation is analytical for FH
but numerical for AS.)

(d) Consider binary gambles with infinite gain, that is,Mg arbitrarily large. Derive expli-
cit formulas for the two indices as a function of Lg and pL at the limit Mg → +∞.
Explain the intuition behind these formulas. Why do the indices assign nonzero
riskiness to gambles with infinite expectation? What happens as pL → 0?

(e) The Sharpe ratio, defined as the ratio of the mean of a gamble to its standard devi-
ation, SR(g) ≡ E[g]/

√
Var(g),3 is a widely used measure of risk-adjusted portfolio

returns. We can interpret its reciprocal as a riskiness index.
(i) Show by example that the (inverse) Sharpe ratio violates first-order stochastic

dominance (and hence second-order stochastic dominance). That is, if gamble
h first-order stochastically dominates gamble g , then it is not always true that
SR(h) ≥ SR(g).

(ii) AS (2008) propose a generalized version of the Sharpe ratio GSR(g) ≡ E[g]/
RAS(g), a measure of “riskiness-adjusted” expected returns. Argue that GSR
respects second-order stochastic dominance (and hence first-order stochastic
dominance).

(iii) Show that GSR(g) is ordinally equivalent to SR(g) when g is a normally
distributed gamble.

Hint: use the probability density function of the normal distribution to show
that RAS(g) = Var(g)/(2E[g]).

3The definition of the Sharpe ratio in terms of asset returns is given in equation (2.37) of the next chapter.
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Arrow, Kenneth J., 9

Arrow-Debreu security, 83, 92
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methodology/solution, 9–10,
24, 29

Asness, Clifford S., 153–54
asset allocation puzzle, 41–42, 276–77
asset management, 300, 392
asymmetric information and liquidity,

371–72; liquidity and asset pricing (see liquid-
ity and asset pricing); market microstructure
(see market microstructure); practice
problems, 400–403; rational expectations
equilibrium (see rational expectations
equilibrium); solution to exercise, 400

Athanasoulis, Stefano G., 345–46, 364
Aumann, Robert J., 19–21, 375
autarky, 349–53, 367
autocorrelations: consumption growth, 163,

198, 222; Kendall bias, 145; returns, 68–69,
81, 124–27, 140, 156, 163, 198, 278, 298, 378;
SDF, 254

autocovariances, 111, 138–39, 386–87
Avdis, Efstathios, 148
average cost curve, 235
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background risk, 26, 168, 308, 321
Backus, David K., 100
bad beta. See cash-flow beta
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bankruptcy, 29, 350, 354
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high willingness to pay for early resolution of
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166, 181–84, 186–87, 191, 219, 299
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benchmark return, 97, 115–17, 276
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Berk, Jonathan, 392
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Bertaut, Carol, 321
beta, 49; CAPM (see Capital Asset Pricing

Model [CAPM]); cash-flow (see cash-flow
beta); discount-rate (see discount-rate
beta); multifactor (see multifactor model);
portfolio choice and, 51–53; single-factor (see
single-factor model); zero-beta portfolio (see
zero-beta portfolio)

Betermier, Sebastien, 317
bid-ask bounce, 386–87
bid-ask spread, 385–89
Bidder, Rhys, 191
Binsbergen, Jules van, 290
Black, Fischer, 50, 53–55, 58
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dynamics, 250–52
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Brandt, Michael W., 263, 283, 290
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Breeden, Douglas T., 167, 202n

Brennan, Michael J., 292
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Cagetti, Marco, 188
Calvet, Laurent E., 317, 324–27, 329, 331
Campbell-Cochrane model of habit formation,

166, 193–99, 252, 262, 292–93, 311, 323
Campbell-Shiller approximation, 134–37,

140–41, 150, 160, 185, 216, 273
Canner, Niko, 41–42, 44, 276
CAPE ratio. See cyclically adjusted
price-earnings (CAPE) ratio

capital allocation line (CAL), 33, 40, 48
Capital Asset Pricing Model (CAPM), 47–48;

beta pricing and portfolio choice, 51–53;
Black, 50–51, 58, 63n3, 66; conditional, 60–
61, 75–76; empirical testing of (see empirical
testing of CAPM); Epstein-Zin preferences
and, 179–82; human capital, modification
to include, 317–18; international, 325–27;
intertemporal (see intertemporal CAPM);
liquidity-adjusted, 395; Sharpe-Lintner,
48–50, 58

capital market line (CML), 48
capital share, 208, 213, 227
capital stock, 148, 208–11, 219, 223–24, 226–27
CAPM. See Capital Asset Pricing Model
CARA. See constant absolute risk averse (CARA)
utility

cardinal utility, 3
Carhart, Mark M., 69
Carroll, Christopher D., 313, 320–21
carry trade. See foreign exchange carry trade
cash-flow: beta, 284–90; news, 137–39, 144,

284–90
catching up with the Joneses, 191
cay return predictor, 148–49
Cederburg, Scott, 75
certainty equivalent, 8–10, 15;

certainty-equivalent function, 176
CES. See constant elasticity of substitution

(CES)
Chacko, George C., 283, 391
Chan, Yeung Lewis, 199, 279, 281, 362
Chen, Long, 144, 285
Chen, Nai-Fu, 76
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choice under uncertainty. See expected utility

theory
cholesterol, 284n
Christensen, Jens H. E., 265
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CIR process. See square-root (CIR) process
clean-surplus accounting, 131
Cobb-Douglas: production, 208, 215; utility,

200, 364
Cocco, João F., 314–15
Cochrane, John H.: absence of arbitrage,

definition of, 92n; bond returns, predicting,
240–41, 249; Campbell-Cochrane model
of habit formation, 166, 193–99, 252, 262,
292–93, 311, 323; Cochrane-Piazzesi return
predictor, 240–41; Generalized Method of
Moments, 103; habit formation modeling
issues, 191; incomplete markets, SDF pricing
of financial assets in, 90; intertemporal
portfolio choice, an alternative approach
to, 283, 299–300; Lettau and Ludvigson
return predictor, interpretation of, 149;
perfect risksharing, tests of, 88; problem
based on, 116; producers’ decisions and
the marginal rate of transformation across
states, 222–23; q theory, test of, 212; real
exchange rates, log SDFs and, 263; returns
on physical investments should equal returns
on claims, 207; Stambaugh, response to,
146–47; variance ratio statistic, introduction
of, 124

Cohen, Randolph B., 144, 155
Cohn, Richard A., 153, 155
cohort effects, 315, 331–32
cointegration, 129, 135, 148, 186, 198
Colacito, Riccardo, 263
Collin-Dufresne, Pierre, 269, 293n9, 298–99
common knowledge, 375
competitive equilibrium, 332, 341, 346–47,

350–52, 366–67, 373–74, 375n, 377
complete markets, the SDF and: existence

of a representative agent, 88–89; the
growth-optimal portfolio and the SDF,
85–86; heterogeneous beliefs, 89–90; perfect
risksharing, 87–88; the riskless asset and
risk-neutral probabilities, 84–85; the SDF in,
83–84; solving portfolio choice problems,
86–87; utility maximization and the SDF, 85

concave function, 6

constant absolute risk averse (CARA) utility,
11; Aumann-Serrano index and, 19, 21; the
CARA-normal framework, 25–27; in financial
markets with asymmetric information,
372–73; labor income and, 308

constant elasticity of substitution (CES), 176,
199

Constantinides, George M.: asset pricing with
uninsurable income risk, 168, 341, 343–45;
habit formation, models of, 191, 198–99;
models where human wealth is a large
fraction of total wealth, 323; overlapping
generations model, 316; scarcity of collateral,
risksharing implications of, 353

constant relative risk averse (CRRA) utility,
11–12; the CRRA-lognormal case, 27–30;
labor income and, 309–11

constant returns to scale, 208, 210
consumer financial regulation, 334, 338–39
consumption-based asset pricing, 85, 161;

ambiguity aversion, 187–91; disaster models,
168–75; durable goods, 199–201; Epstein-Zin
preferences (see Epstein-Zin preferences);
equity premium puzzle, 164–65; equity volat-
ility puzzle, 166; habit formation (see habit
formation); lognormal consumption with
power utility, 162–63; long-run risk models
(see long-run risk models); practice problems,
202–6; responses to the puzzles, 166–68;
riskfree rate puzzle, 165–66; solutions to
exercises, 201–2; three puzzles, 163–66

consumption commitments, 15
consumption-wealth ratio, 166, 170, 172, 177,

183, 193, 273, 279, 322, 368
contingent claim, see Arrow-Debreu security
continuity axiom, 4
convexity: adjustment costs, 207–10; bonds,

237, 244–45, 250; cumulant-generating
function, 171–72; prospect theory, 15

Cottle, Sidney, 67
coupon bonds, 236–37
covered interest parity, 258
Cox, John C., 87, 245–47
crashes, 379
Croce, Mariano M., 263
CRRA. See constant relative risk averse (CRRA)

utility
Crump, Richard K., 295
cumulant-generating function, 100, 169–72
cursedness, 379
cyclically adjusted price-earnings (CAPE) ratio,
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depth, 391
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Diebold, Francis X., 264n12, 265
Diether, Karl B., 71
diffusion, 171, 190–91, 342–44; jump-diffusion,

171
Dimson, Elroy, 167
disaster models: rare disasters, 168–73;

time-varying disaster risk, 173–75
discount-rate: beta, 284–90; news, 137–39, 144,

181, 284–90
displacement risk, 318
disposition effect, 123, 303, 334, 337
Dittmar, Robert, 186n
diversification: portfolio risk and, 32; prin-

ciple of, 19; underdiversification (see
underdiversification)

dividend-based models, 127; dividend discount
model, 128; Gordon growth model, 130–31,
136, 140–41, 150–54, 170, 174, 291, 298;
linearity-generating processes, 129–30;
variance bounds tests, 128–29

dividend futures, 290
dividend-price ratio, 68, 121, 130, 134–41, 144,

146–55, 170, 183, 225, 291, 294
displacement risk, 318
Dodd, David Le Fevre, 67, 142
Donaldson, John B., 316, 323, 345
Døskeland, Trond M., 317
drifting steady-state models: inflation and the

Fed model, 153; valuation model, 151–53;
volatility and valuation, 150–51

DSGE model. See dynamic stochastic general
equilibrium (DSGE) model

Dubey, Pradeep, 354
Duffee, Gregory R., 230, 246, 249
Duffie, Darrell: absence of arbitrage, definition

of, 92n; asset pricing with uninsurable
income risk, 168, 341, 343–45; expanding
the state vector to incorporate nonlinearities
within affine models, 249; incomplete mar-
kets, SDF pricing of financial assets in, 90; the
private information Pareto optimal SDF, 349;
scarcity of collateral, risksharing implications
of, 353; search costs and monopoly power,
388; slow moving capital, dynamic model of,
331; undiversified investing, implications for
asset pricing of, 329

Dunn, Kenneth B., 199
durable goods, 161, 168, 199–201, 225–26, 264,

318
duration: Macaulay’s, 236–37; modified, 237;

mortgages, 315; stocks, 290–94
Dutch book problem, 13n
Dybvig, Philip H., 244
dynamic efficiency, 133
dynamic stochastic general equilibrium

(DSGE) model, 207, 215–22

earnings quality, 71–72, 154
earnings-price ratio. See price-earnings ratio
Easley, David, 388
efficient market hypothesis, 122–24; joint

hypothesis problem, 122; semi-strong form,
122, 139; strong form, 122, 375; weak form,
122, 124, 139

Eichenbaum, Martin, 199
EIS. See elasticity of intertemporal substitution

(EIS)
Eisfeldt, Andrea L., 72n11
Eleswarapu, Venkat R., 149, 285
Ellsberg, Daniel, 187
elasticity of intertemporal substitution

(EIS), 162, 167–68, 176–88, 190, 198,
200–201, 203–4, 206, 216–19, 226–27,
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emperor’s new clothes, 379n
empirical testing of CAPM: alternative

responses to the evidence, 72–77; anomaly
elimination, 73–74; atheoretical multifactor
risk model, 75–76; behavioral finance, 77; the
CAPM and the cross-section of stock returns,
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teristics, 64–66; Roll critique, 74–75; test
methodology, 61–66; time-series approach,
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Engle, Robert F., 129
Engsted, Tom, 144
Engstrom, Eric, 199
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entry costs, 321
Epstein, Larry G.: ambiguity aversion, con-

tribution to, 187, 189n, 321; Epstein-Zin
preferences, 13, 176–79 (see also Epstein-Zin
preferences); timing premia in the long-run
risk model problem, 204

Epstein-Zin preferences, 162, 167–68, 176–77;
bond pricing models and, 251; deriving the
SDF for, 178–80; extended consumption
CAPM, 180–81; intertemporal CAPM, 181–82
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equity premium puzzle, 95, 99, 164–65, 168–75,

286, 316, 344
equity premium timing effect, 61
equity volatility puzzle, 166, 173
Etula, Erkko, 399–400
expectations hypothesis of the term structure,

237–41, 244, 259, 266; pure, 237
expected utility theory: axiomatic foundations

of, 3–5; comparing risks and (see risks,
comparing); critiques of, 12–15; practice
problems, 20–21; risk aversion and (see risk
aversion); solution for exercise, 20; tractable
utility functions, 10–12

exponential utility, 11
expropriation, 175
externality, 347, 364–67
extrapolative expectations, 219, 317, 332–33,

356
Eyster, Erik, 379

Fagereng, Andreas, 314, 322
fair game, 18, 20, 122
Fama, Eugene F.: bond return predictability

and cyclical predictability of other assets,
241; book-market ratio as measure of

value, 68; consumption-based asset pricing
puzzles, response to, 167; countercyclical risk
premia, evidence for, 198; efficient market,
definition of, 121; expectations hypothesis,
findings from test of, 240; Fama-French
and Fama-French-Carhart models, 76, 211;
Fama-MacBeth method, 64–65; forms of the
efficient market hypothesis, 122; inclusion
of value and profitability in a multifactor
model, 226; inflation and stock returns,
negative correlation of, 257n; long-horizon
return regressions used by, 140; methodology
of, 154; Nobel Prize award work, 137;
portfolios introduced to the literature by,
69; regressing the K -period return on the
lagged K -period return, approach for, 125;
stock returns, approaches to pricing, 75–77;
unconditional mean stock return, estimate
of, 147; uncovered interest parity, regression
results regarding, 259, 262–63; weak-form
market efficiency, test of, 124

Farhi, Emmanuel: endogenous labor supply
model, 313; equilibrium exchange rate
model, 262; investors’ high willingness to
pay for early resolution of uncertainty, 178,
203–4; nontradable goods production model,
264n11; OLG models, 133; pecuniary and
aggregate demand externalities, 347

Fed model, 153
Feller condition, 287n
Fisher, Jonas D. M., 222
fixed-income securities, 229–30; affine term

structure models (see affine term structure
models); bond pricing and the dynamics of
consumption growth and inflation (see bond
pricing and the dynamics of consumption
growth and inflation); coupon bonds, 236–
37; expectations hypotheses, 237–41; forward
rates, 234–35; interest rates and exchange
rates (see interest rates and exchange rates);
practice problems, 264–68; solution to
exercise, 264; yields and holding-period
returns, 230–34

foreign exchange carry trade, 260
foreign exchange rate, 258
forward exchange rate, 258
forward rate, 234–35, 241; affine term structure

models, 244–45; expectations hypothesis, 239
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inclusion of value and profitability in a
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equilibrium, 215–20; variable labor supply,
220–22
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Generalized Method of Moments (GMM), 83,

103–4; asymptotic theory, 104–5; important
estimators, 105–7; in practice, 109–11;

time-series regressions and, problem based
on, 117–18; traditional tests in, 107–9
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Golosov, Mikhail, 341, 348
Gomes, Francisco J., 314, 321, 323
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Gordon growth model, 130–31, 136, 140–41,

150–54, 170, 174, 291, 298
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Gourio, François, 175
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372; rational expectations equilibrium, 374,
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costly information, 380–82, 390; uninsurable
income risk and risk premia, 341–42, 344
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growth-optimal portfolio, 30, 85–86, 93, 101
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as research interest of, 254; durable goods,
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as improvement on running regressions,
146; intrinsic value and the real price of
stocks, commentary on claim regarding,
123, 138; Irrational Exuberance, publication
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Shiller, Robert J. (continued)
of, 142n; market design and risksharing
problem based on, 364; Nobel Prize award
work, 137; noise traders, models of, 354–55;
price-smoothed earnings ratio, 142; rational
investors and noise traders, models of trading
between, 342; social welfare maximization
with a limited number of financial assets,
345–46; stocks and TIPS, 295; uninsurable
income risk and risk premia, 341–42, 344;
variance bounds tests, 128–29; volatility
bound on the SDF, 95

Shin, Hyun Song, 383–84
shipping costs, 263
Shleifer, Andrei, 113, 397, 399
short-sales constraints, 31, 110, 276, 356–59,

363, 379–80
shrouded equilibrium, 335
Shubik, Martin, 354
Shumway, Tyler, 333
Siamese twins, 113
Siegel, Andrew F., 241, 264–65
Siegel, Jeremy J., 130, 132, 152, 280–81, 299
Siegel’s paradox, 259n
Simonov, Andrei, 317
Simsek, Alp, 342, 346, 354, 362–63
single-factor model: affine, 242–47; arbitrage

pricing in, 55–60
Singleton, Kenneth J., 106, 163, 184, 199, 249
size effect, 66–67, 70, 73–74, 212
skewness, 31n, 100, 169, 171, 318
slow-moving capital, 331
Smith, Anthony A., 345
social planner, 87, 133, 197, 345–51, 366n
social welfare, 338–39, 345–46
Sodini, Paolo, 314, 317, 324–27, 329, 331
solvency constraints, 350–53, 367
speculation. See risksharing and speculation
square-root (CIR) process, 245–46, 249, 256,

287n
Stafford, Erik, 112, 391
Staiger, Douglas, 184
Stambaugh, Robert F.: active asset manage-

ment, 392; bid-ask bounce effect on average
return, 387; illiquidity and autocovariances,
386; learning and portfolio choice, 269,
298; long-run risk model, 181–82; predictive
system, 140, 298; randomly time-varying
trading cost model, 393, 395–96; risk and the
investment horizon, 278–79; Roll critique,
response to, 75; Stambaugh bias, 145–47

Stathopoulos, Andreas, 260, 267

static equilibrium asset pricing, 47; arbitrage
pricing in a single-factor model, 55–59;
Capital Asset Pricing Model (see Capital Asset
Pricing Model [CAPM]); the conditional
CAPM as a multifactor model, 60–61;
empirical evidence (see empirical testing of
CAPM); multifactor models, 59–60; practice
problems, 77–81; solution to exercise, 77

static portfolio choice: practice problems,
44–46; risk exposure, choosing (see risk
exposure, choosing); risky assets, combining
(see risky assets, combining); solutions to
exercises, 43–44

Statman, Meir, 334
Staunton, Mike, 167
Stein, Jeremy C., 321n, 379
Stein’s Lemma, 160
Steinsson, Jón, 175
Stiglitz, Joseph E., 16, 18–19, 346, 380–82, 390
stochastic discount factor (SDF), 83; bond

pricing models and, 241–43, 250, 252–56;
in the Campbell-Cochrane model, 194–95;
complete markets (see complete markets, the
SDF and); entropy bounds and, 100–102;
Epstein-Zin preferences, deriving for, 178–80;
factor structure and, 102; foreign exchange
carry trade and, 260–64; Generalized Method
of Moments and (see Generalized Method
of Moments); incomplete markets (see
incomplete markets, the SDF and); limits of
arbitrage, 112–14; lognormal consumption
with power utility and, 162; marginal rate
of transformation and, 222–26; practice
problems, 114–18; private information
Pareto optimum (PIPO), 348–49; risk premia
and, 93–94; solutions for exercises, 114;
time-series properties of, 102–3; volatility
bounds and, 95–99

stochastic dominance: first-order, 18;
second-order, 18

Stock, James H., 125, 184
stock returns: beta and, 66–67; CAPM-implied

expected excess return, 67–68; cross-section
of, the CAPM and, 66–72; earnings quality
and, 71–72; efficient markets, factors
effecting, 123; empirical evidence on auto-
correlation in, 125–27; Fama-French-Carhart
log cumulative normalized factor returns,
69–70; five-year moving average excess
returns to micro-cap stocks, January vs.
other months, 74; five-year moving average
excess returns to small-cap stocks, January
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vs. other months, 73; growth of the firm
and, 71; insider trading, 71; international
stock and bill returns and consumption
growth, 163; interpreting U.S. stock market
history, 140–43; momentum and, 68–71; over
time, average correlations of individual, 37;
post-event drift, 71; predictive return regres-
sions (see predictive return regressions);
present value logic and the cross-section
of, 153–56; profitability and, 72; random
walk or martingale model of, 128; the S&P
500 dividend-price ratio, 1871–2013, 141;
the S&P 500 log price-smoothed earnings
ratio and the 10-year future real return,
1881–2013, 143; the S&P 500 price-smoothed
earnings ratio, 1881–2013, 142; tests of
autocorrelation, 124–25; turnover and
volatility, 71; value and, 67–68

Stoffman, Noah, 333
Stokey, Nancy, 375
Storesletten, Kjetil, 313, 315
Stroebel, Johannes, 133, 290–91
Strzalecki, Tomasz, 177, 204
stub value, 112
Stutzer, Michael, 100
Subrahmanyam, Avanidhar, 378
subsistence level, 12
Summers, Lawrence H., 124, 126–27
Sunderam, Adi, 294
surplus consumption, 193–97, 201, 262–63, 312
Swanson, Eric T., 207, 220–21, 313
swaps, 346
SVIX volatility index, 159–60
Szeidl, Adam, 15
Szilagyi, Jan, 75n, 154

Tallarini, Thomas, 217n
Tambalotti, Andrea, 219
tangency portfolio, 40–41, 46–47, 50–51, 63,

80, 97
Tanggaard, Carsten, 144
tax arbitrage, 112
Taylor approximation, 10, 28, 134, 336
Telmer, Christopher I., 313, 315
Teoh, Siew Hong, 148n8
Terlizzese, Daniele, 316
term spread. See yield spread
term structure of interest rates. See fixed-income
securities

term structure of risky assets: asset pricing
theory and the risky term structure, 291–95;
stylized facts, 290–91

Thaler, Richard H., 15, 68, 112, 199
Thompson, Samuel B., 147, 149, 153–55, 158
Timmermann, Allan, 289n
TIPS. See Treasury inflation-protected securities

(TIPS)
Tirole, Jean, 133, 392
Titman, Sheridan, 69, 76
Tobin, James: mutual fund theorem of, 23,

39–40, 50, 276; q theory of, 207
Toubia, Olivier, 332
Townsend, Robert M., 88
tractable utility functions, 10–12
trading costs, 83
transactions costs, 384–85. See also market

microstructure
transversality conditions, 133, 350–52
Treasury inflation-protected securities (TIPS),

230, 255, 277, 295
Treynor, Jack L., 53
Tsai, Jerry, 176
Tsyvinski, Aleh, 341, 348
Turkington, David, 43n
Turley, Robert, 287–88, 289n
turnover, 71, 394
Tversky, Amos, 15, 199, 334

Uhlig, Harald, 197, 220
uncovered interest parity, 258–60
underdiversification, 323; asset pricing

implications, 329–31; effects on the wealth
distribution, 327–29; empirical evidence,
324–27

uninsurable income risk. See idiosyncratic risk
unit root, 128–29, 135, 147
Uppal, Raman, 43
Ursúa, José, 176
util-prob, 89

value effect, 67–68, 75, 77, 285
Van Niewerburgh, Stijn, 295, 317, 353, 382
VAR. See vector autoregression (VAR)
variance beta, 288–90
variance bounds tests, 128
variance ratio statistic, 124–26, 138
VARMA. See vector autoregressive moving

average (VARMA) model
Vasicek, Oldrich, 242
Vassalou, Maria, 317
Vayanos, Dimitri, 331, 379, 392
vector autoregression (VAR), 143–44, 281,

285–88
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vector autoregressive moving average (VARMA)
model, 111

Veldkamp, Laura, 382
Venti, Steven F., 327
Verdelhan, Adrien, 195n, 199, 201, 252, 260,

262, 263n10, 264, 267
Veronesi, Pietro, 150–51, 293
Verrecchia, Robert E., 375–78
Viceira, Luis M.: currencies with high average

interest rates have high betas, 264; hedging
interest rates, 269, 273, 274n, 276–77;
hedging risk premia, 277, 279–81; hedging
volatility, 283; inflation-indexed bond yields,
255; risky labor income and portfolio choice,
310, 311n, 313; stocks and bonds, historical
correlations between U.S., 294–95; two-factor
affine term structure model, 256, 276–77

Violante, Giovanni L., 314
Vishny, Robert, 113, 397, 399
Vissing-Jørgensen, Annette, 321
Viswanathan, S., 353
VIX volatility index, 159–60
volatility bounds: Hansen-Jagannathan, 91,

96–99; logarithmic with a risky and riskless
asset, 95; simple with a risky and riskless asset,
95; simple without a riskless asset, 96

volatility timing effect, 61
Volcker, Paul, 277
von Neumann-Morgenstern utility function/

theory, 3–4; Allais paradox as challenge to,
12–13; Epstein-Zin preferences and, 177;
riskiness indices and, 20

Vuolteenaho, Tuomo: cross-sectional predictor
of the equity premium, 149–50, 154–55;
dynamic version of the profitability-based
formula for the book-market ratio, 136;
intertemporal capital asset pricing model,
269, 284–87, 301; noise reduction and
stock return predictability, 147; variance
decomposition for individual stock returns,
144

Wachter, Jessica A.: Campbell-Cochrane model
generalized with a variable interest rate,
195n, 252; maximum likelihood estimation
of the unconditional equity premium, 148;
risky term structure models, 292–95, 302–3;
slope of the term structure of risky yields,
269; variation of disaster probability over
time, 175

Wang, Ashley W., 292
Wang, Jiang, 378, 392

Wang, Tan, 189n, 321
Wang, Yong, 167
Ward, Colin, 264n11
Watson, Mark, 132
wealth distribution, 11, 26, 318–19, 327–29,

362, 372
wealth inequality, 328–29
wealthy hand-to-mouth consumers, 314
Weil, David N., 41–42, 44, 276
Weil, Philippe, 165, 176, 181
Welch, Ivo, 147, 153, 157–58
welfare theorems, 351–52
well diversified portfolio, 56
Werning, Iván, 347
West, Kenneth D., 11, 137
Whinston, Michael, 89
Whited, Toni M., 212–13
Williams, Noah, 188
Wise, David A., 327
Wolf, Michael, 43n
Wright, Jonathan H., 230
Wright, Stephen, 141n

Xia, Yihong, 292
Xiong, Wei, 334, 342, 359, 363
Xue, Chen, 211

Yan, Hongjun, 356
Yang, Alan X., 222
Yaron, Amir: continuously updated GMM

estimator, 107; empirical model of variance
risk, 288–89; income risk covariance effect
on long-term portfolio choice, 313, 315;
investors’ high willingness to pay for early
resolution of uncertainty, 178, 203–4;
long-run risk model, 166, 181–84, 186–87,
191, 219, 299

Yashiv, Eran, 210
yield: coupon bond, 236; curve, 231–35,

240–41, 255–56, 260, 264–65, 267–68;
dividend, 68, 152–53, 157–58, 160, 169–70;
duration, 290; earnings, 131, 157–58; Fed
model, 153; inflation-indexed, 255, 275; to
maturity, 229–30, 236; risky, 269, 288, 300,
302, 361; spread, 145, 148, 231–34, 238–40,
246, 255, 264, 294; tax-exempt bond, 112;
variance bounds test, 128; zero-coupon bond,
229–37

Yogo, Motohiro, 147, 199–201, 225–26, 264
Yu, Jianfeng, 219
Yue, Vivian Z., 264n12
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Zame, William R., 354
zebra, 400
Zeldes, Stephen P., 313, 314, 322
zero-beta: portfolio, 45, 51, 59–60; rate, 45, 50,

58–59, 117
zero-coupon: bonds, 229–37, 239, 241, 265;

dividend claims, 290, 302–3

zero lower bound, 256
Zhang, Lu, 211–14
Zhang, Qiang, 88
Zhao, Xinlei, 144, 285
Zin, Stanley E., 13, 176, 178–79. See also

Epstein-Zin preferences
Zingales, Luigi, 321n
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